PHYSICAL REVIEW E, VOLUME 65, 051401
Kinetics of growth process controlled by convective fluctuations
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A model of the sphericalcompact growth process controlled by a fluctuating local convective velocity field
of the fluid particles is introduced. It is assumed that the particle velocity fluctuations are purely noisy,
Gaussian, of zero mean, and of various correlations: Dirac delta, exponential, and algeisaiclaw. It is
shown that for a large class of the velocity fluctuations, the long-time asymptotics of the growth kinetics is
universal(i.e., it does not depend on the details of the statistics of fluctuatamsdisplays the power-law time
dependence with the classical exponent 1/2 resembling the diffusion limited growth. For very slow decay of
algebraic correlations of fluctuations asymptotically Ilike’, ye (0,1]), kinetics is anomalous and depends
strongly on the exponeny. For the averaged radius of the crys{@(t))~t'~ "2 for 0<y<1 or (R(t))
~(tInt)*2for y=1.
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I. INTRODUCTION forced convectionthe temperature difference method, the
concentration-induced convectiorNevertheless, the purely
Growth processes occur at various levels of nature: frontonvection limited growth has been rarely considered. Let us
microscopic to macroscopic worlds, from inorganic to or-remark that even in the absence of natural convection in the
ganic worlds, from inanimate to animated worlds, fromliquid phase or in the melt, in some cases the local convec-
physical through biological up to social worl&—3|. They tive flow can appear because the change of density during
have been studied both experimentally and theoretically. Inthe phase transition causes a flow in the liquid or in the melt
physics, examples are aggregation processes, growth of clumwards the interface. In some practical applications the
ters and crystals, grain growth, and the like. These are mostlgrowth process may take place under conditions of an exter-
irreversible processes in which objects are built up from elnally applied velocity field, which can be induced by the
ementary ingredients such as particles, molecules, or micrgroduction of the liquid phasés]. Therefore it is sensible to
aggregates. Growth from the vapor phase, from solution, ostudy the influence of convective flow on the growth process,
from melt is the most widespread method of crystal growing see, e.g., Ref7]. In Ref.[8], the convective field consists of
Commonly used solvents are water, multicomponent aqueous/o parts: deterministic and random. The random part has
or nonaqueous solutions, melts of some chemical compdieen assumed to be Gaussian white noise and then the evo-
nents, colloidal suspensions, complex electrolytes, etc. Twhution equation of the solid-liquid interface is a Langevin-
aspects of the growth process have been intensively studietype equation. In that case, the kinetics is determined mainly
a geometric structure of crystalaggregates, clusterand by the deterministic convective flow. Here, we assume that
their growth kinetics. The former is related to the growththe deterministic part is absent and only the fluctuating part
patterngcompact crystals, dendriteshe question of &rac-  occurs. Locally, it looks like a diffusion process of the
tal or nonfractal dimension and scaling properties of aggre-Brownian particle. If fluctuations are modeled by Gaussian
gates. The latter concerns the evolution of the interface dywhite noise then the long-time kinetics is the same as in the
namics, the velocity of the interface and its asymptotics atlassical theory of the diffusion driven growth for which the
long times, the time increase of the crystal radius, existencevolution of crystal sizes is proportional to the square root of
of regimes with power-law growth behavior, and evaluationtime. However, our approach gives an advantage over a stan-
of the growth exponents. One can classify the growth prodard approach: it allows to model the growth process driven
cess with respect to the growing object-surroundings interaaiot only by Markovian diffusion(the Wiener procegsbut
tion or properties of the solution: the particle-cluster oralso to include a wide class of non-Markovian diffusion pro-
cluster-cluster aggregation, the reaction or diffusion limitedcesses. In the standard description, which couples the diffu-
growth, the kinetic or ballistic aggregation, the growth in sion equations in the bulk phases with the interfacial bound-
external fields, under diffusive and/or convective flow, in de-ary conditions, it is rather difficult to include non-Markovian
terministic or stochastic fields. diffusion processes, which are described by much more com-
In most papers on the crystal growth, it is assumed thaplicated evolution equationé.g., integrodifferential equa-
the crystal formation and mass transfer from surroundings ttions) than the classical parabolic diffusion equation with a
the crystal is achieved by an ordinary diffusive flow, i.e., by constant(state independendtiffusion coefficient.
the particle self-diffusivity or by the particle gradient diffu- In any modeling, the complexity of the process is usually
sivity (the so-called diffusion limited growjh4,5]. How-  reduced by supposing elementary processes to be dominant
ever, the mass transfer can be maintained by natural anechanisms responsible for geometry and kinetics of
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growth. Our approach is based on the mass conservation law
from which a fundamental evolution equation is derived
elsewherd9,10]. This equation describes time evolution of
the surface of the crystal and can be reduced to an extremely .',
simple form for growing objects witkphericalor perturbed '
spherical symmetry such as spherulitg$,12), droplike ag-
gregates in ferrocolloid§13], or protein crystal§14]. The
compact spherical growtlineglecting the possibilities of
faceting or dendritic growthhas been studied from various
points of view(see, e.g., Ref$5,15,14).

The rest of the paper is organized as follows. In the fol-
lowing section, we rederive an evolution equation for the
solid-liquid interface. In Sec. Ill we present details of our
model. As in Refs[8,17], we consider the growth process
driven by a convective velocity fielfil8]. In Sec. IV, we
solve the corresponding mast&iokker-Planck equation. In
Sec. V, we present general results on asymptotic behavior of
statistical moments of the radius of the growing aggregate. In
Sec. VI, we describe several models of fluctuations. In Sec.
VII, we analyze kinetics of the growth process and summa-
rize the paper.

II. EVOLUTION EQUATION OF INTERFACE

Consider one of the simplest models of growth of the
crystal as a process of attachment of particles from isotropic
medium that usually is liquid or gas. After the nucleation
stage, a small crystal is formed. Particles of the surroundings
perform a walk and when they arrive in contact with the
crystal, they stick permanently. Then other particles arrive
and stick to the crystal, and so on. An equation describing FIG. 1. The growing crystal of the densi®(r) immersed in the
time-evolution of a growing object can be obtained using theconcentration fielat(r). The solid-liquid interfaceX (t) and3(t,)
mass conservation law for the crystal plus surroundings. Deat two instants andt,>t of the growth process.
tails are presented in Reff9,10. Here, we rederive that
equation. Let the medium be a saturated solution which is m(t,)— m(t)
two component. The first component is a solvent and the : f f f [C(r)—c(n]dV (3
second component consists of particles that will form the e
crystal. Denote the concentration of the second component in

the solution byc(r) (in units of m %) and the density of the equals the net mass flux across the interf&¢g),
crystal that consists of particles of the second component by

V(ty) = V(t)

C(r) [expressed in the same units @s)]. Let us analyze m(ty) —m(t) :j fj~dS @
the mass conservation latef. Fig. 1). At time t the crystal t— '
has a volumeV(t) and at the timet;>t it has a volume 2(t)

V(t1)>V(t). The mass contained M(t;) att; is
where - denotes the scalar product and

my- [ [ [ ciav. M =) ®)

V(ty)
' is the flux of particles whose dependence on the fluid con-

The mass contained in the voluriét,) but at earlier time  centrationc(r) follows from physics of the problentex-
consists of the crystal mass WU(t) and the mass of particles amples will be given belowanddS is an inward normal to
of the second component of solution in the volumé,) the surface (t,). In the limitt;—t, we get

-V(t), i.e.,

mo=| | [e@ovs [ [ [ emov. @ 7 | [1e0-cmnov-] [icinos ©

V(1) 3(1)
V(t) V(ty) = V(1)
This equation expresses the mass conservation law for grow-
The rate of change of the mass in the volu¥g,), ing objects. If the growing object has(aleal or perturbed
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symmetry, then Eq(6) can be converted into a simpler and

PHYSICAL REVIEW@5 051401

where D is the diffusion coefficient[in general, D

more tractable equation. In the spherical coordinate system D(c,r_,t)].

Eq. (6) takes the form

fwdﬁf%dqbifdrrzsinﬁ[cu 9, ) —c(r,9,4)]
0 0 dtJo Y Y

T 2w -
0 0

where the function

T=T(9,45t) (8)

specifies the interfack (t) andn is the inward normal19]
to the surface. For example, for a sphere of radi(g, one

obtainsr (9, ¢;t) = R(t). From Eq.(7) it follows that

dr_
ai-

j(C(l’,ﬂ,(b))‘ n.
€)

T2sind[C(r,9,¢)—c(r,9,¢)]

One has to determine the following three functions.

(a) The densityC(r, 9, ) of the growing crystal on the
surfaceX(t).

(b) The concentratiore(r) of the saturated solution over
the interfaceX (t). It is determined from thermodynamical
conditions and geometry &(t).

(c) The dependence of the flyyon the concentratioa(r)
of the fluid.

Let us consider pointa). In the most cases one can as-

For a_generalized diffusion case and in the high-friction
limit j(c(r)) takes the forn{21]

1 —
i(e(1)="c(NF(r)~D grade(r),

(14

whereF(r) is a force acting on patrticles of the fluid ard
stands for a friction coefficient.

For the so-called hyperbolic diffusiofdescribed by the
telegrapher’s equatigni22] the flux is determined by the
equation

J _
TH&—::'f‘j:—D gradc(r), (15

where 7 is the correlation time of the hyperbolic random
walk. One can combine convective and diffusive fields or
postulate other mechanisms for flow of the concentration
fields outside the growing crystal, as, e.g., the nonlocality of
the flux[cf. Egs.(3) and(5) in Ref.[23]].

Equation(9) is our fundamental equation that describes
time evolution of the interfac& (t) represented by the func-

tion T(9,4;t). In some cases, it reduces to or can be ap-
proximated by a(partial or ordinary differential equation
[8-10.

IIl. DESCRIPTION OF MODEL

sume that the crystal is homogeneous and the density is uni- From the mass conservation law, we obtained &y,

form,

C(r,?¥,¢)=C=const. (10

As for point (b), the expression foc(r,9,$) has been de-
rived under an assumption of local thermodynamical equilib
rium near the interfac& (t). The concentration of solution

over a crystal depends on the surface curvature due to the,

Gibbs-Thomson effect and is given by the form[dz20]
c(r,9,¢)=co[ 1+ T(9,$)K(r,9,4)], (11)

where I'(9,¢) is the capillary coefficientX(r,9,¢) is
twice the mean curvature of the surfakgt) at the point

which governs the long-time dynamics of the growth pro-
cess. The mass transfer from the solution to the crystal is
driven by the flux in the immediate vicinity of the interface.
The theoretical models of the crystal growth have mostly
considered the parabolic diffusive flu43) and the mass
conservation law has been expressed as a diffusion equation
for the fluid particles. We propose an alternative description
sed only on the convective flys2) instead of the diffu-
sive flux (13). In the coexistence region, the crystal growth
produces a depletion region in the vicinity of the solid-fluid
interface changing the particle density. It causes a local flow
of particles in the solution toward the interface. Conse-
quently, even in the absence of the forced or natural convec-
tion in the fluid phase, the local flow velocity field occurs

(r,9,¢), andc, is the concentration of the saturated solution[7]. The effects of the local fluid convection is the object of

over the flat surfacdéthe equilibrium concentration for the
planar interfacg i.e., when the curvature of the interface is
zero.

In turn, let us consider poinfc). If the feeding of the
growing object is purely convective th¢h8]

ie(m)=c(rnv(r), (12
wherev(r) is a velocity of convective particles.
For a purely parabolic diffusion fieldL8]
j(c(r))=-D grad c(r), (13

this research. We make several simplifications assuming the
spherical symmetry.

(i) The crystal is a sphere of radits=R(t)>0. Then the
functionr (9, ¢;t) =R(t).

(ii) The convective field12) is radial,

jc(r,9,¢)=—c(Rv(Rbe, (16)
wherev (R,t) is the velocity of convective particles over the
surfaceR(t).

(iii) The Gibbs-Thomson relatiofil) takes the form
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~ 2r
c(r,%,¢)=c(R)=cy 1+? . 17
Under these assumptions, EE) takes the form
where
R+2T .
A(R):aR_ ~, R>R*, (19
and
Co
== R*=2I"a. (20

0

The quantitye plays the role of the reciprocal of the “satu-
ration” parameter andR* is the critical radius of the aggre-
gate nucleus. WheR>R* the aggregate grows. Otherwise
it recedes.

In the previous paper8,17], we considered the case of
the convective velocity field (R,t) composed of two parts:
deterministic(induced by, e.g., the external fojcand ran-
dom (describing the local fluctuating flowin a general case,

PHYSICAL REVIEW E65 051401

whereV(t) is a random function, is a Langevin-type equa-
tion with multiplicative noise. From the mathematical point
of view, the functionR(t) represents a nonstationary sto-
chastic process, which for correlated noigét) is non-
Markovian. LetP(R,t) be a probability density that at tine
the crystal has a radiu® ThenP(R,t) obeys the following
master equation

J J
s P(RO==-2J(R1), (29)
where the probability current(R,t) is
1%
J(RO==DMA(R) - A(R)P(R,) (25)
and the diffusion function
t
D(t)=f K(s)ds. (26)
0

To prove above, let us exploit the transfoRa-x, where

o

Then from Eq.(23) one obtains an additive noise equation

R dr

) 2

the velocity field can fluctuate in space and in time. Here, W8 the stochastic procesgt), namely,

consider the velocity fluctuations of the fluid particles, which

do not depend on the position in the space but only on time.

In other way, the velocity field is purely noisy, i.e.,
v(Rt)=V(1), (21

whereV(t) stands for a stationary Gaussi@generally cor-
related stochastic process with the first two moments

(V())=0, (V()V(s))=K(|t—s|), (22

whereK(t) is a correlation function of the velocity fluctua-

dx

at =V(t).

(28)

It is a particular case of the equati¢®.28 in Ref.[24], for
which the master equation for the probability dengify,t)
of the transformed processt) is derived[see the Eq(3.30
in Ref.[24]]. Having the master equation fp(x,t), one can
obtain the master equation(24) remembering that
p(X(R),t)=A(R)P(R,t).

The master equatiof24) has the same form as a forward

tions of the fluid particles. It implies that the deterministic Kolmogorov (Fokker-Planck equation for the conditional
part of the velocity field is zero and(t) describes fluctua- Probability density of the Markovian diffusion process. How-
tions of the zero-mean convective field. In the approach pro€Ver, in general the proce&t) is not Markovian. To solve
posed, the diffusive flux in the classical forfh3) does not this equation, we have to specify the initial and boundary
appear. Nevertheless, the mass transfer from the fluid to theonditions. We assume that at the initial moment0, the
crystal is not purely convective but implicitly it is diffusive crystal is a sphere of radiuR,. It means that the initial
because diffusion is induced by velocity fluctuations of thecondition is
fluid particles in the vicinity of the interface. Notice that the

fluid particles of the interface region will stick to the crystal

if their velocity (and in consequence energy and momentum

is sufficiently large in order to overcome the potential barrier2"d the phase space it [Ro,
of the interface. In this picture, it can be achieved by fluc-dition is the reflecting one,
tuations of the particle velocity.

P(R,00=6(R—Ry) (29

). The left boundary con-

J(Ry,t)=0. (30

IV. SOLUTION OF MASTER EQUATION The solution of the probleni24) with Egs. (29) and (30),

which is normalized ofiRy, ), reads

of

Equation(18) in the form

dR

dt

IXR xRy’
47(t)

A(R)V(t), (23 , (3D
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where
x(R)=%[R—(R*+2F)In(R+2F)] (32

and

r(t)=f0tD(s)ds. (33

The function7(t) is a rescaled time for the growth process.

V. LONG-TIME ASYMPTOTICS

The probability distribution(31) enables to determine the
most probable valuR,(t) of the radius of the growing crys-
tal. It corresponds to the maximum of the probability density

P(R,t) and is determined by the equation

R,(t)+2T

_ . *
R(1) =Ry (R* + 21—~

X[Rp(t)—R*?=2a?(R*+2I") 7(t). (34
For long time,t>1, the most probable radius evolves as

Ri(t)~ 73(t). (35

The next characteristics of the growing process are statistical

moments defined by

(R“(t))zj R"P(R,1)dR (36)
Ro
for integersn=1,2,3 ... . Now, weprove that in the long-
time limit, the statistical moments behave as
(R(t))~7"2(t). (37)
Proof. Denote the integrand in E¢436) by
R" [X(R)=x(Rg)]?
fo(R,7)= —exr{— —FF—F——— . (39
ol A(R)rr 4t
First, let us observe that
X(R)—x(Rg) 1
Iim —————=— 39
R0 R— RO o ( )
and
R" 1
—. (40

im ———=
ro» AR)(R—Ro)" @

So, it implies that the functiori,(R,7) is bounded. More
precisely, for anye>0 there is anrR_>0 such that the in-
equalities

PHYSICAL REVIEW@5 051401

a— €
T oOn(r(a— e’ R-Ro)=fy(R,7)
ate
< a—eg“(T(a+ €)>,R—Ry)
(41
hold for R=R_, where
gn(a.y)= Jy;aexp{ - Z—; . (42
Since
R"
fo(R, 7)< AOJW_T, (43

whereAy,=min A(R)>0, thenf,(R,7)—0 uniformly on the
interval[O,R,.] when r— . Hence, one concludes that

RE
lim f 7 "%f (R,7)dR=0 (44)
T— 0 RO
and similarly
RE
Iimj 7 "2 (r(a* €)?,R—Ry)dR=0. (45)
T— 0 RO
Let us denote
fo gn(a,y)dy= an/2|n’ (46)
where the constants, are defined by the integral
=[x p[ “a 47)
=—| x"exg — —|dx.
n \/; 0 4
From Egs.(41), (44), and(45) it follows that
T - =liminf |+ "2, (R, ndR
ate " T— 0 RO " ’
slimsupf T "2f (R, 7)dR
T— 0 RO
ate | 48
< )
—(at ol (48)

Sincee is an arbitrary positive number, one can takemall
enough and then

lim7 " | f (R 7ndR=a"l,. (49

T— 0 R0

In consequence, one obtains for long times the following
asymptotics:
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R(t))=a"l,7"(t), 50 t

(R'(1))=a"l, 7" (1) (50 Dz(t):Do{l_em{_T_” =6
which gives Eq(37) and this completes the proof. | ¢
The most important is the first moment, i.e., the averaged,q in this case the functiof33) reads

radius of the crystal. From the relatidg0) it follows that
t
— 7.+ ——|.
t— 7.+ 7 ex;{ Tc)

C. Ut? correlations

7,(t)=Dy (57)

2«
(R(1))= ﬁrl’2<t>. (51)

The explicit form of time evolution ofR(t)) depends on the ] ] ] )
correlations of the velocity fluctuations of the fluid particles.  The third model defines special algebraically correlated
It is worth to mention that the most probable radRg(t)  fluctuations[25] for which
and the mean radiugR(t)) of the crystal display different b
. : 0 T
asymptoticq35) and(51), respectively. Ka(t) = — J:tz (58)
TC

VI. MODELS OF FLUCTUATIONS

. - _with the exponent 2. Asymptotically, fae 7., fluctuations
In order to study the influence of statistics of fluctuationsgyhibit the long-time tait 2. For this model

on kinetics of the growth process of crystals, one has to

specify Gaussian fluctuation¥(t), i.e., their correlation Do t

function K(t). Below, we present several models of such Ds(t)=— arctar{—
. .. . ar T

fluctuations. The nature and origin of fluctuations of a spe- €

cific correlation function is related to interactions of the fluid

particles. The simplest model assumes that fluctuations are

uncorrelatedthe correlation time is zejdout this idealiza-

tion is never exactly realized and in many cases can be in- a(t) = %

sufficient. Therefore one should consider velocity fluctua- ™

tions of the nonzero correlation tini24,25.

(59

t2
1+ —
2
TC

(60)

—ETcm

t
t arctan —

Tc

D. Power-law correlations
A. White noise )
] ) ] ) ) ) The last example also concerns the algebraically corre-
The first example of fluctuations is white noise for which |3ied stochastic proce§25], namely,
the correlation function takes the form
t -y
Ky(t)=2Doa(1), (52) K4(t)=Ko(l+T— : (61)

c

whereD >0 is constant and(t) is the Dirac delta function. hereK.>0 i dth 0 H

This case corresponds to the noncorrelated velocity quctue}EV—I"q_ ereRo IS constant an Itthe expone\;;nvl> h ov;/e\:je_:r,

tions of the fluid particles. The diffusion functioi6) has 'S PrOCESS IS moré general than EB8). We have to dis-
tinguish several cases.

the form
Dl(t): D0 (53) 1. The Case'y=1
If y=1 then the diffusion functioD(t) increases loga-
and the function(33) is given by the relation rithmically in time,
71(t)=Dot. (54) t
Dy(t)=A7cIn| 1+ —|. (62
This case has been studied in Ré&f]. Te
The function(33) is
B. Ornstein-Uhlenbeck process
The second example is the Ornstein-Uhlenbeck stochastic a2 t ot
process, which is exponentially correlatg2t]. Its correla- (O =Ag (1+ Te Inj 1+ 1] Tl (63)
tion function has the form
D t 2. The casey#1
0
Ka(t)= T—eXF{ - T—) : (55 If the exponenty# 1 then
Cc C
i ion ti i - AT t\
where 7. is the correlation time of the velocity fluctuations. D,(t)= 1+ — —1l (64)
The corresponding diffusion function is given by 1-y Tc
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1.4

The form of the function(33) depends ony. For y#2, it
reads

1)

©
A7 t\27 t *
OT T\ TR
(65)
while for y=2, it is given by
=ArZ > o[ 14 66
T4(t) = ATg P n )| (66)

VII. KINETICS OF GROWTH PROCESS

Dependence of the growth rate upon the growth mecha-
nism is the most important characteristic of the growth pro-
cess. For the model considered, the growth mechanism de-
pends on the velocity fluctuations, i.e., on the form of their
correlation function. The correlation functions,(t) and R

Ks(t) have been normalized in such a way that when the i > gome selected examples of the probability distribution
correlation timer, tends to zero then P(R,t=1) of the growth process controlled by convective fluctua-
tions of various correlations{a) algebraic K5(t), (b) algebraic
Ki(t)—2Do4(1) (67) K4(t) with y=2, (c) algebraicK,(t) with y=3, (d) exponential

. . .K5(t), and(e) Dirac-deltaK,(t). Values of the remaining param-
for i=2,3 and these two processes tend to Gaussian Wh'tﬁze(rs) areDo(:)a:RO:T :11;r?dR*:0 1 9P
A 1.

noise. Moreover, let us notice that for long time, whien
> 7., the functionsr(t)~t, i=2,3 (as for normal diffu-

__t+l—yl2
sion). For the exponeny>1, the correlation functioi ,(t) (R~ for 0<y<1 (72)
exhibits the same features when we redefine the coefficient
Ko, namely, and
a1 (R())~(tInt)¥2 for y=1. (72)
Ko=Dy P (68)

It means that the crystal grows faster. In consequence, long-
time correlations induce anomalous kinetics. There the ques-
tion appears: which feature of the velocity fluctuations is
responsible for diffusivelike or anomalous kinetics. From
above it is clearly seen that for all presented models, fluctua-
(69) tions that in the proper scaling tend to Gaussian white noise
induce diffusivelike kinetics and those that do not tend to
with the exponent/2 for the correspondingth moment. In white noise lead to anomalous kinetics. Pu_t Qiﬁerently, the
particular, the rate of growth is determined by evolution ofPOWer spectrun(w) of the former takes a finite value for

Indeed, if 7.—0 then K,(t)—2Dy8(t) and 74(t)~t for
large times.

For these cases, in the long-time limit, the statistical mo
ments display the power-law dependence,

<Rn(t)>~tn/2

the averaged radius of the crystal, which behaves as all frequenciesw and, on the contrary, for the latt&(w)
—o whenw—0. The conjecture is that the mechanism re-
(R(t))~t12 (700  sponsible for anomalous kinetics is concealed in the low-

frequency properties of the power spectrum of driving fluc-
A feature such as the one presented in &@) is character- tuations: if for sufficiently low frequency the power
istic and generic for the diffusion limited growth. Here, we spectrum can be arbitrary large then the growth kinetics is
have not taken into account the Fick diffusive fli®3) of =~ anomalous.
particles of surroundings. Instead, we consider a convective Now, let us present the details of the kinetics. Time evo-
flux without a deterministic part and only with the fluctuating lution of the probability density31) is similar for all models
field. However, fluctuations indirectly induce diffusion. of fluctuations: it starts from the sharp Dirac-delta distribu-
Therefore it is comprehensible that the relati@®) can be tion, spreads out monotonically, its maximuRg,(t) moves
satisfied. Unfortunately, this argumentation can be incorrecto larger values ofR according to Eq.(34) and finally
Indeed, let us consider the case of long-titaery slow de- P(R,t)—0 ast—<. The influence of various correlations of
cay off correlations of fluctuations. For algebraic fluctua- fluctuations on the probability density is visualized in Fig. 2.
tions, it is the case when the exponent (0,1]. In the limit At a fixed instantt=const, P(R,t) is sharper for algebraic
of large time, the averaged radius increases faster than fdiuctuations in comparison with the remaining fluctuations.
the diffusion limited growth, namely, Although asymptotically the correlation functioksg(t) and

051401-7



J. tUCZKA, M. NIEMIEC, AND R. RUDNICKI PHYSICAL REVIEW E 65 051401

2.4

<R(t)>
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t

FIG. 3. The average radiuR(t)) of the crystal versus time FIG. 4. Plots of the mean value of the rad{i&(t)) against time

for the growth driven by the Ornstein-Uhlenbeck fluctuations witht for the process with the correlation functidia) El(t)' (b) Ka(t),

the exponential correlation functidt,(t) and for several values of () Ka(t) for y=3, (d) K4(t), and(e) K(t) for y=2. Itis the case

the correlation timer, : (a) 7,=0.01,(b) 7,=0.1,(c) 7.=1, and(d) of fixed integrated intensity of fluctuations. Values of the remaining
Cc- C . 1 [ =y c ’ . .

7.=10. Values of the remaining parameters are the same as iRarameters are the same as in Fig. 1.

Fig. 1.

(TQCO

Rg(t)zzl o,

K4(t) with y=2 behave in the same way &s?, the early Dt, (74)

stages of evolution are a little bit different.

In Fig. 3 we show how the growth kinetics is sensitive t0\yhereq is the saturation parametgt] andD is the diffusion
variation of the correlation timer. of the Ornstein-  coefficient of solute in the matrix, which is assumed to be the
Uhlenbeck fluctuations with a fixed integrated intendly.  stokes-Einstein diffusivity of particles in soluti¢s,23). The
Such a scaling describes for small correlation tirgea de-  giffusion constanD, that appears in the correlation function
viation from white noise. As the correlation time increases,qof the velocity fluctuations can be obtained from the theory

the variance (V#(t))=K(0)=Do/7; of fluctuations de- of Brownian motion and is given by the Stokes-Einstein for-
creases and the growth is slower. In the adiabatic limit

— oo, fluctuations approach zero amplitude and the rate of 9
growth tends to zero. The influence of statistics of fluctua- &
tions on time evolution of the mean radiYR(t)) is pre- L g
sented in Fig. 4. It is the case of the fixed integrated intensity
Do. In contrast, the case with a fixed varian@é*(t)) im- 7 a
plies a different scaling and describes a radically different
physical situation. One can observe it for algebraic fluctua- 6 b
tions, cf. Figs. 4 and 5. Fluctuations wigh=3 can lead to a
faster growth than withy=2 (the case of the fixed intensity 5 rd
Dy, Fig. 4 or just the opposite, fluctuations with=3 can
lead to a slower growth than with= 2 [the case of the fixed 4
varianceK (0), Fig. 5].

As we mentioned, in the case when the correlation func- 3
tion of fluctuations is or tends to the Dirac delta function, the
asymptotics(70) is the same as for the diffusion limited 2 f
growth. Let us compare the growth rates in both theories. For
this aim, we rewrite Eq(51) in the form 1

0 2 4 6 8 10
4( Qcy \2 t
<R(t)>22—< ) Dot, (73 : : .
7\ 1-Qcy FIG. 5. Time evolution of the mean radi(R(t)) for the growth

controlled by algebraically correlated fluctuatiof@l) for various
where)=1/C is the average volume occupied by a particlevalues of the exponent: (a) 0.1, (b) 0.5,(c) 1, (d) 2, (e) 3, and(f)
in its own crystal[1]. For the diffusion limited growth, we 10. It is the case of fixed variance of fluctuations. Values of the
get[1,9,20 remaining parameters af®,= .= a=Ry,=1 andR*=0.1.
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mula as well[21]. So, we can identify both diffusion coeffi- process is insensitive to details of statistics of driving fluc-
cientsD, andD and neglect the small correction in the de- tuations and its kinetics is universdike for diffusion driven
nominators. Then growth). On the other hand, it can be very sensitive to a
specific feature of fluctuations. We have identified such a
QOc feature and conditions for normal anomalous kinetics: the
<R(t)>22—OR§(t)_ (750  low-frequency behavior of the power spectrum of driving
o fluctuations of the velocity field outside the growing crystal.
Typical values of the parameters die,=10"1-10"2 and It can be discussed whether the concentration i€fd that
o=10"1-10"2 (see pp. 109 and 123 i(r)1 RéML]). From this affects the growth process is diffusion in the classical sense
rough estimation we see that it is possible to prepare such 3 or can be m.odelle_d by a fluctuat.mg Zero-mean convec-
conditions that both rates can be of the same order ive field (12). It is difficult to unambiguously resolve this
In summary, we have proposed a mechanism of normac|1ues,tion by looking only at the average radius of growing

and anomalous kinetics of growing crystals and investigate&ryStaIS'
a large class of growth processes controlled by the fluctuat-

ing velocity field. A rich behavior in the growth kinetics is

shown to appear due to various statistics of the velocity fluc- The authors wish to thank A. Gadomski and M. Kostur for
tuations of the fluid particles. On one hand, the growthdiscussions.
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