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Square to stripe transition and superlattice patterns in vertically oscillated granular layers
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We investigated the physical mechanism for the pattern transition from square lattice to stripes, which
appears in vertically oscillating granular layers. We present a continuum model to show that the transition
depends on the competition between inertial force and local saturation of transport. By introducing multiple
free-flight times, this model further enables us to analyze the formation of superlattices as well as hexagonal
lattices
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Vertically oscillated granular layers exhibit various inter- (i) In general, macroscopic physical quantities for the
esting patterns, such as subharmonic stripes, squares, hexgianular material are not well defined. But RE8] shows
gons, as well as localized structures called oscillgns7].  that a continuum description of the granular layer is valid for
The control parameters are the driving frequef@nd the  the square-stripe transition. Molecular simulation requlé3
dimensionless acceleratidh= 4 72f?A/g, whereg is the ac- also suggest that granular continuum equations can be used
celeration due to gravity anélis the amplitude of the vibrat- @S far as pattern formation of vertically oscillated granular
ing surface. Increasing’ with fixed f, flat states, subhar- Media is concerned.
monic squares or stripes depending &n subharmonic (iii) Granular material has an angle of repose, and shows
hexagons, and flat states appear in sequence. both solidlike and liquidiike motions.

These granular paters rave been stdied using phenony, CNSerI) &0 (1), o conthuum exuaton i e
enological model§8—15 and molecular dynamics simula- pS- pate,

tions[16]. The studies show that transitions between granuf“ght' It provides the wo competing processes, diffusion

: : . _during the contact and focusing effect during the free flight,
lar patterns a$' increases are related to the period doubllngWhich were suggested as mechanisms of subharmonic wave
bifurcation[2,12]. But the bifurcation as a function ¢f that

; - . eneration[9]. A hysteresis effect due téii), which ac-
is, the transition between squares and stripes, has not begBunts for the formation of the oscilldi®,10,12—15, is not

well understood yet. There have been many models showingynsidered here since it appears to be unrelated to the square-
both squares and strip¢8,10,12,16 and it was suggested gyripe transitior{6].

that the effective viscosity and the horizontal mobility re- At t=0, the layer collides with the bottom plate and the
solve the transition[2,8,9. Experiments also show that sjope of granular layers begins to relax. From the collision,
squares arise at large lateral transport while stripes form ajranular particles get kinetic energy and move randomly. The
small lateral transpoift5]. However, there has been no ex- process can be described as diffusion, and the following
plicit model for the square to stripe transition upon increas-equation is obtained for€t<t, during which granular lay-

ing frequency. ers have contact with the bottom plate
In this paper, we propose a continuum model that de-
scribes the transition between squares and stripes. We incor- p=DV?p. (1)

porate the lateral transfer and the local saturation mechanism

into our model. The study shows that the ratio of these "Wque assume that the thicknebsis a monotonic increasing

competing processes depends on the frequency, which g, ion of the local density, wherep is a mass of granular

p"’?‘""s the dependence_qf the sqgarg-stripe t.ransition on tl‘H%aterial per unit area, and chogses an order parameter.
drive frequency. In addition, considering multiple free-flight At t=t. the Iayer,loses contact with the bottom plate
. (o] .

%uring the free flight, the lateral transfer of grains induces
) ‘the focusing of the sands, so that subharmonic excitation of
quency forcing 7].

The granular patterns are similar to the Faraday waves i€ granular wave occurs. From continuity, the fjuand the
vibrated fluids[17], however, some differences exist. velocitiesv of grains right after the takeoff from the bottom
(i) On each cycle, there is a free-flight time during which plate are given by
the granular layer loses contact with a bottom plate.

which are observed in the granular system with multiple fre

j(X,t)==DVp(X,to),
*FAX: +49-351-871-1999; Email address: . R . . . 2
childend@complex.kaist.ac.kr v(X,t)=](X,t)/ p(X,te)=—DVp(X,t)/p(Xte).
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FIG. 1. Bifurcation diagram as a function dfand 7. «
=0.015,b=0.17)=10.

This is indeed what was done by Cemtaal.[9], in which
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FIG. 3. Instabilities of stripese=0.015,0=0.17,=10. Fort
<0, T=0.55, and att=0, T=1/f is changed abruptly(a) T
=0.85 represents crossroll instabilitys) T=0.30 represents zigzag
instability.

saturation of the flux is not considered, and only square pat-

terns arise. Hence one may expect that the saturation is re-

—ap|V-v|V-v. (

°
I
X

lated to the formation of stripe patterns. Assuming that R
granular layers behave like fluid during the free flight, weThe pressure is high at the accumulation points wiére
adopt Navier-Stokes equations in two dimensions as a modetp | and low at the dispersion points whe¥ev>0. The
of the the local saturation of flux as well as the transfer Ofpressure difference produces the force to suppress the focus-

particles and momentum.

During the intervalt,<t<T, whereT=1/f is the period

of the driving force, we get

pi+V-(pv)=0,

I 1
vt+v-Vv=—;Vp. 3

Momentum is transferred through the transport of the
granular particle, and inelastic collisions between the par
ticles suppress the lateral motions. In general, these effec
can be incorporated into the local stress terigpr Assum-
ing that the suppression of the lateral motion is most impor

tant, the local stress tensor is approximated by

=—pd;; . When we consider the collision between granula
particles, the relevant variable is a relative velocity rathe
than a velocity itself. A dimensional consideration leads t

the following form of the pressure:

rIFig. 1; Fig. 2 describes typical patterns. With increasing f

(0)

ing of sands. The parameters of E¢B.(2), (3), and(4) are
D,f,a, andr=1t;/T=1—1./T wheret; is a free-flight time.
In a real system; is determined mainly by'. D and «
depend on layer depth, grain diameter, and restitution coef-
ficient as well adl” andf. We choosex=0.015,D=0.17,
and system sizé=10.

Linear stability analysis for the rest state shows that the
amplitude of the mode with wave numbleis amplified by
the Floquet multiplier F(k)=(1—Dk?7T)exd—Dk*(1
—7)T] on each cycle. At smalt, we get only flat states. As
is increased beyona.=0.782, which is independent @
?Snd T, minimum value offF (k) becomes less tharn1l and
Subharmonic standing waves arise. In this case, we obtain the
dispersion relationf =D 7(1— 7)k?. Note that the value of

7. does not depend dp, f, a, andl. The bifurcation diagram
of Egs. (1) and(3) as a function off and 7 is presented in

with fixed @ and 7, one can see the square to stripe transi-
tion as in Figs. 2a) and Zb).

Increasinga with fixed f and = also yields the square to
stripe transition. In other words, the local saturation prefers
stripe patterns. It is interesting to compare the results with
the Faraday waves. In Faraday waves, squares are observed
for small viscosities while stripes for large viscositids].

In this case viscosity represents the strength of local satura-
tion that competes with the inertial force.

To understand the relation between the square-stripe tran-
sition and the drive frequency, let us write the equations in
dimensionless forms. Naturally, we tae= 1/f as the time
unit. For the length unit, we choos¢D/f that reflects the

FIG. 2. Square and stripe patterns. White corresponds to theavelength. Inserting=1t/f, V=V/{D/f,v=Dfv, into

large p. D=0.17,1=10, «=0.015, 7=0.85.(a) T=1.2; (b) T
=0.7.

Eq. (1), Eq.(3) with Eq. (4), and dropping the carets, we get
for Ost<l-r,
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p=V?p, (5) rameterR that measures the ratio of the saturation of mobil-
ity to the inertial force is proportional t6*. Also note that
and for 1- r<t<1, influences ofl" on D and @ have not been considered. De-

pendence of the square to stripe transition frequency ion

Fig. 1, in contrast to the experimental resiéi, where the

R transition frequency depends only on the layer déitimay

vitv-Vo=—V(p|V-0|V-0), (6)  be attributed to this. Nevertheless, for fixéd the above

p conclusion that squares transit to stripes with increasing the

drive frequency does not change.

Now we have two dimensionless parameters. One is Next we consider the_ i_nstability of stripe patterns. With an

=t;/T, the fraction of flight time for one period, and the abrupt Change of _the d”_"_'f‘g frequentwve observe a cross-
roll and a zigzag instabilities. Figurds shows an example

other isR=fa/D in Eq. (6), which corresponds to the ratio - . .
of the force causing the local saturation to the inertial force©f the crossroll instability. The stripes are unstable to cross-

Note thatR is proportional to the frequendy It means that rolls on both the h|_gh and Iq\k sides in our model. Flglure
increase irf induces the strong local saturation compared to3(P) illustrates the increase in wave vectodue to the zig-
the lateral movement. Qualitatively, this can be explained agag instability. In experiments and molecular dynamics simu-
follows. Lateral movements are suppressed by the inelasti@tions[19], the stripe patterns have the crossroll instability
collisions that are reflected by pressprim our model. When for decreasing, and the skew-varicose instability for in-
wavelengths are short, the velocity differences between thereasingk. The zigzag instability has not been observed in
neighboring grains are large, so is pressprebtained Eq. experiments. Refining the stress tensor and comparing the
(4). Hence, for high frequencies, the collision is dominantresults with the instabilities in experiments will yield more
and mobility is suppressed. insights about the interaction between granular particles.
Experimentally, the dispersion relation has a kink struc- As external forcingl’ is increased, the motions are re-
ture, i.e., it takes a different form below and aboivef,  peated after two different flight times and contact times. This
[5,6,16. For almost all conditions, the square-stripe transi-period doubling causes hexagonal pattef@$ and the
tion occurs forf <f [6]. In other words, only the dispersion mechanism is investigated theoreticdlly?]. Recently, it has
relation forf<f is relevant as far as the square-stripe tran-been reported that multiple frequency forcing on the granular
sition is concerned. In this regime, earlier experimdats] layer yields superlattice patterfig]. Similar patterns have
reported an exponent 2, however, a recent experirfght been studied in the Faraday wavie0], driven ferrofluid
yielded a different exponent value of 1.3. In contrast, in oursurfaceg21], nonlinear optic$22], the Turing patterng23],
model, the dispersion relatian~ (D/f)Y2 is obtained. This and the Rayleigh-Benard convecti¢®4]. As in the single
contradiction can be resolved by considering the frequenc¥tequency forcing[3], the important variable determining
dependence of the diffusion coefficiebt[9,15]. Consider- patterns are expected to be the free-flight times and contact
ing the relation between viscous length and energy injectiotimes.
rates, for fixedl', D scales like 1#° in the small frequency To study the hexagons and superlattice patterns, we intro-
regime[9,18]. With this, A~ (1/f?) is obtained and the pa- duce the multiple free-flight timeg,t;5, . .. t;, and con-

pe+ V- (pv)=0,

whereR is defined ad a/D.
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In conclusion, based on the mass and momentum conser-
and Eq.(3) during t;;. After that, we apply again Eql1)  vation law, we presented the continuum model to explain the
during te,, Eq. (3) during t;,, and so on. The case with  transition between squares and stripes in vertically oscillated
=2 reduces to the period doubling and hexagonal patterngranular layers. Patterns are selected by two competing non-
are obtained. linear interactions, the inertial force and the local saturation
Linear stability analysis shows that the amplitude of thedue to the inelastic collisions between granular particles.
mode with wave numbek is amplified by the factoF(k)  With increasing drive frequency, the local saturation gets
=I1"_,(1— DKk?t;;)exp(—DK?) on each cycle. For the hex- stronger compared to the inertial force effect, so that the
agonal patterns, as expect&dk) gives a harmonic mode as square to stripe transition occurs. Introduction of multiple
in Fig. 4@a). However, in generak (k) can yield instabilities ~ free-flight timgs and contact times yields hexagonal patterns
with various wavelengths and, as a result, superlattice paghd superlattice patterns.

terns can be formed. In Fig(tzﬂ) the modes withk; andk, We thank S.-O. Jeong, T.-W. Ko, and P.-J. Kim for useful
are subharmonic and the moqe|s harmonic. They satisfy discussions, M. Ber for useful comments, and H.K. Pak and
the resonance condltldnl+ k2+q 0. Evidently, there is a P. Umbanhowar for notifying us of their experimental re-
large freedom of choice for the valuestgfandt;;. Analyz-  sults. This work was supported by the interdisciplinary re-
ing the characteristics of the superlattice patterns in thesgearch program of the KOSE®rant No. KRF-2000-015-
vast parameter spaces is a problem for future studies. DP0097.

tact timestcq,teo, . . . ten. Let us apply Eq(1) during te;
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