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Square to stripe transition and superlattice patterns in vertically oscillated granular layers
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We investigated the physical mechanism for the pattern transition from square lattice to stripes, which
appears in vertically oscillating granular layers. We present a continuum model to show that the transition
depends on the competition between inertial force and local saturation of transport. By introducing multiple
free-flight times, this model further enables us to analyze the formation of superlattices as well as hexagonal
lattices

DOI: 10.1103/PhysRevE.65.051310 PACS number~s!: 45.70.Qj, 47.54.1r
r-
he

-
-

o
-
nu
ing

be
i

d
e-
t

x-
as

de
c
is
w
e
t

ht
rn
re

s

ch

he

for

used
lar

ows

-
ree
on
ht,
ave

uare-

e
on,
he
ing

r
.
te.
es

of
Vertically oscillated granular layers exhibit various inte
esting patterns, such as subharmonic stripes, squares,
gons, as well as localized structures called oscillons@1–7#.
The control parameters are the driving frequencyf and the
dimensionless accelerationG54p2f 2A/g, whereg is the ac-
celeration due to gravity andA is the amplitude of the vibrat
ing surface. IncreasingG with fixed f, flat states, subhar
monic squares or stripes depending onf, subharmonic
hexagons, and flat states appear in sequence.

These granular patterns have been studied using phen
enological models@8–15# and molecular dynamics simula
tions @16#. The studies show that transitions between gra
lar patterns asG increases are related to the period doubl
bifurcation@2,12#. But the bifurcation as a function off, that
is, the transition between squares and stripes, has not
well understood yet. There have been many models show
both squares and stripes@8,10,12,16# and it was suggeste
that the effective viscosity and the horizontal mobility r
solve the transition@2,8,9#. Experiments also show tha
squares arise at large lateral transport while stripes form
small lateral transport@5#. However, there has been no e
plicit model for the square to stripe transition upon incre
ing frequency.

In this paper, we propose a continuum model that
scribes the transition between squares and stripes. We in
porate the lateral transfer and the local saturation mechan
into our model. The study shows that the ratio of these t
competing processes depends on the frequency, which
plains the dependence of the square-stripe transition on
drive frequency. In addition, considering multiple free-flig
times, we study the hexagonal and superlattice patte
which are observed in the granular system with multiple f
quency forcing@7#.

The granular patterns are similar to the Faraday wave
vibrated fluids@17#, however, some differences exist.

~i! On each cycle, there is a free-flight time during whi
the granular layer loses contact with a bottom plate.
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~ii ! In general, macroscopic physical quantities for t
granular material are not well defined. But Ref.@6# shows
that a continuum description of the granular layer is valid
the square-stripe transition. Molecular simulation results@16#
also suggest that granular continuum equations can be
as far as pattern formation of vertically oscillated granu
media is concerned.

~iii ! Granular material has an angle of repose, and sh
both solidlike and liquidlike motions.

Considering~i! and ~ii !, a continuum equation is intro
duced with two steps: contact with the bottom plate, and f
flight. It provides the two competing processes, diffusi
during the contact and focusing effect during the free flig
which were suggested as mechanisms of subharmonic w
generation@9#. A hysteresis effect due to~iii !, which ac-
counts for the formation of the oscillon@9,10,12–15#, is not
considered here since it appears to be unrelated to the sq
stripe transition@6#.

At t50, the layer collides with the bottom plate and th
slope of granular layers begins to relax. From the collisi
granular particles get kinetic energy and move randomly. T
process can be described as diffusion, and the follow
equation is obtained for 0<t,tc during which granular lay-
ers have contact with the bottom plate

r t5D¹2r. ~1!

We assume that the thicknessh is a monotonic increasing
function of the local densityr, wherer is a mass of granula
material per unit area, and chooser as an order parameter

At t5tc , the layer loses contact with the bottom pla
During the free flight, the lateral transfer of grains induc
the focusing of the sands, so that subharmonic excitation
the granular wave occurs. From continuity, the fluxjW and the
velocitiesvW of grains right after the takeoff from the bottom
plate are given by

jW~xW ,tc!52D“r~xW ,tc!,
~2!

vW ~xW ,tc!5 jW~xW ,tc!/r~xW ,tc!52D“r~xW ,tc!/r~xW ,tc!.
©2002 The American Physical Society10-1
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This is indeed what was done by Cerdaet al. @9#, in which
saturation of the flux is not considered, and only square
terns arise. Hence one may expect that the saturation i
lated to the formation of stripe patterns. Assuming th
granular layers behave like fluid during the free flight, w
adopt Navier-Stokes equations in two dimensions as a m
of the the local saturation of flux as well as the transfer
particles and momentum.

During the intervaltc<t,T, whereT51/f is the period
of the driving force, we get

r t1¹•~rvW !50,

vW t1vW •“vW 52
1

r
¹p. ~3!

Momentum is transferred through the transport of
granular particle, and inelastic collisions between the p
ticles suppress the lateral motions. In general, these eff
can be incorporated into the local stress tensorTi j . Assum-
ing that the suppression of the lateral motion is most imp
tant, the local stress tensor is approximated byTi j
52pd i j . When we consider the collision between granu
particles, the relevant variable is a relative velocity rath
than a velocity itself. A dimensional consideration leads
the following form of the pressure:

FIG. 1. Bifurcation diagram as a function off and t. a
50.015,D50.17,l 510.

FIG. 2. Square and stripe patterns. White corresponds to
large r. D50.17, l 510, a50.015, t50.85. ~a! T51.2; ~b! T
50.7.
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p52aru“•vW u“•vW . ~4!

The pressure is high at the accumulation points where“•vW

,0 , and low at the dispersion points where“•vW .0. The
pressure difference produces the force to suppress the fo
ing of sands. The parameters of Eqs.~1!,~2!, ~3!, and~4! are
D, f ,a, andt5t f /T512tc /T wheret f is a free-flight time.
In a real system,t is determined mainly byG. D and a
depend on layer depth, grain diameter, and restitution c
ficient as well asG and f. We choosea50.015,D50.17,
and system sizel 510.

Linear stability analysis for the rest state shows that
amplitude of the mode with wave numberk is amplified by
the Floquet multiplier F(k)5(12Dk2tT)exp@2Dk2(1
2t)T# on each cycle. At smallt, we get only flat states. Ast
is increased beyondtc50.782, which is independent ofD
and T, minimum value ofF(k) becomes less than21 and
subharmonic standing waves arise. In this case, we obtain
dispersion relation,f 5Dt(12t)k2. Note that the value of
tc does not depend onD, f, a, andl. The bifurcation diagram
of Eqs. ~1! and ~3! as a function off and t is presented in
Fig. 1; Fig. 2 describes typical patterns. With increasing
with fixed a andt , one can see the square to stripe tran
tion as in Figs. 2~a! and 2~b!.

Increasinga with fixed f andt also yields the square to
stripe transition. In other words, the local saturation pref
stripe patterns. It is interesting to compare the results w
the Faraday waves. In Faraday waves, squares are obs
for small viscosities while stripes for large viscosities@17#.
In this case viscosity represents the strength of local sat
tion that competes with the inertial force.

To understand the relation between the square-stripe t
sition and the drive frequency, let us write the equations
dimensionless forms. Naturally, we takeT51/f as the time
unit. For the length unit, we chooseAD/ f that reflects the
wavelength. Insertingt5 t̂ / f , “5“̂/AD/ f ,v5AD f v̂, into
Eq. ~1!, Eq. ~3! with Eq. ~4!, and dropping the carets, we g
for 0<t,12t,

e

FIG. 3. Instabilities of stripes.a50.015,D50.17,l 510. Fort
,0, T50.55, and att50, T51/f is changed abruptly.~a! T
50.85 represents crossroll instability;~b! T50.30 represents zigzag
instability.
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FIG. 4. Hexagon and superlat
tice patterns. Left: hexagonal an
superlattice patterns. Middle
power spectra of the left image
Right: Floquet multiplierF(k) vs
k. D50.17, l 510, a50.015. ~a!
tc150.28, tc250.08, t f 150.84,
and t f 251.02. ~b! tc150.08, tc2

50.18, tc350.31, tc450.03, t f 1

50.72, t f 251.21, t f 352.00, and
t f 450.15.
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and for 12t<t,1,

r t1“•~rvW !50,

vW t1vW •“vW 5
R

r
“~ru“•vW u“•vW !, ~6!

whereR is defined asf a/D.
Now we have two dimensionless parameters. One it

5t f /T, the fraction of flight time for one period, and th
other isR5 f a/D in Eq. ~6!, which corresponds to the rati
of the force causing the local saturation to the inertial for
Note thatR is proportional to the frequencyf. It means that
increase inf induces the strong local saturation compared
the lateral movement. Qualitatively, this can be explained
follows. Lateral movements are suppressed by the inela
collisions that are reflected by pressurep in our model. When
wavelengths are short, the velocity differences between
neighboring grains are large, so is pressurep obtained Eq.
~4!. Hence, for high frequencies, the collision is domina
and mobility is suppressed.

Experimentally, the dispersion relation has a kink stru
ture, i.e., it takes a different form below and abovef 5 f c
@5,6,16#. For almost all conditions, the square-stripe tran
tion occurs forf , f c @6#. In other words, only the dispersio
relation for f , f c is relevant as far as the square-stripe tra
sition is concerned. In this regime, earlier experiments@1,5#
reported an exponent 2, however, a recent experiment@6#
yielded a different exponent value of 1.3. In contrast, in o
model, the dispersion relationl;(D/ f )1/2 is obtained. This
contradiction can be resolved by considering the freque
dependence of the diffusion coefficientD @9,15#. Consider-
ing the relation between viscous length and energy injec
rates, for fixedG, D scales like 1/f 3 in the small frequency
regime @9,18#. With this, l;(1/f 2) is obtained and the pa
05131
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rameterR that measures the ratio of the saturation of mob
ity to the inertial force is proportional tof 4. Also note that
influences ofG on D and a have not been considered. De
pendence of the square to stripe transition frequency ont in
Fig. 1, in contrast to the experimental result@6#, where the
transition frequency depends only on the layer depthH, may
be attributed to this. Nevertheless, for fixedG, the above
conclusion that squares transit to stripes with increasing
drive frequency does not change.

Next we consider the instability of stripe patterns. With
abrupt change of the driving frequencyf, we observe a cross
roll and a zigzag instabilities. Figure 3~a! shows an example
of the crossroll instability. The stripes are unstable to cro
rolls on both the high and lowk sides in our model. Figure
3~b! illustrates the increase in wave vectork due to the zig-
zag instability. In experiments and molecular dynamics sim
lations @19#, the stripe patterns have the crossroll instabil
for decreasingk, and the skew-varicose instability for in
creasingk. The zigzag instability has not been observed
experiments. Refining the stress tensor and comparing
results with the instabilities in experiments will yield mo
insights about the interaction between granular particles.

As external forcingG is increased, the motions are re
peated after two different flight times and contact times. T
period doubling causes hexagonal patterns@2#, and the
mechanism is investigated theoretically@12#. Recently, it has
been reported that multiple frequency forcing on the granu
layer yields superlattice patterns@7#. Similar patterns have
been studied in the Faraday waves@20#, driven ferrofluid
surfaces@21#, nonlinear optics@22#, the Turing patterns@23#,
and the Rayleigh-Benard convection@24#. As in the single
frequency forcing@3#, the important variable determinin
patterns are expected to be the free-flight times and con
times.

To study the hexagons and superlattice patterns, we in
duce the multiple free-flight timest f 1 ,t f 2 , . . . ,t f n and con-
0-3
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tact timestc1 ,tc2 , . . . ,tcn . Let us apply Eq.~1! during tc1
and Eq.~3! during t f 1. After that, we apply again Eq.~1!
during tc2, Eq. ~3! during t f 2, and so on. The case withn
52 reduces to the period doubling and hexagonal patte
are obtained.

Linear stability analysis shows that the amplitude of t
mode with wave numberk is amplified by the factorF(k)
5) i 51

n (12Dk2t f i)exp(2Dk2tci) on each cycle. For the hex
agonal patterns, as expected,F(k) gives a harmonic mode a
in Fig. 4~a!. However, in general,F(k) can yield instabilities
with various wavelengths and, as a result, superlattice
terns can be formed. In Fig. 4~b!, the modes withkW1 andkW2

are subharmonic and the modeqW is harmonic. They satisfy
the resonance conditionkW11kW21qW 50. Evidently, there is a
large freedom of choice for the values oftci andt f i . Analyz-
ing the characteristics of the superlattice patterns in th
vast parameter spaces is a problem for future studies.
ett
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In conclusion, based on the mass and momentum con
vation law, we presented the continuum model to explain
transition between squares and stripes in vertically oscilla
granular layers. Patterns are selected by two competing n
linear interactions, the inertial force and the local saturat
due to the inelastic collisions between granular particl
With increasing drive frequency, the local saturation g
stronger compared to the inertial force effect, so that
square to stripe transition occurs. Introduction of multip
free-flight times and contact times yields hexagonal patte
and superlattice patterns.
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