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Transport with multiple-rate exchange in disordered media
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We investigate transport of particles subject to exchange using the continuous-time random-walk framework.
Transition is controlled by macroscale, and exchange by both macroscale and microscale disorder. A wide class
of exchange mechanisms is represented using the multiple-rate exchange model. Particles are transported along
random trajectories viewed as one-dimensional lattices. The solution of the transport problem is obtained in the
form of the crossing-time densitip(t;L), at an exit surfacé.; h is dependent on two functiong,andf. g
characterizes exchange controlled by microscale disorder. The joint démsitentral for the solution as it
relates the microscale and macroscale disorder along random trajectories. For the case of transition and
exchange disorder, we show that power-law expongftharacterizing microscale disordlend power-law
exponentsy, and &, (characterizing macroscale disorjjedefine two regions delimited by a line,= a,(7
+1): One in which the asymptotic transport is dominated by transition, and one in which it is dominated by
the exchange. For the case of transition disorder with uniform exchange, both transition and exchange can
influence the late-time behavior ¢f(t). Microscale exchange processes will unconditionally influence the
late-time behavior oh(t) only if »<<0. If >0, exchange will dominate at late time provided that transition
is asymptotically Gaussian.
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[. INTRODUCTION port with exchange in disordered media. Using the multiple-
rate concept, we can account for a wide range of exchange

Transport in random media is of interest for understandmechanisms, relevant for a variety of microstructural prop-
ing a variety of phenomena, in natural as well as engineerefirties. General solutions are derived either in terms of the

systems. Transport often involves particles that are dynami-aPlace transform of the crossing-time denstft), or in

cally inert, but in some way interacor are subject to ex- terms of its moments. In the general case of microscale dis-

change with the porous matrix. Studies of transport with order W'th infinite ex.change times, the solution _canno_t be
; . Oobtalned in an analytical form, and Monte Carlo simulations
exchange in homogeneous porous media have a long tradi-

T S are required. Illustration examples address transport anoma-
tion in chromatography1,2]. Moreover, a significant body i i "harticular extended tailing 6f(t), which arises due

of Ilterrlslturg_ haz focused onhunderstandmg tf:ge effecthof Mt combined effects of transition and exchange. We summa-
croscale disorder on exchange, e.g., Re-5. The ;o conditions under which anomalous transport arises as-

‘multiple-rate” concept provides a unifying model for dif- ymniatically, controlled by macroscale disordémansition,
ferent exchange mechanisms, applicable to a wide range & py microscale disordeexchangg

microscale disorder properties. This concept was first intro-
duced for modeling dielectric relaxatiof6], and subse- Il. MODEL
quently extended to homogeneous porous mgdia
Few studies to date have considered transport with ex-
change in disordered media. A first comprehensive analysis Let a dynamically inerpair of particles be injected simul-
was provided by Hughes and Sahif8,9] who considered taneously into a disordered medium at tilse0 atx=a in
transport with multiple transport paths assuming relativelyR', R?, or R*, wherex is a Cartesian position vector. The
simple(first-orde) exchange; their analysis is based on mas-particle pair consists of one “interacting” particléP for
ter equations and the effective media approximation. Al-shorthangland one “noninteracting” particléNIP for short-
though Hughes and Sahimi stress the relevance of their rdvand. Fort>0, the particle pair advances toward, ultimately
sults for geological media, it is well known that such systemscrossing, an exit surfack, following a trajectoryX(¢,a),
often exhibit more complex exchange than the first orderwheref is the intrinsic length along. Let 6 denote the IP
e.g.[10,11]. Several recent studi¢42—14 addressed trans- crossing time, and the NIP crossing time dt. We denote
port with more complex exchange in disordered media, howthe probability density functioPDF for 6 ash(t) and forr
ever, these results are still limited to a few specific exchangas f(t)=f(t); h(t)dt is the probability that<#<t+dt,
models. andf(t)dt the probability that<r7<t+dt at L.
The present work provides, for what we believe to be the The two main assumptions for our analysis are as follows.
first time, a continuous-time random-walk model for trans-  Transition is characterized by a nonzero mean drift; hence
[f(7)dr=1 for anya and any realization.
If a;=a, for two NIPs, thenX({,a;)=X(€,a,) in any
*Email address: vdc@kth.se realization; consequently, zero exchange implesr, and
"Email address: haggertr@geo.orst.edu nonzero exchangé> 7.

A. Problem formulation and assumptions
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Typical examples where the above assumptions apply C. Exchange
would be flow-driven tracer transport by steady random flow  ha P also follows trajectorX, however, it is subject to

in natural systems, such as geological meldi&l, or geo-  gychange, and hence its movement is delayed relative to the
morphological networkg16]. Our second assumption im- y;p

plies that a random flow pattern is steady state, and that all We consider sufficiently diluted systems such that ex-

fluctuations on the scale smaller than the support scale of &,5nge is linear. Consistent with the definition of linear ex-

flow velocity (other than tho§e related to exchangee ne- _change[1,13] we introduce a site-dependent waiting-time
glected. The above assumptions have been found appropna&gnsity for an IP as

for heterogeneous aquifefd7], fractured rock[12], river

networks[16], but also for laboratory-scale chromatographic di=exp—Ars[1+8i(s)]}, 3
columns[1], in other words, over a variety of transport
scales.

where the hat denotes Laplace transform arde Laplace
transform variable. The functiog(t) characterizes in a gen-
eral waylinear exchange processes at siteThus Eq.(3)
quantifies a “nonseparable” continuous-time random walk,
e.g.[18]. In the absence of exchangg=0, and the trans-
?J'ort of NIP and IP coincides. In the homogeneous case, a
single (site-independeitwaiting-time densityy(t) charac-
terizes exchange for the entire lattice.

The functiong; provides a mesoscale characterization of
exchange processes, which take place on the microscale.
N Considerable effort has been made to better understand the

B. Transition relation between microscopic structure and mesoscale obser-

We view X as a one-dimensional lattice witd equidis-  vations as quantified bg; . O’Shaugnessy and Procacf]
tant sites. Based on our assumptions, transition akrig ~ and Havlin and Ben-Avrahaif#], for instance, have shown
simply a sequence of steps, where the site and step indic&w anomalous, subdiffusive behavior arises in porous me-
coincide. The step duratiahr, at sitei varies randomly. Ifa dia due to fractal microporous structures. Sheintuch and
flow field is considered, thedr,=A//V,, V, being the Brandon[19] and Giona and co-worke[§] have worked out
magnitude oV, at sitei. The waiting-time density for trans- many of the details of mass uptake into synthetic fractal mi-
port on the lattice is site dependent, with(t)=45(t  Ccroporous beads. Some environmental problems may also be

Let P(x) denote thexchange parameter vectdahat var-
ies in space. Given the trajectok;, and P(x), we wish to
qguantify the IP crossing-time density. If the medium is
homogeneous in terms of exchandge={const), and transi-

tography with known solutions fdm, e.g.,[1]. Our emphasis
here is on transition and exchangdeorder (with possible
non-Gaussian featureas would be applicable, for instance,
to natural environments.

~AT).? determined by the release of material from natural materials
Let y(t) denote the NIP crossing-time density at ftie  that have fractal pore spaces. A growing body of work sug-
site; it is computed as gest that the pore space of many rocks is well characterized

as a fractal over many orders of magnitude, ¢ap—232.

|t , o Effective diffusivities in crystalline rock show a decrease
vi(H)= O¢i(t_t )vi-a(t)dt’ (1) with sample size that may be consistent with fractal pore
structure[23].
In order to formulate the exchange as a multiple-rate pro-
At L, we have(suppressing indexN” ) cess, we first normalizg;(t) as
N g (H=gi(t)/ B, Bi:fo gi(t)dt, (4)
Yt r)=d(t=7), 7=2, A7, 2
=1

where 8; is referred to as the capacity coefficient of dite

The functiong;" is referred to as thexchange-time density
Note thaty [Eq. (2)] corresponds to the “renormalized i.€., a density function for the IP exchange time at sitg;"
waiting-time density” for the canonical exponential waiting- iS also referred to as the “memory functiof24].

time density of the continuous-time random walk, in the A suitable form forg; is a linear superposition of expo-
limit N—cc [18]. nential densitie$6,18],

1P summarizes, for instance, diffusion rates, equilibrium con- gi(t):fo kepi(k)exp(—kt)dk ®)
stants, intra-aggregate porosity, etc.
2For a classical random walk the simplest displacement density i§vith
1/2(6; i-1+ 6 i+1), Whereas here we havg, ., i.e., the probabil-
ity to move to sitei+1 from sitei is one, and the transition pro- -
ceeds monotonically along the lattice. Hence any given site can be Bi= f &i(k)dk,
visited only once. 0

051308-2



TRANSPORT WITH MULTIPLE-RATE EXCHANGE IN . .. PHYSICAL REVIEW E55 051308

where ¢;(k)/B; is a site-dependent density of the rate coef- [1l. UNCONDITIONAL SOLUTIONS
ficient k. Note thats;= [fg;(t)dt= [ ¢;(k)dk, i.e., B; is the
zeroth moment of both; andb; . Assuming particular forms
of ¢;(k), we recover most of the models currently used in
engineering practic¢24] (see Appendix B for a few ex-

Given the retention functiomn(t) (8), we wish to compute
the unconditional IP crossing-time density at tN¢h site
(i.e., atL), h(t).*

amples.
ples A. Zero exchange
D. Transition with exchange _ Sinceris a rgndom variabl_e for a gi_vgn realiza;ion of a
) ) disordered mediumy [Eq. (2)] is a conditional solution for
From the recurrence relation we can write the transport of a NIP. The unconditional solution is
N (y(t,7))="1(t), wheref(r)=f,; hence in this casé(t)
A . =f _(t).
=y= i 6 7 . e o
Y El v © The densityf (7) is difficult to determine in a general way,

for arbitrary boundary conditions and disorder. For geologi-
where we assume, for simplicity, that =t a the waiting- cal formations, for instancé( ) has been computed analyti-

time density isd(t). cally assuming Gaussian transpfi7]. Non-Gaussian fea-
Substitution of Eq(3) into Eq. (6) yields tures of the conducting properties of geological media have
been established in a few cases where comprehensive data

N
A been identified for complex disorder as can be found in frac-
+ i(S)A T
T ;1 Gi(s)Am @ tured rock[12,26]. Non-Gaussian features of transport have

Y(s)= exp{ -s
also been found in river networks, e[d.6].

We refer toy as theretention function as it quantifies the In view of the variety of statistical/structural features of
extent to which an IP is retarded relative to its NIP pair. Fordisordered media, in particular for natural systems, we re-
g:=0, there is no exchange and[Eq. (7)] degenerates to duire a general and flexible form fdr=f(7) that can cap-

Eq. (2); for § =constg, we gety(t,7)=d[t—r(1+p)], ture in a generic way both the Gaussian and non-Gaussian

which is the statement of transition with simpléequilib- ~ féatures of NIP transport. We propose the following form
rium) exchange, e.d:13]. defined in the Laplace domain as

The retention functiony(t) is obtained by inverting Eq.
(7) and may be written as

] sets were available5]. f(7) with non-Gaussian features has

f (s)=exgca®—ds—c(a+s)"], (10)

wherea, ¢, d, >0, andca® is included for normalization.

(1) =6(t— 7)o (t) = (t—1), (8)  We refer to Eq(10) as a “truncated one-sided stable” den-
sity, or simply a “truncated stable” density; fa=0, Eq.
where- denotes the convolution operator, and (10) reduces to the standard one-sided stable density, e.g.,

Ref.[18]. Further discussion on the properties of EtD) is
given in Appendix A.

k()=L"'e F¥], F(s)=

N

s, Arigi(sﬂ, ©) _
i=1 B. Factorized case

For many applications, it may be sufficient to factorize the

with £~1 denoting inverse Laplace transform. Thus the nonhomogeneity of, such thajg is site dependent, whilg*
centering for the density(t). The functionF(s) determines s hot e

the form ofx. The asymptotic behavior af can be evaluated
as 1— k~F(s) for s—0 (see Sec. IV for specific examp)es gi(t)=B;g* (1). (12)
Transition under the present conditions implies that a par-
ticle at sitei at timet’, will in the next step occupy site  The assumptior(1l) in effect reduces the “nonseparable”
+1 at timet’ +t with probability 12 The timet is random  continuous-time random-walk modeB) to a “separable”
due to, on one hand, randomness of the flow field, and on thene as originally proposed in ReR7].
other hand, the exchange processes. Substituting Eq(11) into Eq.(7), we get
In applications, the exit surfade is specified, and-is a . .
random variable. Moreover, the functian(t) depends on y(s)=exp{—s[7+ud*(s)]}, (12)
the exchange parameter vectBy. We, therefore, regard
Egs. (8),(9) as theconditional solution, for a given realiza-
tion of g;(t;P;) and . In the following section, we shall N
account for the randomness imandP; . u=>, BiAr. (13)
i=1

where

3As a consequence, site occupancy and first-passage time densities
are proportional. “In the notation, e.g., of Hughd48], we would writeh(L|a,t).
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Thus, to compute the unconditional denditft), we require If exchange is homogeneouyse., cumulants are site inde-

the joint densityf (7, ). pendenx, then f(r,ug,p1,...,,4) reduces to the NIP
In view of Eq.(12), we have crossing-time density(7). We refer tof (7, mg, g1+ --tm)
R R (or any of its marginal densitiesas “exchange trajectory
h(s)=1,.[s,s5*(s)], (14)  density.” f(7,;q,1,-..,44m) Characterizes transport on the

. macroscale, reflecting the structural, or morphological, fea-
wheref,, denotes the Laplace transform of the joint densitytures of transition and thé field. In effect, f provides
f(r,u)=f,,, if such can be identified. Note that this solu- the link between the mesoscale and the observation
tion is applicable irrespective of whether the cumulants of(imacrgscale.

g(t) are finite or infinite. In the general case, the joint densftl/r, o, g1, .- ttm)
A simplified alternative to using the joint density,, is  can be obtained using Monte Carlo simulatidese discus-
to set bounds om(t), by treating two limiting cases: one sion below.
where 7 and u are perfectly correlateunctionally depen-
deny, and the other where and u are uncorrelated. D. General case
In the perfectly correlated case, onlygifis linear in as

w=B7, can we obtain an expression corresponding to Eq. N the general case, where cumulantgf) are not nec-
(14). In view of Eq.(12), we then have essarily finite, we can obtaih(t) by ensemble averaging

y(t), i.e.,h(t)=(¥(t)), using Monte Carlo numerical simu-
h(s)=1[A(s)], (15)  lations. To summarize the simulation steps, we assume here

that transition is driven by a steady-state, random-flow field
where F(s)=s[ 1+ 8§*(s)]. Expression(15) is a Laplace V(x), with a nonzero mean drift, i.e{(V(x))# 0, where()
transform solution of thesubordinationproblem in the ter- denotes ensemble averaging.
minology of Feller[28], where [ 7(L)], and 7(L) is the Let w(wy,wp) Where wy is as element of the sample
directing process. A relationship similar to E45) was first ~ space for the flow field realizatio¥,, andwp an element of
derived for homogeneous media in chromatography].  the sample space for the exchange parameter vé&xpoy.
Hence Eq.(14) generalizes Eq(15) from homogeneous to We assume that the statistics \¢f and P fields are given

disordered media with “separable” random properties. (mean, covariances, cross covariances).etc.
In the uncorrelated case, we get For eachw (realization ofV andP), NIPs are injected at
R R o a given location, and followed, whereby the trajectories
h(s)=1,.[s,sG°(s)]=T(9)f,,[ST"(5)]. (16 are computed. The trajectorieé are discretized as one-

dimensional lattices with equidistant time steps. At each site
EXpI’ESSiOf(lG) is a more general solution of the subordina- the exchange paramet@are Samp'ed a|0ng a trajectory as
tion problem, wheref(r,x), and 7 and w are the directing p[x(/,a)] to obtain P; and g;, and ¥ is computed by
processes. quadratures fron{7). Thenh(t) can be obtained either by

computingﬁz(ﬁz(s)) with numerical inversion, or by invert-

C. Finite exchange cumulants ing ¥ for eachw and then averaging, i.eh(t)={y(t)).

If the cumulants ofg;(t) are finite to order M,” the Further details on Monte Carlo simulations in the context
unconditional arrival time densiti(t) can be obtained in of geological media can be found in R€13]. Note that the
terms of integrated cumulants gf(t) along the lattice. use of Eq.(7) simplifies numerical simulations significantly,

Since by definition since a three-dimensional transport-exchange problem is re-

duced to a three-dimensional flow problem and a one-

. dh| (%) dimensional exchange problem.
m; = lim (—l)ng— =lim{(—1)’ Pl
=0 0 IV. ILLUSTRATION EXAMPLES
j=0,1,23,...M (17) A. Moments of h: Transition with exchange disorder
the key to computindi(t) is knowledge of the joint density ~ Using the definition ofg; in terms of ¢; [Eq. (5], the
(7,0 12 i), Where moment of order " w; [Eq. (18)] can be written as

JA*
i

=> Arj! " (19)
i 0

_EA Jajgi
18 M=z n(=D'—g K

. 9
Mj:Ei BiwjiA T, Wji:lm (=1 PR o

In our following discussion, we assume tha#0 in EQ.
4£0), and theuo andu, are finite for alli; our focus is on the
computation of the first two moments bfdefined by

We refer tou's as “exchange trajectories,” since they char-

acterize exchange in an integrated sense along the entire |

tice. It may be noted that finite cumulantsgfto order “M,”

imply finite cumulants oh to order “M + 1.” ()= (1) + (o),
The moments of (7, g, 1, 142,...,4) are defined as

(e (s (rag)s (g (i, €t =) {0 =04 20, 0+ 2ua), (20

051308-4



TRANSPORT WITH MULTIPLE-RATE EXCHANGE IN . .. PHYSICAL REVIEW BE55 051308

where Bob

0= X (1P B’ ~2A TP (27)
<M0>=<§i: IBiATi> , (#1>=<§|:

BiATi
21 . .
K; 2Y) where ¢ and b are parameters of the density. In this case
ky=—(£+2)/b with &< — 2. Note that fo=— 2, o2 is not
and o, =(7uo) (7)o}, 7 =(mo)—(p0)® o7  defined.
=(7%)— (7). Note that finitex, implies finite average ex-

change time. B. Density h: Non-Gaussian transition with uniform exchange
Consider the simpléinary exchange disordemodel[9] It is a common practice in applications to assume transi-
where exchange takes place at a random fraction of the lation disorder with uniform exchange, where transition disor-
tice sites. For the binary model der is Gaussian, and exchange is assumed to have finite cu-
mulants, e.g.,[17]. We emphasize here non-Gaussian
gi(h=wg(t) or &i(k)=we(k), (220 transition with uniform exchange, with cumulants that are

not necessarily finite.

For illustration, we consider two cases using the truncated
stable density in Eq10) with d=0,c=1, a=1/2, variousa,
and with g(t) given by two different functions. To obtain
h(t) we invert the analytical solution numerically. The first

where w is a random variable taking values 1 and 0, with
probability p for o =1, and probability +p for ®=0; g(t)
and ¢ are site-independent.

With Eq. (22), Eqg. (19) reduces to

PR = p(K) example ofg(t) is applicable for diffusion into rock from
pi=ro(— 1)1‘_], =toj! | —5—dk. (23)  parallel fractures. This density is provided in Rg#4] and is
I8 s=0 o k given by Eq.(5) with ¢; defined in Eq(39) wherel is large

but finite. Because of diffusion into a finite regiam(t) be-
For the first two moment; di (20), we rgquire,uozrw,b’o haves ag ™12 (i.e., n=—1/2) betweent=0 and approxi-
and u;=7w/ky wherek,, is the harmonic mean exchange mately the diffusion time scale ¥/D, which in this case is
rate. _ o N 3.3x10 ® [T]. Results are shown in Fig(d). The function
. Assuming for S|mpI|C|ty that the transition gnd exchangeh(t) shows three possible power-law regimes at late time
disorder are uncorrelated.e., o, =0), we write expres- (i e after the peakwith not all present for any particular set
sions for the first two moments &f (20), applicable for the  of parameters. Regime 1 causg$) to scale as~ %~ . This
binary exchange model, as regime exists, in general, over times wheg(¢) is not power
law but before the truncation of the stable density from Eq.
(10), determined largely by the value af In Fig. 1(a) we
see Regime 1 only at latest timésfter|2/D) for the case of
(24 a=0. Given the value ofv=1/2, h(t)~t~*?in that region.
_ _ Regime 2 causeb(t) to scale ag~*(7*1~1 This regime
Hence the first moment df is dependent only opandB,,  exists, in general, over times where bgft) and the stable
and not affected by the choice of the exchange model; alsqjensity from Eq.(10) are power law. We see this behavior
for ky—0, we haveof,—m. If exchange is uniform, then for a=0 and times less thalf/D, whereh(t)~t~%* Re-
p=1; in the absence of exchanges=0, andos=02, con-  gime 3 causeh(t) to scale ag~ 7~ 2. This regime exists, in
sistent with the fact that NIP and IP transport coincides.  general, over times whemg(t) is power law, but where the
We compute the second momezmﬁ for three common stable density from Eq10) has been truncated. This behav-
exchange models summarized in Appendix B: ior exists, in our example, at times prior k&D and when
a>0.
The second example density(t)~t~ 2 (i.e., 7=0.8),
results from diffusion(from fracture$ into rock matrix with
o2=c?(1+ p2ﬁ02)+2(7>p%, (25) @ large range of physical properties. Such behavior has been
0 observed, for example, in fractured dolomigat,29. In this
) second example, power-law behaviorg(t) is confined be-
where Bk, is the forward andk, the backward rate con- yeen both a minimum and a maximum tirfleand 16 [T],

O=(7)(1+pBo), oo=02(1+ p2302)+2<7>pkﬂ_:_

For thefirst-order model(B1), we get

stants; thusk,;=ko. respectively. The key difference, however, between the sec-
For diffusion in sphere¢B2), we get ond example and the first is the valuemfwhich is less than
Bor? 0 in the first example, and greater than zero in the second.
2_ 2 252 ofp Results are shown in Fig.(ld). Similar to the first example,
= + + ) ;
4= 07 (1T p"Bo7) T 2{7)p 15D’ (26) there is more than one power-law regime ffigt). However,

since >0, the late-time behavior is always dominateddyy
wherer , is the sphere radius aridl, is the apparent diffusion unless the density is truncated. Regime 1, whafe)
coefficient for the spheres, which accounts for possible sorp~t~ <"1, exists at all late time, provided that<1. Since
tion. In this casekH=15Da/r,23. 7n>0, there is no Regime 2. Regime 3, whehgt)
For themultiple-rate Gamma modéB5), ~t~772, can only exist ifa is not negligible. Given a large
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10’ this corresponds to the ca$B7), with »<1. We consider
here the range- 1< »<<1 applicable for most practical prob-
lems. Let the trajectory densities assume the fo(@® and
(A4) with a,=0 (m=r,u), i.e., one-sided stable densities,
where for simplicity, we neglect centerind{=0). Then we
havesg~s”"1, and Eq.(16) yields fors—0,

10°

CIC, o5

1-h(s)~c,s*+c,s%1 7, (28)

Asymptotic behavior oh(t) will thus be determined by the
relative magnitude of the exponents anda,(7+1).

Consider first the special case.=a,=a. Then for
7n>0, the asymptotic transpo(for fixed, finite L) is domi-
nated by the trajectory density exponen&. For
7n<0, asymptotic transport is dominated by a combination of
the exponentsr and 7, i.e.,

10°

10-11 L]

w b T T T T h(t)~t=*@ D=1t oo, (29

E [ a=0 El

\‘. —a=1x10% |3 Sincea<1, then forp<<0 we havea(n+1)<1 and all the

y ] moments ofh(t) other than the zeroth moment, are infinite.

In the casea,.<«a,, and for 0<7<1, the transport is
always asymptotically dominated by transition. df>a,,
and — 1< %<0, the transport is always asymptotically domi-
nated by exchange. The dependence of asymptotic transport
on the exponents,, «,, andz, can be clearly summarized
ona (o, ,a,) plot as given by the simple linear relationship
a,=a,(n+1). For any given—1<»<1, a line from the
origin given bya .= a,(n+1) defines a dominance “delim-
iter,” or “jump”: below the line, any combination ofx, and
a, implies an asymptotic dominance of exchange, whereas
above the line any combination @f, and «, implies an
asymptotic dominance of transition.

FIG. 1. Interaction between macroscale transition and micro- In the case densities, andf,, have finite moments, i.e.,
scale exchange. The transition is characterized by the truncateg,#0 (m= 7,u), asymptotic transport is dominated by the
stable density(10) with d=0, c=1, «=% and a range o [1/T] exchange-time density exponenti.e.,
values. The exchange is characterized by two fornts (d) g(t) as
defined in Eq.(B4); (b) power-lawg(t)~t 18 (=0.8). h(t)~t= 772, t—oo, (30

c/c

(b) Time w

For a rate distributiorp other than the power law, ang
distribution, it can be shown that asymptotically, the slope of
g(t) is zero(albeit the convergence to zero may be glofs
a simple example, consider given in Eq.(B1). For suffi-
ciently large time(or smalls), §;~3;, and

enougha, the late-time behavior ofi(t) betweent,,;, and
tmax IS determined byy.

C. Density h: Non-Gaussian transition with exchange disorder

We limit our discussion here to the factorized c&%6).
Closed-form solutions foh(t) [Eg. (16)] can be obtained 1
only in a few special cases, whenis available in closed h(t)= fo fo(m)f,(t=mdr, (3D
form and f(7) and f(«) assume trivial forms, such a8
functions. In the case wherg is available in closed form, where u=3,8,A; this case has been analyzed, e.g., in
with f(7) and f(x) given, h can be solved in a relatively Ref [13]. If g,=3, i.e., site dependence is neglected, we
simple manner, by numerical quadratures, possibly combinegg, e
with numerical inversion of. In the general casé, can be
either studied through its cumulanti these are finitg or
evaluated using numerical inversion and Monte Carlo simu- h(t)= ﬁfr(t/R)v (32)
lations. In the following, we illustrate the asymptotic behav-
ior of h(t), using the limiting properties of its Laplace trans- whereR=1+ g is commonly referred to as the retardation
form h for s—0. factor. The classical subsurface transport madehvective
Consider the case where a characteristic exchange tindiffusive, or advective dispersive with constant diffusion co-
cannot be defined, i.e., the first momentggt) is infinite;  efficient, for a pulse in a semi-infinite domain, with constant
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linear equilibrium sorption, e.g., R€f30]) is then recovered Tracer Retention Understanding Experimé@RUE) pro-
from Eg. (32) wheref . is given in Eq.(10) with a#0,d  gram at the ApoHard Rock Laboratory, Sweden.
=0, a=1/2.
APPENDIX A: ONE-SIDED TRUNCATED STABLE
V. CONCLUSIONS DENSITY

In the factorized“separable”) case,d is dependent o Suitable choice of the parameters redutggq. (10)] to
and u, i.e., &(rw), and the solution is obtained as familiar forms, either with finite, or infinite moments. The

_3 ANt ; ; _Dirac 6 function is obtained froniEq. (10)] as a degenerate
f,.(s,s0); this generalizes the classical result of chroma case witha—1. Settingd=0 and a=1/2, we obtain the

tography obtained for the homogeneous casehad (S goution of the convection-diffusion (or advection-

+s9) [1]. u accounts for macroscale disorder in a relatively yigpesion equation for pulse injection in a semi-infinite do-
simple manner, by integrating the variable exchange paramsain in the form

eter B (“total capacity”) along the entire lattice. In this case,

6(, w) is subordinated t@ with two operational times; and cetVa c2

© [28]. In the “nonseparable” case where all exchange pa- f(r)=_—=5exp —ar— —) (A1)

rameters exhibit disorder, while cumulants @fare finite, 2=t ar

(7, g, b1, M2,...) issubordinated t@, with an infinite se-

ries of operational variableg rg,uq,12,... [28]. In other where

words, 8 depends o (L) (m=0,1,2,...), in which case the U2 L

solution for h is derived in the form of cumulants. In the a=-—, c=— (A2)

most general case where cumulantgpére not defined, the 4D JD

solution can be obtained only using Monte Carlo simula- ) ) . .

tions, based on one-dimensional latti¢esjectories. with L being the distancd) the mean drift, and the dis-
Asymptotic solutions ofh [Eq. (16)] were obtained by Persion coefficienf31].

introducing a “truncated stable” density[Eq. (10)] for ex- Settinga=0, reduced . [Eq. (10)] to the one-sided stable

change trajectories and « (in this case simplified as uncor- (Levy) density, whered is the centering parametes,is the
related. Two significant features of the truncated stable denWidth parameter, and the exponent18]. If we denote the
sity (10) [or Eq.(A4)] in the present context aré) it can be ~ Levy density asf (7)=f(7;a=0), and setd=0, we can
directly used inEq. (16)] for setting bounds on the density Write

h; (ii) by suitable choice of parameters, it reduces to familiar N

densities with finite or infinite moments, providing a smooth f(r)="f (r)e 3",

transition between the two. Of particular interest is the one-_. "

sided stable(Levy) density (for a=0 and 0<a<1), and Sincefi ()~ for 7—c, we have
inverse-Gaussian densita# 0,d=0,a=1/2) characteristic f (r)~r @ lg-ar (A3)
for a classical convection-diffusion process. T '

An interesting asymptotic case is when both microscalerpys the parametea determines the “cutoff.” Up toar
exchange is characterized by power-law asymptotic behavioL g 1, f coincides with the Levy density, after which its tail
with exponentz, and macroscale transition is characterizedstarts deviating from a power law, gradually reducing to zero
by a power-law with exponenta, and a,,. The line a,  zta37~100.
=a,(n+1) defines two regions in the exponent plane |f 30, the moments of , [Eq. (2)] are finite, the first
(a;,a,), one in which the asymptotic transport is domi- o peing
nated by transition, and one in which it is dominated by

exchange. For the case of transition disorder with uniform (r)=caa® !,
exchange, both transitiotsummarized in the exponen)
and exchangésummarized in the exponem) can influence o?=(r%—(r)?=c(1— a)aa® 2

the late-time behavior ofi(t). Since exchange is subordi-
nated to transition, it will unconditionally influence the late- Sincea can be chosen arbitrarily smal, and a determine
time behavior ofh(t) only if »<0. If >0, exchange will the “degree” of “non-Gaussianity” of the densitl and thus
dominate at late time provided that transition becomesan be useful for interpreting observations in a wide range of
Gaussian in the limit. However, if transition is never Gauss-media with a variety of structures.
ian and >0, then transition effects will determine the In view of the dependence qf [Eq. (13)] on A7, we
asymptotic behavior ofi(t). In the case transition is never propose a general density, in the Laplace domain, in anal-
Gaussian andy<<0, then both the transition and exchangeogy tof.[Eq.(10)], as
will determine late-time behavior of the densthyt). .
f.(s)=exdca*—ds—c(a+s)”], (A4)
ACKNOWLEDGMENT .
where a, ¢, d, 0<a=<1 are parameters for, in general
Partial support for this work was provided by the Swedishdifferent from those forr. A special case of interest is jf
Nuclear Fuel and Waste Management C3KB) as part the =87 (B=const), witha=1/2 anda+# 0 in which casdEq.
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(A4)] can be inverted analytically and is the solution of thewhich yields
convection-diffusion equation, with retardation, for a pulse
in a semi-infinite domain30].

Finally, we note thaf . (10) is comparable to the Laplace D 1
transform of the Gamma densityd) with nonzero center- gi(H)=A\/ o gi(s)~T,
ing:

(B4)

whereA; is a site-dependent retention parameter grdyp;
fe=b é(b+s)ée s is an apparent diffusion coefficient in tiignmobile) rock
matrix, which accounts for sorption; ang} is a Dirac
whereb,d, ¢ are parameter&iis here the “cutoff” parameter function. The corresponding continuum form of the nonho-

corresponding to oua in Eq. (10). mogeneous retention functioy is given elsewhere, e.g.
[12,14). For this model,y quantifies parallel-plate advection-
APPENDIX B: A FEW TYPICAL EXCHANGE MODELS diffusion into an infinite mediungrock) [35], and is equiva-

1 First-order model lent to a one-sided stable density with expongf28].
This model has been widely used in the analysis of chro-

matographic columng§l], in the oil industry[32], and for _ S

subsurface transpoif33,34. The rate density$ and the This model accounts for a distribution of exchange rates,

memory functiong are defined as which has provided a good description of desorption in en-

vironmental engineering, e.f36,37]. The rate density) and

the memory functiorg are defined ag24]

4, Gamma model

B(K)=PBod(k—ko), g(t)=Bokoe ", (B1)

where 8, andk, are constants. The master equation formu- Bo e
lation for multiple transport paths with random exchanges of P(k)= y(—&—1) bE kT2
Hughes and SahinjB,9], is also based on this model.

As shown, e.g., in Ref2], g [Eq. (B1)] is applicable for
a variety of diffusion-sorption linear models where the ki- o€+ 1)
netic transfer is characterized byimglerate(equal tokg) or g(t)= 0—(t/b+ 1)¢, (B5)
equivalently a single time scalequal to 1Kg). b

—bk

where ¢ andb are parameters of the gamma density.
2. Diffusion in spheres

This is a classical model in reactor engineeffigg Simi- 5. Power-law model
lar to the first-order model, the diffusion model is character- _ o
ized by a single exchange rate. The rate dengitgnd the A particularly useful form of the rate density is given
memory functiong are defined by24] by the power law6,24]
=] —~ 77*1
o6, ( 2 ZDa> k)~k7 1, (B6)
$(K)= 2 —5— 8| k—-mPm®—7 |,
m=1 M~ " which yields

, (B2) git~t=7"t,  g(s)~s”. (B7)

Giona and co-workerf5] showed that mass uptake by dif-
wherer , is the sphere radius ar, is the apparent diffusion fusion intq a finitely ramified fractal with ac| constant-
coefficient for the spheres, which accounts for possible sorpconcentration external boundary evolves ad%, and
tion. ~s 971 whereds is the spectral dimension. Sing¥s)
=M,(s)/M(s), e.g.[2], whereM,(s) is the mass retained in
3. Diffusion into infinite blocks the immobile water andi(s) is the mass retained in the
d mobile water,n=—d¢/2 and

” D D
g(t)= >, 6Bg— exg —m*m?—t
m=1 rp rp

Another widely used model is for retention in fracture
rock with the rate density; of the form[24]

g(t)~td5/2*l,@(s)~sd5/2.

® ] F V2, 2
#i(K)=lim >, i‘lz_z 8 k— w 923 , (B3)  Fordiffusion into a slab of homogeneous ratk=1, and we
tow =1 (2= 1) 4 | recover the modegiB6) with »=—1/2.
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