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Shear profiles and localization in simulations of granular materials
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We present results from two-dimensional computer simulations of shearing granular layers, using a discrete
element code, and applying a wide range of boundary conditions. We specifically investigate the distribution of
shear within the granular layer and find two different modes of localization depending on the applied shear
velocity, pressure, and layer thickness:~1! granular layers that develop a persistent shearing boundary region
~‘‘fluidlike’’ behavior ! and~2! layers that switch between diffuse deformation and randomly positioned internal
shear bands~‘‘solidlike’’ behavior!. The two end-member deformation modes can be found in laboratory
experiments performed under low and high confining pressure, respectively. Micromechanical investigation
reveals two different statistical distributions of the grain contacts correlating with the two different shearing
modes. These results imply that rehological transitions in granular flow modes are linked to quantifiable
microtstructural organization.

DOI: 10.1103/PhysRevE.65.051302 PACS number~s!: 45.70.2n, 83.80.Fg
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I. INTRODUCTION

Despite over a century of research in the mechanics
granular media~dating back to Reynolds in 1885@1#!, there
is still no consistent, general physical or mathematical f
malism that successfully predicts the collective behavior o
large number of discrete grains@2#. Even for simple two-
dimensional shear of grains confined between parallel pl
~see Fig. 1 for a picture of the system studied! there is no
consistent description of motion of the granular layer. T
problem is very basic~the analog in fluids is Couette flow!
and has wide industrial applications. It is also of interest
earth scientists, since the fragmented rock layer~termed
‘‘gouge’’ ! within a geological fault, which is basically
shearing granular layer, is often the site of earthquake nu
ation and rupture. Thus description of shear in granular l
ers is closely linked to understanding earthquake physic

Experimental observations of shearing granular layers
varied. In general, two different end-member behaviors
reported depending mainly on the confining pressure~normal
stressP applied to the bounding walls of the layer!. Under
low confining pressure a boundary layer of grains under
ing high shear forms near the moving wall, remaining s
tially and temporally constant@3#. On the other hand, unde
high pressure, shear is initially distributed throughout
layer and then localizes in internal shear bands~e.g., @4#!.
This localization is thought to coincide with grain crushin
Grain-size reduction within the localized shear bands
thought to help lock the shear to a particular narrow regi
However, under continued strain, shear is observed to sw
again to its diffuse mode@5#. In experiments of shearing fau
gouge@6# and in simulations@7# localization coincides with
the onset of velocity-weakening behavior of friction,
which the shear stress supported by the layer decreases
increasing shear velocity, while diffuse deformation is us
ally associated with velocity strengthening. Thus it is cle
that the issue of shear distribution within a granular laye
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important for understanding macroscopic properties of
shearing aggregate, such as its strength in resistance to s

An important issue in determining a macroscopic desc
tion is the role of microscopic~grain-scale! fluctuations. It
has recently been recognized that an important character
of granular packings is the heterogeneity in the forces
tween particles@8–11#. In a densely packed granular laye
stress will be transmitted across the system by a networ

FIG. 1. A representative numerical simulation of a granular
gregate. This system contains approximately 24324 grains, shown
as gray circles. The direction and magnitude of contact forces
tween grains are shown by black lines. The simulation conditi
are constant confining pressureP applied to the top and bottom
boundaries, periodic horizontal boundaries, and constant velo
V0 applied to the upper boundary.
©2002 The American Physical Society02-1
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EINAT AHARONOV AND DAVID SPARKS PHYSICAL REVIEW E 65 051302
‘‘force chains,’’ or sublinear sets of grains which intera
through long-lasting contacts that each carry up to sev
times the mean contact force~see Fig. 1 for a visual repre
sentation of force chains!. Force chains tend to preferential
align with the direction of maximum compressive stress
the system. In granular materials confined by forces app
on the boundaries, force chains always exist, since they
what maintains the volume of the layer against appl
forces. During shear, individual chains are created and
stroyed very rapidly, at a rate even larger than large-sc
grain rearrangement@12#. In describing the strength of
granular material, much attention has been focused on ob
vations and descriptions of force chains, e.g.,@13–15#. How-
ever, the majority of grains in the layer will lie between for
chains and may weakly interact with the force chains a
with each other~‘‘spectator’’ grains! @16#.

In this paper we present results from numerical simu
tions where we shear a layer of two-dimensional~2D! disks
confined between two rough and rigid walls. We investiga
modes of shear and shear localization under a variety of p
sures applied to the boundary, system sizes, and driving
locities, and compare the results to experimental findin1

We find two distinct modes of deformation: shear remin
cent of fluidlike deformation and shear similar to solidlik
deformation. We present a phenomenological description
the phase space for granular behavior under shear and
dence that the statistical characteristics of microscopic g
to grain contacts has bearing on the mean, large-scale
havior of the granular medium.

II. MODEL DESCRIPTION

Grain aggregates are numerically modeled using a ver
of the discrete element method@17# which treats grains as
inelastic disks with rotational and translational degrees
freedom. Gravity is not applied in the simulations report
here. The numerical model and conditions used are simila
our previous work@12#. The centers of two grainsi andj are
separated by a vectorr i j . When the distance between cente
r i j is less than the sum of the two radiiRi andRj , the grains
undergo an inelastic interaction. During the interaction b
grains experience a contact force that has shearFs and nor-
mal Fn components. The normal component consists o
linear elastic repulsive force and a damping force depend
on the relative grain velocitiesṙ i j :

Fn
i j ~ t !5@kn~Ri1Rj2r i j !2gnm~ ṙ i j •n̂!#n̂. ~1!

Here n̂5(r i j • x̂,r i j • ŷ)/r i j is the unit vector parallel to the
contact.kn is the normal elastic constants,m is the grain
mass, andgn is a damping coefficient ensuring inelasticity

1In the simulations presented here porosity is not prescribea
priori . After application of constant pressureP and shear velocity
V0 to the boundary, systems evolve to a porosity state which
more or less constant, and which has a value characteristic o
marginal stability porosity@12#.
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the interaction. Shear forces on contacts are determined
ing an elastic/friction law@17#

Fs
i j ~ t !52$min@ksDs,m~F•n̂!#%ŝ ~2!

whereŝ5(r i j • ŷ,2r i j • x̂)/r i j is the unit vector tangent to th
contact.m is the surface friction coefficient,ks is the shear
elastic constant, andDs is the shear displacement since t
formation of the contact. Positions of the centers of mass
the disks are calculated using Newton’s law and summ
over all contactsJ between grains:

mi

d2xi

dt2
5(

j 51

J

Fi j . ~3!

In addition to motion of the center of mass of the disks
also calculate the rotation of each disk, in terms of its relat
angular positionf i , whereI i is the moment of inertia:

I i

d2f i

dt2
5(

j 51

J

Fi j
s Ri . ~4!

Nondimensional distance is scaled to the average disk di
eter x̂52R̄. Time is scaled to the undissipated elastic wa

travel time t̂5Am̂/kn, where m̂ is the mass of a disk o
diameter x̂. Velocity is scaled to the undissipated elas
wave speedV̂5 x̂/ t̂ . Stress is scaled to the elastic modulus
the systems0, so that a pressureP51 is equivalent to
'105 MPa, when using a characteristic Young’s modul
for rocks ~e.g., quartz!. We will use nondimensional param
eters from now on.

III. SIMULATION CONDITIONS

In the simulations presented herekn51, ks50.5, m51,
and m50.5. Systems are highly damped withg51 corre-
sponding to a normal restitution coefficient of;0.3 @12#.
Simulations are performed on rectangular systems withnt
5nx3ny disks. The top and bottom edges of the box a
composed of grains glued together to form rigid rough wa
of length nx ~Fig. 1!. The granular layer is periodic in th
horizontal direction. Grain radii are randomly drawn from
Gaussian distribution that peaks atR̄, with a standard devia-
tion of 0.5R̄. Polydispersivity is introduced to discourag
ordering effects. Systems are initiated as tall loosely pac
boxes, which are compacted vertically by application
pressure to the boundary until reaching a heightny, ranging
from 24 to 96 grains.

After compaction and relaxation of residual stresses~as
explained in@12#! we apply a pressureP ~ranging from 1026

to 1023) to the upper and lower walls, and move the top w
in the x direction by applying a constant velocityV0 at y
50, ranging between 1023 and 1024 of the wave speed. The
systems then evolve to have a preferred unique~‘‘critical’’ !
porosity around which they fluctuate, dilating and compa
ing slightly during shear@12#. This porosity is not directly
correlated with the pressure applied to the boundary,
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SHEAR PROFILES AND LOCALIZATION IN . . . PHYSICAL REVIEW E65 051302
some runs with higher pressure have higher porosity t
runs that are more weakly confined, as seen in Fig. 2. Po
ity is insensitive to the applied confining pressure beca
shearing is performed here under ‘‘rigid limit’’ condition
~i.e., elastic deformation of grains is smaller than about1%),
which results in achievement of a ‘‘marginal rigidity poro
ity,’’ a porosity state that was identified previously as
attractive phase boundary associated with a macroscopi
gidity transition, where behavior of the aggregate transitio
from fluidlike to solidlike as porosity is decreased beyo
the critical value. Increasing pressureP in this state is ac-

FIG. 2. Porosities from numerical experiments. Average val
denoted byf are given in the legend. Standard deviations of p
rosities range from 0.001 to 0.003 depending on the condition
the run. Layer thickness and confining pressure are given in
legend byny and P, respectively; herenx548. Note that thicker
layers have smaller porosities, and that in the thick layer,ny596,
there is no consistent trend of increasing porosity with decrea
confining pressure. The lettersF and S in the legend indicate the
observed mode of shear, as discussed in Sec. IV.
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commodated not necessarily by porosity reduction but
changes in the granular contact network, as explained
@12#, and as seen in the two different contact netwo
formed during shear under an order of magnitude chang
pressure, Fig. 3.

IV. SIMULATION RESULTS

A. Velocity profiles

Applying different boundary conditions results in diffe
ent shear profiles, and different overall behavior. The l
end of the confining pressure regime (P51026, which is
equivalent toP560 kPa for glass beads of size 1 mm! cor-
responds to the regime in which some laboratory exp
ments@18# are performed: stresses are low enough to gen
ally not result in grain breakage, and indeed grains su
little deformation. The highest confining pressure usedP
51023, equivalent to 60 MPa! is appropriate for geophysica
simulations, corresponding to a burial depth of 2 km. Und
the highest applied pressures, some of our numerical gr
suffer a small ‘‘elastic deformation’’ approaching 0.5% of
grain diameter. In experiments of shear in rocks or gl
beads, grain breakage often occurs at these stresses@19,20#,
an effect which is not included in the present model.

Figure 4~a! shows the instantaneous velocity vector~ar-
rows! measured at some random time in the middle of t
simulations using about 4600 grains. Horizontally averag
grain velocityv(y) is plotted on top of the arrow plot, as
function of y, the depth from the shearing boundary~solid
curves!. The left plot is from a simulation with low confining
pressure,P51025, while the right had 100 times higher con
fining pressure,P51023.

Figure 4~b! shows a few representative profiles of ho
zontally averaged velocity profilesv(y) under the two dif-
ferent applied confining pressures, taken at different rand
times during the run. Note that the granular layer that
confined under lowerP develops a shear layer adjacent to t
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FIG. 3. ~Color! Contacts between grains~grains are not shown!, from a snapshot taken at a random time during two runs of a shea
layer with 48348 grains (V051023). The left is under pressureP51024, while the right is from a simulation underP51023. Line
thickness is scaled to the highest stress in the frame. Contacts are color coded so that red, orange, green, and blue are contacts ca
forces f .1.5, 1.5. f .1.0, 1. f .0.5, and 0.5. f , respectively.
2-3
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EINAT AHARONOV AND DAVID SPARKS PHYSICAL REVIEW E 65 051302
moving wall, while the more highly confined granular lay
on the right develops internal shear bands which migrate
alternate with diffuse~nearly uniform! shear. This is indeed a
general trend: one of two different modes of shear distri
tion is observed in all the simulations we performed, depe
ing on shear velocity, confining pressure, and layer thickn

FIG. 4. ~a! Individual grain velocity vectors~tiny arrows! and
horizontally averaged velocitiesv(y) ~lines! as a function of depth
away from the shearing wall from two simulations with a confini
pressure ofP51023 ~right! andP51025 ~left!. Simulations use the
same grain configuration~48 grains wide by 96 high!, and the upper
wall velocity isV051023. ~b! v(y) at three different random time
during the runs from the same two simulations in~a!. Note persis-
tent boundary shear~i.e., steep velocity gradient near the bounda!
on the left, as opposed to migrating internal shear bands, altern
with diffuse shear, on the right.
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The first shear mode, appearing under the lower confin
pressure, faster velocity conditions which are usually use
physics experiments such as@18#, is characterized by persis
tent localized deformation near the shearing wall~Fig. 4 left,
P51025). The second mode, appearing under geophys
experimental conditions, such as used by@21#, is character-
ized by alternating periods of diffuse shear and transi
shear bands localizing at random depths within the la
~Fig. 4 right,P51023). The shear bands in this shear mo
have a characteristic width of 10–20 grains. The location
an individual shear band may persist for times ranging
tween 250 and 25 000 time steps, which is equivalent to m
tion of the upper wall over a distance of 0.2–20 grain dia
eters. Once a shear band disappears a new one may app
any subsequent time and at any depth. Systems shearin
this second mode characteristically spend about half the t
in localized motion and the other half in distributed she
The distribution, duration, and location of localization even
are not trivial and merit future studies, which are beyond
scope of this paper.

We shall use the terms fluidlike and solidlike to disti
guish the two modes of deformation since boundary la
deformation~including the linear profile induced by Couet
flow, which is an extreme case of a boundary layer! is char-
acteristic of fluids, while internal shear bands are gener
associated with solids. We call the fluidlike mode of she
‘‘mode F ’’ and the solidlike mode of shear ‘‘modeS.’’

Figure 4 presents horizontal spatial averages. Howeve
contains much temporal variability, especially in theS-mode
case where transient shear bands form and disappear. T
fore we performed long time averages~over 23106 time
steps, or an upper wall displacement of about 100 grains! of

v(y). v̄(y), where the overbar indicates temporal averag
~Fig. 5! shows clearly the two distinct modes of shear, whe
all of the simulations fall into one mode or the other.

(1) Fluidlike mode (mode F). This mode appears unde
lower confining pressureP, higher velocityV0, and thicker
layers~largerny). Profiles ofv̄(y)/V0 vs depth for all runs
that exhibit this mode of shear are plotted in Fig. 5~left!. In
these runs velocity decays away from the boundary in a n
exponential fashion. In fact, the numerical results agree w
the theoretical prediction of@3#, as shown by the lines on
Fig. 5 ~left!:

v̄~y!

V0
}E

0

yS cosh
ny2y8

d D 1/a

dy8, ~5!

wherea50.3560.1, in agreement with the experimental r
sults presented in@3#. Two different fits are shown using
length scalesd536 ~black line! andd526 ~blue line!, since
the former fits better the layer 96 grains thick, while t
latter fits better the layer 48 grains thick. In the Appendix w
briefly outline the steps in the derivation of Eq.~5!. For the
thinnest layers,ny524, the velocity profile decays faste
than the theoretical prediction because the system siz
smaller than the characteristic length scaled.

(2) Solidlike mode (mode S). Under higher confining
pressureP, slower velocitiesV0, or when using smallerny,

ng
2-4



SHEAR PROFILES AND LOCALIZATION IN . . . PHYSICAL REVIEW E65 051302
FIG. 5. ~Color! Time-averaged horizontal grain velocitiesv̄(y) versus depthy. Open symbols are from runs withV051024 and closed
symbols from runs withV051023. Pluses represent a run withm50. Time-averaged velocity profiles are linear in mode-S deformation,
while exponentially decaying in modeF. Theoretical fits for mode-F runs are given by Eq.~5!, where blue lines used526 and black lines
d536, with dotted lines for a fit for a layer ofny548 and solid forny596.
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the boundary layer localization@Eq. ~5!# of modeF disap-
pears. Figure 5~right! showsv̄(y) from all simulations that
do not belong to modeF. In this second modev̄(y) ap-
proaches a linear function, indicating that on average a
form shear rate operates across the layer. This serves
partial proof that the internal shear bands that are observe
this mode at different times and different places in the la
indeed migrate randomly, alternating with diffuse deform
tion.

To explore the effect of varying the different paramete
of our model we also ran a set of simulations~with ny
548, nx524, varyingP between 1023 and 1026) using zero
friction between the grains (m50). The frictionless layer
had lower average porosity and shear stress compared t
layer withm50.5. However, the temporally averaged velo
ity profiles were similar betweenm50.5 and 0. An example
of a frictionless run is given in pluses in Fig. 5~left!. Another
parameter that we varied wasg, the normal damping coeffi
cient, which controls the restitution coefficient. Simulatio
05130
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with reducedg suggest thatg plays an insignificant role in
determining the shear profile whenm.0, probably because
friction acts as a more significant energy sink than collisio
in this tight packing limit. However, whenm50, g has a
significant effect on the shear profiles, which we did n
explore.

B. Phase diagram

The layer thicknessny is important in determining where
the transition between modeS and modeF occurs—the
thicker the layer the easier it is to ‘‘fluidize,’’ and so it re
mains in modeF under higher confining pressures, as seen
Fig. 5. Figure 6 schematically shows the phase diagram
layer thickness versus confining pressure. The effect of h
zontal layer extentnx was also explored by running simula
tions of sizes 48324, and 24348 and comparing to simula
tions with layers of 24324 and 48348. As far as we can
determine, the horizontal extent of the layer~which has
wraparound boundary conditions! did not affect the outcome
2-5
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EINAT AHARONOV AND DAVID SPARKS PHYSICAL REVIEW E 65 051302
Granular systems with size 48348 behaved identically to
those of 24348, i.e., to layers with half the horizontal exten
e.g., they both showed theF mode whenP51026, and theS
mode for higher confining pressures. Also, a layer that w
twice as long as it was thick (48324), was similar to a
square one (24324).

In the experiments shown in Fig. 6,V051023. We did not
extensively explore the effect of shear velocity on the ph
boundary~because of the long time it takes to simulate sl
shear!, but we observe that increasingV0 causes the phas
boundary to migrate toward higher normal stresses and t
ner layers. In particular, for the marginal case of a 48396
layer underP51024 whenV051023, the system is in mode
F as shown by filled black circles in Fig. 5, but when usi
a ten times slower shear velocity ofV051024 the velocity
profiles are modeS, as shown by open black circles in Fig.

Several measures were investigated to search for
source of this mode switching: first the average and de
dependent measures of the systems, porosity, coordina
number~average number of contacts per grain!, and stress
power spectra. However, not much difference appears
tween macroscopic measures of systems shearing in the
modes. For example, the variation of time-averaged poro
among all the simulations is about 1%, and the variation
not systematic~see Fig. 2!. Porosity in low confining pres-
sure runs may be either higher or lower than porosity in h
confining pressure runs.2 A second measure, the average c
ordination number in the layer, does decrease with decr
ing P, but does not correlate with the shear mode.

2However, there is a tendency for thinner layers to have hig
porosity than thicker layers~e.g., on average, 0.191 pore fraction
48 thick layers, 0.185 in 96 thick layers!. This is expected since th
shear-induced dilation should be related to the ratio of grain siz
system size.

FIG. 6. Schematic phase space for the two different behavior
the system: modeF ~circles! and modeS~crosses!. As the layer gets
thicker it is easier to fluidize even under higher confining pressu
Apparent friction changes slightly across the phase boundary.
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We also examined the time series of the shear stress m
sured on the moving wall, normalized by the applied confi
ing pressureP ~Fig. 7!. This ratio of stresses describes th
apparent friction coefficient of the layerma . Friction has
some correlation with the mode of deformation, where g
erally higher values~with a time average slightly larger tha
0.3! are seen for mode-F runs than for mode-S runs ~time
average ranging between 0.28 and 0.3!. Also, fluctuations in
stress change with changing boundary conditions: the f
tion time series appear spiky at lowP and varies more slowly
with time at higherP @12#.

The final macroscopic measure investigated is the po
spectrumS of the stress time series measured at the wa
An example of such a time series is given by Fig. 7. Sim
lation results show thatS is a power law function of fre-
quencyv, S(v)}vh. The exponenth is found to be only a
function of the confining pressureP, and not of the shea
mode. Plots ofS(v) vs v for a variety of confining pres-
sures are shown in@12#. This insensitivity of the stress powe
spectrum to the mode of deformation is in line with the i
sensitivity of all other macroscopic measures we tried.

C. Micromechanics

We next investigate the grain to grain contact distributio
to understand the micromechanical source for the two
tinct modes of shear. Representative snapshots of con
and stresses on contacts in anF-mode and in anS-mode run
are given in the left and right frames of Fig. 3, respective
We investigate the distribution of forces transmitted by su
individual granular contacts, distributions of the contact
rections, and sliding on these contacts. Results are prese
from two representative runs using a layer of size of
396: a mode-S run sheared underP51023 and a mode-F
run sheared underP51025.

Force distributions can be viewed by a histogram of n
malized forcesf 5F/^F& on the contacts~Fig. 8!, where^F&

r

to

of

s.

FIG. 7. Representative apparent frictionma ~measured shea
stress normalized by the applied confining pressure! from two nu-
merical simulations of 48396 granular aggregate sheared atV0

51023, but using two different confining pressuresP51023 and
P51025. Observe that the apparent friction has very similar valu
despite the two orders of magnitude difference in applied confin
pressure.
2-6
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SHEAR PROFILES AND LOCALIZATION IN . . . PHYSICAL REVIEW E65 051302
is the spatially averaged force carried by contacts in the
tem. Figure 8 shows that the distribution of forces is inva
ant under different applied confining pressures and vary
shear velocity. In each run the magnitudes of forces trans
ted by grain contacts vary by at least two orders of mag
tude. An exponentially decaying probability exists for fin
ing forces greater than the mean forcef .1, where

P~ f !}exp~2b f ! ~6!

with b51.4760.1. The observed force distribution agre
with simulations@22# and experiments@23# for quasistatic
and static granular media. The invariance of force distri
tions under different loads and velocities is interesting a
merits further studies. The partitioning of forces betwe
contacts appears to be a basic property of the granular ag
gate, independent of the boundary condition. Force distr
tions remain robust even under varying modes of shear
orders of magnitude change of mean stresses.

Figure 8 demonstrates that a diminishing number of la
forces leads to poor statistics in the large-force interv
Thus we follow the method suggested by Radjaiet al. @24#
and look at a subset of contacts carrying a force smaller t
a cutoff value (f ,j), and call this subset the ‘‘j network.’’
This method of analyzing the contact force statistics is
plied successfully to investigate the source of the differe
between theF andS modes of shear.

The contact network that forms is characterized by
probability density functionE(u,j) of finding a contact with
directionu in the j network. We define the contact angleu
5arctan@(r i j )x /(r i j )y#, where (r i j )a is the component in the
a direction of the vector connecting the centers of graini and
j. Because the directionsu andu1p are physically equiva-
lent E(u) may always be represented by a Fourier se

FIG. 8. Force histograms for three shear runs using three di
ent applied stresses~in symbols! sheared atV051023, and one run
~solid line! sheared atV051024. The mode of shear is indicated b
F and S in the legend. Simulation results show invariance of t
force distribution under varying boundary conditions and sh
modes. The dashed line is a fit of Eq.~6!, with b51.47.
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containing even components. Dropping higher order ter
E(u) can be written as@25#

E~u,j!5
1

2p
$11Ac~j!cos@u2uc~j!#%. ~7!

The coefficientAc is the amplitude of anisotropy, whileuc is
the principal direction. We calculate from the numerica
obtained contact network the fabric tensorfab(j)
5^nanb&j , wherena is the a component of the unit vecto
along the contact direction. Averaging for^nanb&j is over all
contacts in thej network. We then use relationships such

^nxny&5E
0

2p

E~Q,j!cosQ sinQdQ

5
AC

4
sin 2uc ~8!

to calculateAc(j) anduc(j) ~see@24# for more details!.

1. Contact directions and anisotropy

Similar to the results of@24# we find that a natural transi
tion occurs at a cutoff value ofj5j0, which in some cases is
approximately the average force, so that we define ‘‘wea
networks with j,j0 and ‘‘strong’’ networks which have
j.j0.

In both S andF modes the direction of anisotropy of th
entire set of grain to grain contacts (j→`) is about 135°
from horizontal~Fig. 9!, in the expected directionumax of the
maximum compressive stresss1 ~see Fig. 10 for a schemati
view of the principal directions!. This directionumax is due
to orientation of the ’’strong’’ contacts, those in force chain
which belong to networks ofj.j0. Surprisingly, the differ-
ence between theS and F modes is in the weak contact

r-

r

FIG. 9. Principal contact directionsuc in the j network as a
function of j for an F-mode run~using P51025) and for a run
exhibitingS-mode shear~usingP51023). Note the bimodal distri-
bution of contact directions~transition aroundj'1) for P51023,
theS-mode run, as opposed to nearly uniform contact directions
P51025, theF-mode run.
2-7
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EINAT AHARONOV AND DAVID SPARKS PHYSICAL REVIEW E 65 051302
which dominate networks withj,j0. In the S mode there
exists a bimodal distribution of contact orientations: t
weak networks have an orientation nearly perpendicula
umax, in the direction of minimum compressionumin . The
weak contact population is very important in that it contr
utes to the rigidity of the system and prevents buckling of
chains, as schematically shown in Fig. 10.

However, in systems shearing in modeF, the weak con-
tacts do not provide rigidity, since they are not preferentia
oriented normal to the strong contacts and therefore the
no ‘‘mesh’’ which provides bracing for force chains. Instea
some of the weak contacts participate in stress chains, w
the rest of the weak contacts are nearly randomly orien
Thus there is no clear distinction between strong str
chains and a weak supportive population as in modeS. Fig-
ure 10 is a schematic drawing to illustrate this point wh
Fig. 3 shows true snapshots of contacts fromS ~right! andF
~left! runs.3 Notice in Fig. 3 that in theF-mode frame many
green and blue~i.e., ‘‘weak’’! contacts participate in stres
chains, while in theS-mode frame the stress-chain directio
('umax) is dominated by red~‘‘strong’’ ! contacts.

In viewing the direction of contacts the degree of anis
ropy Ac must also be considered~Fig. 11!. Ac increases
roughly in proportion to the difference between the num
of contacts oriented parallel touc and perpendicular to it. In
both shear modes the degree of anisotropy is large for
weak contacts and for the entire contact network. There

3All mode-F runs had a weak population with a preferred orie
tation in the direction ofumax. However, not allS-mode runs have
a weak population oriented in theumin direction. In some runs
shearing in theSmode~those with conditions close to the transitio
to F-mode shearing! the weak population has an intermediate o
entation, betweenumin andumax.

FIG. 10. Schematic view of the difference in network organiz
tion in granular media between theF mode of deformation~left!
and theS mode~right!. Both modes of shear have contacts whi
carry large forces~‘‘stress chains’’ drawn in black lines! oriented in
the maximum compressive directions1. However, theS mode is
characterized by a supporting weak contact network~drawn in gray
lines! which is roughly perpendicular to the stress chains, in
direction of s3. This network provides rigidity and supports th
system against buckling. In contrast, theF shear mode lacks such
supportive weak network.
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minimum in anisotropy for thej0;1 network for the
S-mode case andj0;0.2 network for theF-mode case. For
the S mode, this minimum in anisotropy comes about b
cause there is a bimodal distribution, with weak conta
preferentially oriented alongumin and strong contacts alon
umax. At the minimum value forAc , just enough large
forces are included in this network that the two orientatio
nearly cancel.

2. Sliding and rolling

In both shear modes a larger proportion of the weak c
tacts undergo frictional sliding relative to the strong contac
In fact, contacts withf .1 rarely, if ever, slide~Fig. 12!. This
is not surprising, since contacts with smallerf will reach the
Coulomb sliding condition at lower shear forces. This is
agreement with simple shear simulations@24# where slip and
dissipation occur mainly in the weak population. Overa
frictional sliding is more prevalent inF-mode shear than in
S-mode shear~Fig. 12!, despite the fact thatS-mode shear

-

-

e

FIG. 11. Amplitude of anisotropyAc in the j network as a
function of j for an F-mode run (P51025) and anS-mode run
(P51023).

FIG. 12. Fraction of sliding grains in thej network as a function
of j for two different normal loads, showing increased sliding f
decreasingP. Note that in both cases mostly the ‘‘weak’’ contac
~those belonging toj,1 networks! slide.
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SHEAR PROFILES AND LOCALIZATION IN . . . PHYSICAL REVIEW E65 051302
characterizes deformation under more confined conditio
This trend also explains the slightly larger values of appar
friction measured inF-mode shear.

When sliding is hampered, either by confining pressure
reduction of possible rearrangements in a thin layer, gr
rolling becomes a way of accommodating strain@7,26,27#.
The location of the maximum rolling is near the position
highest shear, as expected: near the moving boundary fo
F mode of shear and in the shear bands for theS mode@see
Fig. 13~a!#. However, in terms of overall grain rolling, th
two modes are different only in those grains that lie at
outskirts of the angular velocity distribution: There are mo
rapidly rolling grains~with v/V0.0.5) in theS-mode runs
than in theF-mode runs@Fig. 13~b!#. This rapid rolling stems
from grain interlocking, and may compensate for lack
sliding by accommodating strain. Figure 13~a!, which is a
snapshot in time, demonstrates that all the rapidly roll
grains are confined within the shear zone. Thus we beli
that, although the fraction of rapidly rolling grains is sma
they might still play an important role in the deformatio
process, as was already observed in@26,28#.

V. CONCLUSIONS

In this paper we have presented results from 2D simu
tions of shear in granular layers. We found two distin
modes of deformation where the transition is controlled
confining pressure, shear velocity, and layer thickness.
two modes are observed experimentally, but not much at
tion has been paid to the transition between them, and to
regimes that characterize each of them.

The first mode, which we termed fluidlike, orF mode for
short, is characterized by persistent boundary layer sh
which is well predicted by a theoretical function. This mo
is favored by applying lower confining pressures, high
shear velocity, and using thicker granular layers.

The second shear mode, characterized by solid
(S-mode! behavior, is accompanied by localized shear ba
that may appear at any depth including at the boundary.
system also spends about half of its time in nonlocaliz
distributed, shear. This mode occurs under more confi
conditions, slower shear, and thinner layers.

Our simulated systems operate in the rigid limit of gran
lar packings, which is to say they experience only slig
elastic deformation~under 1%). In this limit, shearing
granular systems spontaneously evolve to have a prefe
porosity which is very close to the marginal rigidity limit, th
critical porosity that marks the boundary between solidl
and fluidlike behaviors@12#. For this reason all of our simu
lated systems have very similar porosity, not well correla
with the shear mode and confining pressureP. Increasing
pressure on the boundary is accommodated by changes i
grain-contact network. The structure of the network of gr
contacts also explains well and corresponds with the sh
mode: In bothS andF modes stress chains support the lo
in the maximum compressive direction. The transformat
from S-mode shear toF-mode deformation is accompanie
by decreasing lateral connections between stress ch
These lateral connections are made by the network of c
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tacts carrying weak forces, which is preferentially align
normal to the direction of the stress chains. In other wor
when systems of grains behave as a solid, they have a ‘‘w
force’’ network oriented in the minimum compressive stre
direction, and a complementary ‘‘strong force’’ network e
ists in the maximum compressive stress direction. InF mode
the stress chains still exist, but the bimodal distribution a
the supporting weak network disappears.

This mode switching in shearing is closely tied to t
rigidity transition @12,29#. In @12# some simulations were
conducted with the layer thickness fixed, not allowing di
tion and compaction, so the porosity was constant. It w
seen then that increasing the packing density of grainn
above a critical valuenc causes a transition in both behavi
of static packings and shearing systems: Whenn,nc sys-
tems shear in a ‘‘gaslike’’ manner, where no system-spann
stress chains occur, and grains interact by collisions@30#.
Shear was localized in a boundary layer near the mov
wall, similar to what we see in theF mode. Whenn.nc ,
solidlike deformation occurred: system-spanning str
chains and localized shear in shear bands were observe
n5nc the system flips between the two modes, jamming a
unjamming intermittently, as described in@15#. In @12# we
also found thatnc is an attractive phase boundary when p
rosity is allowed to evolve freely under constantP boundary
conditions.

But when the walls are free to compact and pressure
applied ~even if it is infinitesimal! to the boundary, stres
chains always form to support the applied load. In this c
there cannot be a collision dominated gaslike regime, wh
can only emerge in the absence of connected chains. De
the lack of this collision dominated gaslike phase, two mod
of shear, which are fluidlike and solidlike in nature, still e
ist. But the lack of shear rigidity characterizing theF mode
comes about not from lack of stress chains but from lack
a coherent structure supporting the stress chains.

The marginal porosity marks a phase boundary betw
loosely packed gaslike behavior, and compact solidlike
havior. Despite the fact that our simulated systems exist
this phase boundary on the porosity axis, we still find tw
distinct modes of rigidity. Transitions between these mod
are activated by changing pressure, system size, and s
velocity, and can perhaps be viewed as crossing the ph
boundary along these other axes rather than the porosity

The transition betweenF and S modes under constan
stress is linked to the ability of the system to dilate, and
the amount of sliding that occurs: The increment of wo
done on the system by applied deformation is defined as

dW5Fsdg1Pdh,

where the forces are measured on the moving wall,dg is the
horizontal displacement of the wall, anddh is the change in
layer thickness. When the confining pressureP is increased
the work required to dilate the grain layer bydh increases.
As Reynolds noted in his work on dilatancy, and as has b
recently shown in experiments@18# and simulations@31#,
dilation is needed in order for sliding to occur. IfP is de-
creased or layer thickness is increased~and therefore degree
2-9
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FIG. 13. ~a! Instantaneous scaled angular velocitiesv/V0 of all grains in a 48396 system in two shearing runs withV051023. The
angular velocity of each grain is plotted~circle! as a function of this grain’s depth from the shearing boundary. On the left, results fro
F-mode run (P51025) and on the right anS-mode run (P51023). Lines are horizontally averaged shear velocity profilesv(y)/V0 at that
time, showing that grain rotation is correlated with shear rate.~b! Histograms of angular velocity in the two runs, showing that the probab
density functionP(v) of angular velocities foruv/V0u,0.5 is similar in both modes. However, there are more grains with high rotati
velocity uv/V0u.0.5 in theS-mode run (P51023) than in theF-mode run (P51025). Rotation is an additional mode for accommodati
strain.
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of freedom and possibility of grain rearrangement increas!,
grain sliding within the layer becomes possible. Increas
shear velocity also produces grain sliding in our model
cause of the tangential force law we use, Eq.~2!, where
sliding is favored when the relative displacement betwe
grainsDS increases. This is also expected to be the cas
real grain to grain contacts, since Eq.~2! mimics the transi-
tion from elastic deformation to sliding that is observed e
perimentally on contacts@32#. As reported, more sliding oc
curs inF mode and slightly more vigorous rolling inSmode.
This naturally leads to a question of the role of grain geo
etry in this transition, since circular grains, as simulated he
will roll readily.

The results reported here are not expected to cha
qualitatively in 3D, as the experimental evidence@3,33# for
05130
g
-

n
in

-

-
e,

ge

the two distinct modes of deformation was obtained from
experiments. The position of the phase boundary is, howe
expected to differ in 3D from 2D, since the rigidity transitio
occurs at a different porosity in 3D. Grain rolling is sti
expected to play a role in three dimensions, as is indire
inferred in geological evidence of rounded grains found
granular shear zones such as in landslides, and as is dir
observed in experiments in sand, e.g.,@28#.

It remains an open question to continue and investig
the mode of deformation and the related dissipation. T
understanding of shearing modes of granular media p
sented in this paper is basic but is also important to ea
quakes, where grains made up of crushed rocks are confi
between rock walls and sheared during tectonic plate mot
It is possible that during an earthquake, which involves
2-10
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SHEAR PROFILES AND LOCALIZATION IN . . . PHYSICAL REVIEW E65 051302
celerating shear, the granular gouge changes its shea
mode from solidlike,S mode, to fluidlike,F mode, with in-
creasing associated sliding and dissipation, which will aff
sliding stability. In that case the understanding of change
friction and dissipation will have implications in understan
ing earthquake rupture length.

Rheological transitions are also important in the study
stick-slip motion and sliding stability in granular materia
@18#: In a recent study of granular layers undergoing sti
slip motion@34# we found that the locked period~‘‘stick’’ ! is
associated with a buildup of a supportive weak network~as
observed here for theS mode!, while the ‘‘slip’’ phase is
accommodated by the destruction of the weak network s
lar to the statistics of theF mode. It seems that an analytic
framework which sets out to describe spatial and temp
behavior of granular materials should take into account th
network structures that control the global behavior~a recent
attempt is provided by@35#!. In this context it is important to
note that dilute systems, which lack a stress-chain netw
are rarely found in naturally occurring granular systems. T
majority of granular systems observed on Earth will maint
a connected set of contacts between grains since they op
under gravity or confining pressures. Examples include fa
gouge, landslides, soils, coal in silos, and powders in chu
Description of the deformation of connected networks is th
essential in natural granular systems.
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FIG. 14. Scaled temperature profiles as a function of dista
from the heat source. Symbols are results from theF-mode run
where distance is measured from the shearing wall (y50). Solid
lines show the temperature from theS-mode run, where a distanc
of 0 is taken as the instantaneous peak in shear rate, i.e., the
band ‘‘center.’’ The dashed line is the theoretical prediction giv
by Eq.~A2!, usingny596 andd536. The deviation of simulations
from theory near the stationary wall~distance of 96! arises because
shear at this boundary is an additional, unaccounted for, sourc
heat.
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APPENDIX: THEORETICAL DERIVATION
OF VELOCITY PROFILES

In this appendix we outline the steps in calculating t
predicted velocity profile given in Eq.~5!, which was used to
fit the F-mode velocity profiles. Solutions to Eq.~5!, using
a50.35,d526,36, andny548,96 are drawn in lines in Fig
5 ~left!. The following derivation is taken from@3#.

The first step in the calculation of the mean velocity pr
file predicted for flow of granular materials is calculation
the profile of rms velocity fluctuations, the ‘‘granular tem
perature’’T. Under steady-state shear temperature is assu
to obey a local heat conduction equation

]yl]yT5eT, ~A1!

wherel and e are the thermal conduction and energy lo
rate, respectively. The solution to Eq.~A1!, using constant
heat supply at the boundary,T5T0 at y50, is

S T

T0
D 1/2

5
cosh@~ny2y!/d#

cosh~ny/d!
, ~A2!

whered252l/e. Equation~A2! fits the temperatures profile
obtained in our simulations, as shown in Fig. 14. Figure
demonstrates that temperature profiles of both modeS and
modeF are fitted by Eq.~A2!, although in modeS the heat
sourceT0 must be taken as the internal shear band, since
becomes the location of maximum shear and heat.

Losertet al. @3# found experimentally, and we also find i
our simulations, that an empirical power-law relation hol
between the velocity fluctuations and the shear rate:

T1/2}S ] v̄~y!

]y
D a

, ~A3!

where we find forF-mode runsa50.3560.1 in close agree-
ment with @3#, but in contrast to the classic hydrodynam

e

ear

of

FIG. 15. Relation betweenT0.5 and the shear rateg; dark sym-
bols are results fromS-mode runs, light colored symbols from
F-mode runs. Dashed lines show power-law relationships accor
to Eq. ~A3! with a50.2 and 0.35, respectively.
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cally based argument leading toa51 ~e.g.,@30#!. For a dis-
cussion of the deviation ofa from 1, see@3#. We emphasize
that S-mode runs also exhibit a power-law relationship, b
with a different power from theF mode. Figure 15 shows th
relation between temperature and shear from two sim
tions, one exhibitingS-mode shear, wherea'0.2, and the
other exhibitingF-mode shear, wherea'0.35.
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The last step in obtainingv̄(y) in Eq. ~5! is the integration
of Eq. ~A3! with respect toy, using Eq.~A2!. Fits are made
only for F-mode simulations because in theS mode the
source of heat migrates continuously throughout the la
However, instantaneous velocity profiles of theS mode may
be similarly reproduced using integration of Eq.~A3! and a
value ofa'0.2.
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