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Shear profiles and localization in simulations of granular materials
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We present results from two-dimensional computer simulations of shearing granular layers, using a discrete
element code, and applying a wide range of boundary conditions. We specifically investigate the distribution of
shear within the granular layer and find two different modes of localization depending on the applied shear
velocity, pressure, and layer thickneg$) granular layers that develop a persistent shearing boundary region
(“fluidlike” behavior) and(2) layers that switch between diffuse deformation and randomly positioned internal
shear bandg“solidlike” behavior). The two end-member deformation modes can be found in laboratory
experiments performed under low and high confining pressure, respectively. Micromechanical investigation
reveals two different statistical distributions of the grain contacts correlating with the two different shearing
modes. These results imply that rehological transitions in granular flow modes are linked to quantifiable
microtstructural organization.
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[. INTRODUCTION important for understanding macroscopic properties of the
shearing aggregate, such as its strength in resistance to shear.
Despite over a century of research in the mechanics of An important issue in determining a macroscopic descrip-
granular medigdating back to Reynolds in 18§4]), there tion is the role of microscopi¢grain-scalg fluctuations. It
is still no consistent, general physical or mathematical forhas recently been recognized that an important characteristic
malism that successfully predicts the collective behavior of £f granular packings is the heterogeneity in the forces be-
large number of discrete grairi@]. Even for simple two- tween particleg8—11]. In a densely packed granular layer,
dimensional shear of grains confined between parallel plate¥ress will be transmitted across the system by a network of
(see Fig. 1 for a picture of the system studididere is no X
consistent description of motion of the granular layer. The
problem is very basi¢the analog in fluids is Couette flow
and has wide industrial applications. It is also of interest to
earth scientists, since the fragmented rock lagtermed
“gouge”) within a geological fault, which is basically a
shearing granular layer, is often the site of earthquake nucle-
ation and rupture. Thus description of shear in granular lay-
ers is closely linked to understanding earthquake physics.
Experimental observations of shearing granular layers are
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reported depending mainly on the confining presgocemal .».';v-*;.gg& L -*a';‘" ,t,-..,).o.\._.:

stressP applied to the bounding walls of the layetJnder
low confining pressure a boundary layer of grains undergo-
ing high shear forms near the moving wall, remaining spa-
tially and temporally constariB]. On the other hand, under
high pressure, shear is initially distributed throughout the
layer and then localizes in internal shear bagesg., [4]).
This localization is thought to coincide with grain crushing.
Grain-size reduction within the localized shear bands is f
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wrap around boundaries

thought to help lock the shear to a particular narrow region.

However, under continued strain, shear is observed to switch

again to its diffuse modgb]. In experiments of shearing fault 1. 1. A representative numerical simulation of a granular ag-
gouge[6] and in simulationg7] localization coincides with  gregate. This system contains approximately24 grains, shown
the onset of velocity-weakening behavior of friction, in as gray circles. The direction and magnitude of contact forces be-
which the shear stress supported by the layer decreases Withieen grains are shown by black lines. The simulation conditions
increasing shear velocity, while diffuse deformation is usu-are constant confining pressukeapplied to the top and bottom
ally associated with velocity strengthening. Thus it is clearboundaries, periodic horizontal boundaries, and constant velocity
that the issue of shear distribution within a granular layer isv, applied to the upper boundary.
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“force chains,” or sublinear sets of grains which interact the interaction. Shear forces on contacts are determined us-
through long-lasting contacts that each carry up to severahg an elastic/friction law17]

times the mean contact for¢eee Fig. 1 for a visual repre- o

sentation of force chaifsForce chains tend to preferentially FSj(t)=—{min[ksAs,u(F-n)]}s 2

align with the direction of maximum compressive stress in

the system. In granular materials confined by forces appliesi,heregz(rij .§/,—rij ~>A<)/ri,- is the unit vector tangent to the

on the boundaries, force chains always exist, since they argontact.u is the surface friction coefficienk, is the shear
what maintains the volume of the layer against appliecelastic constant, ands is the shear displacement since the
forces. During shear, individual chains are created and de&ormation of the contact. Positions of the centers of mass of
stroyed very rapidly, at a rate even larger than large-scaléhe disks are calculated using Newton’s law and summing
grain rearrangemeritl2]. In describing the strength of a over all contacts) between grains:

granular material, much attention has been focused on obser-

vations and descriptions of force chains, €.43—15. How- dx;

ever, the majority of grains in the layer will lie between force m—=2> F. ()
chains and may weakly interact with the force chains and
with each othe(“spectator” graing [16]. . . .

In this paper we present results from numerical simula-lr; addr?lon to motion O.f the center .Of mass of the_dlsks we
tions where we shear a layer of two-dimensiof2i) disks also ca cula’gg the rotation of.each disk, in term; of |.ts. relative
confined between two rough and rigid walls. We investigateoangular positiong; , wherel; is the moment of inertia:
modes of shear and shear localization under a variety of pres- 5 J
sures applied to the boundary, system sizes, and driving ve- |,M: E FSR (4)
locities, and compare the results to experimental findings. ' =
We find two distinct modes of deformation: shear reminis-
cent of fluidlike deformation and shear similar to solidlike Nondimensional distance is scaled to the average disk diam-
deformation. We present a phenomenological description oéterx=2R. Time is scaled to the undissipated elastic wave
the phase space for granular behavior under shear and eYlavel timet= \/ﬁq_

> . : k= kn, wherem is the m f a disk of
dence that the statistical characteristics of microscopic grain /kn, wherem is the mass of a disk o

to grain contacts has bearing on the mean, large-scale, béiameterx. Velocity is scaled to the undissipated elastic
havior of the granular medium. wave speed/=x/t. Stress is scaled to the elastic modulus of

the systemog, so that a pressur®=1 is equivalent to
~10° MPa, when using a characteristic Young’s modulus
IIl. MODEL DESCRIPTION for rocks(e.g., quartz We will use nondimensional param-

Grain aggregates are numerically modeled using a versiofit€rs from now on.
of the discrete element methdd7] which treats grains as
inelastic disks with rotational and translational degrees of IIl. SIMULATION CONDITIONS
freedom. Gravity is not applied in the simulations reported . . _ _
here. The numerical model and conditions used are similar to (Ijn tr_1e055|mglat|ons presehntehc: h;kg= 1’dk5_.0'51’ m=1,
our previous work12]. The centers of two grainsandj are ~ &"d #=U.o. ystems are highly damped wigh=1 corre-

separated by a vectoy; . When the distance between centerszpomljm.g to a normfal resdtitution coefficlient 6f0.3 [12]ﬁh
rij is less than the sum of the two ra&j andR;, the grains imulations are perlormed on rectangular systems w

undergo an inelastic interaction. During the interaction both NX* Ny disks. The top and bottom edges. o_f the box are

grains experience a contact force that has skéaand nor- composed of grains glued together to forf“ ”g'q rqugh walls

mal F" components. The normal component consists of f I_engthnx_ (F'g.' . Th? gran__ular layer is periodic in the

linear elastic repulsive force and a damping force dependerfofzontal direction. Grain radii are randomly drawn from a

on the relative grain velocities; : Gaussian distribution that peaksRtwith a standard devia-

: tion of 0.5R. Polydispersivity is introduced to discourage

N _ © A a ordering effects. Systems are initiated as tall loosely packed
Fo (O =[kn(Ri+Ry=rij) = yam(rij-n) In. (1) poxes, which are compacted vertically by application of

pressure to the boundary until reaching a heigjtranging
Here n=(r;;-x,r;;-y)/r;; is the unit vector parallel to the from 24 to 96 grains. . .
contact.k,, is the normal elastic constants) is the grain After compaction and relaxation of residual stresées

mass, andy, is a damping coefficient ensuring inelasticity of explained if(12]) we apply a pressure (ranging from 10°
to 10 %) to the upper and lower walls, and move the top wall

in the x direction by applying a constant velocity, at y
Yn the simulations presented here porosity is not prescribed =0, ranging between 10 and 10°* of the wave speed. The
priori. After application of constant pressuReand shear velocity ~Systems then evolve to have a preferred unitfeetical” )
V, to the boundary, systems evolve to a porosity state which igporosity around which they fluctuate, dilating and compact-
more or less constant, and which has a value characteristic of tH@g slightly during sheaf12]. This porosity is not directly
marginal stability porosity12]. correlated with the pressure applied to the boundary, and
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0.22 . — . commodated not necessarily by porosity reduction but by
— :vj:g, §i}§}834¢=8'13?’§ changes in the granular contact network, as explained in
o i R [12], and as seen in the two different contact networks

ny=48, P=1x10°¢=0.194, S © ! -
021 I 1o any-48, P=1x10"¢=0.199, F formed during shear under an order of magnitude change in

©—o ny=96, P=1x10¢=0.186, S ressure, Fig. 3.
——- ny=96, P=1x10"¢=0.186, F P » 719
020 I |*—<ny=96, P=1x10"¢=0.184, F J

IV. SIMULATION RESULTS
A. Velocity profiles

porosity, ¢

Applying different boundary conditions results in differ-
ent shear profiles, and different overall behavior. The low
end of the confining pressure regimP=<10 %, which is
equivalent toP=60 kPa for glass beads of size 1 maor-

B.i7 ) , , responds to the regime in which some laboratory experi-
20000 40000 60000 80000 100000 ments[18] are performed: stresses are low enough to gener-
time ally not result in grain breakage, and indeed grains suffer

FIG. 2. Porosities from numerical experiments. Average valuedit® 7d3eform.at|0n. The highest confining pressure uséd (
denoted byg are given in the legend. Standard deviations of po-= 10 °, equivalent to 60 MPais appropriate for geophysical
rosities range from 0.001 to 0.003 depending on the conditions ofimulations, corresponding to a burial depth of 2 km. Under
the run. Layer thickness and confining pressure are given in théhe highest applied pressures, some of our numerical grains
legend byny and P, respectively; herax=48. Note that thicker ~Suffer a small “elastic deformation” approaching 0.5% of a
layers have smaller porosities, and that in the thick laygr=96,  grain diameter. In experiments of shear in rocks or glass
there is no consistent trend of increasing porosity with decreasingpeads, grain breakage often occurs at these strEs8gx),
confining pressure. The letteFsand Sin the legend indicate the an effect which is not included in the present model.
observed mode of shear, as discussed in Sec. IV. Figure 4a) shows the instantaneous velocity vectar-

rows) measured at some random time in the middle of two
some runs with higher pressure have higher porosity thasimulations using about 4600 grains. Horizontally averaged
runs that are more weakly confined, as seen in Fig. 2. Porogirain velocityv(y) is plotted on top of the arrow plot, as a
ity is insensitive to the applied confining pressure becauséunction of y, the depth from the shearing boundasplid
shearing is performed here under “rigid limit” conditions curves. The left plot is from a simulation with low confining
(i.e., elastic deformation of grains is smaller than atidui),  pressureP=10"°, while the right had 100 times higher con-
which results in achievement of a “marginal rigidity poros- fining pressureP=10"3,
ity,” a porosity state that was identified previously as an Figure 4b) shows a few representative profiles of hori-
attractive phase boundary associated with a macroscopic reontally averaged velocity profiles(y) under the two dif-
gidity transition, where behavior of the aggregate transitionderent applied confining pressures, taken at different random
from fluidlike to solidlike as porosity is decreased beyondtimes during the run. Note that the granular layer that is
the critical value. Increasing pressupein this state is ac- confined under lowelP develops a shear layer adjacent to the

FIG. 3. (Colorn Contacts between grairigrains are not shownfrom a snapshot taken at a random time during two runs of a shearing
layer with 48<48 grains ¥,=10 2). The left is under pressurB=10 4, while the right is from a simulation undé?=10"3. Line
thickness is scaled to the highest stress in the frame. Contacts are color coded so that red, orange, green, and blue are contacts carrying scale
forcesf>1.5, 1.5>f>1.0, I>f>0.5, and 0.5-f, respectively.
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The first shear mode, appearing under the lower confining
pressure, faster velocity conditions which are usually used in
physics experiments such Ek8], is characterized by persis-
tent localized deformation near the shearing wiig. 4 left,
P=10 %). The second mode, appearing under geophysical
experimental conditions, such as used[B{], is character-
ized by alternating periods of diffuse shear and transient
shear bands localizing at random depths within the layer
(Fig. 4 right,P=10"2). The shear bands in this shear mode
have a characteristic width of 10—20 grains. The location of
an individual shear band may persist for times ranging be-
tween 250 and 25 000 time steps, which is equivalent to mo-
tion of the upper wall over a distance of 0.2—20 grain diam-
eters. Once a shear band disappears a new one may appear at
any subsequent time and at any depth. Systems shearing in
this second mode characteristically spend about half the time
in localized motion and the other half in distributed shear.
The distribution, duration, and location of localization events
are not trivial and merit future studies, which are beyond the
scope of this paper.

We shall use the terms fluidlike and solidlike to distin-
guish the two modes of deformation since boundary layer
deformation(including the linear profile induced by Couette
flow, which is an extreme case of a boundary laysrchar-
acteristic of fluids, while internal shear bands are generally
associated with solids. We call the fluidlike mode of shear
“mode F” and the solidlike mode of shear “mod&”

Figure 4 presents horizontal spatial averages. However, it
contains much temporal variability, especially in tBenode
case where transient shear bands form and disappear. There-
fore we performed long time averagésver 2x10° time
steps, or an upper wall displacement of about 100 graihs

v(y). v(y), where the overbar indicates temporal averaging
(Fig. 5 shows clearly the two distinct modes of shear, where
all of the simulations fall into one mode or the other.

(1) Fluidlike mode (mode ¥ This mode appears under
lower confining pressur®, higher velocityV,, and thicker

layers(largerny). Profiles ofv(y)/V, vs depth for all runs

that exhibit this mode of shear are plotted in Figléft). In

these runs velocity decays away from the boundary in a near-

(b) exponential fashion. In fact, the numerical results agree with
the theoretical prediction df3], as shown by the lines on
FIG. 4. () Individual grain velocity vectorstiny arrowg and  Fig. 5 (left):

horizontally averaged velocitias(y) (lines) as a function of depth .

away from the shearing wall from two simulations with a confining v(y) y ny—y'\%

pressure oP=10"2 (right) andP=10"° (left). Simulations use the VAR ( OShT) dy’,

same grain configuratio@8 grains wide by 96 highand the upper 0

wall velocity isVy=10"2. (b) v(y) at three different random times

during the runs from the same two simulationg@ Note persis- wheree=0.35+0.1, in agreement with the experimental re-

tent boundary shedr.e., steep velocity gradient near the boundary sults presented ifi3]. Two different fits are shown using

on the left, as opposed to migrating internal shear bands, alternatirigngth scalesS= 36 (black line and 5= 26 (blue line), since

with diffuse shear, on the right. the former fits better the layer 96 grains thick, while the
latter fits better the layer 48 grains thick. In the Appendix we

moving wall, while the more highly confined granular layer briefly outline the steps in the derivation of E®). For the

on the right develops internal shear bands which migrate anthinnest layersny=24, the velocity profile decays faster

alternate with diffusénearly uniform shear. This is indeed a than the theoretical prediction because the system size is

general trend: one of two different modes of shear distribusmaller than the characteristic length scéle

tion is observed in all the simulations we performed, depend- (2) Solidlike mode (mode)S Under higher confining

ing on shear velocity, confining pressure, and layer thicknesqressureP, slower velocitiesV,, or when using smalleny,

1

‘\\) il
0

ViV,

®)

0
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| [124x24,P=10" -
‘ID[} - — i —— 1 . ] ) ] | . .I
0.0 0.5 1.0 0.0 0.5 1.0

shear velocity/V, shear velocity/V,

FIG. 5. (Colon Time-averaged horizontal grain velocitiegy) versus deptly. Open symbols are from runs wit,=10"* and closed
symbols from runs with/,=10"2. Pluses represent a run wiih=0. Time-averaged velocity profiles are linear in m@ldeformation,
while exponentially decaying in mode Theoretical fits for modé~ runs are given by E(5), where blue lines usé= 26 and black lines
6=36, with dotted lines for a fit for a layer afy=48 and solid fomy=96.

the boundary layer localizatiofEq. (5)] of modeF disap-  with reducedy suggest thaty plays an insignificant role in

pears. Figure Sright) showsv(y) from all simulations that ~determining the shear profile when>0, probably because

do not belong to modé. In this second mode(y) ap- frlcthn a_lcts as a more s_lgnlflcant energy sink than collisions

proaches a linear function, indicating that on average a unil this tight packing limit. However, whep.=0, y has a

form shear rate operates across the layer. This serves asSgnificant effect on the shear profiles, which we did not

partial proof that the internal shear bands that are observed fiPlore-

this mode at different times and different places in the layer )

indeed migrate randomly, alternating with diffuse deforma- B. Phase diagram

tion. The layer thicknesay is important in determining where
To explore the effect of varying the different parametersthe transition between mods and modeF occurs—the

of our model we also ran a set of simulatioasith ny  thicker the layer the easier it is to “fluidize,” and so it re-

=48, nx= 24, varyingP between 10° and 10 ®) using zero  mains in mode= under higher confining pressures, as seen in

friction between the grainsy{=0). The frictionless layer Fig. 5. Figure 6 schematically shows the phase diagram in

had lower average porosity and shear stress compared to tteyer thickness versus confining pressure. The effect of hori-

layer with = 0.5. However, the temporally averaged veloc- zontal layer extenhx was also explored by running simula-

ity profiles were similar betweep=0.5 and 0. An example tions of sizes 48 24, and 24« 48 and comparing to simula-

of a frictionless run is given in pluses in Fig([eft). Another  tions with layers of 2424 and 4&48. As far as we can

parameter that we varied was the normal damping coeffi- determine, the horizontal extent of the lay@vhich has

cient, which controls the restitution coefficient. Simulationswraparound boundary conditiondid not affect the outcome.
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20 4 0 100 FIG. 7. Representative apparent frictipry, (measured shear

0 60 8
ny, layer thickness stress normalized by the applied confining presstmen two nu-

. . ) ical simulati f 48 96 I te sh d
FIG. 6. Schematic phase space for the two different behaviors O@erlca stmuiations o granular aggregate sheared\at

) . =103, but using two different confining pressurBs=10"° and
the system: modE (circles and modeS (crossek As the layer gets P=10"5. Observe that the apparent friction has very similar values

thicker it is casier to fluidize even under higher confining pressuresdespite the two orders of magnitude difference in applied confining
Apparent friction changes slightly across the phase boundary. pressure

Granular systems with size 4818 behaved identically to

those of 24 48, i.e., to layers with half the ho_rlezontal extent, s, red on the moving wall, normalized by the applied confin-
e.g., they both showed tiiemode wherP=10"", and theS i pressureP (Fig. 7). This ratio of stresses describes the
mode for higher confining pressures. Also, a layer that wagpparent friction coefficient of the layar,. Friction has
twice as long as it was thick (4824), was similar to & some correlation with the mode of deformation, where gen-
square one (2424). erally higher valuegwith a time average slightly larger than
In the experiments shown in Fig. 8y=10"3. We did not  0.3) are seen for modE- runs than for modé& runs (time
extensively explore the effect of shear velocity on the phasaverage ranging between 0.28 and)0Aso, fluctuations in
boundary(because of the long time it takes to simulate slowstress change with changing boundary conditions: the fric-
sheay), but we observe that increasing causes the phase tion time series appear spiky at Idtvand varies more slowly
boundary to migrate toward higher normal stresses and thirwith time at higherP [12].
ner layers. In particular, for the marginal case of ax4® The final macroscopic measure investigated is the power
layer undeP=10"* whenV,=10"2, the system is in mode spectrum; of the stress time sgrie_s measured at the vyalls.
F as shown by filled black circles in Fig. 5, but when using/An €xample of such a time series is given by Fig. 7. Simu-
a ten times slower shear velocity ¥=10"* the velocity lation results show thakt is a power law function of fre-
profiles are mod&, as shown by open black circles in Fig. 5. dUencye, 2 (w)=w”. The exponent, is found to be only a
Several measures were investigated to search for thnction of the confining pressur, and not of the shear
source of this mode switching: first the average and deptﬁnOde' Plots OTE(.“’) Vs w fqr a variety of confining pres-
dependent measures of the systems, porosity, coordinatiofy S aré shown ifi.2]. This |nsenS|t!V|ty_of_th¢ stress power
number(average number of contacts per gjaiand stress spec'tr.urn to the mode of deformgtlon IS in line W'th the in-
) sensitivity of all other macroscopic measures we tried.
power spectra. However, not much difference appears be-
tween macroscopic measures of systems shearing in the two
modes. For example, the variation of time-averaged porosity
among all the simulations is about 1%, and the variation is We next investigate the grain to grain contact distribution,
not systematiqsee Fig. 2 Porosity in low confining pres- to understand the micromechanical source for the two dis-
sure runs may be either higher or lower than porosity in higHinct modes of shear. Representative snapshots of contacts
confining pressure rurfsA second measure, the average co-and stresses on contacts infmode and in arsmode run
ordination number in the layer, does decrease with decreage given in the left and right frames of Fig. 3, respectively.
ing P, but does not correlate with the shear mode. We investigate the distribution of forces transmitted by such
individual granular contacts, distributions of the contact di-
rections, and sliding on these contacts. Results are presented
2However, there is a tendency for thinner layers to have higheffOM two representative runs using a layer of size of 48
porosity than thicker layere.g., on average, 0.191 pore fraction in X 96: & modeS run sheared unde?=10"° and a modé-
48 thick layers, 0.185 in 96 thick layerdhis is expected since the run sheared unde?=10"°.
shear-induced dilation should be related to the ratio of grain size to Force distributions can be viewed by a histogram of nor-
system size. malized forced =F/(F) on the contact§Fig. 8), where(F)

We also examined the time series of the shear stress mea-

C. Micromechanics
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FIG. 8. Force histograms for three shear runs using three differ- FIG. 9. Principal contact direction§; in the £ network as a

: . P function of ¢ for an F-mode run(using P=10"%) and for a run
ent applied stressé® symbol3 sheared aV¥,=10"2, and one run S . _ . -
(solid line) sheared a¥,=10"*. The mode gf shear is indicated by exhibiting Smode sheatusingP=10"?). Note the bimodal distri-

. L " N s
F and S in the legend. Simulation results show invariance of thebhu“gn ofdcontact dlrectlon(itjr?nsmor; arog;nc5~l) IortF;_— 10,[_ ’ ;
force distribution under varying boundary conditions and shearLElgjg ehrug, asdoppose 0 nearly uniform contact directions for
modes. The dashed line is a fit of B&), with 3=1.47. N » the F-mode run.

_ ) ) ) containing even components. Dropping higher order terms,
is the spatially averaged force carried by contacts in the sysg(¢) can be written a§25]

tem. Figure 8 shows that the distribution of forces is invari-
ant under different applied confining pressures and varying
shear velocity. In each run the magnitudes of forces transmit-
ted by grain contacts vary by at least two orders of magni-
tude. An exponentially decaying probability exists for find- The coefficientd, is the amplitude of anisotropy, whil, is
ing forces greater than the mean foffce 1, where the principal direction. We calculate from the numerically
obtained contact network the fabric tensap,,(&)
P(f)=exp(— Bf) =(n,np)¢, wheren, is thea component of the unit vector
along the contact direction. Averaging far,ny) is over all
with B=1.47+0.1. The observed force distribution agreescontacts in the& network. We then use relationships such as

with simulations[22] and experiment$23] for quasistatic
and static granular media. The invariance of force distribu-
tions under different loads and velocities is interesting and
merits further studies. The partitioning of forces between A
contacts appears to be a basic property of the granular aggre- =_Ssin 20,
gate, independent of the boundary condition. Force distribu- 4
tions remain robust even under varying modes of shear and i
orders of magnitude change of mean stresses. to calculateA.(¢) and 6(¢) (see[24] for more details
Figure 8 demonstrates that a diminishing number of large
forces leads to poor statistics in the large-force intervals.
Thus we follow the method suggested by Radjaal. [24] Similar to the results of24] we find that a natural transi-
and look at a subset of contacts carrying a force smaller thation occurs at a cutoff value d@f= &;, which in some cases is
a cutoff value (<¢), and call this subset the&‘network.”  approximately the average force, so that we define “weak”
This method of analyzing the contact force statistics is apnetworks with ¢é<&, and “strong” networks which have
plied successfully to investigate the source of the differenc&> &,.

1
E(60,6)= 5 _{1+A(&)cod 60— 0c(E)]}- )

(6)

2
(nxny)=f E(0,&)cosO sin®de
0

®

1. Contact directions and anisotropy

between thd= and S modes of shear.

In both SandF modes the direction of anisotropy of the

The contact network that forms is characterized by theentire set of grain to grain contact§-(«) is about 135°

probability density functioriE( 0, £) of finding a contact with
direction 6 in the ¢ network. We define the contact angle
=arctam(ri;)«/(rij)yl, where ;) is the component in the
a direction of the vector connecting the centers of giand

j. Because the directions and #+ = are physically equiva-

from horizontal(Fig. 9), in the expected directiof, ., of the
maximum compressive stress (see Fig. 10 for a schematic
view of the principal directions This direction,, is due

to orientation of the "strong” contacts, those in force chains,
which belong to networks of> &,. Surprisingly, the differ-

lent E(#) may always be represented by a Fourier seriegnce between th& and F modes is in the weak contacts
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FIG. 10. Schematic view of the difference in network organiza-
tion in granular media between ttfe mode of deformatior{left)
and theS mode (right). Both modes of shear have contacts which  FIG. 11. Amplitude of anisotropyA. in the ¢ network as a
carry large forceg“stress chains” drawn in black lingriented in  function of £ for an F-mode run P=10 %) and anSmode run
the maximum compressive directian,. However, theS mode is  (P=10"3).
characterized by a supporting weak contact netwdrlawn in gray
lines) which is roughly perpendicular to the stress chains, in theminimum in anisotropy for theg,~1 network for the

direction of_ag. This _network provides rigidity and supports the Smode case and,~0.2 network for theF-mode case. For

zstemt_agamstkbuclillngl.(In contrast, theshear mode lacks such a the S mode, this minimum in anisotropy comes about be-
pporiive weak network. cause there is a bimodal distribution, with weak contacts

preferentially oriented along,;, and strong contacts along

which dominate networks witlf<&,. In the S mode there 6.4 At the minimum value forA., just enough large

exists a bimodal distribution of contact orientations: theforces are included in this network that the two orientations

weak networks have an orientation nearly perpendicular t@early cancel.

Omax. IN the direction of minimum compressiafy,i,. The

weak contact population is very important in that it contrib- 2. Sliding and rolling

utes to the rigidity of the system and prevents buckling of the

chains, as schematically shown in Fig. 10.

£ 10° 10

In both shear modes a larger proportion of the weak con-
i . tacts undergo frictional sliding relative to the strong contacts.
However, in systems shearing in moHgethe weak con-

tacts do not provide rigidity, since they are not preferentiallyIn fact, contacts witlf>1 rarely, if ever, slideFig. 12. This

oriented normal to the strong contacts and therefore there I§ not surprising, since contacts with smaflewill reach the
. . i gc . Eoulomb sliding condition at lower shear forces. This is in
no “mesh” which provides bracing for force chains. Instead,

agreement with simple shear simulatig@g] where slip and

fr?mre Otf t?ethwe\?/k Cl?marc]:tts ;iartlﬁ:lpgte :In Srtfﬁzs r?}fl‘amf;’ mhgﬁissipation occur mainly in the weak population. Overall,
€ rest of tne weak contacts are nearly randomly OnenteGy; o4 sliding is more prevalent ifF--mode shear than in

Thus there is no clear distinction between strong stres . :
chains and a weak supportive population as in m8deig- Smode shearFig. 12, despite the fact thafmode shear

ure 10 is a schematic drawing to illustrate this point while
Fig. 3 shows true snapshots of contacts fr8ifnight) andF
(left) runs® Notice in Fig. 3 that in thé--mode frame many
green and blugi.e., “weak”) contacts patrticipate in stress
chains, while in thesmode frame the stress-chain direction
(=~ 6may is dominated by red“strong”) contacts.

In viewing the direction of contacts the degree of anisot-
ropy A;. must also be considere@Fig. 11). A. increases
roughly in proportion to the difference between the number
of contacts oriented parallel . and perpendicular to it. In
both shear modes the degree of anisotropy is large for the
weak contacts and for the entire contact network. There is a

proportion of sliding grains from network

0.05¢ \‘I.....""""""'“”
0 L i
3 - - - 107 10” 10° 10’
All mode+ runs had a weak population with a preferred orien- E_’

tation in the direction o#,,,«. However, not allSmode runs have

a weak population oriented in the.,;, direction. In some runs FIG. 12. Fraction of sliding grains in thenetwork as a function
shearing in th&s mode(those with conditions close to the transition of ¢ for two different normal loads, showing increased sliding for
to F-mode shearingthe weak population has an intermediate ori- decreasind®. Note that in both cases mostly the “weak” contacts
entation, betwee,,i, and 0,,y- (those belonging tg<1 networks slide.
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characterizes deformation under more confined conditiongacts carrying weak forces, which is preferentially aligned
This trend also explains the slightly larger values of apparenhormal to the direction of the stress chains. In other words,
friction measured irF-mode shear. when systems of grains behave as a solid, they have a “weak
When sliding is hampered, either by confining pressure oforce” network oriented in the minimum compressive stress
reduction of possible rearrangements in a thin layer, graimirection, and a complementary “strong force” network ex-
rolling becomes a way of accommodating strf26,27. ists in the maximum compressive stress directiorf iInode
The location of the maximum rolling is near the position of the stress chains still exist, but the bimodal distribution and
highest shear, as expected: near the moving boundary for thike supporting weak network disappears.
F mode of shear and in the shear bands for$heode[see This mode switching in shearing is closely tied to the
Fig. 13@]. However, in terms of overall grain rolling, the rigidity transition [12,29. In [12] some simulations were
two modes are different only in those grains that lie at theconducted with the layer thickness fixed, not allowing dila-
outskirts of the angular velocity distribution: There are moretion and compaction, so the porosity was constant. It was
rapidly rolling grains(with w/Vy>0.5) in theSmode runs seen then that increasing the packing density of grains
than in theF-mode rungFig. 13b)]. This rapid rolling stems above a critical valuer, causes a transition in both behavior
from grain interlocking, and may compensate for lack ofof static packings and shearing systems: Whenv, sys-
sliding by accommodating strain. Figure (48 which is a  tems shear in a “gaslike” manner, where no system-spanning
snapshot in time, demonstrates that all the rapidly rollingstress chains occur, and grains interact by collisi3.
grains are confined within the shear zone. Thus we believShear was localized in a boundary layer near the moving
that, although the fraction of rapidly rolling grains is small, wall, similar to what we see in thE mode. Whenv>v,,
they might still play an important role in the deformation solidlike deformation occurred: system-spanning stress
process, as was already observed2,28§. chains and localized shear in shear bands were observed. At
v= v, the system flips between the two modes, jamming and
unjamming intermittently, as described fih5]. In [12] we
V. CONCLUSIONS also found thatv. is an attractive phase boundary when po-

In this paper we have presented results from 2D simulafosity is allowed to evolve freely under const&hboundary
tions of shear in granular layers. We found two distinctconditions. _
modes of deformation where the transition is controlled by But when the walls are free to compact and pressure is
confining pressure, shear velocity, and layer thickness. ThaPplied (even if it is infinitesimal to the boundary, stress
two modes are observed experimentally, but not much atter:hains always form to support the applied load. In this case

tion has been paid to the transition between them, and to th&ere cannot be a collision dominated gaslike regime, which
regimes that characterize each of them. can only emerge in the absence of connected chains. Despite

The first mode, which we termed fluidlike, Brmode for  the lack of this collision dominated gaslike phase, two modes

short, is characterized by persistent boundary layer sheaf shear, which are fluidlike and solidlike in nature, still ex-
which is well predicted by a theoretical function. This modeiSt. But the lack of shear rigidity characterizing themode

is favored by applying lower confining pressures, highercOmes about not from lack o_f stress chains buF from lack of
shear velocity, and using thicker granular layers. a coherent structure supporting the stress chains.

The second shear mode, characterized by solidlike The marginal porosity marks a phase boundary between
(S-mode behavior, is accompanied by localized shear bandiP0sely packed gaslike behavior, and compact solidlike be-
that may appear at any depth including at the boundary. Thngor. Despite the fact that our smulatgd syster_ns .eX|st on
system also spends about half of its time in nonlocalizedthis phase boundary on the porosity axis, we still find two
distributed, shear. This mode occurs under more confineflistinct modes of rigidity. Transitions between these modes
conditions, slower shear, and thinner layers. are activated by changing pressure, system size, and shear

Our simulated systems operate in the rigid limit of granu-velocity, and can perhaps be viewed as crossing the phase
lar packings, which is to say they experience only S"ghtboundary aloln.g these other axes rather than the porosity axis.
elastic deformation(under 1%). In this limit, shearing The transition betweetr and S modes under constant
granular systems spontaneously evolve to have a preferreédress is linked to t_he ability of the system to dilate, and to
porosity which is very close to the marginal rigidity limit, the the amount of sliding that occurs: The increment of work
critical porosity that marks the boundary between solidlikedone on the system by applied deformation is defined as
and fluidlike behavior$12]. For this reason all of our simu-
lated systems have very similar porosity, not well correlated dW=Fsdy+Pdh,
with the shear mode and confining press&elncreasing
pressure on the boundary is accommodated by changes in tiaere the forces are measured on the moving wiallis the
grain-contact network. The structure of the network of grainhorizontal displacement of the wall, adid is the change in
contacts also explains well and corresponds with the shedayer thickness. When the confining pressBres increased
mode: In bothS andF modes stress chains support the loadthe work required to dilate the grain layer by increases.
in the maximum compressive direction. The transformatiorAs Reynolds noted in his work on dilatancy, and as has been
from Smode shear td--mode deformation is accompanied recently shown in experiment{d 8] and simulationg31],
by decreasing lateral connections between stress chaindilation is needed in order for sliding to occur. Bfis de-
These lateral connections are made by the network of corcreased or layer thickness is increagéaad therefore degrees
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FIG. 13. (a) Instantaneous scaled angular velocitie®/, of all grains in a 4% 96 system in two shearing runs with,=10"3. The
angular velocity of each grain is plottédircle) as a function of this grain’s depth from the shearing boundary. On the left, results from an
F-mode run P=10°) and on the right als-mode run P=10 3). Lines are horizontally averaged shear velocity profilég)/V, at that
time, showing that grain rotation is correlated with shear @e-listograms of angular velocity in the two runs, showing that the probability
density functionP(w) of angular velocities fofw/V,|<0.5 is similar in both modes. However, there are more grains with high rotational
velocity |w/V,|>0.5 in theSmode run P=10"3) than in theF-mode run P=10"°). Rotation is an additional mode for accommodating
strain.

of freedom and possibility of grain rearrangement incregsed the two distinct modes of deformation was obtained from 3D
grain sliding within the layer becomes possible. Increasingexperiments. The position of the phase boundary is, however,
shear velocity also produces grain sliding in our model beexpected to differ in 3D from 2D, since the rigidity transition
cause of the tangential force law we use, E2), where occurs at a different porosity in 3D. Grain rolling is still
sliding is favored when the relative displacement betweerexpected to play a role in three dimensions, as is indirectly
grainsAS increases. This is also expected to be the case imferred in geological evidence of rounded grains found in
real grain to grain contacts, since Eg) mimics the transi- granular shear zones such as in landslides, and as is directly
tion from elastic deformation to sliding that is observed ex-observed in experiments in sand, e[g@8].
perimentally on contact32]. As reported, more sliding oc- It remains an open question to continue and investigate
curs inF mode and slightly more vigorous rolling Bmode.  the mode of deformation and the related dissipation. The
This naturally leads to a question of the role of grain geom-understanding of shearing modes of granular media pre-
etry in this transition, since circular grains, as simulated heresented in this paper is basic but is also important to earth-
will roll readily. quakes, where grains made up of crushed rocks are confined
The results reported here are not expected to chandeetween rock walls and sheared during tectonic plate motion.
qualitatively in 3D, as the experimental eviderj@33] for It is possible that during an earthquake, which involves ac-
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FIG. 14. Scaled temperature profiles as a function of distance FIG. 15. Relation betweem®® and the shear rate; dark sym-
from the heat source. Symbols are results from Famode run  bols are results fronSmode runs, light colored symbols from
where distance is measured from the shearing we# @). Solid F-mode runs. Dashed lines show power-law relationships according
lines show the temperature from tBamode run, where a distance to Eq.(A3) with «=0.2 and 0.35, respectively.
of 0 is taken as the instantaneous peak in shear rate, i.e., the shear
band “center.” The dashed line is the theoretical prediction given APPENDIX: THEORETICAL DERIVATION
by Eq.(A2), usingny=96 ands= 36. The deviation of simulations OF VELOCITY PROFILES
from theory near the stationary watlistance of 9arises because

shear at this boundary is an additional, unaccounted for, source of N this appendix we outline the steps in calculating the
heat. predicted velocity profile given in E@5), which was used to

) . _fit the F-mode velocity profiles. Solutions to E¢b), using
celerating shear, the granular gouge changes its shearing g 35 s=2636 anchy=48,96 are drawn in lines in Fig.

mode from solidlike S mode, to fluidlike,F mode, with in- g (left). The following derivation is taken frorf8].

creasing associated sliding and dissipation, which will affect The first step in the calculation of the mean velocity pro-

sliding stability. In that case the understanding of changes ifjle predicted for flow of granular materials is calculation of

friction and dissipation will have implications in understand- the profile of rms velocity fluctuations, the “granular tem-

ing earthquake rupture length. perature”T. Under steady-state shear temperature is assumed
Rheological transitions are also important in the study ofto obey a local heat conduction equation

stick-slip motion and sliding stability in granular materials

[18]: In a recent study of granular layers undergoing stick- dyNdyT=e€T, (A1)

slip motion[34] we found that the locked perigéstick” ) is

associated with a buildup of a supportive weak netw@ark where\ and e are the thermal conduction and energy loss

observed here for th& mode, while the “slip” phase is rate, respectively. The solution to E(AL), _using constant
accommodated by the destruction of the weak network simil€at supply at the boundary=T, aty=0, is

lar to the statistics of th& mode. It seems that an analytical 12 _

framework which sets out to describe spatial and temporal (l) :M
behavior of granular materials should take into account these To costiny/6)
network structures that control the global behav@recent
attempt is provided b}35]). In this context it is important to
note that dilute systems, which lack a stress-chain networ
are rarely found in naturally occurring granular systems. Th
majority of granular systems observed on Earth will maintain
a connected set of contacts between grains since they oper
under gravity or confining pressures. Examples include faul e
gouge, landslides, soils, coal in silos, and powders in chutes.
Description of the deformation of connected networks is thu
essential in natural granular systems.

, (A2)

wheres?=2\/e. Equation(A2) fits the temperatures profiles
Ipbtained in our simulations, as shown in Fig. 14. Figure 14
éiemonstrates that temperature profiles of both m8dad
modeF are fitted by Eq(A2), although in modes the heat
urceT, must be taken as the internal shear band, since that
comes the location of maximum shear and heat.

Losertet al.[3] found experimentally, and we also find in
ur simulations, that an empirical power-law relation holds
etween the velocity fluctuations and the shear rate:

au(y)|”
Tl/ZM( (y)) , (A3)
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cally based argument leading &o=1 (e.g.,[30]). For a dis- The last step in obtaining(y) in Eq. (5) is the integration
cussion of the deviation af from 1, seq 3]. We emphasize of Eq. (A3) with respect toy, using Eq.(A2). Fits are made
that Smode runs also exhibit a power-law relationship, butonly for F-mode simulations because in ti&mode the
with a different power from th& mode. Figure 15 shows the source of heat migrates continuously throughout the layer.
relation between temperature and shear from two simulaHowever, instantaneous velocity profiles of thenode may
tions, one exhibitingSmode shear, whera~0.2, and the be similarly reproduced using integration of E43) and a

other exhibitingF-mode shear, where~0.35. value ofa~0.2.
[1] O. Reynolds, Philos. Mag0, 469 (1885. [18] S. Nasuno, A. Kudrolli, and J. Gollub, Phys. Rev. L&8, 949
[2] M. Jaeger, S.R. Nagel, and R.P. Behringer, Phys. Td®&4), (1997.
32 (1996. [19] C.G. Sammis, R. Osborne, J. Anderson, M. Banerdt, and P.
[3] W. Losert, L. Bocquet, T. Lubensky, and J. Gollub, Phys. Rev. ~ White, Pure Appl. Geophd.24, 53 (1986.
Lett. 85, 1428(2000. [20] S.B. Savage and M. Sayed, J. Fluid Meth2 391 (1984.

[4] C. Marone and B. Kilgore, Naturé-ondon 362, 618 (1993. [21] N. Beeler and T. Tullis, J. Geophys. Res. B2 22,595
[5] N. Beeler, T. Tullis, M. L. Blanpied, and J. Weeks, J. Geophys. (1997)-_ )
Res. B101, 8697(1996. [22] F. Radjai, M. Jean, J. Moreau, and S. Roux, Phys. Rev. Lett.

[6] V. Scruggs and T.E. Tullis, Tectonophysi2g5, 15 (1998. , 27‘,1(1996' ) )
[7] P. Mora and D. Place, Geophys. Res. L28, 123 (1999. [23] C.H. Liu, S.R. Nigel, D. Schecter, S.N. Coppersmith, and S.

. ; ) Majumadur, Scienc@69, 513 (1996.
[8] B. Miller, C. O'Hern, and R. Behringer, Phys. Rev. Lett, [24] F. Radjai, D.E. Wolf, M. Jean, and J.J. Moreau, Phys. Rev.

3110(19969. Lett. 80, 61 (1998.
(o1 €. T Veje, D. W. Howell, R P. Behrlnger, S. Scholmann, S. [25] L. Rothenburg and R.J. Bathurst, Geotechnigd@ 601
Luding, and H. Herrmann, iRhysics of Dry Granular Mate- (1989.
rial, Vol. 350 of NATO Advanced Study Institutedited by H. [26] J. K. Morgan and M. S. Boettche, J. Geophys. Reés, 2703
J. Hermann and J. P. Ho(Kluwer Academic Publishers, Dor- (1999.
drecht, 1998 pp. 232,233. [27] J. K. Morgan, J. Geophys. Rek04, 2721(1999.
[10] G. Mandl, L.N. de Jong, and A. Maltha, Rock Med®.95  [2g] M. Oda and K. Iwashita, Int. J. Eng. SE8, 1713(2000.
(1977). [29] D. Howell, R. Behringer, and C. Veje, Phys. Rev. L&®,
[11] M. Oda, J. Konishi, and S. Nemat-Nasser, Mech. Mdte269 5241(1999.
(1982. [30] P.K. Haff, J. Fluid Mech134, 401 (1983.

[12] E. Aharanov and D.W. Sparks, Phys. Rev6®& 6890(1999. [31] F. Lacombe, S. Zapperi, and H.J. Hermann, Eur. Phys.2]. E
[13] R.L. Biegel, C.G. Sammis, and J.H. Dieterich, J. Struct. Geol. 181 (2000.

11, 827(1989. [32] C. H. Scholz, The Mechanics of Earthquakes and Faulting
[14] C.G. Sammis and S.J. Steacy, Pure Appl. Geofi4g, 777 (Cambridge University Press, New York, 1990
(19949. [33] C. Marone and C.H. Scholz, J. Struct. Getil, 799 (1989.
[15] M. Cates, J. Wittmer, J. Bouchaud, and P. Claudin, Phys. Re\.34] D. W. Sparks and E. Aharanov, iRroceedings of the 2nd
Lett. 81, 1841(1998. ACES Workshgpedited by M. Matsuura, K. Nakajima, and P.
[16] S. Ouaguenouni and J.N. Roux, Europhys. L&® 117 Mora (APEC Cooperation for Earthquake Simulation, Univer-
(1997. sity of Queensland, Brishane, Australia, 200dp. 77—-82.
[17] P.A. Cundall and O.D. Strack, Geotechnic@ 47 (1979. [35] C. Ancey and P. Evesque, Phys. Rew6E 8349(2000.

051302-12



