PHYSICAL REVIEW E, VOLUME 65, 051201
Structural relaxation in a system of dumbbell molecules
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The interaction-site-density-fluctuation correlators, the dipole-relaxation functions, and the mean-squared
displacements of a system of symmetric dumbbells of fused hard spheres are calculated for two representative
elongations of the molecules within the mode-coupling theory for the evolution of glassy dynamics. For large
elongations, universal relaxation laws for states near the glass transition are valid for parameters and time
intervals similar to the ones found for the hard-sphere system. Rotation-translation coupling leads to an
enlarged crossover interval for the mean-squared displacement of the constituent atoms between the end of the
von Schweidler regime and the beginning of the diffusion process. For small elongations, the superposition
principle for the reorientationak process is violated for parameters and time intervals of interest for data
analysis, and there is a strong breaking of the coupling otthelaxation scale for the diffusion process with
that for representative density fluctuations and for dipole reorientations.
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I. INTRODUCTION system(HSS [2,3]. As a new feature, there appears a very
Recently, the mode-coupling theofiyICT) for the evolu-  large crossover interval for the process of the constituent
tion of glassy dynamics in systems of spherical particles haatom’s mean-squared displacement for times between the
been extended to a theory for systems of molecules. Thend of von Schweidler’s power law and the beginning of the
fluctuations of the interaction-site densities have been usediffusion regime. The other scenario, to be shown for
as the basic variables to describe the structure of the systers.0.4, deals with weak steric hindrance for reorientational
As a result, the known scalar MCT equations for the densitymotion. The universal laws for the reorientatiomaprocess
fluctuations in simple systems have been generalized tare restricted to such narrog— ¢ (¢) intervals that they are
n-by-n matrix equations for the interaction-site-density corr-practically irrelevant for the interpretation of data obtained
elators, wheren denotes the number of atoms forming the by molecular-dynamics simulations or by presently used
molecule. The theory was applied to calculate the liquid-spectrometers.
glass phase diagram and to evaluate the glass form factors The paper is organized as follows. In Sec. Il A, the MCT
for a hard-dumbbell systeitHDS) [1]. In the following, the  equations of motion for the coherent and incoherent density
preceding work shall be continued by evaluating the conveneorrelation functions for the HDS are listed. Section I B
tional time-dependent correlation functions near the liquid-contains known universal laws for the MCT glass transition.
glass transition. Our goal is to examine the range of validitySection Ill presents the results for representative density-
of the universal relaxation laws and to identify features of thefluctuation correlator§Sec. Il A), for the dipole dynamics
glassy dynamics, which are characteristic for molecular agSec. 1l B), for the mean-squared displacemei@sc. 11l O,
opposed to atomic systems. and for thea-relaxation scale¢Sec. Il D). The findings are
The dumbbells to be studied consist of two equal harcsummarized in Sec. IV.

spheres of diameted, which are fused so that there is a
distanceld, 0={¢=1, between their centers. The system’s
equilibrium structure for density is specified by two control
parameters: the elongation parametemd the packing frac- A. Equations of motion for the density correlators
tion o= (/6)pd3(1+3¢—3£%). The liquid-glass transition
points ¢.(¢) form a nonmonotoniep({)-versusé curve in

II. MCT EQUATIONS FOR THE HDS

In this subsection, the basic equations for the system of

th trol ter ol ith i symmetric hard dumbbells are noted. They have been de-
€ p-{-control-parameter plane with a maximum fonear 04 i, Ref.[1], and their solutions underlie all results to be
0.43. There is a second transition ligg({) within the glass discussed in the present paper

phase p=¢.({). It separates a plastic-glass phase for . . . .
0()= o< oa({), where dipole motion is ergodic, from a If_ rd, a=A or B, denote the interaction-site centers _of
glass fore>@A(¢), where also the molecular axes are ar_the ith AB dumbbell moleciule, thea mteractuzn;sne-densny
rested in a disordered array. The second kng¢) termi-  fluctuations for wave vectoy readp;=X;exp(q-r7). Simi-
nates at/=¢.=0.345, wherepa({c) = ¢c({c) (cf. Fig. 1 of larly, the tagged-molecule-density fluctuations rep@S
Ref.[1]). In the present paper, it shall be shown that there are_ :

two scenarios for the liquid-glass transition dynamics Jor the tagged molecule. It is convenient to transform to total
>{.. The first one, to be demonstrated o+ 1.0, deals

o oN_ AL B p ” o
with strong steric hindrance for reorientational motion. Fornumber denS|t|e$>a—(pq+pq)/\/§ and “charge” densities

R K . e .. A B .. e
this case, all universal relaxation laws hold within S|m|IarPg|=(Pa—Pa)/\/§- Similar definitions are used for the
parameters and time intervals as found for the hard-sphetagged-molecule densities. The top-down symmetry of the

exp(q-r¥) with r2 denoting the interaction-site positions of
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molecules  implies  vanishing  cross  correlations N 2 K] o
N z _/ N z _ . . F = \V/ . 5
(p3(1)* p(0))=(p5 (1)* p (0))=0 and also the identity al 1= 2 Vareflp (5b)

z z z z
(p5()* P (000512 =(p5 () p; LON/|p5 J?). There . ,
is only one independent coherent density correlator, whicht iS an elementary task to express thie’ positive coeffi-

shall be used as normalized function cientsVy i, in terms of theVN(q;Kk,p) [cf. Eq. (7) of Ref.
\ \ \ [2]]. Similarly, one derives functionals for the kernels for the
ba()=(pg()* pg(0))/(|pg|?). (1 tagged-molecule functions:
There are two incoherent density correlators My s= oo @51, 6N(1)],  x=N,Z. (6a)

&L (D)=(p* (O)*p% (ON{|p*|?, x=N,z. (2) Again,the functionals¥; ¢ are given in terms of the equilib-
st ={pqs aslOlpgsl") rium structure functiongcf. Eq. (23) of Ref.[1]). After the
Because of rotational invariance, the density correlatoréliscretization, the mode-coupling polynomial has the form
depend on the wave-vector modulug=|g| only.

The short-time asymptotics of the correlators re&@:(t) ;cé‘s["fx,"f]ZE Vé,kp7§,s~p1 x=N,Z. (6b)
=1-3(Qg)?+0(t]®)  and ¢ ()=1-3(Q5 > kop

+0(|t]®). The characteristic frequencies are given by the

for_mulas: . @§)2=q§{v$[1+jo(q§d)]+X(v§§2d:/63[1 M =100 wave-vector moduli. The structure factors are
_!O(qu)_JZ(ggg)]z}/Sq . and . Qg9 :qX{UT[l evaluated within the reference-interaction-site-model theory
+jo(qZd) 1+ (vRrE™d6)[1+jo(qid) Fj2(qld) /Wy for X [4_g]. In Ref.[1], the details of the static correlation func-
=N,Z. Here j, denotes the spherical Bessel function forjons have been discussed. EquatiéBlsand (5) are closed
index /, S abbreviates the total-density structure factor,nonlinear integrodifferential equations to calculatetheor-
and wg=1*jo(q¢d) for x=N,Z are the intramolecular relatorsey (t). Using these correlators as input, E¢.and
structure factors. Furthermore,= ykgT/2m denotes the (6) are closed equations to evaluate Me:orrelator&ﬁé <(1)
thermal velocity for translation of the molecule of atomic for x=N andZ The mathematical structure of Ec{§)'and
massesn at temperaturd, andvg=(2/{d)v is the thermal (5 s identical to that discussed earlier for the density corr-
velocity for rotations. The Zwanzig-Mori equations of mo- elators of the HS$2]. The differences are merely the values

The following work is done for a cutoff*d=40 and

tion [4] for the specified correlation functions are: of the frequencie€))} and the values for the coupling con-
5N N2 4N stantsV .. A similar statement holds for Eqé4) and (6),
It bq(V+(2q) bg(1) which are the analogues of the equations for the motion of a
t sphere in the HS$3]. Therefore, all general results dis-
+(Qg)2f dt'my(t—t")dp ¢y(t')=0, (3)  cussed previousl2,3] hold for the present theory as well.
0 In the rest of the paper, the diameter of the constituent
. < 2 x atoms shall be chosen as unit of lengthk; 1, and the unit of
It bg,s(D)+(Qg5)“g s(1) time is chosen so that;=1.
t
+(Qéys)zjodt’méys(t—t’)at,¢éys(t’)=0, x=N,Z. B. Universal laws

This subsection compiles the universal laws for the dy-
(4) namics near the liquid-glass transition. They will be used in

L : . Sec. lll to analyze the numerical solutions of the equations of
All complications of the dynamics of the many-patrticle prob- ; o Lo
motion. The derivation of these laws is discussed compre-

) X : "
lem are hidden in the rela>.<at|on kernﬁlﬁ‘(t.) andmy o(1). hensively in Refs[2] and[3], where also the earlier litera-
Within MCT, the relaxation kernah,(t) is expressed as ture on this subject is cited.

functional of the density correlators:

mg (1) =F5[oMN(D)]. (52

From the mode-coupling functional in E¢pb), one cal-
culates anM-by-M matrix Cq={dFq[ fN1/af}}(1—1})2.
Here fN=¢E'(t—>oo) denote the nonergodicity parameters

. . N for the density fluctuations of the glass states. This matrix
Thle . Tofj%_(iogglmg fuTCt'EmaJ reads ]:q[_f_] has a nondegenerate maximum eigenvaésel. The transi-
=3Jdkv7(q:k,p)fif, where k+p=q, and the positive tion is characterized bi°=1. Here and in the following, the
coupling vertices are given by the densjiy the structure  superscriptc indicates that the quantity is evaluated for
factor Sy, and the direct correlation functiogy [cf. EQ.  _ (/) | eteand@ denote the right and left eigenvectors,
(20b) of Ref.[1]]. Wave-vector integrals are converted into . . . c -~
discrete sums by introducing some upper cutgffand using re§pect|vely,. at the critical pc?m@kcf_lkek_eq’ quq_c_qk
a grid of M equally spaced values for the modulugd =€k~ The eigenvectors are fixed uniquely by requireg
=h/2,3n/2, ...,@@*d—h/2). Thus,q can be considered as a >0, €,>0, Z,e,64=1, andXe,(1— fg‘c)eqeqzl. These
label for an array oM values. Equatiori3) then represents a eigenvectors are obtained as a byproduct of the numerical
set of M equations that are coupled by the polynomial determination ofp.(¢) described in Refl1]. They are used
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to evaluate the critical amplitude Here
hy=(1—1f5°) 2, (7 t,=to/|a]’, &=1i2a, (14)
and the exponent parametey 1/2<\<1, is the first critical time scale. The master functiang(t) are

determined by\; they can easily be evaluated numerically
N = } D éq{az}-glc[fNcyafllzlcaf:;l?hwhg' (8) [7]. One gety .. (t—0)=1/t?, so that Eq(11) for szgl is
2 qkp reproduced for fixed largé and o tending to zero. Since
g.(t—»)=1/\J1—N\, also Eq.(10) is reproduced.
One finds for the large rescaled timte g_(t—)
=—Bt°+0O(1/t). The anomalous exponet, 0<b<1,
N 2 NrsNer . Nep N which is called the von Schweidler exponent, is to be calcu-
‘f—% el Sl F71=Fo TH 1} 98 |ated from via the equatiod(1+b)%T (1+2b)=\. The
constantB is of order unity, and is also fixed by [7]. Sub-

In a leading expansion for smali— ¢.(£), one can write stituting this result into Eqg(12) and (13), one obtains von
Schweidler’s law for the decay of the liquid correlator below

0=Ce, e=[o—o())]e(l). (9b)  the plateauy:

Furthermore, a smooth functian of the control parameters
{ and ¢ is defined by

Glass states are characterized &y 0, liquid states byo ¢Y(t)=f$—hY(t/t(’,)b, t,<t, o—-—0. (15

<0, and =0 specifies the transition. The nonergodicity
parameter exhibits a square-root singularity. In a leadingThe control- -parameter dependence is given via the second

order expansion for smad, one gets critical time scalet,,
fy=fy°+hyVo/(1-N), >0, ¢—0. (10 t,=tB Plol?,  y=(122)+(1/20). (16

At the transition, the correlator exhibits a power-law decay, The leading corrections to the preceding formulas for fixed

that is specified by the critical exponemt 0<a<1/2. In a t=t/t, are proportional tdo|. They are specified by two
leading-order expansion in (), one gets correctlon amplitudes and additional scaling functions

h.(t/t,) [2]. The dynamical process described by the cited
¢’a‘(t):fg'0+ hg'(tolt)a, o=0, (t/ty)—w». (11) resultsis callegd process. Theg correlatorG(t) describes

in leading order the decay of the correlator towards the pla-
Here, t, is a time scale for the transient dynamics. The ex-teau valuefy within the intervalty<t<t,. The glass cor-
ponenta is determined from the equatioR(1—a)%I'(1  relators arrest aty for t>t,. In the limit c— -0, all cor-

—2a) =\, wherel" denotes the gamma function. relators cross their plated§ at the same timeg, given by
Let us consider the correlator  ¢y(t) R
=(Y(t)*Y(0))/{]Y|?) of some variableY coupling to the =1t t,. (17)

density fluctuations. Its nonergodicity parametier= ¢v ~ .

(t—=) obeys an equation analogous to E#0): f,=f5  Here, the numbet_ is fixed by\ viag_(t-)=0.
+hy\a/(1—N)+O(c). The critical nonergodicity param- ~ The decay of¢y(t) below the plateady is called thea
eterfS>0 and the critical amplituday>0 are equilibrium  Process for variable/. For this process, there holds the sec-
quantities to be calculated from the relevant mode coupling@nd scaling law in leading order far— —0:

functionals at the critical pointp=¢.({). If Y= pqs, the _ ~
correlator ¢ (t) refers to the tagged-molecule-density fluc- S(=v(D), T=ttg, L=t (18)

tuations, ¢y (t). Their nonergodicity parameters,=fy ¢ \which is also referred to as the superposition principle. The

have been dlscussed in REL], and the explicit formulas for control-parameter-independent shape funciigt) is to be

the evaluation of = h qs can be mferrgd from Ref3]. For evaluated from the mode-coupling functionals at the critical
small values of, there is a large time interval, whedgg,(t) oint. For short rescaled timek, one gets dy(f)=1f¢

is close tofy,. Solving the equations of motion asymptoti- P ~ob gets dy(1)=
cally for thls plateau regime, one gets in leading order in the™ hyt®+0(t*), so that Eq(15) is reproduced. The ranges

small quantitiespy(t) — f& the factorization theorem: of applicability of the first and the second scaling laws over-
lap; both scaling laws yield von Schweidler’s law figr<t

bv(t)—15=hyG(1). 12 <t L |
The superposition principle implies coupling of the
The functionG(t) is the same for all variableg It describes ~ @-relaxation time scales or relaxation rates of all the vari-
the complete dependence on time and on control paramete@dles in the following sense. Let us characterlze the long-

via the first scaling law: time decay of¢y(t) in the liquid by some tlmer . For
example, as is occasionally done in analyzing molecular-
G(t)=V|olg=(t/t,), o=0. (13 dynamics simulation data, it may be defined as the center of
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the a process, i.e., as the time at which the correlator has 1.0 T T . .
decayed to 50% of its plateau value:

Py(m)=F42. (19 09

This time diverges upon approaching the glass transition: in gé%
the leading asymptotic limit foreo— —0, one finds TZ <
=Cyt/ . Here, the constar@y is defined by?ﬁY(CY)=f$/2.
All times or rates are proportional to each other, and follow a ° o
power law specified by the exponentdefined in Eq.(16): "O‘;‘;é““é ““““““““ ©--0---
0.7 t ¢ J
U7 =T\le|”. (20) |

o
o
08 | $ o .

The constants of proportionalit¢, or I'y depend on the 0.0 0.2 0.4 0.6 0.8 1.0
variableY and on the precise convention for the definition of §

Y .
7o SUCh as Eq(19). All the time scales or rates are coupled  Fig. 1. Exponent parameter as function of the elongatiod.

in the sense that the rat®y/Cy, or I'y /Ty, for two differ-  The arrow indicates the critical elongatigg=0.345 separating the
ent variablesy and Y’ becomes independent of the control two glass phases. The dashed horizontal line marks the value
parameters in the limio— —0. =0.736 for the hard-sphere system.

Figure 1 shows that for large elongations of the mol-
ecules, say/>0.6, and for very small elongations, say The control-parameter sensitive glassy dynamics occurs for
£<0.2, the exponent parametar is close to the value longer times for packing fractiong near¢.. At the transi-
0.736+0.003 for the HSS {=0). For{~ ¢, the two con- tion point ¢=¢., the correlators decrease in a stretched
tributions to the structure-factor peak for angular-momentunmanner towards the plateau value‘%“(, fg"‘;, or fgfs) as
indices/=0 and/ =2 are of equal importandd]. For such  shown by the dotted lines. Increasigpgabovee,, the long-
elongations) increases considerably. Unfortunately, E8).  time limits increase, as shown for the coherent correlators
is so involved that we cannot trace back the increase tof qsg‘(t) for q=9.8. Decreasingy below ¢., the correlators
the underlying variations of the structure factor. cross their plateaus at some timg, and then decay towards

The accurate determination of the time sdgles cumber-  zero. For small¢— ¢/, 74 Is given by Eq.(17) for all the
some. It is given by the constant plateau value of the funccorrelators. The decay from the plateau to zero is called the
tion \I’(t)={[¢2‘°(t)—f';°]/h2'}1’at within the time interval  « process. It is characterized, e.g., by thdime scaler,
where the leading-order E@11) is valid. The leading cor- defined as in Eq(19) for each correlator. Thus, upon de-
rections to this law vary proportional tdq/t)?® and cause creasinge.— ¢ towards zero, the time scaleg and 7, in-
deviations from the plateau at small times. The unavoidablerease towards infinity proportional g, andt,, respec-
errors in the determination of the critical valyg({) cause tively. The two-step-relaxation scenario emerges, because the
o#0 in Eq.(9b). Thus, ¥ (t) increases proportional tor  ratio of the scales, /7, increases as well. Figures 2 and 3
—t fort—x if 0>0 oro<0, respectively. For example, to exemplify the standard MCT-bifurcation scenario. For small
determinet, for {=1.0 with an error estimated to be smaller |o— ¢|, the results can be described in terms of scaling laws
than 3%, we have fixeg.(£) with nine relevant digits. The mentioned in Sec. Il B. This was demonstrated comprehen-
plateau regime of? (t) is largest forq=9.8, wheref\° has sively in Refs.[2] and[3] for the HSS, and the discussion
an intermediate value; it extends fram 10* to t~10°. We  shall not be repeated here.
have checked that results fo=3.0, 7.4, 13.0, and 16.2 For /=1.0 andg=5, the plateaus for the tagged mol-
lead to the samg, within the specified error. A similar state- ecule’s total-density and charge-density fluctuations are very
ment holds for the determination tf for other elongations. close to each othertg',‘;mféycs (cf. Figs. 12 and 13 of Ref.

Table | compiles the parameters characterizing the univeif1]). Figures 8c) and 3d) demonstrate that also the dynam-
sal formulas for the three elongations to be considered. ics is nearly the SamQ{;g{S(t)%d)g’S(t)_ This means that for

g{=5 and for strong steric hindrance, the cross correlations

Ill. RESULTS FOR THE STRUCTURAL RELAXATION FQE(t) are very small. The reason is that the intramolecular

A. Density correlators TABLE |. Parameters characterizing the MCT-liquid-glass-
Figures 2 and 3 demonstrate the coherent density correldansition dynamics for systems with elongatiogs:0.0, 0.4,
tors ¢2‘(t) and the tagged-molecule correlation functions@nd 1.0-
by <(1) and @7 (t) near the liquid-glass transition for the
elongations{=0.4 and 1.0, respectively. The results are for
two representative wave numbegs the wave numbeq 00 0530 1.54 0.0220 0.736 0.311 0.582 2.46 0.838 0.703
~7.0 is close to the first peak, amp~9.8 is near the first 04 0675 1.81 0.0123 0.885 0.222 0.330 3.77 2.54 0.110

minimum of S (cf. Fig. 2 of Ref.[1]). The oscillatory tran- 19 0565 1.90 0.0139 0.739 0.310 0.576 2.48 0.857 0.687
sient dynamics occurs within the short-time window 1.

4 Pc C to A a b Y B ’t\,
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ONZ (D), q=7.4
N
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log  t log  t
FIG. 2. Coherent density correlatot%‘(t) [solid lines in(a) and FIG. 3. Results as in Fig. 2, but for the elongation 1.0 for
(b)], tagged-molecule density correlatof%{s(t) [solid lines in(c) wave numbersq=7.4 and 9.8, and a Kohlrausch exponegst
and (d)], and tagged-molecule charge-density correlafqbﬁg(t) =0.68.

[dashed lines itic) and(d)] for the elongation’ = 0.4 as function of . . . . .
logyot for two intermediate wave numbes=7.0 and 9.8. The fluctuations. The most important origin of this difference is

decay curves at the critical packing fractipp are shown as dotted the reduction of the mode-coupling vertex in Efb) for x
lines and marked bi{ andZ for the total density and charge density =Z relative to the one fok=N. For small elongations, the
correlators, respectively. Glass curvas>0) are shown only for ~€ffective potentials from the surroundings for the tagged
qsg‘(t) with g=9.8 in order to avoid overcrowding of the figure. The molecule’s reorientation are small. Therefofé‘,’s decreases
packing fractions are parametrized ley=(¢— @)/ @.=+107%, strongly relative tdg‘g for ¢ decreasing towards. (cf. Fig.
andx=1, 2, 3, 4 are chosen. The dashed-dotted lin¢vinis a 13 of Ref.[1]). For {<{., the charge-density fluctuations
Kohlrausch-law fit for thex=4 « process:fy°exd—(tn”] with  relax to zero as in a normal liquid. This implies, as precursor
,8=O.40.,The filled cjrcles anq squares mark the characteristic timeﬁhenomenon, that the-time SCH'eTZZ of the charge-density

t, andt,, respectively, defined in Eqdld) and (16) for x fluctuations shortens relative to the sca@' for the total

=1, 2, 3, and 4. Here and in the following figures, the diameter of . . .
the constituent atoms is chosen as the ungth o%‘ lergjthl, and the denSItZy fluctuations. Thus, the d.lfferences betweﬁﬂg(t)
unit of time is chosen so thaty=1. and ¢g ((t) for small{ shown in Figs. &) and 2d) are due
to disturbances of the standard transition scenario by the

correlation factorg ,(q¢/2) are small, and thus interference Nearby typeA transition from a normal glass to a plastic
effects between the density fluctuations of the two interactiorlass.
sites are suppressed. Coherence effects can be expected onlyThe stretching of the relaxation process is much more
for small wave numbers. For this case, the functions can beronounced for the=0.4 system than for th¢=1.0 sys-
understood in terms of their smajl-asymptotes. The latter tem. The wave vectorg=7.0 and 7.4 refer to the structure-
are determined by the dipole correlator and the mean-squard@ctor peak position fof=0.4 and 1.0, respectively, and the
displacement$8], and their results shall be discussed in thecorresponding plateau valu€l® are almost the same. Figure
following two subsections. 2(a) demonstrates that the=0.4 correlator fore=—10"4

Figures 2c) and 2d) deal with tagged molecule’s correla- requires a time increase by 2.3 decades for the decay from
tors of weak steric hindrance. In this case, the charge-densi§0% to 10% of the plateau valui—g‘c. The corresponding
fluctuations behave quite differently from the total densitydecay interval for thef=1.0 correlator is 1.7 decades, as
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0 T T T
{=10,q=74
1 F x—5 \ log,, x4 (@
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-3 -/
"’I 1 1 1
-12 10 8 6 4 -2 0 2
log  ©

FIG. 4. Double logarithmic presentation of susceptibility spectra

Xg‘"(w) as function of frequencw for the density fluctuations dis-
cussed in Fig. @) (see text

shown in Fig. 8a). Thus, the specified time interval for tlae

PHYSICAL REVIEW E65 051201

by (w) agrees with  ¢y(w)=—1{w—(Q))¥[w
+(Q )2m (w)]} Because of causallty, it sufﬁces to check
qﬁq/(w) qﬁq (w). The funct|on5w¢q (w) are shown as
dotted lines in Fig. 4. The desired identity is verified by
inspection within the accuracy better than that of the draw-
ing. Corresponding statements hold for the other functions
such asgyZ(t). The evaluation ofp/(t) on the discrete set

of times from Eqs(3) and(5) is done by an extension of the
method discussed in R€f10]. But it should be noticed that
the described proof of the accuracy of the solution does not
require an account of how the solutiqﬁﬁ‘(t) has been ob-
tained.

B. Dipole correlators

The dipole correlator of the tagged molecule is defined by

Cys(t)=(es(t) - €(0)). (21)

process is four times Iarger for the small elongation than fOIHere the unit Vectoés denotes the tagged molecule’s axis.
the large one. Often, stretching is quantified by the exponent, (t) is the reorientational-correlation function for angular-

By of the Kohlrausch-law fit for ther process:¢y(t=17p)

momentum index”= 1. For a similar reasoning as presented

xexyg — (t/T )*]. Such fits are shown by the dashed-dottedin the paragraph preceding E@), it is identical to the co-

lines for¢ (t) for g=9.8 ande=—10* in Figs. 2b) and
3(b). For{=0.4 andZ= 1.0, the fit exponentg are 0.40 and

herent reorientational function. It can be obtained as the
zero-wave-vector limit of the charge correlato4tzGI (1)

0.68, respectively, quantifying the larger stretching for the=C, ((t)+0(g?) [8]. C14(t) is evaluated most efficiently as
smaller elongation. The transient dynamics for intermediatdollows. One carries out thg=0 limit in Eq. (4) forx=Zto

and largeq is not very sensitive to changes of Both Figs.
2(b) and 3b) for q=9.8 demonstrate an initial decay of the
correlators by about 20% if the time increases up~®.1.
This similarity is also reflected by the similarity of the mi-
croscopic time scalg, for the two elongations listed in Table
|. However, fore=—10"2 or —10 4, the correlatorsb“s(t)
require about 100 times Ionger timedor (=0.4 than for

get the exact Zwanzig-Mori equation

t

G2C14(1) +203C 1 4(1) + 2u§f dt'mi(t—t")d, C14(t")=0,
0

(22)

to be solved with the initial conditiorC, 4(t)=1—(vgt)?

{=1.0 to decay to zero. All the enhanced stretching features- O(|t|3) The kernel is they=0 limit of the relaxation ker-

reflect the fact that the anomalous exponeatand b are
smaller for{=0.4 than for{=1.0 (cf. Table ).

A comment concerning the accuracy of the numerical so-
lutions of the equations of motion might be in order. The

primary work consists of caIcuIatingag‘(t) from Eqgs. (3)

and (5) on a grid of times. In the work reported here, the

nel mq «(t) from Eqgs.(6):

m2(t) = (£272m2) f:dk Ko Sl PWESE (1) BN,
23

initial part of the grid consists of 100 values with the equalThe integral is discretized to a sum ovil terms as ex-

step sizest=10"°. This interval is then extended by succes-
sively doubling its length and the step sige By inspection
one checks| ¢y (t)|<1 so that the Laplace transform
¢>q(z)—|fodtexp(zt)¢q(t) exists as analyt|c function for
Imz>0. One checks fore<0 that ¢q(t) decreases fast
enough for larget so that ¢q(w)—llm,ﬁ0¢q(w+|n)

=¢2"(w)+i¢g"(w) exists with a smooth reactive part

¢N'(w) and a smooth non-negative spectrmﬂ"(w) The
Fourler integrals are evaluated with a simplified Filon proce-

dure[9]. The solid lines in Fig. 4 show results for the sus-

ceptibility SpeCtI’urTD(g‘”(w)=w¢g”(w) for (=10, q=7.4,
ande=[¢— ()] ¢c({)=—10* with x=4,5, ande=0.
The correlators are used to evaluate the ponnomnﬂ(st)

Ek pVa, kpd)k(t)d; (t) and from here one gets, N(w)

—mq (w)+|mq (w). Equations(3) and (5) are solved if

plamed in connection with Ed5b). Substltutlng the correla-
tors ¢k «t) and ¢k(t) the kernelm? 5(t) is determined. The
remaining linear mtegrodlfferentlal equatiof2?) is inte-
grated to yield the desired result f@r ((t). Equation(23)
yields directly the nonergodicity parameter of the kernel,
,us m (tHOO) as integral over the products dﬁ f
From ,us, one derives the probablllty for the arrest of the
dipole f;=C;4(t—>)= ,us/(l-i—/LS) This number can
also be obtained af; ;= I|mq_,of . The critical valuef{ ¢

and the corresponding critical amphtudqS I|mq_,0h
were discussed in Fig. 13 of R¢fl].

The dipole correlator€, (t) for the elongationg =0.4
and 1.0 are shown in Fig. 5 for the critical poipt= ¢, and
for two liquid states. The time scaleg® and ;° character-
izing the center of3- and a-relaxation processes, defined by
Cis(5) =15 and C,4(7,) =15 42, are marked by open
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1.0
0.8
0.6
0.4
0.2
0.0
1.0
0.8
0.6
0.4
0.2
0.0

Cl,s (t)

FIG. 5. Dipole correlatorsC, ((t) for two elongations{=0.4
(upper pangland 1.0(lower panel. The correlators at the critical
packing fractiongo= ¢, are shown as dotted lines marked with

The plateau‘jS for each elongation is marked by a horizontal line.

The distance parameters are chosenead¢— ¢.)/o.=—10*%
with x=2 (faster decayandx=3 (slower decay: The filled circles
and squares mark the corresponding time sdglesdt, , respec-

tively, defined in Eqs(14) and (16). The open circles and squares

on the curves mark the characteristic time scaffsand 7-° de-

fined by Cy (%) =15, and C,4(2°) =15/2, respectively. The

PHYSICAL REVIEW E 65 051201

FIG. 6. correlatorsCy (t) =[ Cy (1)

Rescaled dipole
—ffsl/hys (full lines) for two distance parameters=(¢
— @)l o.=—10"* with x=2 (faster decayandx=3 (slower de-
cay). The dashed lines show th# correlatorsG(t) from Eq. (13)
for the exponents.=0.885 and 0.739 for the elongatiods-0.4
and 1.0, respectivelycf. Table ). Here f{(=0.69 and 0.97, and
h;s=1.0 and 0.056 fof=0.4 and 1.0, respectively.

from aboutt=20 to t=70 for e=—0.01. This discussion

vertical line for{=0.4 indicates the decay interval described by therequires a reservation. The corrections to the scaling results

asymptotic formulas for th@ procesgsee text

can lead to an offset of the platef2]. One recognizes that
incorporation of such offset would improve the agreement

circles and squares, respectively. The curves do not clearlgetween numerical solution and its asymptotic description in

exhibit the typical two-step-relaxation scenario. Eer 1.0,
the critical plateau is so largéf ;=0.97, that only 3% of the

decay are left for the transient motion and the critical relax-

the upper panel of Fig. 6. The mentioned windows are ob-
tained only after a plateau offset had been eliminated.
The «-relaxation scaling law for the dipole correlator

ation. The results fot=0.4 are influenced by the nearby reads according to E§18):

typeA transition. Let us consider thg-relaxation process
for the dipole dynamics. The factorization theorem, B@),
specializes to

Cl,s(t) = fg,s"' hl,sG(t)- (29
This means that the rescaled correlat@sg(t)=[Cy(t)
—f‘is]/hLS are given by thes-correlator G(t). The latter
obeys the scaling law, specified by E¢$3) and (14). For
fixed rescaled time,=t/t,,, the cited formulas deal with the
results correctly up to ordefo. The leading corrections are

Ci()=Cys(), T=t/t), |o|<1, t,<t. (25

The e-independent master functi(fhl,S is determined by the
g=0 limit of the mode-coupling functionaﬁZ"s given in Eq.
(6b) at the critical point. Thex-time scaleri;S can be defined
by C1s(759) =142, and shall be written as.*=T;4t, .
Here, thea-scale facto?fLS is defined in terms of the master
function asC «(t1¢) = f$ /2. The scaling law implies that a

of order|o|, and they explain the range of validity of the representation oC, 4(t) as a function of the rescaled time
leading resultg2]. Figure 6 demonstrates the test of thet/Ti’s should superimpose correlators for different distance
B-scaling law. On a 10% accuracy level, the leading-ordeparameters on the common curvél,S(T/Ntlys). Asymptotic

asymptotic law accounts for 12% of the decay ©f(t)
around the plateau faf= 0.4, while it describes only 1.4%

of the decay forf=1.0. The latter feature is due to the large

critical nonergodicity parameteff; ¢, and hence, due to the
small critical amplitudeh, ¢, for the strong steric hindrance.

validity means that the IH@’S) interval, where the scaling
law is obeyed, expands to an arbitrary size éo50.

The lower panel of Fig. 7 demonstrates that the described
scenario for the evolution of the process is valid for the
elongation/=1.0. On the other hand, the upper panel shows

The decay interval described by the leading-order asymptotthat the dipole correlators faf=0.4 exhibit the superposi-

for {=0.4 is indicated in Fig. 5 by the vertical line. Fer

tion principle only for|e|<10"%. In particular, the plateau

=—0.001, the corresponding dynamical window extendsegion emerges only for these extremely small values of the

from aboutt=1.1x 10° to about 2.& 10%, while it extends

distance parametée|. As discussed in Ref2], this is be-
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T T it is sufficient to calculaté\ -(t). This function is determined
by the smallg limit of the density correlatorzﬁgvs(t)=1
—2Ac(t) +0O(g* [8]. The smallg expansion of Eq(4) for
x=N leads to the exact equation of motion

t
&tzAc(t)—U%-i-v-%f dt/md(t—t")ayAc(t')=0, (29
0

Cl,s (t)

o B2 x=1 i to be solved with the initial behavioc(t)=(1/2)(v+t)?
08 N +0(]t|3). The kernel is obtained as tlee=0 limit of Eq.
'6 (6a) for x=N:

0.6 | -

04 | ¢=10 7 Ny — 2 [ N/ N2, N N N

o2 L 1 mg(t)=(1/6m )fo dk K pSe(ci) Wi dieo(1) i (1).

0.0 T N T B (30)

After the discretization of the integral as explained above
and substituting the results for the two density correlators,
FIG. 7. Dipole correlatorsC; ((t) for the elongationsg=0.4  the kernelmg(t) is determined. Then, the linear equation
(upper pangland 1.0(lower panel for various distance parameters (29) is integrated to yield the MSD of the molecule’s center.
e=(¢— ¢c)l o= —10"* with x specified in the figure, presented as ~ The long-time behavior of the MSD depends sensitively
function of log(t/ 7-%). The a-relaxation-time scale’® is defined 0N control parameters near the transition singularity, and
by Cy4(75) = f$4/2. The horizontal lines indicate the plateds . therefore it is well suited to study the glass-transition precur-

sors. In liquid states, one obtains from E29) the long-time
cause of the correction to the leading-order asymptotic lanasymptote: lim...Ac(t)/t=D. HereD is the diffusion con-
which reads for not too large values of rescaled fime stant, and it is expressed as the inverse of the zero-frequency
spectrum of the relaxation kerneD=1/[;dt mSN(t). In
~ o~ ~b glass states, the tagged molecule’s total density fluctuations
Cis(t)=Cas(t) +|o[Bihys/7, (26) arrest for long times:¢§vs(t—>oo)=fg‘ys>0. The Lamb-

_ Mossbauer factof’c\]"S approaches unity fag tending to zero,
with By=3/[T'(1—b)T'(1+b)—\]. Therefore, the correc- and a localization length,c, of the center characterizes the
tion is larger, the larger the produdih, s is. As discussed in  yjgth of the fgls_versusq curve: fglsz 1—(qre)2+0(g?).
connection with Fig. 13 of Ref.1], the size of the critical e gets |ian'Ac(t)=r%- Using Eq.(29), one can express

amplitudeh, s becomes very large near the critical elonga-ré as inverse of the long-time limit of the relaxation kernel
tion {.. In addition, B; increases withx. One getsB; from Eq. (30): r2=1/mY(t—o0)
. . C_ S .

=1.56 and 0.45 fo=0.4 and 1.0, respectively. Thus, the ; - S .
. i . The ideal liquid-glass transition implies a transition from
anomaly shown in the upper panel of Fig. 7 is due to the ; . e ien _
. . . regime with molecule’s diffusion fop<¢. to one with
large correction to the leading-order asymptotic law, caused " le’s localization for= The former is character
by the precursor effect of the nearby typeransition and by =P

L ized by D>0 and 1f:=0, and the latter byD=0 and
;2;'2;9 de s\/:ggigosv\c'a-lli—sg lc:i(\aNs;:rl)pi/tg)rln;po{@i?rrel_ﬁt]cgrrsef?ghe 1/r>0. The subtleties of the glass-transition dynamics oc-

the anomaly forz=0.4 exhibited in Fig. 7 can also be ex- cur outside the transient regime. Figure 8 exhibits the MSD
. y ' 9. of the molecule’s center for various packing fractions near
plained as the large percentage of the decaf pf(t) de- h - F h . . .
scribed by theg-scaling law(cf. Fig. 5. the transmon._ or very s ort_tlmes, saﬁto,zmteractlon
effects are unimportant and limeAc(t)/t?=v%/2 reflects
_ ballistic motion. For times larger thaty, the cage effect
C. Mean-squared displacements leads to a suppression Af:(t) below the short-time asymp-

There are two mean_squared d|sp|acemé|mSD) to be tote. For |Ong times in ||qU|d states, the MSD approaches the
considered for the symmetric dumbbell. One refers to thdliffusion asymptote, lim...Ac(t)/t=D, as shown by the

osition of the constituent atom of the tagged molecd dotted straight Iines drayvn for the curves with .Iabx!.is_l
P 99 odie and x=4. Upon increasingp towards ¢., the diffusivity

log,, (t/75")

and the other to the molecule’s cent&r= (ra+rZ)/2: decreases towards zero.
- - The curves withx=1 for e>0 in Fig. 8 deal with the
— A,C __+AC 2
AacO=([rs™ (O =rg(0)J5)/6. @7 glass statep=1.1¢.. For this density, there is no obvious

glassy dynamics. Rathek(t) has approached its long-time
Here, a factor 6 is introduced in the definition for later CoN-|imit r(2: after the oscillations have disappeared ferl.

venience. Since there is the relatid8] Decreasingy towardse,, the softening of the glass mani-
fests itself by an increase of the localization length.
AA(t)ZAC(t)+(§2/12)[1—C1’S(t)], (28 At the transition point ¢=¢., the critical value
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FIG. 9. Square of the localization lengths for the molecule’s

2 . .
FIG. 8. Double logarithmic presentation of the mean-squareqcenterrc (circles and for the constituent atomi (squarekfor e

) : =(¢— @) ¢.=10""3 n=7.8,...,12. The crosses mark the criti-
displacement for the center of mads.(t) for the elongations (o= ec) e ' B
§=F()).4(upper panaland 1.0(lower p:r%.)The dotted Iin(ges with,  cal values (2)? and (3)?, respectively. The dashed and dotted

" : : Sy lines are the leading order asymptotic laws=(r$)?
label c refer to the critical packing fractiog., and the solid lines . XX
to e=(¢— ¢c)/ .=+ 10> for x=1,2,3,4. The straight dashed line ~ hxVea/(1=X) for X=C andA, respectively.
with slope 2 in each panel exhibits the ballistic asymptote }?/2. o o
The straight dotted lines with slope 1 denote the long-time asympl0910Ac(t)-versus-logot variation are exhibited before the
totes Dt of the two liquid curves fox=1 and 4. The horizontal final diffusion asymptote is reached. The stretching is more

lines mark the square of the critical localization length§)¢. The ~ enhanced as the system is driven towards the transition point,
filed circles and squares mark the characteristic timeandt’.,  |€|—0. The indicated slow and stretched time variation out-
respectively, defined in Eq§l4) and (16) for x=1,2,3,4. side the transient regime is the glassy dynamics exhibited by

the MSD. Again, the stretching is more pronounced for
re=0.0587 (0.0497) for=0.4 (1.0) is reached. Substitut- {=0.4 than for{=1.0.

ing Eq. (10) for f(’;‘ and the analogous formula fdrg"s to The first spaling law deals 'with the dynamics where
evaluater2 from Eq.(30), it follows that the glass instability Ac(t)—(r¢)? is small. One gets in analogy to Eq42) and
at ¢, causes a/o anomaly for the localization length, (13

r2=(r%)2—heyol(1-\)+0(0), (31) Ac()=(rg)*~hevlolg.(t/t,), @20, |o]<1,

where hc=9.66x10 % (5.14x10° %) for the elongation
{=0.4 (1.0). A corresponding formula holds for the square
of the localization lengttr, for the constituent atom with For glass states witlr>0, this formula describes the ap-
(re)? replaced by (3)?=(rg)?+(¢%/12)(1-f{) andhc  proach towards the arrestr=Ac(t— ). For liquid states
replaced byha=hc+(¢?/12)h; ¢ according to Eq(28). I with <0, it describes how thA o(t)-versust curve crosses
Fig. 9, the leading order results fof andrj are shown as  and leaves the platear)2. In particular, one gets von

dashed and dotted lines, respectively. Ferl.0, the data are  Schweidler’s law for large/t, in analogy to Eq(15):
described by the square-root law fe2x10 3. Similar

small intervals for the validity of the leading-order descrip-
tions have been found for the Debye-Waller factor of the ~ Ac(D)=(rg)*+hc(t/t))?, o—-0, t,<t<t,.

HSS for small wave vectoq [2]. For /=0.4, the range of (33
validity of the universal formula is reduced to the even

smaller intervalse<0.5x 10" 3. . ,
The glass curves foe=0.01, shown in Fig. 8 with label sion asymptote is the: process of the MSD. In analogy to
o . Eq. (18), there holds the superposition principle

x=2, exhibit a decay between the end of the transient oscil-
lations and the arrest ag , which is stretched over a time
interval pf abou'; two orders of ma_lgn!tude. A S|m|lar. two- Ac()=Ac(1), T=t/t,
decade interval is needed for the liquid curves<Q) with

label x=2 to reach the critical valuerf)?. After crossing In Ref. [11], it has been discussed in detail how these
(r&)?, two further decades of an upward bentleading-order asymptotic results can account quantitatively

t>t,. (32

The increase ofA(t) above the plateau towards the diffu-

lo|<1, t,<t. (34

o
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FIG. 11. Critical localization lengths for the constituent atgin
FIG. 10. Double logarithmic presentation of the mean-squaredsolid line) and the centerg (dashed ling along the liquid-glass-
displacement for the constituent atof,(t) and for the center transition line parametrized by the elongatign The dotted line
Ac(t) for the elongationg =0.4 (upper paneland {=1.0 (lower represents the functiog/(r&)?+ ¢%/12 discussed in the text. The
pane). The curved z(t) is shifted upwards by two decades to avoid inset exhibits *-f{ ¢ as function off, wheref ;= C; (t—) is the
overcrowding. The distance parameteeis —10 3, and the corre-  long-time limit of the dipole correlato€; ¢(t). The arrow indicates
sponding timeg,, andt, are marked by filled circles and squares, the critical elongation/;=0.345.
respectively. The dashed lines are the first-scaling-law results, Eq.
(32). The open diamonds mark the points where the dashed linegca|ing laws provide a description of the glassy dynamics of
differ from the solid ones by 5%. The straight dashed-dotted "neﬁhe MSD fort=100 andt=10 for {/=0.4 and{=1.0, re-
te;(h'b't t.rt].e dlffl:]smn t?]sympctj(?ftfe@t]; andt:]he f'"re(? lc.j'am%ndzor/naerh spectively. Notice that there is a large interval of times out-
€ position where these ditier from e solid fines by 5. Thegiqe the transient regime, say lgt= — 0.5, where the struc-
dotted lines exhibit the second-scaling-law results, &4). The . : . . .
horizontal lines mark the square of the localization lengttgX tural relaxation is not described by the first scaling law. This
c\2 . g is a peculiarity of the MSO11], which is not found for the
and (¢)”. . .
other functions discussed here.
d The crossover window from the end of the von

spherical particle and the dumbbell molecule immersed inSchweidIerhIaw rggime(in?icr?ted.ﬁby'the right open dia-
the hard-sphere system. Instead of repeating such an exteW—OndS T[O t e_begmnmg of the diffusion procesﬂdlcatgd
sive analysis, we shall only show here some representati\}%y the filled dlamondjsfqr the MSD of the centeidc(t), is
examples. about 3(2) decades wide fo=0.4 (1.0). On the other

The upper and lower panels of Fig. 10, respectively, fo’and, the corresponding window for the MSD of the con-
the elongationsf=0.4 and 1.0, exhibit such tests of the Stituent atomA(t), is larger than that oA(t) by a factor

scaling-law descriptions for a liquid state that is sufficiently ©f @bout 7(13) for /=0.4 (1.0). As discussed in RéfL1],
close to the transition poing=—10"3. Also, the MSD of this 9nlarged crossover yvmdpw fdra(t) is caused by the
the constituent atom (t) is considered in these figures. rotation-translation coupling, i.e., by the second term on the

Because of Eq(28), the asymptotic law€32) and (33) for right-hand side of Eq.(28). This effect is smaller forf .
A(t) hold with (r&)? replaced by (§)2=(r&)2+ (£%/12) =0.4 because the relaxation of the second term, determined

X(1— fi,s) and he replaced byh,= hc+(§2/12)h1,s- The by that ofC, (t), is considerably enhanced due to the nearby

range of validity of the first-scaling-law description is indi- type-A transition as discussed in connection with Fig. 5.

cated by the open diamonds. One finds that such a range is Figure 11 exhibits the critical localization lengths of the
nearly the same for both c(t) and A(t), and this holds molecule’s centerg and of the constituent atonf as func-

irrespective of the molecule’s elongatignThe beginning of tion of the eIonga_tiorzj. There are three distinct regions: one
the a process of the MSD, i.e., its initial increase above thelo" Small elongations, say<0.3, another for large elonga-
plateau, is described by von Schweidler's law, B8). It is tions, say(=0.4, ar_1d t_he crossover region bet_ween them.
exhibited fort>t, by the dashed lines. The process ter- FOr {={¢, the localization length of the cente is nearly
minates in the diffusion law for long times, exhibited by the constant while that of the constituenf increases rapidly
straight dashed-dotted lines. The beginning of the diffusiorvith . Bothr¢ andrj decrease rapidly within the crossover
law is indicated by the filled diamonds for each MSD curve.region, and they decrease only slightly as function of the
The a process follows well the second scaling law, E2f),  elongation for{=0.4. The rapid increase off for (<{,
which is presented by the dotted lines. The descriptions bgan be understood as follows. Sin€® ¢(t—<)=0 for

the two scaling laws overlap far~t,. Together, the two {(<{., one gets from the long-time limit of Eq28):r§

for the glassy dynamics of the MSD, albeit for the tagge
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=(r&)%+ £?/12. The dotted line in Fig. 11 shows this for- 2r ' ' g
mula with r¢ fixed to the value forf=0.0. It explains the 01 ¢-04 e ® 1
increase of ; for ¢ increasing up ta/.. Thus,rj increases 2T o 5 °
because the reorientational dynamics of the molecule’s axis -4 g ]
is not arrested fog<{.. In this sense, the localization of -6 6 7
molecules with small elongations is primarily caused by that -8 O log,l/tN
of the molecule’s center. This is consistent with the result -10 o log,,D
that the glass transition for systems with small elongations is 12 0 log, ltLs 1
mainly driven by the arrest of the center-of-mass density =2 , ,
fluctuations[1]. The critical localization lengting provides _ o
the upper limit forr . characterizing the size of the arrested O &=t0 o]
structure, and its value 0.640.08 for {<{. is consistent 20 ]
with Lindemann’s melting criterion. The critical localization 4 -
length of the constituent atonf for {=0.4 has similar val- Pl B log, 1N 1
ues. This implies that the localization of molecules with large ol “’D *
elongations is caused by that of the molecule’s constituents -8 F10 i
rather than by that of the molecule’s center: the localization -10 Fe12 © loggl/tg” ]
of the center is subordinate to that of the constituents. As _'4 3 2 1 o

explained in Ref[1], angular correlations become more rel-
evant for the glass transition of systems with large elonga-
tions. Such angular correlations result in more efficient lo- FIG. 12. Double logarithmic presentation of therelaxation
calization of the constituent atoms, and this is the reason fofates 1+ (squaresfor the coherent total density correlawg‘(t)
the relevance of & for the localization of molecules with at the structure-factor-peak position47 (circles for the dipole
large elongations. The center localization is reduced by aboworrelatorC, «(t), and the diffusion coefficient® (diamonds for

1/\2, as expected for independent motion of the two conthe elongationg=0.4 (upper pangland 1.0(lower panej as func-
stituents. tion of the reduced packing fractionp{— ¢)/¢.=10""2 The

a-scaling timesr\ and 7%° are defined as in Eq19). The solid
D. The a-relaxation scales lines are the power-law asymptotEg|e|” (see text with y=3.77
The superposition principles for various correlators implyand 2.48 for{=0.4 and 1.0, respectively. The prefactdrg have
coupling of thea-relaxation time scales or relaxation rates asbeen chosen so that the solid lines go through the data points for
described in Sec. Il B. This scale coupling®iscale univer- n=12.

sality is demonstrated in Fig. 12 for the rater){/of the |arger than the corresponding result ¢ 1.0 (cf. Fig. 9 of
coherent total density correlatey(t) for the wave number  Ref. [1]). In addition,B, is 3.5 times larger fot=0.4 than
q~7, the rate 1#,° of the dipole correlatoC, «(t), and the  for 1.0. This is the reason for the larger deviation of'/
diffusion constanD. Here, thea-relaxation times forqs'g'(t) found for /= 0.4 than the one fof=1.0, and similarly foD.
and C, 4(t) are determined by the convention given in Eq. The even more pronounced deviation forfis due to the
(19. large critical amplitudén, s caused by the precursor effect of
Let us first consider the results fgr=1.0. Although the  the nearby type\ transition, as discussed in connection with
asymptotic behavior is the same for all the quantitiesifl/ Fig. 13 of Ref.[1]. Another possible source for the large
and D start to deviate visibly from their asymptotic results deviations forz = 0.4 might be due to higher-order glass tran-
for n=4, while 1/ starts to deviate only fon=2. The  sition singularities, which can lead to the violation of the
mentioned «-scale universality holds in the leading second scaling law, and thus thescale universality. The
asymptotic limit for co— —0, and the corrections to the signature of such singularities is the approach dbwards
asymptotic predictions are different for different quantities.unity, which implies a divergency d;.
Thus, the found feature in the results o+ 1.0 underlines A remark shall be added concerning the determination of
the nonuniversality of the deviations. Let us add that thehe exponenty entering the power-law behavior for the
range of validity of the asymptotic-law description is quite «-relaxation time scale or relaxation rate as specified by Eqg.
similar to that of the hard-sphere systg2n3]. The results for  (20). This result is based on the validity of the scaling law.
{=1.0 follow the pattern that has been analyzed theoreticallyrherefore, one cannot appeal to MCT if one fits power laws
so far. The results fof= 0.4 exhibit much more pronounced for a-relaxation rates for cases where the scaling law is vio-
deviations from the asymptotic-law predictionsri/andD  lated so strongly as shown in the upper panel of Fig. 7 for
start to deviate visibly fon=7, and the deviation of 4/° Xx<2, i.e., for n<6. Figure 13 demonstrates that, fgr
starts even fon=9. These deviations are due to the correc-=0.4, thea-relaxation rates fofe[=10"2 can be fitted well
tions to thea-scaling law. Their magnitudes are proportional by power laws 17‘oc|o_=|7e for an about 1.3-decade variation
to the product of the critical amplitudes for each quantity andof the distance parametée|. The used effective exponent
the coefficienB; as noted in Eq(26). The critical amplitude  *f=2.90 (2.50; 2.05 describes the variation of
hg for {=0.4 at the structure-factor-peak position is slightly 1/7-'2 (D; 1/7%;3) over 3.5(3.3; 2.5 orders of magnitude.

log, (0.-9)/ ¢,
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2 T T T T T T T 002
{=04 i
0 log,,1/2N ?_
) N 0.01
4
2t 0
4T FIG. 14. ProductsD 7" (squares and D7-° (circles for the
L a-relaxation scales of thé=0.4 liquid shown in Figs. 12 and 13.
6 =n=6 T S S R The full (dashedlline is a power-law fil’’|e|”" with '’ chosen so
log. 1/t that the line goes through the data point for=5 and y’
- 0 ol =-0.40 (0.45).
0 1
. that demonstrate the evolution of glassy dynamics of a sym-
5 i metric HDS. The equilibrium structure of this system is de-
termined solely by excluded-volume effects, i.e., the sluggish
- n=6 i dynamics and the structural arrest are due to steric hindrance
4 H—t for translational and reorientational motions. The phase dia-
2 -1.5 -1 -0.5 gram demonstrates that there are two scenarios for the liquid-

log , (9.-9) / @, glass-transition dynamics: one deals with strong and the
other with weak steric hindrance for reorientational motion
FIG. 13. Results as in Fig. 12, but only for a restricted region ofr{1.
the reduced packing fraction;<6, for thf? elongatiof=0.4. The For the strong-steric-hindrance scenario, as it is obtained
solid lines here are th(fef power-law fiEg"| | with the effective  for dumbbells of elongatio exceeding, say, 0.6, the con-
povlv;er-law exponenty®=2.90, 2-5ﬁ0' and 2.05 for €}, D, and  gtityent atoms are localized in cages of a similar size as
1/T_a' ,_respectlvely. The prefactol“s; have been chosen so that the t5,nd for the simple HSS and for the motion of a single
solid lines go through the data points for=5. dumbbell in the HSS, Fig. 11. The paramekerwhich de-
termines the anomalous exponents of the decay laws and the
The variable-dependent effective exponefit again under- ~ critical time _sqales, is close .to that of the HSS, Fig. 1. The
lines the nonuniversality of the deviations from the scalingrange of validity of the scaling laws for the and a pro-
law. The quantities/®" are mere fit parameters without well- c€sses, exemplified in the lower panels of Figs. 6 and 7,
defined meaning for the discussion of our theory. They del€SPectively, is similar to what was found for the HEZ3]
pend on the interval ofe| chosen for the fit. and for the motion of a hard dumbbell in the HEB511]. The
Another manner for testing the coupling between thefotation-translation coupling implies for the mean-squared

scales of two variables, sagandY’, is provided by a plot of displacement of the constituent atom a crossover interval be-
tween the end of the von Schweidler process and the begin-

ning of the diffusion process, which is about an order of
. S o L magnitude larger than for the motion of a sphere in the HSS.
choice of some fit interval. This is demonstrated in Fig. 147y effect is even more pronounced for the dumbbell liquid,
for th.e.ratlog, formed withr,, or 7,” and the scale for the e |ower panel of Fig. 10, than for a dumbbell moving in the
diffusivity 7,o1/D. Instead of weaklyp-dependent ratios Hss[11]. Testing this prediction by a molecular-dynamics
expected for the asymptotic law, the figure shows variationgjmulation would provide valuable information on the rel-
by more than a factor 3. The shown plot suggests power-lawyance of our theory.
fits TZ/TI'OC((pC—(p)"’ as shown by the full line withy' The results of this paper together with the preceding find-
=—0.40 and the dashed one witif =0.45. The fit expo- ings on thea peaks for reorientational motion for angular-
nentsy’ are the differences of the effective exponepté  momentum index’=1 and/=2 as well as for the elastic
referring tor! and 7). . modulus[8] lead to the conclusion that the strong-steric-
hindrance scenario explains the qualitative features of the
structural relaxation in glass-forming van der Waals systems
such as orthoterphenyl, Salol, or propylene carbonate. This
The recently developed MCT for molecular systems hadiolds with two reservations. First, the calculated wave-vector
been applied to calculate the standard correlation functiondependence of the Debye-Waller facn‘d} is stronger than

the ratio 7//7! versus the control parameter. Such a plot
does not require the knowledge @f , nor is it biased by the

IV. CONCLUSIONS
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that measured by neutron-scattering spectroscopy for orthohavior. Moreover, the corrections depend on the variable
erphenyl[12]. It remains to be shown that application of the considered and therefore the found effective exponents are
theory to molecules more complicated than dumbbells willpairwise different. This means that therelaxation scales
lead to a smearing out of the stroggrariations characteris- are not coupled, rather the ratio of two scales varies accord-
tic of hard-sphere-like systems. Second, molecules that allowng to a power law as shown for two cases in Fig. 14.
for a measurement of the dipole correlator by dielectric lossMolecular-dynamics-simulation studies for a binary
spectroscopy carry an electric dipole moment. This leads tbennard-Jones system, which have been started by Kob and
long-ranged interactions between the molecules. It remaindndersen16] have been used for detailed tests of MCT, as
to be studied how the incorporation of these interactiongan be inferred from Ref17] and the papers cited there. The
change the results based solely on hard-core interactions. fange of time variations for the process in these studies is
The dipole-susceptibility spectra for a dumbbell with a}bout the one considergd in Fig. 13. As.a'remarkableT devia-
large ¢ moving in a HSS8] obey the scaling proposed by tion from thea-sc_:ale _u_nlversallty, a deviation of t_he fit ex-
Dixon et al. [13]. We found this is the case also for the pone_nt for the_ diffusivity from the exponent derived from
spectra of the HDS for elongations in the range<0z6 density-relaxation curves has been repoftes]. Indeed, the

<0.8. For{=1.0, on the other hand, the spectra for theD T, diagram for the simulation data is in semiquantitative

high-frequency wing are below the master curve found indgreement with the results shown in Fig.[14]. Therefore,

Ref.[13], and for{=0.6 they are slightly above. Thus, our it is tempting to conjecture that the simulation data can be

th . i istent with th iact that th i gxplained as done above for the results in Figs. 13 and 14.
eory 1S not consistent wi € conjecture that the quoted \\ia are not aware of experiments that exhibit the weak
scaling law holds universally.

D ing the el tion. the steric-hind Hoct fsteric hindrance scenario. Molecular-dynamics simulations
; riE(r:lrtezSIr?g We tle(orr:g'ao\lzn,w € Sﬁ”ﬁ' mmrarnce ef fcsﬁ?i_ror a liquid of symmetric Lennard-Jones dumbbells with
eonientations weaken. Ew_scenario emerges for su elongation/=0.33 lead to the suggesti¢h9] that an inclu-

C'et’.“'y small{ fo;.two reasonsi. FI'rSt' ]Ehere IS 6|1 crtl.tlcal eIoE— sion of the rotational degrees of freedom is decisive for an
gation . separating a normal glass from a plastic one. Orunderstanding of the exponent parameter. This conclusion is
ea=({— )/ L. approaching zero, the critical amplitudes

7 N . T 7 : : o corroborated by Fig. 1. Detailed simulation studies of the
hg.s. In particularh, s=limq_ohg s, diverge. This transition  g2qqy dynamics of a liquid of slightly asymmetric Lennard-
is due to the top-down symmetry of the molecules. But th€jgnes dumbbells fot=0.5 have been reported by"Ka

asymptotic formulas for sma#l, remain valid also for nearly  ereret al. [20-22. The correlation functions dealing with
symmetric molecules; one merely has to repldegl by  the translational degrees of freedom for large and intermedi-
Vea+ 8%, where 5 is a number quantifying the symmetry ate wave vectors and also the ones for reorientational fluc-
breaking[14,15. The precursor phenomena of the approachuations for large angular-momentum indices could be inter-
of { towards{. have been discussed before for the motion ofpreted with the universal MCT formulas. However, the
a single dumbbell in a HS[B]. The most obvious one is the dipole correlator did not show a two-step-relaxation scenario
speeding up of thex process for reorientations relative to and it exhibited strong violations of the superposition prin-
that for density fluctuations, as demonstrated in Fig. 2. Theiple quite similar to what is shown in the upper panel of Fig.
second reason is the strong increase of the exponent param- The a-relaxation time scales for density fluctuations of
eter\ for {~{¢, Fig. 1. Forn=1, there occurs a higher- intermediate wave vectors, for the diffusivity, and for the
order glass transition singularity, where the asymptotic exdipole correlator could be fitted well by power laws with the
pansions of the MCT solutions are utterly different from exponents 2.56, 2.20, and 1.66, respectively. The differences
those cited in Sec. 1l B. The approach oftowards unity in these exponents are quite similar to what is demonstrated
leads to a shrinking of the range of validity of the discussedn Fig. 13 for the corresponding quantities. This explains
universal formulas. The corrections diverge, as was diSWhy theD 7,-versus-temperature diagram for the simulation
cussed in connection with the coefficidit in Eq.(26). This  results[23] shows violations of the scale coupling in semi-
equation shows that the increase of the prodiitt; s leads  quantitative agreement with the ones shown in Fig. 14. It
to an increasing violation of the superposition principle forseems that the simulation results 105 () also fit nicely
the « process, as shown in the upper panel of Fig. 7. As dnto the framework of the ideal MCT for molecular liquids.
result, thea-relaxation time approaches the universal law, Let us notice that the density correlators of the glass states
Eq. (20, only for very small distance parametees=[¢  for wave vectorg= 9.8 exhibit oscillations for times around
— o)1 ec(L). For (=10, the power-law regime is 0.1, Figs. 2 and 3. These are the analogues of the oscillations
reached fofe|=10"1, while | ¢| has to be smaller than 16  analyzed previously for the HSS in connection with a discus-
for the approach to the asymptotic law #+0.4, Fig. 12. A sion of the so-called boson-peak phenomenon and high-
decrease ofe| by an order of magnitude is equivalent to an frequency sound24]. It should be mentioned that the dy-
increase of the relaxation time by more than a factor of 1000namics of a dipolar-hard-sphere system was analyzed
For {=0.4, the variation of thex-relaxation time scales recently within the mode-coupling theof25] describing the
over more than three orders of magnitude can be describestructure by tensor-density fluctuations. Some comments on
well by power laws, Fig. 13. But, the above-explained cor-the general relation between this theory and the one used in
rections to the leading-order asymptotic laws imply that thethe present paper can be found in R¢1g.and[25]. For the
fitted effective exponents®™ are considerably smaller than dipolar-hard-sphere system, the oscillations have been ana-
the exponenty=3.77 specifying the correct asymptotic be- lyzed in detail. They reflect subtle couplings between trans-
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