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Structural relaxation in a system of dumbbell molecules

S.-H. Chong and W. Go¨tze
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The interaction-site-density-fluctuation correlators, the dipole-relaxation functions, and the mean-squared
displacements of a system of symmetric dumbbells of fused hard spheres are calculated for two representative
elongations of the molecules within the mode-coupling theory for the evolution of glassy dynamics. For large
elongations, universal relaxation laws for states near the glass transition are valid for parameters and time
intervals similar to the ones found for the hard-sphere system. Rotation-translation coupling leads to an
enlarged crossover interval for the mean-squared displacement of the constituent atoms between the end of the
von Schweidler regime and the beginning of the diffusion process. For small elongations, the superposition
principle for the reorientationala process is violated for parameters and time intervals of interest for data
analysis, and there is a strong breaking of the coupling of thea-relaxation scale for the diffusion process with
that for representative density fluctuations and for dipole reorientations.
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I. INTRODUCTION
Recently, the mode-coupling theory~MCT! for the evolu-

tion of glassy dynamics in systems of spherical particles
been extended to a theory for systems of molecules.
fluctuations of the interaction-site densities have been u
as the basic variables to describe the structure of the sys
As a result, the known scalar MCT equations for the den
fluctuations in simple systems have been generalized
n-by-n matrix equations for the interaction-site-density co
elators, wheren denotes the number of atoms forming t
molecule. The theory was applied to calculate the liqu
glass phase diagram and to evaluate the glass form fa
for a hard-dumbbell system~HDS! @1#. In the following, the
preceding work shall be continued by evaluating the conv
tional time-dependent correlation functions near the liqu
glass transition. Our goal is to examine the range of valid
of the universal relaxation laws and to identify features of
glassy dynamics, which are characteristic for molecular
opposed to atomic systems.

The dumbbells to be studied consist of two equal h
spheres of diameterd, which are fused so that there is
distancezd, 0<z<1, between their centers. The system
equilibrium structure for densityr is specified by two contro
parameters: the elongation parameterz and the packing frac-
tion w5(p/6)rd3(11 3

2 z2 1
2 z3). The liquid-glass transition

pointswc(z) form a nonmonotonicwc(z)-versus-z curve in
the w-z-control-parameter plane with a maximum forz near
0.43. There is a second transition linewA(z) within the glass
phase w>wc(z). It separates a plastic-glass phase
wc(z)<w,wA(z), where dipole motion is ergodic, from
glass forw.wA(z), where also the molecular axes are
rested in a disordered array. The second linewA(z) termi-
nates atz5zc50.345, wherewA(zc)5wc(zc) ~cf. Fig. 1 of
Ref. @1#!. In the present paper, it shall be shown that there
two scenarios for the liquid-glass transition dynamics foz
.zc . The first one, to be demonstrated forz51.0, deals
with strong steric hindrance for reorientational motion. F
this case, all universal relaxation laws hold within simil
parameters and time intervals as found for the hard-sp
1063-651X/2002/65~5!/051201~14!/$20.00 65 0512
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system~HSS! @2,3#. As a new feature, there appears a ve
large crossover interval for thea process of the constituen
atom’s mean-squared displacement for times between
end of von Schweidler’s power law and the beginning of t
diffusion regime. The other scenario, to be shown forz
50.4, deals with weak steric hindrance for reorientatio
motion. The universal laws for the reorientationala process
are restricted to such narroww2wc(z) intervals that they are
practically irrelevant for the interpretation of data obtain
by molecular-dynamics simulations or by presently us
spectrometers.

The paper is organized as follows. In Sec. II A, the MC
equations of motion for the coherent and incoherent den
correlation functions for the HDS are listed. Section II
contains known universal laws for the MCT glass transitio
Section III presents the results for representative dens
fluctuation correlators~Sec. III A!, for the dipole dynamics
~Sec. III B!, for the mean-squared displacements~Sec. III C!,
and for thea-relaxation scales~Sec. III D!. The findings are
summarized in Sec. IV.

II. MCT EQUATIONS FOR THE HDS

A. Equations of motion for the density correlators

In this subsection, the basic equations for the system
symmetric hard dumbbells are noted. They have been
rived in Ref.@1#, and their solutions underlie all results to b
discussed in the present paper.

If rW i
a , a5A or B, denote the interaction-site centers

the i th AB dumbbell molecule, the interaction-site-dens
fluctuations for wave vectorqW readrqW

a
5( iexp(iqW•rWi

a). Simi-

larly, the tagged-molecule-density fluctuations readrqW ,s
a

5exp(iqW•rWs
a) with rWs

a denoting the interaction-site positions o
the tagged molecule. It is convenient to transform to to
number densitiesrqW

N
5(rqW

A
1rqW

B)/A2 and ‘‘charge’’ densities

rqW
Z
5(rqW

A
2rqW

B)/A2. Similar definitions are used for th
tagged-molecule densities. The top-down symmetry of
©2002 The American Physical Society01-1
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molecules implies vanishing cross correlatio
^rqW

N(t)* rqW
Z(0)&5^rqW ,s

N (t)* rqW ,s
Z (0)&50 and also the identity

^rqW
Z(t)* rqW

Z(0)&/^urqW
Zu2&5^rqW ,s

Z (t)* rqW ,s
Z (0)&/^urqW ,s

Z u2&. There
is only one independent coherent density correlator, wh
shall be used as normalized function

fq
N~ t !5^rqW

N
~ t !* rqW

N
~0!&/^urqW

Nu2&. ~1!

There are two incoherent density correlators

fq,s
x ~ t !5^rqW ,s

x
~ t !* rqW ,s

x
~0!&/^urqW ,s

x u2&, x5N,Z. ~2!

Because of rotational invariance, the density correlat
depend on the wave-vector modulusq5uqW u only.
The short-time asymptotics of the correlators read:fq

N(t)
512 1

2 (Vq
Nt)21O(utu3) and fq,s

x (t)512 1
2 (Vq,s

x t)2

1O(utu3). The characteristic frequencies are given by
formulas: (Vq

N)25q2$vT
2@11 j 0(qzd)#1(vR

2z2d2/6)@1
2 j 0(qzd)2 j 2(qzd)#%/Sq

N and (Vq,s
x )25q2$vT

2@1
6 j 0(qzd)#1(vR

2z2d2/6)@17 j 0(qzd)7 j 2(qzd)#%/wq
x for x

5N,Z. Here j l denotes the spherical Bessel function f
index l , Sq

N abbreviates the total-density structure fact
and wq

x516 j 0(qzd) for x5N,Z are the intramolecula
structure factors. Furthermore,vT5AkBT/2m denotes the
thermal velocity for translation of the molecule of atom
massesm at temperatureT, andvR5(2/zd)vT is the thermal
velocity for rotations. The Zwanzig-Mori equations of m
tion @4# for the specified correlation functions are:

] t
2fq

N~ t !1~Vq
N!2fq

N~ t !

1~Vq
N!2E

0

t

dt8mq
N~ t2t8!] t8fq

N~ t8!50, ~3!

] t
2fq,s

x ~ t !1~Vq,s
x !2fq,s

x ~ t !

1~Vq,s
x !2E

0

t

dt8mq,s
x ~ t2t8!] t8fq,s

x ~ t8!50, x5N,Z.

~4!

All complications of the dynamics of the many-particle pro
lem are hidden in the relaxation kernelsmq

N(t) andmq,s
x (t).

Within MCT, the relaxation kernelmq
N(t) is expressed as

functional of the density correlators:

mq
N~ t !5F q

N@fN~ t !#. ~5a!

The mode-coupling functional reads F q
N@ f̃ #

5 1
2 *dkWVN(qW ;kW ,pW ) f̃ k f̃ p where kW1pW 5qW , and the positive

coupling vertices are given by the densityr, the structure
factor Sq

N , and the direct correlation functioncq
N @cf. Eq.

~20b! of Ref. @1##. Wave-vector integrals are converted in
discrete sums by introducing some upper cutoffq* and using
a grid of M equally spaced values for the modulus:qd
5h/2,3h/2, . . . ,(q* d2h/2). Thus,q can be considered as
label for an array ofM values. Equation~3! then represents a
set ofM equations that are coupled by the polynomial
05120
h
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e
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F q
N@ f̃ #5(

k,p
Vq,kpf̃ k f̃ p . ~5b!

It is an elementary task to express theM3 positive coeffi-
cientsVq,kp in terms of theVN(qW ;kW ,pW ) @cf. Eq. ~7! of Ref.
@2##. Similarly, one derives functionals for the kernels for t
tagged-molecule functions:

mq,s
x 5Fq,s

x @fs
x~ t !,fN~ t !#, x5N,Z. ~6a!

Again, the functionalsFq,s
x are given in terms of the equilib

rium structure functions@cf. Eq. ~23! of Ref. @1#!. After the
discretization, the mode-coupling polynomial has the form

Fq,s
x @ f̃ s

x , f̃ #5(
k,p

Vq,kp
x f̃ k,s

x f̃ p , x5N,Z. ~6b!

The following work is done for a cutoffq* d540 and
M5100 wave-vector moduli. The structure factors a
evaluated within the reference-interaction-site-model the
@4–6#. In Ref. @1#, the details of the static correlation func
tions have been discussed. Equations~3! and ~5! are closed
nonlinear integrodifferential equations to calculate theM cor-
relatorsfq

N(t). Using these correlators as input, Eqs.~4! and
~6! are closed equations to evaluate theM correlatorsfq,s

x (t)
for x5N andZ. The mathematical structure of Eqs.~3! and
~5! is identical to that discussed earlier for the density co
elators of the HSS@2#. The differences are merely the value
of the frequenciesVq

N and the values for the coupling con
stantsVq,kp . A similar statement holds for Eqs.~4! and ~6!,
which are the analogues of the equations for the motion o
sphere in the HSS@3#. Therefore, all general results dis
cussed previously@2,3# hold for the present theory as well.

In the rest of the paper, the diameter of the constitu
atoms shall be chosen as unit of length,d51, and the unit of
time is chosen so thatvT51.

B. Universal laws

This subsection compiles the universal laws for the d
namics near the liquid-glass transition. They will be used
Sec. III to analyze the numerical solutions of the equations
motion. The derivation of these laws is discussed comp
hensively in Refs.@2# and @3#, where also the earlier litera
ture on this subject is cited.

From the mode-coupling functional in Eq.~5b!, one cal-
culates anM-by-M matrix Cqk5$]F q

N@ f N#/] f k
N%(12 f k

N)2.
Here f k

N5fk
N(t→`) denote the nonergodicity paramete

for the density fluctuations of the glass states. This ma
has a nondegenerate maximum eigenvalueE<1. The transi-
tion is characterized byEc51. Here and in the following, the
superscriptc indicates that the quantity is evaluated forw

5wc(z). Let e and ê denote the right and left eigenvector
respectively, at the critical points:(kCqk

c ek5eq , (qêqCqk
c

5êk . The eigenvectors are fixed uniquely by requiringeq

.0, êq.0, (qêqeq51, and(qêq(12 f q
Nc)eqeq51. These

eigenvectors are obtained as a byproduct of the nume
determination ofwc(z) described in Ref.@1#. They are used
1-2
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STRUCTURAL RELAXATION IN A SYSTEM OF . . . PHYSICAL REVIEW E 65 051201
to evaluate the critical amplitude

hq
N5~12 f q

Nc!2eq , ~7!

and the exponent parameterl, 1/2<l,1,

l5
1

2 (
q,k,p

êq$]
2F q

Nc@ f Nc#/] f k
Nc] f p

Nc%hk
Nhp

N . ~8!

Furthermore, a smooth functions of the control parameter
z andw is defined by

s5(
q

êq$F q
N@ f Nc#2F q

Nc@ f Nc#%. ~9a!

In a leading expansion for smallw2wc(z), one can write

s5Ce, e5@w2wc~z!#/wc~z!. ~9b!

Glass states are characterized bys.0, liquid states bys
,0, and s50 specifies the transition. The nonergodic
parameter exhibits a square-root singularity. In a leadi
order expansion for smalle, one gets

f q
N5 f q

Nc1hq
NAs/~12l!, s.0, s→0. ~10!

At the transition, the correlator exhibits a power-law dec
that is specified by the critical exponenta, 0,a,1/2. In a
leading-order expansion in (1/t)a, one gets

fq
N~ t !5 f q

Nc1hq
N~ t0 /t !a, s50, ~ t/t0!→`. ~11!

Here, t0 is a time scale for the transient dynamics. The e
ponent a is determined from the equationG(12a)2/G(1
22a)5l, whereG denotes the gamma function.

Let us consider the correlator fY(t)
5^Y(t)* Y(0)&/^uYu2& of some variableY coupling to the
density fluctuations. Its nonergodicity parameterf Y5fY

(t→`) obeys an equation analogous to Eq.~10!: f Y5 f Y
c

1hYAs/(12l)1O(s). The critical nonergodicity param
eter f Y

c .0 and the critical amplitudehY.0 are equilibrium
quantities to be calculated from the relevant mode-coup
functionals at the critical pointw5wc(z). If Y5rqW ,s

x , the
correlatorfY(t) refers to the tagged-molecule-density flu
tuations, fq,s

x (t). Their nonergodicity parametersf Y5 f q,s
x

have been discussed in Ref.@1#, and the explicit formulas for
the evaluation ofhY5hq,s

x can be inferred from Ref.@3#. For
small values ofe, there is a large time interval, wherefY(t)
is close tof Y

c . Solving the equations of motion asympto
cally for this plateau regime, one gets in leading order in
small quantitiesfY(t)2 f Y

c the factorization theorem:

fY~ t !2 f Y
c 5hYG~ t !. ~12!

The functionG(t) is the same for all variablesY. It describes
the complete dependence on time and on control param
via the first scaling law:

G~ t !5Ausug6~ t/ts!, s:0. ~13!
05120
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Here

ts5t0 /usud, d51/2a, ~14!

is the first critical time scale. The master functionsg6( t̂ ) are
determined byl; they can easily be evaluated numerica
@7#. One getsg6( t̂→0)51/ t̂ a, so that Eq.~11! for Y5rqW

N is
reproduced for fixed larget and s tending to zero. Since
g1( t̂→`)51/A12l, also Eq.~10! is reproduced.

One finds for the large rescaled timet̂ : g2( t̂→`)
52Bt̂b1O(1/t̂ b). The anomalous exponentb, 0,b<1,
which is called the von Schweidler exponent, is to be cal
lated froml via the equationG(11b)2/G(112b)5l. The
constantB is of order unity, and is also fixed byl @7#. Sub-
stituting this result into Eqs.~12! and ~13!, one obtains von
Schweidler’s law for the decay of the liquid correlator belo
the plateauf Y

c :

fY~ t !5 f Y
c 2hY~ t/ts8 !b, ts!t, s→20. ~15!

The control-parameter dependence is given via the sec
critical time scalets8 :

ts85t0B21/b/usug, g5~1/2a!1~1/2b!. ~16!

The leading corrections to the preceding formulas for fix
t̂5t/ts are proportional tousu. They are specified by two
correction amplitudes and additional scaling functio
h6(t/ts) @2#. The dynamical process described by the cit
results is calledb process. Theb correlatorG(t) describes
in leading order the decay of the correlator towards the p
teau valuef Y

c within the intervalt0!t!ts . The glass cor-
relators arrest atf Y for t@ts . In the limit s→20, all cor-
relators cross their plateauf Y

c at the same timetb , given by

tb5 t̂2ts . ~17!

Here, the numbert̂2 is fixed byl via g2( t̂2)50.
The decay offY(t) below the plateauf Y

c is called thea
process for variableY. For this process, there holds the se
ond scaling law in leading order fors→20:

fY~ t !5f̃Y~ t̃ !, t̃ 5t/ts8 , ts!t, ~18!

which is also referred to as the superposition principle. T
control-parameter-independent shape functionf̃Y( t̃ ) is to be
evaluated from the mode-coupling functionals at the criti
point. For short rescaled timest̃ , one gets f̃Y( t̃ )5 f Y

c

2hYt̃ b1O( t̃ 2b), so that Eq.~15! is reproduced. The range
of applicability of the first and the second scaling laws ov
lap; both scaling laws yield von Schweidler’s law forts!t
!ts8 .

The superposition principle implies coupling of th
a-relaxation time scales or relaxation rates of all the va
ables in the following sense. Let us characterize the lo
time decay offY(t) in the liquid by some timeta

Y . For
example, as is occasionally done in analyzing molecu
dynamics simulation data, it may be defined as the cente
1-3
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the a process, i.e., as the time at which the correlator
decayed to 50% of its plateau value:

fY~ta
Y!5 f Y

c /2. ~19!

This time diverges upon approaching the glass transition
the leading asymptotic limit fors→20, one finds ta

Y

5CYts8 . Here, the constantCY is defined byf̃Y(CY)5 f Y
c /2.

All times or rates are proportional to each other, and follow
power law specified by the exponentg defined in Eq.~16!:

1/ta
Y5GYueug. ~20!

The constants of proportionalityCY or GY depend on the
variableY and on the precise convention for the definition
ta

Y , such as Eq.~19!. All the time scales or rates are couple
in the sense that the ratioCY /CY8 or GY /GY8 for two differ-
ent variablesY and Y8 becomes independent of the contr
parameters in the limits→20.

Figure 1 shows that for large elongations of the m
ecules, sayz.0.6, and for very small elongations, sa
z,0.2, the exponent parameterl is close to the value
0.73660.003 for the HSS (z50). For z;zc , the two con-
tributions to the structure-factor peak for angular-moment
indicesl 50 andl 52 are of equal importance@1#. For such
elongations,l increases considerably. Unfortunately, Eq.~8!
is so involved that we cannot trace back the increase ofl to
the underlying variations of the structure factor.

The accurate determination of the time scalet0 is cumber-
some. It is given by the constant plateau value of the fu
tion C(t)5$@fq

Nc(t)2 f q
Nc#/hq

N%1/at within the time interval
where the leading-order Eq.~11! is valid. The leading cor-
rections to this law vary proportional to (t0 /t)2a and cause
deviations from the plateau at small times. The unavoida
errors in the determination of the critical valuewc(z) cause
sÞ0 in Eq. ~9b!. Thus,C(t) increases proportional tot or
2t for t→` if s.0 or s,0, respectively. For example, t
determinet0 for z51.0 with an error estimated to be small
than 3%, we have fixedwc(z) with nine relevant digits. The
plateau regime ofC(t) is largest forq59.8, wheref q

Nc has
an intermediate value; it extends fromt;104 to t;109. We
have checked that results forq53.0, 7.4, 13.0, and 16.2
lead to the samet0 within the specified error. A similar state
ment holds for the determination oft0 for other elongations.

Table I compiles the parameters characterizing the uni
sal formulas for the three elongations to be considered.

III. RESULTS FOR THE STRUCTURAL RELAXATION

A. Density correlators

Figures 2 and 3 demonstrate the coherent density cor
tors fq

N(t) and the tagged-molecule correlation functio
fq,s

N (t) and fq,s
Z (t) near the liquid-glass transition for th

elongationsz50.4 and 1.0, respectively. The results are
two representative wave numbersq: the wave numberq
'7.0 is close to the first peak, andq'9.8 is near the first
minimum of Sq

N ~cf. Fig. 2 of Ref.@1#!. The oscillatory tran-
sient dynamics occurs within the short-time windowt,1.
05120
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The control-parameter sensitive glassy dynamics occurs
longer times for packing fractionsw nearwc . At the transi-
tion point w5wc , the correlators decrease in a stretch
manner towards the plateau values (f q

Nc , f q,s
Nc , or f q,s

Zc ! as
shown by the dotted lines. Increasingw abovewc , the long-
time limits increase, as shown for the coherent correlat
fq

N(t) for q59.8. Decreasingw below wc , the correlators
cross their plateaus at some timetb , and then decay toward
zero. For smalluw2wcu, tb is given by Eq.~17! for all the
correlators. The decay from the plateau to zero is called
a process. It is characterized, e.g., by thea-time scaleta
defined as in Eq.~19! for each correlator. Thus, upon de
creasingwc2w towards zero, the time scalestb andta in-
crease towards infinity proportional tots and ts8 , respec-
tively. The two-step-relaxation scenario emerges, because
ratio of the scalesta /tb increases as well. Figures 2 and
exemplify the standard MCT-bifurcation scenario. For sm
uw2wcu, the results can be described in terms of scaling la
mentioned in Sec. II B. This was demonstrated compreh
sively in Refs.@2# and @3# for the HSS, and the discussio
shall not be repeated here.

For z51.0 andq>5, the plateaus for the tagged mo
ecule’s total-density and charge-density fluctuations are v
close to each other:f q,s

Nc' f q,s
Zc ~cf. Figs. 12 and 13 of Ref.

@1#!. Figures 3~c! and 3~d! demonstrate that also the dynam
ics is nearly the same,fq,s

N (t)'fq,s
Z (t). This means that for

qz>5 and for strong steric hindrance, the cross correlati
Fq,s

AB(t) are very small. The reason is that the intramolecu

FIG. 1. Exponent parameterl as function of the elongationz.
The arrow indicates the critical elongationzc50.345 separating the
two glass phases. The dashed horizontal line marks the valul
50.736 for the hard-sphere system.

TABLE I. Parameters characterizing the MCT-liquid-glas
transition dynamics for systems with elongationsz50.0, 0.4,
and 1.0.

z wc C t0 l a b g B t̂2

0.0 0.530 1.54 0.0220 0.736 0.311 0.582 2.46 0.838 0.
0.4 0.675 1.81 0.0123 0.885 0.222 0.330 3.77 2.54 0.
1.0 0.565 1.90 0.0139 0.739 0.310 0.576 2.48 0.857 0.
1-4
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correlation factorsj l (qz/2) are small, and thus interferenc
effects between the density fluctuations of the two interac
sites are suppressed. Coherence effects can be expected
for small wave numbers. For this case, the functions can
understood in terms of their small-q asymptotes. The latte
are determined by the dipole correlator and the mean-squ
displacements@8#, and their results shall be discussed in t
following two subsections.

Figures 2~c! and 2~d! deal with tagged molecule’s correla
tors of weak steric hindrance. In this case, the charge-den
fluctuations behave quite differently from the total dens

FIG. 2. Coherent density correlatorsfq
N(t) @solid lines in~a! and

~b!#, tagged-molecule density correlatorsfq,s
N (t) @solid lines in~c!

and ~d!#, and tagged-molecule charge-density correlatorsfq,s
Z (t)

@dashed lines in~c! and~d!# for the elongationz50.4 as function of
log10 t for two intermediate wave numbersq57.0 and 9.8. The
decay curves at the critical packing fractionwc are shown as dotted
lines and marked byN andZ for the total density and charge densi
correlators, respectively. Glass curves (e.0) are shown only for
fq

N(t) with q59.8 in order to avoid overcrowding of the figure. Th
packing fractions are parametrized bye5(w2wc)/wc56102x,
and x51, 2, 3, 4 are chosen. The dashed-dotted line in~b! is a
Kohlrausch-law fit for thex54 a process:f q

Nc exp@2(t/t)b# with
b50.40. The filled circles and squares mark the characteristic ti
ts and ts8 , respectively, defined in Eqs.~14! and ~16! for x
51, 2, 3, and 4. Here and in the following figures, the diamete
the constituent atoms is chosen as the unit of length,d51, and the
unit of time is chosen so thatvT51.
05120
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fluctuations. The most important origin of this difference
the reduction of the mode-coupling vertex in Eq.~6b! for x
5Z relative to the one forx5N. For small elongations, the
effective potentials from the surroundings for the tagg
molecule’s reorientation are small. Therefore,f q,s

Zc decreases
strongly relative tof q,s

Nc for z decreasing towardszc ~cf. Fig.
13 of Ref. @1#!. For z,zc , the charge-density fluctuation
relax to zero as in a normal liquid. This implies, as precur
phenomenon, that thea-time scaleta

sZ of the charge-density
fluctuations shortens relative to the scaleta

sN for the total
density fluctuations. Thus, the differences betweenfq,s

N (t)
andfq,s

Z (t) for small z shown in Figs. 2~c! and 2~d! are due
to disturbances of the standard transition scenario by
nearby type-A transition from a normal glass to a plast
glass.

The stretching of the relaxation process is much m
pronounced for thez50.4 system than for thez51.0 sys-
tem. The wave vectorsq57.0 and 7.4 refer to the structure
factor peak position forz50.4 and 1.0, respectively, and th
corresponding plateau valuesf q

Nc are almost the same. Figur
2~a! demonstrates that thez50.4 correlator fore521024

requires a time increase by 2.3 decades for the decay f
90% to 10% of the plateau valuef q

Nc . The corresponding
decay interval for thez51.0 correlator is 1.7 decades, a

es

f

FIG. 3. Results as in Fig. 2, but for the elongationz51.0 for
wave numbersq57.4 and 9.8, and a Kohlrausch exponentb
50.68.
1-5
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shown in Fig. 3~a!. Thus, the specified time interval for thea
process is four times larger for the small elongation than
the large one. Often, stretching is quantified by the expon
bY of the Kohlrausch-law fit for thea process:fY(t>tb)
}exp@2(t/ta8)bY#. Such fits are shown by the dashed-dott
lines for fq

N(t) for q59.8 ande521024 in Figs. 2~b! and
3~b!. For z50.4 andz51.0, the fit exponentsb are 0.40 and
0.68, respectively, quantifying the larger stretching for t
smaller elongation. The transient dynamics for intermed
and largeq is not very sensitive to changes ofz. Both Figs.
2~b! and 3~b! for q59.8 demonstrate an initial decay of th
correlators by about 20% if the time increases up tot'0.1.
This similarity is also reflected by the similarity of the m
croscopic time scalet0 for the two elongations listed in Tabl
I. However, fore521023 or 21024, the correlatorsfq,s

N (t)
require about 100 times longer timest for z50.4 than for
z51.0 to decay to zero. All the enhanced stretching featu
reflect the fact that the anomalous exponentsa and b are
smaller forz50.4 than forz51.0 ~cf. Table I!.

A comment concerning the accuracy of the numerical
lutions of the equations of motion might be in order. T
primary work consists of calculatingfq

N(t) from Eqs. ~3!
and ~5! on a grid of times. In the work reported here, t
initial part of the grid consists of 100 values with the equ
step sizedt51025. This interval is then extended by succe
sively doubling its length and the step sizedt. By inspection
one checks ufq

N(t)u<1 so that the Laplace transform
fq

N(z)5 i *0
`dt exp(izt)fq

N(t) exists as analytic function fo
Im z.0. One checks fore,0 that fq

N(t) decreases fas
enough for large t so that fq

N(v)5 limh→0fq
N(v1 ih)

5fq
N8(v)1 ifq

N9(v) exists with a smooth reactive pa

fq
N8(v) and a smooth non-negative spectrumfq

N9(v). The
Fourier integrals are evaluated with a simplified Filon pro
dure @9#. The solid lines in Fig. 4 show results for the su

ceptibility spectrumxq
N9(v)5vfq

N9(v) for z51.0, q57.4,
and e5@w2wc(z)#/wc(z)52102x with x54,5, ande50.
The correlators are used to evaluate the polynomialsmq

N(t)
5(k,pVq,kpfk

N(t)fp
N(t) and from here one getsmq

N(v)

5mq
N8(v)1 imq

N9(v). Equations~3! and ~5! are solved if

FIG. 4. Double logarithmic presentation of susceptibility spec

xq
N9(v) as function of frequencyv for the density fluctuations dis

cussed in Fig. 3~a! ~see text!.
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fq
N(v) agrees with f̃q

N(v)521/$v2(Vq
N)2/@v

1(Vq
N)2mq

N(v)#%. Because of causality, it suffices to che

f̃q
N9(v)5fq

N9(v). The functionsvf̃q
N9(v) are shown as

dotted lines in Fig. 4. The desired identity is verified b
inspection within the accuracy better than that of the dra
ing. Corresponding statements hold for the other functio
such asfq,s

N,Z(t). The evaluation offq
N(t) on the discrete se

of times from Eqs.~3! and~5! is done by an extension of th
method discussed in Ref.@10#. But it should be noticed tha
the described proof of the accuracy of the solution does
require an account of how the solutionfq

N(t) has been ob-
tained.

B. Dipole correlators

The dipole correlator of the tagged molecule is defined

C1,s~ t !5^eW s~ t !•eW s~0!&. ~21!

Here, the unit vectoreW s denotes the tagged molecule’s ax
C1,s(t) is the reorientational-correlation function for angula
momentum indexl 51. For a similar reasoning as present
in the paragraph preceding Eq.~1!, it is identical to the co-
herent reorientational function. It can be obtained as
zero-wave-vector limit of the charge correlator:fq,s

Z (t)
5C1,s(t)1O(q2) @8#. C1,s(t) is evaluated most efficiently a
follows. One carries out theq50 limit in Eq. ~4! for x5Z to
get the exact Zwanzig-Mori equation

] t
2C1,s~ t !12vR

2C1,s~ t !12vR
2E

0

t

dt8ms
Z~ t2t8!] t8C1,s~ t8!50,

~22!

to be solved with the initial conditionC1,s(t)512(vRt)2

1O(utu3). The kernel is theq50 limit of the relaxation ker-
nel mq,s

Z (t) from Eqs.~6!:

ms
Z~ t !5~z2/72p2!E

0

`

dk k4rSk
N~ck

N!2wk
Zfk,s

Z ~ t !fk
N~ t !.

~23!

The integral is discretized to a sum overM terms as ex-
plained in connection with Eq.~5b!. Substituting the correla-
tors fk,s

Z (t) andfk
N(t), the kernelms

Z(t) is determined. The
remaining linear integrodifferential equation~22! is inte-
grated to yield the desired result forC1,s(t). Equation~23!
yields directly the nonergodicity parameter of the kern
ms

Z5ms
Z(t→`), as integral over the products off k,s

Z f k
N .

From ms
Z , one derives the probability for the arrest of th

dipole f 1,s5C1,s(t→`)5ms
Z/(11ms

Z). This number can
also be obtained asf 1,s5 limq→0f q,s

Z . The critical valuef 1,s
c

and the corresponding critical amplitudeh1,s5 limq→0hq,s
Z

were discussed in Fig. 13 of Ref.@1#.
The dipole correlatorsC1,s(t) for the elongationsz50.4

and 1.0 are shown in Fig. 5 for the critical pointw5wc and
for two liquid states. The time scalestb

1,s andta
1,s character-

izing the center ofb- anda-relaxation processes, defined b
C1,s(tb

1,s)5 f 1,s
c and C1,s(ta

1,s)5 f 1,s
c /2, are marked by open

a

1-6
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circles and squares, respectively. The curves do not cle
exhibit the typical two-step-relaxation scenario. Forz51.0,
the critical plateau is so large,f 1,s

c 50.97, that only 3% of the
decay are left for the transient motion and the critical rel
ation. The results forz50.4 are influenced by the nearb
type-A transition. Let us consider theb-relaxation process
for the dipole dynamics. The factorization theorem, Eq.~12!,
specializes to

C1,s~ t !5 f 1,s
c 1h1,sG~ t !. ~24!

This means that the rescaled correlatorsĈ1,s(t)5@C1,s(t)
2 f 1,s

c #/h1,s are given by theb-correlatorG(t). The latter
obeys the scaling law, specified by Eqs.~13! and ~14!. For
fixed rescaled time,t̂5t/ts , the cited formulas deal with the
results correctly up to orderAs. The leading corrections ar
of order usu, and they explain the range of validity of th
leading results@2#. Figure 6 demonstrates the test of t
b-scaling law. On a 10% accuracy level, the leading-or
asymptotic law accounts for 12% of the decay ofC1,s(t)
around the plateau forz50.4, while it describes only 1.4%
of the decay forz51.0. The latter feature is due to the larg
critical nonergodicity parameterf 1,s

c , and hence, due to th
small critical amplitudeh1,s , for the strong steric hindrance
The decay interval described by the leading-order asymp
for z50.4 is indicated in Fig. 5 by the vertical line. Fore
520.001, the corresponding dynamical window exten
from aboutt51.13103 to about 2.43104, while it extends

FIG. 5. Dipole correlatorsC1,s(t) for two elongationsz50.4
~upper panel! and 1.0~lower panel!. The correlators at the critica
packing fractionw5wc are shown as dotted lines marked withc.
The plateauf 1,s

c for each elongation is marked by a horizontal lin
The distance parameters are chosen ase5(w2wc)/wc52102x

with x52 ~faster decay! andx53 ~slower decay!. The filled circles
and squares mark the corresponding time scalests and ts8 , respec-
tively, defined in Eqs.~14! and ~16!. The open circles and square
on the curves mark the characteristic time scalestb

1,s and ta
1,s de-

fined by C1,s(tb
1,s)5 f 1,s

c and C1,s(ta
1,s)5 f 1,s

c /2, respectively. The
vertical line forz50.4 indicates the decay interval described by t
asymptotic formulas for theb process~see text!.
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from about t520 to t570 for e520.01. This discussion
requires a reservation. The corrections to the scaling res
can lead to an offset of the plateau@2#. One recognizes tha
incorporation of such offset would improve the agreem
between numerical solution and its asymptotic description
the upper panel of Fig. 6. The mentioned windows are
tained only after a plateau offset had been eliminated.

The a-relaxation scaling law for the dipole correlato
reads according to Eq.~18!:

C1,s~ t !5C̃1,s~ t̃ !, t̃ 5t/ts8 , usu!1, ts!t. ~25!

Thee-independent master functionC̃1,s is determined by the
q50 limit of the mode-coupling functionalFq,s

Z given in Eq.
~6b! at the critical point. Thea-time scaleta

1,s can be defined

by C1,s(ta
1,s)5 f 1,s

c /2, and shall be written asta
1,s5 t̃ 1,sts8 .

Here, thea-scale factort̃ 1,s is defined in terms of the maste
function asC̃1,s( t̃ 1,s)5 f 1,s

c /2. The scaling law implies that a
representation ofC1,s(t) as a function of the rescaled tim
t/ta

1,s should superimpose correlators for different distan

parameterse on the common curveC̃1,s( t̃ / t̃ 1,s). Asymptotic
validity means that the ln(t/ta

1,s) interval, where the scaling
law is obeyed, expands to an arbitrary size fore→0.

The lower panel of Fig. 7 demonstrates that the descri
scenario for the evolution of thea process is valid for the
elongationz51.0. On the other hand, the upper panel sho
that the dipole correlators forz50.4 exhibit the superposi
tion principle only for ueu<1024. In particular, the plateau
region emerges only for these extremely small values of
distance parameterueu. As discussed in Ref.@2#, this is be-

FIG. 6. Rescaled dipole correlatorsĈ1,s(t)5@C1,s(t)
2 f 1,s

c #/h1,s ~full lines! for two distance parameterse5(w
2wc)/wc52102x with x52 ~faster decay! and x53 ~slower de-
cay!. The dashed lines show theb correlatorsG(t) from Eq. ~13!
for the exponentsl50.885 and 0.739 for the elongationsz50.4
and 1.0, respectively~cf. Table I!. Here f 1,s

c 50.69 and 0.97, and
h1,s51.0 and 0.056 forz50.4 and 1.0, respectively.
1-7
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cause of the correction to the leading-order asymptotic l
which reads for not too large values of rescaled timet̃ :

C1,s~ t !5C̃1,s~ t̃ !1usuB1h1,s / t̃ b, ~26!

with B15 1
2 /@G(12b)G(11b)2l#. Therefore, the correc

tion is larger, the larger the productB1h1,s is. As discussed in
connection with Fig. 13 of Ref.@1#, the size of the critical
amplitudeh1,s becomes very large near the critical elong
tion zc . In addition, B1 increases withl. One getsB1
51.56 and 0.45 forz50.4 and 1.0, respectively. Thus, th
anomaly shown in the upper panel of Fig. 7 is due to
large correction to the leading-order asymptotic law, cau
by the precursor effect of the nearby type-A transition and by
the large value forl. The descriptions of correlators by th
first and second scaling laws overlap fort'ts . Therefore,
the anomaly forz50.4 exhibited in Fig. 7 can also be ex
plained as the large percentage of the decay ofC1,s(t) de-
scribed by theb-scaling law~cf. Fig. 5!.

C. Mean-squared displacements

There are two mean-squared displacements~MSD! to be
considered for the symmetric dumbbell. One refers to
position of the constituent atom of the tagged moleculerWs

A ,

and the other to the molecule’s centerrWs
C5(rWs

A1rWs
B)/2:

DA,C~ t !5^@rWs
A,C~ t !2rWs

A,C~0!#2&/6. ~27!

Here, a factor 6 is introduced in the definition for later co
venience. Since there is the relation@8#

DA~ t !5DC~ t !1~z2/12!@12C1,s~ t !#, ~28!

FIG. 7. Dipole correlatorsC1,s(t) for the elongationsz50.4
~upper panel! and 1.0~lower panel! for various distance paramete
e5(w2wc)/wc52102x with x specified in the figure, presented a
function of log10(t/ta

1,s). Thea-relaxation-time scaleta
1,s is defined

by C1,s(ta
1)5 f 1,s

c /2. The horizontal lines indicate the plateausf 1,s
c .
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it is sufficient to calculateDC(t). This function is determined
by the small-q limit of the density correlator:fq,s

N (t)51
2q2DC(t)1O(q4) @8#. The small-q expansion of Eq.~4! for
x5N leads to the exact equation of motion

] t
2DC~ t !2vT

21vT
2E

0

t

dt8ms
N~ t2t8!] t8DC~ t8!50, ~29!

to be solved with the initial behaviorDC(t)5(1/2)(vTt)2

1O(utu3). The kernel is obtained as theq50 limit of Eq.
~6a! for x5N:

ms
N~ t !5~1/6p2!E

0

`

dk k4rSk
N~ck

N!2wk
Nfk,s

N ~ t !fk
N~ t !.

~30!

After the discretization of the integral as explained abo
and substituting the results for the two density correlato
the kernelms

N(t) is determined. Then, the linear equatio
~29! is integrated to yield the MSD of the molecule’s cent

The long-time behavior of the MSD depends sensitiv
on control parameters near the transition singularity, a
therefore it is well suited to study the glass-transition prec
sors. In liquid states, one obtains from Eq.~29! the long-time
asymptote: limt→`DC(t)/t5D. HereD is the diffusion con-
stant, and it is expressed as the inverse of the zero-frequ
spectrum of the relaxation kernel:D51/*0

`dt ms
N(t). In

glass states, the tagged molecule’s total density fluctuat
arrest for long times:fq,s

N (t→`)5 f q,s
N .0. The Lamb-

Mössbauer factorf q,s
N approaches unity forq tending to zero,

and a localization length,r C , of the center characterizes th
width of the f q,s

N -versus-q curve: f q,s
N 512(qrC)21O(q4).

One gets limt→`DC(t)5r C
2 . Using Eq.~29!, one can express

r C
2 as inverse of the long-time limit of the relaxation kern

from Eq. ~30!: r C
2 51/ms

N(t→`).
The ideal liquid-glass transition implies a transition fro

a regime with molecule’s diffusion forw,wc to one with
molecule’s localization forw>wc . The former is character
ized by D.0 and 1/r C50, and the latter byD50 and
1/r C.0. The subtleties of the glass-transition dynamics
cur outside the transient regime. Figure 8 exhibits the M
of the molecule’s center for various packing fractions ne
the transition. For very short times, sayt<t0, interaction
effects are unimportant and limt→0DC(t)/t25vT

2/2 reflects
ballistic motion. For times larger thant0, the cage effect
leads to a suppression ofDC(t) below the short-time asymp
tote. For long times in liquid states, the MSD approaches
diffusion asymptote, limt→`DC(t)/t5D, as shown by the
dotted straight lines drawn for the curves with labelsx51
and x54. Upon increasingw towardswc , the diffusivity
decreases towards zero.

The curves withx51 for e.0 in Fig. 8 deal with the
glass statew51.1wc . For this density, there is no obviou
glassy dynamics. Rather,DC(t) has approached its long-tim
limit r C

2 after the oscillations have disappeared fort'1.
Decreasingw towardswc , the softening of the glass man
fests itself by an increase of the localization lengthr C .
At the transition point w5wc , the critical value
1-8
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STRUCTURAL RELAXATION IN A SYSTEM OF . . . PHYSICAL REVIEW E 65 051201
r C
c 50.0587 (0.0497) forz50.4 (1.0) is reached. Substitu

ing Eq. ~10! for f q
N and the analogous formula forf q,s

N to
evaluater C

2 from Eq.~30!, it follows that the glass instability
at wc causes aAs anomaly for the localization length,

r C
2 5~r C

c !22hCAs/~12l!1O~s!, ~31!

where hC59.6631023 (5.1431023) for the elongation
z50.4 (1.0). A corresponding formula holds for the squa
of the localization lengthr A for the constituent atom with
(r C

c )2 replaced by (r A
c )25(r C

c )21(z2/12)(12 f 1,s
c ) and hC

replaced byhA5hC1(z2/12)h1,s according to Eq.~28!. In
Fig. 9, the leading order results forr C

2 and r A
2 are shown as

dashed and dotted lines, respectively. Forz51.0, the data are
described by the square-root law fore<231023. Similar
small intervals for the validity of the leading-order descr
tions have been found for the Debye-Waller factor of t
HSS for small wave vectorq @2#. For z50.4, the range of
validity of the universal formula is reduced to the ev
smaller intervalse,0.531023.

The glass curves fore50.01, shown in Fig. 8 with labe
x52, exhibit a decay between the end of the transient os
lations and the arrest atr C

2 , which is stretched over a tim
interval of about two orders of magnitude. A similar tw
decade interval is needed for the liquid curves (e,0) with
label x52 to reach the critical value (r C

c )2. After crossing
(r C

c )2, two further decades of an upward be

FIG. 8. Double logarithmic presentation of the mean-squa
displacement for the center of massDC(t) for the elongations
z50.4 ~upper panel! and 1.0~lower panel!. The dotted lines with
label c refer to the critical packing fractionwc , and the solid lines
to e5(w2wc)/wc56102x for x51,2,3,4. The straight dashed lin
with slope 2 in each panel exhibits the ballistic asymptote (vTt)2/2.
The straight dotted lines with slope 1 denote the long-time asy
totesDt of the two liquid curves forx51 and 4. The horizonta
lines mark the square of the critical localization lengths (r C

c )2. The
filled circles and squares mark the characteristic timests and ts8 ,
respectively, defined in Eqs.~14! and ~16! for x51,2,3,4.
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log10DC(t)-versus-log10 t variation are exhibited before th
final diffusion asymptote is reached. The stretching is m
enhanced as the system is driven towards the transition p
ueu→0. The indicated slow and stretched time variation o
side the transient regime is the glassy dynamics exhibited
the MSD. Again, the stretching is more pronounced
z50.4 than forz51.0.

The first scaling law deals with the dynamics whe
DC(t)2(r C

c )2 is small. One gets in analogy to Eqs.~12! and
~13!:

DC~ t !5~r C
c !22hCAusug6~ t/ts!, s:0, usu!1,

t@t0 . ~32!

For glass states withs.0, this formula describes the ap
proach towards the arrest atr C

2 5DC(t→`). For liquid states
with s,0, it describes how theDC(t)-versus-t curve crosses
and leaves the plateau (r C

c )2. In particular, one gets von
Schweidler’s law for larget/ts in analogy to Eq.~15!:

DC~ t !5~r C
c !21hC~ t/ts8 !b, s→20, ts!t!ts8 .

~33!

The increase ofDC(t) above the plateau towards the diffu
sion asymptote is thea process of the MSD. In analogy t
Eq. ~18!, there holds the superposition principle

DC~ t !5D̃C~ t̃ !, t̃ 5t/ts8 , usu!1, ts!t. ~34!

In Ref. @11#, it has been discussed in detail how the
leading-order asymptotic results can account quantitativ

d

p-

FIG. 9. Square of the localization lengths for the molecul
centerr C

2 ~circles! and for the constituent atomr A
2 ~squares! for e

5(w2wc)/wc5102n/3, n57,8, . . .,12. The crosses mark the crit
cal values (r C

c )2 and (r A
c )2, respectively. The dashed and dotte

lines are the leading order asymptotic lawsr X
25(r X

c )2

2hXAs/(12l) for X5C andA, respectively.
1-9
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S.-H. CHONG AND W. GÖTZE PHYSICAL REVIEW E65 051201
for the glassy dynamics of the MSD, albeit for the tagg
spherical particle and the dumbbell molecule immersed
the hard-sphere system. Instead of repeating such an e
sive analysis, we shall only show here some representa
examples.

The upper and lower panels of Fig. 10, respectively,
the elongationsz50.4 and 1.0, exhibit such tests of th
scaling-law descriptions for a liquid state that is sufficien
close to the transition point,e521023. Also, the MSD of
the constituent atomDA(t) is considered in these figure
Because of Eq.~28!, the asymptotic laws~32! and ~33! for
DA(t) hold with (r C

c )2 replaced by (r A
c )25(r C

c )21(z2/12)
3(12 f 1,s

c ) and hC replaced byhA5hC1(z2/12)h1,s . The
range of validity of the first-scaling-law description is ind
cated by the open diamonds. One finds that such a rang
nearly the same for bothDC(t) and DA(t), and this holds
irrespective of the molecule’s elongationz. The beginning of
the a process of the MSD, i.e., its initial increase above
plateau, is described by von Schweidler’s law, Eq.~33!. It is
exhibited for t@ts by the dashed lines. Thea process ter-
minates in the diffusion law for long times, exhibited by th
straight dashed-dotted lines. The beginning of the diffus
law is indicated by the filled diamonds for each MSD curv
Thea process follows well the second scaling law, Eq.~34!,
which is presented by the dotted lines. The descriptions
the two scaling laws overlap fort'ts . Together, the two

FIG. 10. Double logarithmic presentation of the mean-squa
displacement for the constituent atomDA(t) and for the center
DC(t) for the elongationsz50.4 ~upper panel! and z51.0 ~lower
panel!. The curveDA(t) is shifted upwards by two decades to avo
overcrowding. The distance parameter ise521023, and the corre-
sponding timests and ts8 are marked by filled circles and square
respectively. The dashed lines are the first-scaling-law results,
~32!. The open diamonds mark the points where the dashed l
differ from the solid ones by 5%. The straight dashed-dotted li
exhibit the diffusion asymptotesDt, and the filled diamonds mark
the position where these differ from the solid lines by 5%. T
dotted lines exhibit the second-scaling-law results, Eq.~34!. The
horizontal lines mark the square of the localization lengths (r A

c )2

and (r C
c )2.
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scaling laws provide a description of the glassy dynamics
the MSD for t*100 andt*10 for z50.4 andz51.0, re-
spectively. Notice that there is a large interval of times o
side the transient regime, say log10 t*20.5, where the struc-
tural relaxation is not described by the first scaling law. T
is a peculiarity of the MSD@11#, which is not found for the
other functions discussed here.

The crossover window from the end of the vo
Schweidler law regime~indicated by the right open dia
monds! to the beginning of the diffusion process~indicated
by the filled diamonds! for the MSD of the center,DC(t), is
about 3 ~2! decades wide forz50.4 (1.0). On the other
hand, the corresponding window for the MSD of the co
stituent atom,DA(t), is larger than that ofDC(t) by a factor
of about 7~13! for z50.4 (1.0). As discussed in Ref.@11#,
this enlarged crossover window forDA(t) is caused by the
rotation-translation coupling, i.e., by the second term on
right-hand side of Eq.~28!. This effect is smaller forz
50.4 because the relaxation of the second term, determ
by that ofC1,s(t), is considerably enhanced due to the nea
type-A transition as discussed in connection with Fig. 5.

Figure 11 exhibits the critical localization lengths of th
molecule’s centerr C

c and of the constituent atomr A
c as func-

tion of the elongationz. There are three distinct regions: on
for small elongations, sayz<0.3, another for large elonga
tions, sayz>0.4, and the crossover region between the
For z<zc , the localization length of the centerr C

c is nearly
constant while that of the constituentr A

c increases rapidly
with z. Both r C

c andr A
c decrease rapidly within the crossov

region, and they decrease only slightly as function of
elongation forz>0.4. The rapid increase ofr A

c for z<zc

can be understood as follows. SinceC1,s(t→`)50 for
z<zc , one gets from the long-time limit of Eq.~28!:r A

c

d

q.
es
s

FIG. 11. Critical localization lengths for the constituent atomr A
c

~solid line! and the centerr C
c ~dashed line! along the liquid-glass-

transition line parametrized by the elongationz. The dotted line
represents the functionA(r C

c )21z2/12 discussed in the text. Th
inset exhibits 12 f 1,s

c as function ofz, wheref 1,s
c 5C1,s(t→`) is the

long-time limit of the dipole correlatorC1,s(t). The arrow indicates
the critical elongationzc50.345.
1-10
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5A(r C
c )21z2/12. The dotted line in Fig. 11 shows this fo

mula with r C
c fixed to the value forz50.0. It explains the

increase ofr A
c for z increasing up tozc . Thus,r A

c increases
because the reorientational dynamics of the molecule’s
is not arrested forz<zc . In this sense, the localization o
molecules with small elongations is primarily caused by t
of the molecule’s center. This is consistent with the res
that the glass transition for systems with small elongation
mainly driven by the arrest of the center-of-mass den
fluctuations@1#. The critical localization lengthr C

c provides
the upper limit forr C characterizing the size of the arrest
structure, and its value 0.07;0.08 for z<zc is consistent
with Lindemann’s melting criterion. The critical localizatio
length of the constituent atomr A

c for z>0.4 has similar val-
ues. This implies that the localization of molecules with lar
elongations is caused by that of the molecule’s constitue
rather than by that of the molecule’s center: the localizat
of the center is subordinate to that of the constituents.
explained in Ref.@1#, angular correlations become more re
evant for the glass transition of systems with large elon
tions. Such angular correlations result in more efficient
calization of the constituent atoms, and this is the reason
the relevance ofr A

c for the localization of molecules with
large elongations. The center localization is reduced by ab
1/A2, as expected for independent motion of the two c
stituents.

D. The a-relaxation scales

The superposition principles for various correlators imp
coupling of thea-relaxation time scales or relaxation rates
described in Sec. II B. This scale coupling ora-scale univer-
sality is demonstrated in Fig. 12 for the rate 1/ta

N of the
coherent total density correlatorfq

N(t) for the wave number
q'7, the rate 1/ta

1,s of the dipole correlatorC1,s(t), and the
diffusion constantD. Here, thea-relaxation times forfq

N(t)
and C1,s(t) are determined by the convention given in E
~19!.

Let us first consider the results forz51.0. Although the
asymptotic behavior is the same for all the quantities, 1/ta

1,s

and D start to deviate visibly from their asymptotic resu
for n54, while 1/ta

N starts to deviate only forn52. The
mentioned a-scale universality holds in the leadin
asymptotic limit for s→20, and the corrections to th
asymptotic predictions are different for different quantitie
Thus, the found feature in the results forz51.0 underlines
the nonuniversality of the deviations. Let us add that
range of validity of the asymptotic-law description is qu
similar to that of the hard-sphere system@2,3#. The results for
z51.0 follow the pattern that has been analyzed theoretic
so far. The results forz50.4 exhibit much more pronounce
deviations from the asymptotic-law predictions: 1/ta

N andD
start to deviate visibly forn57, and the deviation of 1/ta

1,s

starts even forn59. These deviations are due to the corre
tions to thea-scaling law. Their magnitudes are proportion
to the product of the critical amplitudes for each quantity a
the coefficientB1 as noted in Eq.~26!. The critical amplitude
hq

N for z50.4 at the structure-factor-peak position is sligh
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larger than the corresponding result forz51.0 ~cf. Fig. 9 of
Ref. @1#!. In addition,B1 is 3.5 times larger forz50.4 than
for 1.0. This is the reason for the larger deviation of 1/ta

N

found forz50.4 than the one forz51.0, and similarly forD.
The even more pronounced deviation for 1/ta

1,s is due to the
large critical amplitudeh1,s caused by the precursor effect o
the nearby type-A transition, as discussed in connection wi
Fig. 13 of Ref. @1#. Another possible source for the larg
deviations forz50.4 might be due to higher-order glass tra
sition singularities, which can lead to the violation of th
second scaling law, and thus thea-scale universality. The
signature of such singularities is the approach ofl towards
unity, which implies a divergency ofB1.

A remark shall be added concerning the determination
the exponentg entering the power-law behavior for th
a-relaxation time scale or relaxation rate as specified by
~20!. This result is based on the validity of the scaling la
Therefore, one cannot appeal to MCT if one fits power la
for a-relaxation rates for cases where the scaling law is v
lated so strongly as shown in the upper panel of Fig. 7
x<2, i.e., for n<6. Figure 13 demonstrates that, forz
50.4, thea-relaxation rates forueu>1022 can be fitted well
by power laws 1/t}ueug

eff
for an about 1.3-decade variatio

of the distance parameterueu. The used effective exponen
geff52.90 ~2.50; 2.05! describes the variation o
1/ta

N (D; 1/ta
1,s) over 3.5 ~3.3; 2.5! orders of magnitude.

FIG. 12. Double logarithmic presentation of thea-relaxation
rates 1/ta

N ~squares! for the coherent total density correlatorfq
N(t)

at the structure-factor-peak position, 1/ta
1,s ~circles! for the dipole

correlatorC1,s(t), and the diffusion coefficientsD ~diamonds! for
the elongationsz50.4 ~upper panel! and 1.0~lower panel! as func-
tion of the reduced packing fraction (wc2w)/wc5102n/3. The
a-scaling timesta

N and ta
1,s are defined as in Eq.~19!. The solid

lines are the power-law asymptotesGAueug ~see text! with g53.77
and 2.48 forz50.4 and 1.0, respectively. The prefactorsGA have
been chosen so that the solid lines go through the data points
n512.
1-11
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The variable-dependent effective exponentgeff again under-
lines the nonuniversality of the deviations from the scal
law. The quantitiesgeff are mere fit parameters without wel
defined meaning for the discussion of our theory. They
pend on the interval ofueu chosen for the fit.

Another manner for testing the coupling between
scales of two variables, sayY andY8, is provided by a plot of

the ratio ta
Y/ta

Y8 versus the control parameter. Such a p
does not require the knowledge ofwc , nor is it biased by the
choice of some fit interval. This is demonstrated in Fig.
for the ratios formed withta

N or ta
1,s and the scale for the

diffusivity ta
D}1/D. Instead of weaklyw-dependent ratios

expected for the asymptotic law, the figure shows variati
by more than a factor 3. The shown plot suggests power-

fits ta
Y/ta

Y8}(wc2w)g8 as shown by the full line withg8
520.40 and the dashed one withg850.45. The fit expo-
nentsg8 are the differences of the effective exponentsgeff

referring tota
Y andta

Y8 .

IV. CONCLUSIONS

The recently developed MCT for molecular systems h
been applied to calculate the standard correlation funct

FIG. 13. Results as in Fig. 12, but only for a restricted region
the reduced packing fraction,n<6, for the elongationz50.4. The

solid lines here are the power-law fitsGA
effueug

eff
with the effective

power-law exponentsgeff52.90, 2.50, and 2.05 for 1/ta
N , D, and

1/ta
1,s , respectively. The prefactorsGA

eff have been chosen so that th
solid lines go through the data points forn55.
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that demonstrate the evolution of glassy dynamics of a s
metric HDS. The equilibrium structure of this system is d
termined solely by excluded-volume effects, i.e., the slugg
dynamics and the structural arrest are due to steric hindra
for translational and reorientational motions. The phase d
gram demonstrates that there are two scenarios for the liq
glass-transition dynamics: one deals with strong and
other with weak steric hindrance for reorientational moti
@1#.

For the strong-steric-hindrance scenario, as it is obtai
for dumbbells of elongationz exceeding, say, 0.6, the con
stituent atoms are localized in cages of a similar size
found for the simple HSS and for the motion of a sing
dumbbell in the HSS, Fig. 11. The parameterl, which de-
termines the anomalous exponents of the decay laws and
critical time scales, is close to that of the HSS, Fig. 1. T
range of validity of the scaling laws for theb and a pro-
cesses, exemplified in the lower panels of Figs. 6 and
respectively, is similar to what was found for the HSS@2,3#
and for the motion of a hard dumbbell in the HSS@8,11#. The
rotation-translation coupling implies for the mean-squa
displacement of the constituent atom a crossover interval
tween the end of the von Schweidler process and the be
ning of the diffusion process, which is about an order
magnitude larger than for the motion of a sphere in the H
This effect is even more pronounced for the dumbbell liqu
the lower panel of Fig. 10, than for a dumbbell moving in t
HSS @11#. Testing this prediction by a molecular-dynami
simulation would provide valuable information on the re
evance of our theory.

The results of this paper together with the preceding fi
ings on thea peaks for reorientational motion for angula
momentum indexl 51 andl 52 as well as for the elastic
modulus @8# lead to the conclusion that the strong-ster
hindrance scenario explains the qualitative features of
structural relaxation in glass-forming van der Waals syste
such as orthoterphenyl, Salol, or propylene carbonate. T
holds with two reservations. First, the calculated wave-vec
dependence of the Debye-Waller factorf q

N is stronger than

f

FIG. 14. ProductsDta
N ~squares! and Dta

1,s ~circles! for the
a-relaxation scales of thez50.4 liquid shown in Figs. 12 and 13

The full ~dashed! line is a power-law fitG8ueug8 with G8 chosen so
that the line goes through the data point forn55 and g8
520.40 (0.45).
1-12
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that measured by neutron-scattering spectroscopy for ort
erphenyl@12#. It remains to be shown that application of th
theory to molecules more complicated than dumbbells w
lead to a smearing out of the strongq-variations characteris
tic of hard-sphere-like systems. Second, molecules that a
for a measurement of the dipole correlator by dielectric l
spectroscopy carry an electric dipole moment. This lead
long-ranged interactions between the molecules. It rem
to be studied how the incorporation of these interactio
change the results based solely on hard-core interaction

The dipole-susceptibility spectra for a dumbbell wi
large z moving in a HSS@8# obey the scaling proposed b
Dixon et al. @13#. We found this is the case also for th
spectra of the HDS for elongations in the range 0.6,z
&0.8. For z51.0, on the other hand, the spectra for t
high-frequency wing are below the master curve found
Ref. @13#, and forz50.6 they are slightly above. Thus, ou
theory is not consistent with the conjecture that the quo
scaling law holds universally.

Decreasing the elongation, the steric-hindrance effects
reorientations weaken. A new scenario emerges for su
ciently smallz for two reasons. First, there is a critical elo
gation zc separating a normal glass from a plastic one. F
eA5(z2zc)/zc approaching zero, the critical amplitude
hq,s

Z , in particularh1,s5 limq→0hq,s
Z , diverge. This transition

is due to the top-down symmetry of the molecules. But
asymptotic formulas for smalleA remain valid also for nearly
symmetric molecules; one merely has to replaceueAu by
AeA

21d2, where d is a number quantifying the symmetr
breaking@14,15#. The precursor phenomena of the approa
of z towardszc have been discussed before for the motion
a single dumbbell in a HSS@8#. The most obvious one is th
speeding up of thea process for reorientations relative
that for density fluctuations, as demonstrated in Fig. 2. T
second reason is the strong increase of the exponent pa
eter l for z;zc , Fig. 1. Forl51, there occurs a higher
order glass transition singularity, where the asymptotic
pansions of the MCT solutions are utterly different fro
those cited in Sec. II B. The approach ofl towards unity
leads to a shrinking of the range of validity of the discuss
universal formulas. The corrections diverge, as was
cussed in connection with the coefficientB1 in Eq. ~26!. This
equation shows that the increase of the productB1h1,s leads
to an increasing violation of the superposition principle
the a process, as shown in the upper panel of Fig. 7. A
result, thea-relaxation time approaches the universal la
Eq. ~20!, only for very small distance parameterse5@w
2wc(z)#/wc(z). For z51.0, the power-law regime is
reached forueu51021, while ueu has to be smaller than 1022

for the approach to the asymptotic law forz50.4, Fig. 12. A
decrease ofueu by an order of magnitude is equivalent to a
increase of the relaxation time by more than a factor of 10

For z50.4, the variation of thea-relaxation time scales
over more than three orders of magnitude can be descr
well by power laws, Fig. 13. But, the above-explained c
rections to the leading-order asymptotic laws imply that
fitted effective exponentsgeff are considerably smaller tha
the exponentg53.77 specifying the correct asymptotic b
05120
t-

ll

w
s
to
ns
s

n

d

or
fi-

r

e

h
f

e
m-

-

d
-

r
a
,

0.

ed
-
e

havior. Moreover, the corrections depend on the varia
considered and therefore the found effective exponents
pairwise different. This means that thea-relaxation scales
are not coupled, rather the ratio of two scales varies acc
ing to a power law as shown for two cases in Fig. 1
Molecular-dynamics-simulation studies for a bina
Lennard-Jones system, which have been started by Kob
Andersen@16# have been used for detailed tests of MCT,
can be inferred from Ref.@17# and the papers cited there. Th
range of time variations for thea process in these studies
about the one considered in Fig. 13. As a remarkable de
tion from thea-scale universality, a deviation of the fit ex
ponent for the diffusivity from the exponent derived fro
density-relaxation curves has been reported@16#. Indeed, the
Dta diagram for the simulation data is in semiquantitati
agreement with the results shown in Fig. 14@18#. Therefore,
it is tempting to conjecture that the simulation data can
explained as done above for the results in Figs. 13 and

We are not aware of experiments that exhibit the we
steric hindrance scenario. Molecular-dynamics simulatio
for a liquid of symmetric Lennard-Jones dumbbells w
elongationz50.33 lead to the suggestion@19# that an inclu-
sion of the rotational degrees of freedom is decisive for
understanding of the exponent parameter. This conclusio
corroborated by Fig. 1. Detailed simulation studies of t
glassy dynamics of a liquid of slightly asymmetric Lennar
Jones dumbbells forz50.5 have been reported by Ka¨m-
mereret al. @20–22#. The correlation functions dealing with
the translational degrees of freedom for large and interm
ate wave vectors and also the ones for reorientational fl
tuations for large angular-momentum indices could be in
preted with the universal MCT formulas. However, th
dipole correlator did not show a two-step-relaxation scena
and it exhibited strong violations of the superposition pr
ciple quite similar to what is shown in the upper panel of F
7. The a-relaxation time scales for density fluctuations
intermediate wave vectors, for the diffusivity, and for th
dipole correlator could be fitted well by power laws with th
exponents 2.56, 2.20, and 1.66, respectively. The differen
in these exponents are quite similar to what is demonstra
in Fig. 13 for the corresponding quantities. This expla
why theDta-versus-temperature diagram for the simulati
results@23# shows violations of the scale coupling in sem
quantitative agreement with the ones shown in Fig. 14
seems that the simulation results forC1,s(t) also fit nicely
into the framework of the ideal MCT for molecular liquids

Let us notice that the density correlators of the glass st
for wave vectorq59.8 exhibit oscillations for times aroun
0.1, Figs. 2 and 3. These are the analogues of the oscillat
analyzed previously for the HSS in connection with a disc
sion of the so-called boson-peak phenomenon and h
frequency sound@24#. It should be mentioned that the dy
namics of a dipolar-hard-sphere system was analy
recently within the mode-coupling theory@25# describing the
structure by tensor-density fluctuations. Some comments
the general relation between this theory and the one use
the present paper can be found in Refs.@1# and@25#. For the
dipolar-hard-sphere system, the oscillations have been
lyzed in detail. They reflect subtle couplings between tra
1-13
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lational and rotational degrees of freedom as enforced by
long-ranged Coulomb interactions. For the HDS such c
plings are present as well, albeit caused by the short-ran
steric hindrance effects; but an analysis of these oscillat
remains to be done.
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