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Noise-induced dephasing of an ac-driven Josephson junction
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We consider the phase-locked dynamics of a Josephson junction driven by finite-spectral-linewidth ac
current. By means of a transformation, the effect of frequency fluctuations is reduced to an effective additive
noise, the correspondin@arge dephasing time being determined, in the logarithmic approximation, by the
Kramers expression for the lifetime. For sufficiently small values of the drive’s amplitude, direct numerical
simulations show agreement of the dependence of the dephasing activation energy on the ac drive’s spectral
linewidth and amplitude with analytical predictions. Solving the corresponding Fokker-Planck equation ana-
lytically, we find a universal dependence of the critical value of the effective phase-diffusion parameter on the
drive’s amplitude at the point of sharp transition from the phase-locked state to an unlocked one. However, for
large values of the drive amplitude, saturation and subsequent decrease of the activation energy are revealed by
simulations, which cannot be accounted for by the perturbative analysis. The same effect is found for a
previously studied case of ac-driven Josephson junctions with intrinsic thermal noise. The predicted effects are
relevant to applications to voltage standards, as they determine the stability of the Josephson phase-locked
state.
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[. INTRODUCTION the ac-current amplitude normalized to the Josephson critical
current,wg is the normalized driving frequency; is an ar-

A particle in a viscous medium, in the presence of a spabitrary phase, angl(t) represents intrinsic thermal noise in
tially periodic potential, can be driven by a time-periodic the JJ. The equation of motion for the fluxon in the above-
force at a nonzero average velocity determined by the mentioned long circular JJ in a magnetic field takes exactly
resonance condition the same form in the “nonrelativistic” limit, i.e., if the flux-
on’s velocity is much smaller than the Swihart velocity of the
junction. The resonant relatiofl), wherel=2, implies

wherew, is the driving frequency, the integeris the order ~that neglecting the noise, the ac drive in E2).may support

of the resonance, andis the period of the potential. This Phase rotationof the pendulum at the average velocity

phenomenon was experimentally observed in the form ofl®/dt=v in the presence of friction. Below, we assume that

phase-rotating statéShapiro stepsin small Josephson junc- the spatial modulation period is always normalized so that

tions (JJ3 driven by ac bias curreritl]. Later, it was shown =2, i.e.,vo=wo/m. We note thatl¢/dt is proportional to

that the same effect can also be realized for a flufroag-  the voltage across the JJ; hence the phase rotation in the

netic flux quantumthmoving in a periodically modulated long ac-driven JJ gives rise to a nonzero dc voltage, a feature that

JJ under the action of an ac bias currgtit The latter effect is used in Josephson voltage standdsé®, e.g., Ref5] and

has been experimentally observed recently, in a form correreferences therejin

sponding to both the fundamental resonafice=1 in Eq. In real applications, the driving ac signal is always

(1] and higher-order ones, in a long circular JJ with an ef-slightly nonmonochromatic, having a finite widiw in the

fective spatial modulation induced by a uniform dc magneticspectral domain; in other words; in Eq. (2) is not a con-

field [3]. stant phase, but rather a slowly varying function of time,
In terms of the phase differengeof the superconducting representing random phase fluctuations of the driving signal.

wave function across the junction, an ac-driven small JJ ighjs introduces a finite lifetim& of the phase-locked state,
described by the pendulum equatidfor a detailed deriva- \yhich is of direct relevance to applications, affecting the

tion see[4]) stability of the Josephson voltage standards.
Intrinsic thermal fluctuations, represented by the tg¢th
a_‘9+ ecog wot+ Y(H)]+j(1). (2 in Eq. (2), also contribute to dephasing of the ac-driven mo-
dt tion. In terms of a small ac-driven JJ, the effect of thermal
fluctuations was considered in earlier w6k 7], where Eq.
Here, time is measured in units of the inverse Josephso(®) with the monochromatic drive and thermal noise was
plasma frequencyy is the normalized JJ conductaneeis  reduced to a Langevin equation for a particle driven by a
random force in a periodic potential. The phase-locked state
is then represented by a particle trapped at the minimum of
*Corresponding author. Email address: s.pagano@cib.na.cnr.it the potential, and the dephasing implies that the particle is

2amlwo=1/vg, (1)

d?e
—— tsing=—
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extracted by a random force from the trapped state. The coslightly nonmonochromatic drivgl2,13. Thus, desynchro-
responding dephasing time was taken as the inverse Kramengzation of globally coupled rotating oscillators is another
escape ratgg], i.e., manifestation of the problem considered in this work.

R~expAU/T), 3 II. TRANSFORMATION OF FREQUENCY FLUCTUATIONS

. . . L INTO AN ADDITIVE NOISE
where AU is the difference between maximum and mini-

mum values of the effective potential, afds the tempera- We begin our analysis from E) without intrinsic ther-

ture (see exact definitions belgw mal noise, i.e., withj =0. White-noise fluctuations of the ac
In this work, we focus on effects of the frequency fluc- drive’s frequencyw(t)=dy/dt+ wq, are assumed to be sub-

tuations in the ac drive. In Sec. Il, we demonstrate that Egject to the Gaussian correlations

(2) with a finite linewidth of the ac signal can be trans-

formed, at the first order of perturbation theory, into an equa- dy(t) dy(t’)

tion driven by a strictlymonochromaticsignal and araddi- T -

tive random force. However, in contrast to the random force dt

representing the intrinsic thermal noiggt) in Eq. (2)], the

correlator of the effective additive noise generated by the a€) being the intensity of the fluctuations. The relative line-

drive’s nonmonochromaticity does not contain the frictionwidth of the ac drive,dw=(w— wg)/w, (calculated at-3

coefficienta, as this correlator, which has a nonthermal ori-dB leve), can then be estimated a&~2.4Q/w,. We note

gin, does not obey the fluctuation-dissipation theorem. Nexithat even low-quality sources of radio frequency radiation,

using the energy-balance technid@ in Sec. Ill we reduce Which may be used as the ac drive for JJs, hawes 102,

the monochromatically driven equation with a random forcewhile the dissipative constant in JJs, although small, is

to a Langevin equation in a periodic potenti&(¢), which ~ normally in the rangex=10"2; therefore, we hereafter as-

makes it possible to predict the dephasing time by means sfumedw<a. In other words, we may assume that the char-

the Kramers expressia3). acteristic time of variation of the random ac drive’'s phase
In Sec. IV, we specially consider the situation when theshift ¢(t) is much larger than the relaxation timenl/

small amplitudee of the driving signal is close to the phase- To convert the frequency fluctuations into an effective

locking thresholdey, [2]. By means of the Fokker-Planck additive noise, which is more convenient for the subsequent

equation corresponding to the above-mentioned effectiv@nalysis, we define a time variable that includes a slowly

Langevin equatiorf9,10], we demonstrate that the critical varying stochastic term:

value dw of the driving signal’s linewidth at which a sharp

>=ZQ o(t—t"), (4)

transition from locking to unlockingin the form of random T=t+x(t)  with x(t)=wg t¥(t). (5)
21 phase slipstakes place may be represented as a univer-
sal function of the drive’s amplitude. Then, transforming the time derivativesdt into d/d+ ac-

~ In Sec. V, we present results of direct numerical simula-corging to this definition, making use of the above relations
tions of Eq.(2) with a nonmonochromatic drive, which are Sw<a<1, and keeping the small perturbations that appear

reported in a form showing the logarithm of the dephasings; the two lowest orders, we cast the underlying @jinto
time X as a function ofe and of the linewidthdw. If € is  the form

above the threshold valug;,,, and is not too large, the nu-
merically found lifetimeX is quite close to that predicted by ,

2
perturbation theory. However, at large valuesedhe simu-  Z | ¢jng= — a% + ecoS(wyT) — Zd_X a7 ad_X %
lations reveal an effect that cannot be predicted by the per-d+2 dr dr 42 ~drdr
turbative analysisN(e€) reaches a maximum value and then (6)

decreases. As the nonmonotonic character of the dependence

N(€) and the existence of the maximum in it are quite im-In fact, the last term in Eq(6) is much smaller than the
portant features, in Sec. VI we report results of direct simuprevious one, a& is small, and, as a first approximation, one
lations of the mode with a strictly monochromatic drive andmay substitutel?6/d 2~ —sin ¢ in the latter term. Thus, the
intrinsic thermal(additive) noise. We conclude that the de- final form of the perturbed equation, in which the frequency
pendencé&(e) in this case has the same nonmonotonic charfluctuations were converted into an effective additive random
acter. Although the latter model was studied eafl¥], this  force, is
feature was not reported.

It is relevant to mention that, in addition to small and long d2e de dy
JJs, essentially the same dynamical model as the one consid- ~ —— +sinf=— a— + e cog wy7) + 2——
ered in this work applies to ensembles of oscillators coupled dr? dr dr
via a mean field, which may be laser arrays or biological
oscillators[11]. As is known, the global coupling may syn-  The time transformation5) affects the Gaussian cor-
chronize the phase-rotation states of the oscillators, each o€lator(4). It is easy to find that, in terms of the renormalized
them being driven by the mean field. On the other handtime and renormalized random phage[see Eq.(5)], the
various perturbations affecting the mean field make it aexact form of the correlator is

siné. (7)
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dx(r)(l_dxm)—ldx(r') N (%)2_4E<k> ~2Q
dr dr dr’ dr’ dr| Tk T 1eQ?
20 (r—1') Q=exf — mK(V1-k?)/K] (13

T W2 [1=dy/dr]”
“o | x/d7 (Q is called the Jacobi parameteThen a phase-locked ac-

However, in view of the smallness of the frequency fluctua-driven regime, corresponding #£/d7=0, is possible at two
tions, in the lowest approximation we may adopt a simpleconstant valuegone stable and one unstaplef the phase

form of the correlator: difference between the ac drive and the rotating pendulum,
déy)?
dy(9) dx(7)\ 20 —+cosl 2 [270
X(T) X(T ) :_5(7__7_,). (8) ono—iCOS cwn® ( dT) (14)
drdr | o o

] ) ] . [2], provided that the amplitude exceeds the threshold
Equations(7) and (8) will be the basis for further analysis, value

while numerical simulations will be run for the full underly-

ing equation(2). a [dég)?
50T s
Wow1 T
IIl. AN EFFECTIVE LANGEVIN EQUATION AND
ESTIMATE FOR THE LIFETIME OF THE In the presence of the additive random force in &g, a
PHASE-LOCKED STATE perturbed equation of motion for the rotating pendulum can

again be obtained from the averaged energy-balance equa-
tion, which has the same form as E#j2) with the difference
that now 7, is a slowly varying function of the timer
0o()=2 anf(7— 7)/k:K] (9) [roughly speaking, varying as slowly as the random phase
#(t) in the underlying equatiof2)]. Notice that the time
corresponding to phase rotation at a nonzero average frélependence of 7, determines the change dwq

In the zero-order approximation, which implies= «
=dy/dr=0, Eq.(7) has a known solution

guency(phase velocity =wo(d7y/d7) of the average phase-rotation velocity, and
the latter may be related to the change of the enétdy,
wo= T kK(K). (10 through its kinetic part, as8€=£' dw,, where&’ stands for

dé/dwg, calculated for the unperturbed law of motion given
Here, am is the Jacobi elliptic amplitude with the modutus by Eq. (9), &' =4K[wk(K+kdK/dK)]). Thus, d&/dr

(0<k<1), K(k) andE(k) are complete elliptic integrals of =& wo(d?7,/d7?), and the balance equatigh?) takes the
the first and second kinds, ang is an arbitrary constant. In - ¢5;m

this approximation, Eq2) conserves the energy, the value of

which for the law of motion(9) is determined by the value of d27, do,) 2 dro
K, wo€ 42 :_Q(F> (1-1— ZE + ewow1CO0 wqTy)
1/d6,\? 2 d
= | 2| — - X .
- 2( dT) costo= 1 1) +2wo_sin 6(7)], (16

The possibility of supporting persistent phase rotation at ahe second term in (£2d7,/d7) being the contribution to
velocity wg in the presence of friction by a monochromatic the energy dissipation rate due to the small change of the
ac drive is predicted by the energy-balance equdttnTo  average velocity, while a similar correction to the last term in
this end, we calculate the net rate of change of energy due t&q. (16) is negligible. Equatiori16) can be transformed into
the action of the friction and drive, averaged over the rotaa more convenient form by defining,ro(7)=¢(7):
tion period 27/ wg, under the resonance condition given by

Eq. (1): 2z (deo 2d¢ dég)? 5
o wOE ﬁ+2a F E'_ — Wy E +6w0w1COS§
d€ (deo 2+ {wgro) 12
——=—al €Ewgw1CO8 wTy), d
dr dr r20dsianl. (A7)

where the overbar stands for the time averagebeing the

same constant as in E(Q), and w; is the amplitude of the Thus, we have arrived at an effective Langevin equation
resonant harmonic in the Fourier decomposition of the timef9] for a particle driven in a viscous medium by the sum of a
dependent velocityinstantaneous frequencsi6,/dr, taken  regular force, represented by the terms in the large square
as per the unperturbed law of moti@f8). An elementary brackets, and a stochastic force, represented by the last term
calculation yields in the equation. The subsequent step, following a well-
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(FP) equation corresponding to this Langevin equation, tak-
ing into account the correlatd8). An essential feature of the
FP equation thus derived is the presence of the extra multi-
plier sirf[6(7)] in front of the diffusion(second-derivative XTV1= (ente)2—(en]e)cos Hewde)]. (20
term in it, due to the multiplier s[®(7)] in the stochastic- : (énl €)™~ (eml€) (enle)]]. (20
force term in Eq.(17). The coefficient sifié(r)] may be

averaged in time as per the unperturbed law of mot@®nit ~ This is the main prediction of the analytical consideration,
is easy to calculate the average value: which will be compared to results of direct simulations of

Eqg. (2) in Sec. V.

known procedurd 9,10, is to introduce the Fokker-Planck p( 6eak’EQ
~ex
[(2—K?)E—2(1—-k»K](1+Q*Q

4 E(k)
SIHZGO(T)IQ(2—k2)m—2(1_k2)} (18)

IV. DEPHASING THE PHASE-LOCKED STATE NEAR THE
LOCKING THRESHOLD

In this section we investigate the system described by the
[note that, in the limik—0, the expressiofl8) approaches Langevin equatior{17), by explicitly solving the associated
FP equation. However, we can first simplify Ed7), recall-

an obvious value 12 X i > . .
The FP equation takes essentially the same form as ing the fundamental physical condition according to which
the frequency fluctuations are much smaller thanor, in

would take in the known problerf6,7] of the dephasing of : ;

the ac-driven JJ phase rotation under the action of the addRtner words, the random force varies on a time sealda.

tive thermal noise represented by the téiit) in Eq. (2) (the Consequently, the acceleration term on the Ieft—han(_j side of
most important difference of the effective Langevin equationEq' (17) may be neglected as compared to the velocity term,

(17) from its counterpart in the thermal-noise problem is thehich yields the simplified Langevin equation

presence of the multiplier difi(7)] in the last term of the P
equation. With the FP equation taking the usual form, one {=—Fot+Ficos{+1(D), (22)
can directly use the Kramers expressi{@hto determine the _ .2 T TanZ1-1

lifetime of the ac-driven state, as was done for the case ohereFo=wo/2, F1=ewgoy[ 2a(dfo/dD)7] %, and

thermal noise in Refd.6,7]. In particular, the effective po- -1

2
tential corresponding to the potential force, i.e., the expres- f(t)=w? a(%) d—Xsir[ o(7)]. (22
sion in large square brackets in H47), is dr dr
The FP equatioriin this case, it is, in fact, the Smolu-
Woz chowski equatiort9,10]) for a probability distribution func-
U({)=— ewjw,Sin{+ a)oa(d—) g tion P(Z,t) corresponding to Eq21) with the Gaussian cor-
T relator (8) is

hence the potential-barrier heightJ, which should be sub- Pi=Fa(sin()P+(Fo=FiC0S{)P + 5P, (29

stituted into Eq(3), can be easily found as the difference of \here the subscripts stand for the partial derivatives, and
the values of the potential at two points where the above-
mentioned potential force vanishes. As a result, we obtain -2

wiQ, (24)

2

(dao
ol 220
dr
AU=2ewiwi[ V1— (€p/ €)>— (€l €)COS el €)],

(19) where() is the same as in Eq§4) and(8), and the average
valuesirfdy(7) is given by Eq.(18).
Information about the distribution of the phasecan be
where the definitior(15) for the threshold value of the am- obtained from the stationary version of Eg3),
plitude has been used to simplify the expression.
However, an additional difference of the present case d?pP dP )
from the thermal-noise problem, which must be taken into DFZ —(1—bcos§)d—§—b(sm§)P, (25
account before applying the expressi@), is that the fre- 4
qguency fluctuation intensity appearing in the correld@r where the final set of notation Is=F,/F, and D=E/F,.
doesnot obey the fluctuation-dissipation theorem, and there-l-hese two parameters are interpreted, respectively, as the

fore it does not include the intrinsic dissipative constant g of the drive's amplitude to the friction coefficient, and a
a of the pendulum(dJ. B); properly defining the effec- £p gifusion coefficient, which is proportional to the effec-
tive temperature Teﬁ=4wOS|n200(T)Q/aeﬁ, where g tive drive’s linewidth.

=2a(df,/d7)* is the effective friction constant from Eq.  In the absence of diffusiond=0), the solution to Eg.
(17), and using the potential-barrier height) (19) and the  (s25 is

expression18), we can rewrite the Kramers expressi@)

as P({)=(2m) 1J1-b%/(1—bcos{), (26)

EESIHZGO( 7')
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FIG. 1. The phase-slippage ralers the diffusion parameted
at different fixed values of the normalized drive’'s amplitulole
which are indicated near each curve.

FIG. 2. The normalized noise threshdld, vs the normalized
drive amplitudeb (solid line). The dashed line shows the depen-
dence of the exponemtdefined in the text.

. . +7T _ . .
where the normalizatiofi - zP(¢)d{=1 is imposed. The So-  y,jep The dependence is nearly linear, except for the region
lution (26) is regular ato<1, while the singularity ab=1  g_-p_1<1 je. just above the locking threshd(lth). It is
exactly corresponds_ to the drive’s amplitude attalmng_ thedifficult to show the dependence in this region directly:
threshold valug19), i.e., to the onset of the phase-locking ynarefore in Fig. 2 we instead displayb) for b—1<1,

regime. . . . wherer is defined so thaD ., is approximated by the expres-
Collecting results produced by the numerical solution Ofsion C,(b—1) with a suitable constar€;.

Eqg. (25), we have concluded that it is possible to define a The asymptotic value affor b—1—0 can be found ana-

critical value D, of D, at which a sharp transition from the lytically, as one can use the exact soluti@6) to describe an
phase-locked state 5I.<.DCf.to an unlocked one a0 >D . .approximate form of the distribution function, except in a
takes place. The transition is still better illustrated by Cons'd'sensitive region of small: P(¢)~ 1/sir(Z/2). At small ¢

eration of the probability flid=—[DP’'+(1-bcos)P], ;e ¢an expand Eq25), taking into account thab—1 and
in terms of which the time-dependent FBmoluchowskKi D are now small too. This yields the equation

equation(23) is written asFaleL dJ19¢{=0. At the points

of a minimum of the stationary distribution functioh]| a2p 1 b—1\dpP
gives the phase-slippage rate, i.e., the rate of the transition —2:—(—772——2/3 —— P, (27)
from the vicinity of a phase-locked point to a point differing dn 2 D dz

by a phase shift-24. In Fig. 1, we display the phase- o - )
slippage rate v® at different constant values of as found Where7=D 3. Thus, the solution in the sensitive region
from the numerical solution of E¢25). The existence of (Which is »~1, or {~\b—1~D™? depends on the single
critical valuesDy,, such that virtually no phase slippage parameter (+b)/D?3. Although the solution to E¢(27) can
takes place ab<D,,, is evident. Note that fob<1, when be matched to the aforementioned approximatie(y)
locking is impossible even for the monochromatic drive in~ 1/sirf(£/2), valid at largerZ, only numerically, it is obvi-
the absence of noisdd(=0), D, does not exist. Fob=1, ous that, ab—1—0, the dependencB(b) must beD,
i.e., exactly at the locking threshold5), D=0, which can-  =C1(b—1)¥2, with C;~0.17 found from numerical data.
not be seen on the logarithmic scale used in Fig. 1. It isThe valuer =3/2, obtained folbo—1—0, is in good agree-
necessary to mention that a picture which may be interprete@ent with the numerical results displayed in Fig. 2.
as showing the fluxJ as a function ofb at different fixed The linearity of the dependend2(b) at largeb can be
values ofD is available in[9]; nevertheless, we find it rel- explained in a very simple way: neglecting in this case 1 in
evant to present Fig. 1 here, as we need to disp@y) at  the expression (£ b cos{) in Eq. (25), we immediately con-
different fixed values ob (otherwise the existence of the clude that the asymptotic solution depends on the single pa-
critical valuesD, is not obvious. rameterb/D; hence the dependence must take the férgn
The sharp unlocking transition can also be seen in terms=C,b, with a constantC,~0.14 found numerically. This
of the ratio of the aforementioned minimum valueR{fZ) to  result can also be interpreted in another way: the minimum
its maximum value, which is attained fairly close to the un-(threshold value of the ac drive’s amplitude necessary to
perturbed(i.e., pertaining to the monochromatic drileck-  support the rotation of the pendulum grows nearly linearly
ing point. These daténot displayed hedeshow that the ratio  with the linewidth w, so that it may be approximated by
is virtually equal to zero ab<D,,, and abruptly begins to €y dw)~ e{?)(1+ consix o), where i is given by Eq.
increase exactly @ =D,,. In order to quantifyD., we de-  (15) and the constant is roughlyQj.
fine it as the value ob for which J=10"3. These analytical results, which comply well with the nu-
Figure 2 shows the most important characteristic of themerical findings, justify the introduction of the very concept
unlocking transition, viz.p, vs the effective drive’s ampli- of the critical valueD , of the phase-diffusion constant in the
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FIG. 3. Atypical example of the evolution of the phase velocity 0.05 ;
6(t) obtained from the numerical integration of the stochastic equa- = T " AA ()
tion (2). A loss of phase locking occurs t#300. The parameters < 0044, TN
area=0.01, €=0.2, 0=0.01, wo=2. £ JAN
8 o003, !/ \
. . . A . > 1 ‘\
Smoluchowski equation, which was originally defined above 2 1) . |
in a phenomenological way, just by looking at Fig. 1. $ 0021 A Y
° N \A
g 14
V. NUMERICAL RESULTS 5 001 A A
S 4 £
To check the limits of validity of the analytical results Z 5.00 —————T—
obtained above, we have performed numerical simulations of 0 5 10 15 20

the full stochastic equatiof®), using a simple Euler scheme
(the use of this scheme is considered ). As usual, we
halved the tlm? _Step until the results would converge tp a4 FG.s. Dependence of the normalized energy barkigron the
stablg va}lue within a few percent accuracy.. In th's S’ea'onnormalized drive amplitudb, for the case of frequency fluctuations
we will f_|rst focus on_the case of parametr|c_n0|se, SO WE€3) and additive noisgb). Symbols represent the energy barrier
now setj(t)=0, keeping the random term(t) in Eq. (2).  estimated numerically on the basis of E&) for we=2 and «

The basic phenomenon sought in the previous analysis wasg 1 (squarep and &= 0.01 (triangles, connecting lines being a
the escape from the state synchronized with the externgjuide for the eye. The curves without symbols represent analytical
drive as per Eq(1). However, since the JJ is driven by the ac predictions, viz., Eq(20) for the frequency-fluctuation cagim the
term alone, once the system is no longer phase locked, ganel(a), the continuous and dashed curves pertain, respectively, to
cannot sustain progressive motion and will therefore quicklyx=0.1 anda=0.01], and Eq.(29) for the additive-noise case.

decay to the zero-voltage state. So the prediction of(#0). ) o ) o ) )

actually refers to the lifetime of the phase-locked state: afPout 300 time unifsis evident in Fig. 3, which displays the

abrupt transition from this state to the zero-voltage (afer ~ time dependence of the phase velocity, found in a typical run
of the simulations of the stochastic equati@.

To estimate the lifetime of the phase-locked state at a

10000
. /_ given “temperature”(spectral linewidth of the drive we

have run the simulations for many different realizations of

Normalized ac drive amplitude, b

O
T ! [ the random phasé(t), and averaged the results for the life-
= 1000 E 65) /l/ time. The number of realizations was determined by the con-
aEs g u dition that the computed average has to converge to an es-
3 . tablished value. In Fig. 4, the logarithm of the thus computed
3 100 < —®—e=02 average lifetime is plotted versus the inverse linewidth, so
[0—==05 that the potential barrigfl9) can be estimated from the slope

of the linear part of this dependence.
This method closely follows that of Ref7]; the main
0 1000 2000 3000 difference is, as already mentioned, that we are not looking
for mere phase slippage, but for a jump to a state with zero
average velocity. As is clearly seen in Fig. 3, this occurs at a
FIG. 4. Lifetime of the phase-locked state, plotted on a logarith-somewhat later time than when the phase slips commence,
mic scale versus the inverse linewidth. The parametersaare although the difference is, typically, smafbr instance, it is
=0.01, wg=2. The estimated slope is 0.00031 fex0.2, and less than 20 time units in the example shown in Fig. 3
0.0012 fore=0.5. The numerically computed effective energy barriep-
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resented by lines with symbgland the one predicted by Eq. formed extensive simulations of the same stochastic equation
(19) (the lines without symbojsare shown in Fig. &). Tak-  (2), but with additive noise and strictly monochromatic driv-
ing into account that no fitting parameter was employed, théng signal, for the same values of parameters as those used
agreement is very good near the threshold valilg, which  above in the case of frequency fluctuations. A typical ex-
is €n~0.16 for the values of the parameters correspondingmple is shown in Fig. ®), together with the theoretical

to Fig. 5a). However, a drastic deviation from the analytical estimate of the energy barrier according to REés7]:

prediction is evident at larger values of the ac drive’s ampli-

tude: while the analytical formul#20) predicts an almost

_ €thr | R h-leacl(h-1
linear increase of the effective barrier height with the ac AU_ZJl(b?)[ 1=b""=b *cos *(b"9)]. (29
drive amplitude, the numerical results show a maximum fol- 0

lowed by a substantial decrease of barrier height. In this case too, a strong deviation AfU(b) from the
It is relevant to mention that the nearly linear increase ofjinear dependence occurs at relatively low values of the drive
the barrier height withe was predicted by the power-balance gmplitude p=7), although they are higher than those in the

approach, which was employed above for the analytical confrequency-noise cadevhich areb=4, see Fig. &)].
siderationgsee also Ref.2]); a different method, based on a

harmonic expansion, would result in a nonmonotonic depen-
dence of the barrier height an[6,7]. In the case of additive
noise, the latter method produced an energy barrier demon- The results reported in this work are of relevance for ap-
strating a Bessel-functional behavior, typical of the rf- plications to systems in which Josephson junctions are phase
induced current steps in JJ&7]. In our case, however, such locked to an external ac source, such as voltage standards.
a dependence cannot be analytically justified. MoreoverBy substituting reasonable experimental values into(EQ),
even if the results of Ref.7] are formally applied to our we can estimate that an ac source with a relative linewidth
case, yielding better than 10* is needed if a lifetime of the orderf & s is

5 required for the measurement system.

AU~J, (el wp), (28) We also note that our approach could be applied to an-
other problem: a pendulum driven by an ac signal whose
frequency is subject to a systemati@ather than randojm
: .. change, i.e., a zero-linewidth but variable-frequency drive. A
for «=0.01]. Thus, the phenomenon reported here is a d'f'system of the latter type was considered in H&#] for a

ferent one, and still remains to be explained. . soliton in a perturbed nonlinear Schlinger equation.
It should, moreover, be noticed that a Bessel-function ap-

proximation similar to Eq(28) gives, according to Ref7],
a good estimate for the energy barrier only in the limit
w52<1, deviations occurring already fng:0.0S. There- This work was performed in the framework of the bilat-
fore, it is not surprising that, for the parameters considere@ral cooperation agreement between Consiglio Nazionale di
here (w,2=0.25), the agreement with the Bessel-functionRicerca(ltaly) and the Israeli Ministry of Science and Tech-
behavior is very poor. nology, under the project “Nonlinear Dynamics of Josephson
To check that the dependence of the effective barrieNetworks.” The authors appreciate useful discussions with
height on the normalized drive amplitude is not due to somés. Costabile and access to computer facilities at the Univer-
particular feature of the parametric noise, we have also pessity of 'Aquila (Italy).

VI. CONCLUSIONS

whereJ, is the Bessel function, the maximum A&fJ occurs
at a much larger value df [ b~45, instead of 4 in Fig. ®)
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