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Fraction of uninfected walkers in the one-dimensional Potts model
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The dynamics of the one-dimensionalq-state Potts model, in the zero-temperature limit, can be formulated
through the motion of random walkers which either annihilate (A1A→B) or coalesce (A1A→A) with a
q-dependent probability. We consider all of the walkers in this model to be mutually infectious. Whenever two
walkers meet, they experience mutual contamination. Walkers which avoid an encounter with another random
walker up to timet remain uninfected. The fraction of uninfected walkers is known to obey a power-law decay
U(t);t2f(q), with a nontrivial exponentf(q) @C. Monthus, Phys. Rev. E54, 4844~1996!; S. N. Majumdar
and S. J. Cornell,ibid. 57, 3757~1998!#. We probe the numerical values off(q) to a higher degree of accuracy
than previous simulations and relate the exponentf(q) to the persistence exponentu(q) @B. Derrida, V.
Hakim, and V. Pasquier, Phys. Rev. Lett.75, 751~1995!#, through the relationf(q)5g(q)u(q) whereg is an
exponent introduced in the preceding paper@S. J. O’Donoghue and A. J. Bray, Phys. Rev. E65, 051113
~2002!#. Our study is extended to include the coupled diffusion-limited reactionA1A→B, B1B→A in one
dimension with equal initial densities ofA andB particles. We find that the density of walkers decays in this
model asr(t);t21/2. The fraction of sites unvisited by either anA or aB particle is found to obey a power law,
P(t);t2u with u.1.33. We discuss these exponents within the context of theq-state Potts model and present
numerical evidence that the fraction of walkers which remain uninfected decays asU(t);t2f, where f
.1.13 when infection occurs between like particles only, andf.1.93 when we also include cross-species
contamination. We find that the relation betweenf and u in this model can also be characterized by an
exponentg, where similarly,f5gu.

DOI: 10.1103/PhysRevE.65.051114 PACS number~s!: 05.40.2a, 05.50.1q, 82.40.Bj, 05.70.Ln
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I. INTRODUCTION

When a system is quenched from a homogeneous h
temperature disordered state into a low-temperature reg
well-defined domains of equilibrium ordered phases fo
randomly and then grow with time~‘‘coarsen’’! in a self-
similar way, until the domain size becomes comparable
the size of the system@1#. A dynamic scaling hypothesi
suggests that, at late times, the evolution of the system
characterized by a single length scaleL(t) that represents a
typical linear size of the domains. It is well established,
least for systems with a scalar order parameter, thatL(t)
;tn with n51/2 for nonconserveddynamics andn51/3 for
conserveddynamics@1#. The Ising spin model evolving with
Glauber spin-flip dynamics@2# demonstrates behavior cha
acteristic of the former while evolution according to K
wasaki spin dynamics@3# exemplifies the latter. A generali
zation of the Glauber-Ising model is theq-state Potts mode
@4–8#, which hasq distinct, but equivalent, ordered phase
Experimental realizations are known forq52, i.e., the Ising
model and forq53,4,̀ @4#. Theq5` case describes sever
cellular structures@9#, e.g., polycrystals@10#, soap froths
@11#, magnetic bubbles@12#, and foams@13#.

Such coarsening systems are among those which hav
ceived considerable attention in recent years with regar
their persistenceproperties@13–48#. The persistence prob
ability P(t) is simply the probability that a given stochast
variablef(x,t), with zero mean, does not change sign in t
time interval@0,t#. Theoretical and computational studies
persistence include spin systems in one@15,16# and higher
@17–21# dimensions, diffusion fields@22,23#, fluctuating in-
terfaces @24#, phase-ordering dynamics@25–27#, Lotka-
1063-651X/2002/65~5!/051114~9!/$20.00 65 0511
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Volterra models@28,29# and reaction-diffusion systems@30–
38#. Experimental studies include the coarsening dynam
of breath figures@39#, foams @13#, soap froths@40,41#,
twisted nematic liquid crystals@42#, and one-dimensional ga
diffusion @43#. Persistence in nonequilibrium critical phe
nomena has also been studied in the context of the glo
order parameterM (t) ~e.g., the total magnetization of a fe
romagnet!, regarded as a stochastic process@44,45#. In many
systems of physical interest, the persistence decays alge
ically according toP(t);t2u, where u is the persistence
exponent and is, in general, nontrivial. The nontriviality ofu
emerges as a consequence of the coupling of the fieldf(x,t)
to its neighbors, since such coupling implies that the stoch
tic process at a fixed point in space and time is nonMa
ovian. For theq-state Potts model atT50, the fraction of
spins which have never flipped up to timet ~i.e., that frac-
tions that havepersistedin their original phase!, has been
observed @15,17–19# to obey a power-law decayP(t)
;t2u(q), whereu(q) has been obtained exactly, in one d
mension, by Derridaet al. @16# for arbitraryq

u~q!52
1

8
1

2

p2 Fcos21S 22q

A2q
D G 2

. ~1!

There is a very direct way@49–51# of relating the Glauber
dynamics of the one-dimensional~1D! q-state Potts model a
zero temperature to reaction-diffusion models@52,53#. Con-
sider uncorrelated initial conditions where each of theq
phases is present with equal density 1/q. During any time
interval dt, each spinSi(t) has a probabilitydt/2 of becom-
ing equal to its right neighbor,dt/2 of becoming equal to its
©2002 The American Physical Society14-1



ks
th

f

h
b

ich

Th
e
e

pe

om
si
ot
w

ec

in
un

y

s
re

e

o
g
il
th
th
t i

nt

-

er
ud
c-
i
o
in
ed

ics
ees
is
dis-
in-
is

r-

x-

i

ns

act
n
-

a-
les
e

re
e
rs-

in
nt
nd

ical
i-

nt

s-
r

ich
to
f
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left neighbor, and a probability 12dt of retaining its own
value. The domain walls therefore perform random wal
Upon contact, two domain walls react instantaneously, ei
annihilating A1A→B with probability 1/(q21) or coa-
lescing A1A→A with probability (q22)/(q21), these
numbers being the probabilities that the states on the
sides of the walkers are the same~annihilation! or different
~coalescence!. This reaction-diffusion model, together wit
the fact that in the initial condition each bond is occupied
a domain wall with probability (q21)/q, is completely
equivalent to the spin problem. The fraction of spins wh
have never flipped up to timet is then simply the fraction of
sites which have never been visited by a random walker.
probabilistic algorithm for implementing the Potts mod
through the annihilation or coalescence of random walk
allows q to be a real number but is restricted toq>2. How-
ever, an equivalent Ising spin representation of the Potts
sistence problem@46# permits a study@37# of u(q) in the
regime 1,q,2.

In the present paper, we study the fraction of rand
walkers which has never encountered another walker, u
the reaction-diffusion representation of the 1D Glauber-P
model at zero temperature. To facilitate our discussion,
consider all the random walkers at timet50 to be unin-
fected. All the walkers are, however, considered to be inf
tious, so that fort.0 any contact between walkers~assum-
ing they survive the encounter! leads to mutual
contamination. Walkers that avoid all contact remain un
fected. Our goal, therefore, is to address the fraction of
infected walkersU(t) up to timet.

This problem has been addressed in some detail b
number of different authors@26,34,47#, although under the
guise of a different interpretation. The general approach u
involves monitoring the motion of a tagged test particle,
leased in the system at timet50. If the tagged particle dif-
fuses with diffusion constantD8 and the other particles in th
system diffuse with diffusion constantD, the tagged particle
is viewed as an external impurity diffusing through a hom
geneous background. One is then interested in addressin
survival probability of the tagged particle, i.e., the probab
ity that it has not been absorbed by another particle in
system. Of course in our terminology, this corresponds to
probability that the tagged particle remains uninfected. I
well established@34,47# that U(t) decays according to a
power lawU(t);t2f(q,c), wherec5D8/D is the ratio of the
two diffusion constants in the problem. WhenD850, corre-
sponding to a static impurity, the model clearly maps o
the problem of persistent spins and in this case,f(q,0)
5u(q). The exponentf(q,c) is therefore considered a gen
eralization of the standard persistence exponentu(q), char-
acterizing the survival probability of a mobile particle und
the coarsening dynamics of the Potts model. A recent st
of the survival probability of a mobile particle, moving a
cording to either deterministic or stochastic rules, in given
@47#, where the external fluctuating field takes the form
either the solution to the diffusion equation, the coarsen
dynamics of theq-state Potts model, or spatially uncorrelat
Brownian signals.
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In the limit q→` the Potts model is equivalent to theA
1A→A single species coalescence process. The dynam
of this system are particularly simple, since each particle s
only the ‘‘cage’’ formed by its two nearest neighbors. It
immaterial that these neighbors may coalesce with more
tant particles. Consequently, the kinetics of each particle
volves only itself and its two nearest neighbors and one
therefore able to calculatef(`,c) exactly @26,34#

f~`,c!5
p

2 cos21F c

11cG . ~2!

@Note that forc50, this of course reduces to the static pe
sistence exponent,f(`,0)5u(`)51.# In the limit of the
Ising model (q52), there is, however, no corresponding e
act result for generalc. An exact result is only known forc
50, i.e., f(2,0)5u(2)53/8. A mean-field Smoluchowsk
@26# approach predicts forq52 and generalc that, f(2,c)
5A(11c)/8, in good agreement with numerical simulatio
@26#. However, when extended to the largeq limit, this
Smoluchowski approach differs substantially from the ex
q→` result Eq.~2!. More recently, however, a perturbatio
theory developed by Monthus@34# has evaluated the expo
nentf(q,c) to first order inq21 for arbitraryc and at first
order inc for arbitraryq. In this paper, we will not study the
exponentf(q,c) in complete generality since we are prim
rily interested in the special case where all of the partic
are equally mobile (D85D) and henceforth we therefor
write f(q,1)5f(q).

Within the context of the current paper, where we a
interested in the casec51, the random walkers represent th
motion of domain walls undergoing zero-temperature coa
ening. The fraction of uncollided domain walls~i.e., unin-
fected walkers! has previously been interpreted as ‘‘doma
wall persistence’’ or equally, the probability that two adjace
domains survive. Under this interpretation, Majumdar a
Cornell @47# have studied the quantityU(t) numerically for
variousq. They observed a power-law decay,U(t);t2f(q)

in agreement with the results of Monthus@34# and obtained a
spectrum of values forf(q): 1/2<f(q)<3/2, where 2<q
<`. In this paper, we extend and improve these numer
results by presenting~Sec. II! more accurate data than prev
ously achieved@47# and exploring a larger range ofq. We
also relate the value off(q) to the static persistent expone
u(q) via f(q)5g(q)u(q), whereg is an exponent that we
recently introduced in@57#.

We additionally consider~Sec. III! the coupled diffusion-
limited reactionA1A→B, B1B→A in one dimension with
equal initial densitiesrA(0)5rB(0). We findthat the density
of particles decays in this model according tor;t21/2, inde-
pendent of the initial walker density, characteristic of ‘‘Pott
like’’ behavior @54#. The fraction of sites unvisited by eithe
an A or a B particle decays asP(t);t2u with u.1.33. We
discuss these exponents within the context of theq-state
Potts model and observe that the fraction of walkers wh
remain uninfected by theirown species decays according
U(t);t2f, where f.1.13. We also study the fraction o
4-2
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FRACTION OF UNINFECTED WALKERS IN THE ONE- . . . PHYSICAL REVIEW E 65 051114
walkers which remain uninfected byboth species and find
that this too obeys a power law, withf.1.93. In analogy to
Sec. II, we express the exponentf is terms of the static
persistence exponentu and similarly obtainf5gu. We con-
clude in Sec. IV, with a summary of the results and a disc
sion of some open questions.

II. POTTS MODEL

We investigate numerically the fraction of uninfecte
walkersU(t) in the 1Dq-state Potts model, at zero temper
ture, as a function ofq. Our simulations are performed on
1D lattice of size 107 with periodic boundary conditions. A
t50 a random walker is placed at each lattice site, so
r(0)51. We choose this initial high density of walkers
accelerate the system’s evolution into the asymptotic regi
Our model is updated using the direct method@55# i.e., at
each computational step, a particle is picked at random
moved with probabilityD51/2 to a neighboring site, wher
D is the diffusion constant. If the destination site is occupi
the two particles either annihilate, with probability 1/(q
21), or coalesce, to become a single particle, with proba
ity (q22)/(q21), in accordance with the reaction-diffusio
dynamics of the Potts model detailed in Sec. I. For e
move of a particle, timet is increased bydt51/N, whereN
is the current number of particles in the system. Such
quential dynamics can be chosen without loss of genera
as parallel dynamics exhibit similar asymptotic behav
@56#. Our simulations are performed for 5000 time steps a
our results are averaged over 100 runs.

Figure 1 clearly shows that the fraction of uninfect
walkers decays according to a power-lawU(t);t2f(q). In
Table I, we present our numerical values forf(q) in the
range 2<q<`. These values were obtained by performing
linear regression on log-log curves such as those present
Fig. 1. The regression was taken in the range 10<t<1000.
This range was chosen to avoid initial transients and to av
statistical fluctuations between different runs which beco

FIG. 1. Log-log plot of the fraction of uninfected walkers in th
1D, T50, Glauber-Potts model as a function of time, for variousq.
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prominent ast increases, especially for largeq. In Fig. 2, we
plot f as a function ofq, where we choose to represent th
data on a linear-log plot merely for clarity of presentation

The caseq52, which corresponds to the Ising mode
reduces to theA1A→B reaction-diffusion process, wher
the density of uninfected walkers is clearly equal to the p
ticle density. It is well known@54# that in theq-state Potts
model the particle density obeys a power-law decayr(t)
;t21/2, which is consistent with our value off(2)
50.5006(7). For thecaseq5`, one can obtain the exac
value off(`) from Eq. ~2!, i.e.,f(`,1)53/2. This is again
consistent with our numerical result,f(`)51.495(9). These
limiting values, along with our numerics, suggest that t
fraction of uninfected walkers decays according toU(t)
;t2f(q) where 1/2<f(q)<3/2, for 2<q<`, consistent
with the results of Monthus@34# and Majumdar and Cornel
@47#. Although the values off(q)51/2 andf(`)53/2 at
the limit of theq spectrum are understood, it was pointed o

TABLE I. Numerical values of the exponentf(q) in the 1D,
T50, Glauber-Potts model whereU(t);t2f(q), for various values
of q.

q f

2 0.5006~7!

4 0.867~5!

8 1.121~5!

16 1.283~6!

25 1.352~6!

32 1.380~7!

50 1.419~7!

64 1.435~8!

100 1.461~8!

128 1.464~8!

256 1.481~9!

` 1.495~9!

FIG. 2. Linear-log plot off as a function ofq for the 1D,
T50, Glauber-Potts model.
4-3
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S. J. O’DONOGHUE AND A. J. BRAY PHYSICAL REVIEW E65 051114
by Monthus @34# that the formalism that led to the exa
determination of the static persistence exponentu(q) @16#
cannot be easily applied to compute the exact value
f(q,c) for generalc, including the limit c51. The exact
calculation off(q) therefore remains an open problem.

Recently, we have explored the connection between u
fected walkers and unvisited sites in one dimension wit
the context of a system of noninteracting randomly diffus
particlesAB↔BA, and theA1B→B diffusion-limited re-
action @57#. We found that in both of these models

U~ t !.@P~ t !#g, with g.1.39. ~3!

While this relationship is obeyed reasonably accurately o
the range of times accessible to our simulations, there
evidence, for both processes, thatg approaches a smalle
value at late times@57#. Clearly, we can write an analogou
relationship for the q-state Potts model, whereU(t)
;t2f(q), P(t);t2u(q), and g is now some function ofq,
i.e., t2f(q)5t2g(q)u(q), so that

f~q!5g~q!u~q!. ~4!

We plot f(q) againstu(q) in Fig. 3, where our values fo
f(q) have been taken from Table I and the correspond
values ofu(q) have been calculated exactly from Eq.~1!.
The point at the origin corresponds toq51, wheref andu
both vanish. Figure 3 indicates thatf(q) increases mono
tonically as a function ofu(q). Therefore, given that we
know the exact values ofu(q) and f(q) for q52,̀ , and
given the convex nature of the plot in Fig. 3, we can use
~4! to determine precise bounds ong(q) in this range

4/3<g~q!<3/2, qP@2,̀ #. ~5!

Thus, while f(q) and u(q) are separately quite strongl
dependent onq, their ratiog(q) depends only weakly onq.

FIG. 3. The exponentf plotted against the exponentu, for
variousq for the 1D, T50, Glauber-Potts Model.
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III. EXCHANGE MODEL

The A1A→B, B1B→A diffusion-limited reaction of-
fers a curious combination of birth and death processes.
brevity, we dub this model the ‘‘exchange model.’’ The pa
ticles in the exchange model diffuse randomly. Wheneve
particle encounters a walker belonging to its own species,
two particles annihilate instantaneously, to create a part
belonging to theother species at the point of annihilation
For the purposes of this paper, we allow lattice sites to c
tain multiple particles, enabling two particles of differin
species to cohabit a single lattice site. This feature of
model ensures that, in one dimension, the lattice struc
•••ABABABABABAB••• continues to evolve. Confining
our system to a maximum of one particle per site wou
otherwise mean that the preceding configuration would
stable for all timet. We focus our attention on the 1D ex
change model with equal initial densities ofA and B par-
ticles.

Our numerical simulations are performed on a on
dimensional lattice with periodic boundary conditions.
t50 equal numbers ofA and B particles are randomly dis
tributed on the lattice with a maximum of one particle p
site. Our system then evolves according to the dynamics
scribed above. The system is updated in the same mann
for the q-state Potts model described in Sec. II.

A. Particle density

The first question we address is the particle decay. T
unimolecular reactions defining the exchange model
characteristic of theq-state Potts model and therefore we c
expect the particle density to exhibit similar asymptotic b
havior. Indeed, for every pair of reactions between twoA and
two B particles, a singleA and a singleB are produced,
which is the same result as for twoq5` Potts modelsA
1A→A, B1B→B operating on a single lattice. We there
fore expect the particle density to decay in the excha
model according torA(t);Ct2a, with a51/2, independent
of the initial particle density@54#. This is indeed confirmed
by our simulations. In Fig. 4, we present our results for t
particle density for three different initial values ofrA(0)
@recallrB(0)5rA(0)#. The simulations were performed on
lattice of size 106 for 105 time steps and the results averag
over 100 runs.

In Table II, we present our numerical values for the p
ticle density decay exponenta and amplitudeC, where
rA(t);Ct2a. These values were obtained by performing
linear regression on the plots in Fig. 4 in the asympto
regime, 104<t<105.

For the 1Dq-state Potts model, the amplitudeC is q de-
pendent@54#

C~q!5
q21

q

1

A2pD
. ~6!

Is there perhaps a value ofq which corresponds to the ex
change model? A value ofq54 in Eq. ~6!, with D51/2
returns a valueC(4)50.423, in good agreement with th
4-4



s

t
n

fa

s o
tio

if
th

ca

om

s.

th

in
on

are

y
e

y

eri-
.
g a
00

e

x-
e

c-

o-

FRACTION OF UNINFECTED WALKERS IN THE ONE- . . . PHYSICAL REVIEW E 65 051114
values ofC recorded in Table II. Notice that this value lie
exactly midway between the minimum valueC(2)50.282
and the maximum value,C(`)50.564, set by theq-state
Potts model. Our numerical results therefore suggest tha
terms of the particle density, the two reactions which defi
the exchange model (A1A→B,B1B→A) are equivalent,
in some loose sense, to two independentq54 Potts models,
though we would not wish to stretch this comparison too

B. Fraction of unvisited sites

We now turn our attention to the persistence propertie
the exchange model. Here, we are interested in the frac
of sitesP(t) that have never been visited by either anA or a
B particle up to timet. An obvious starting point is to see
P(t) obeys a power-law decay with an exponent equal to
returned in the case of twoq54 Potts Models, i.e.,P(t)
;t223u(q54) where, using Eq.~1!, 23u(q54)51.263. Our
numerical simulations do indeed indicate a power-law de
P(t);t2uex. However, the decay exponentuex.1.33, in dis-
agreement with what one might have naively expected fr
a study of the particle decay.

Our simulations are performed on a lattice of size 106 for
5000 time steps and the results averaged over 200 run
Fig. 5, we present a log-log plot ofP(t). In Table III, we
show the results of a linear regression performed on
curves in Fig. 5, to obtain values ofuex . The regression was

FIG. 4. Log-log plot of the particle density as a function of tim
in the 1D exchange model.

TABLE II. Numerical values for the particle density decay e
ponenta and the amplitudeC in the 1D exchange model, wher
rA(t);Ct2a, for different initial densitiesrA(0).

rA(0) a C

0.5 0.5007~9! 0.419~5!

0.25 0.5007~9! 0.419~5!

0.1 0.5000~5! 0.416~9!
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performed in the regime 500<t<5000, to avoid initial tran-
sients.

C. Fraction of uninfected walkers

Finally, we consider the fraction of uninfected walkers
the exchange model. We focus, without loss of generality,
just the fraction of uninfectedA particles. In this model, we
are only interested inoriginal A particles. ThoseA particles
which have been created through the reactionB1B→A after
t50, are also therefore considered to be infected. There
two distinct cases to consider:~i! the fraction ofA particles
which remain uninfected byonly their own species and~ii !
the fraction ofA particles which have avoided infection b
both types of species. Our approach is wholly numerical. W
address the former case first.

Figure 6 indicates that the fraction of uninfectedA walk-
ers obeys a power-law decay according toU(t);t2fA,
where the subscriptA on the exponent denotes infection b
only A particles @case~i!#. The results forrA(0)51 were
generated from 500 runs on a lattice of size 53105 over
5000 time steps. The results forrA(0)50.5 were generated
using a lattice of size 106, run for 104 time steps and also
averaged over 500 runs. In Table IV, we present our num
cal values offA for two different initial starting densities
The values of the exponent were obtained by performin
linear regression on the curves in Fig. 6 in the regime 1
<t<5000.

We now address case~ii !, the fraction ofA particles which
have avoided infection by bothA andB walkers. Our simu-

FIG. 5. Log-log plot of the fraction of unvisited sites as a fun
tion of time in the 1D exchange model.

TABLE III. Numerical values for the persistence decay exp
nentuex in the 1D exchange model, whereP(t);t2uex, for initial
densitiesrA(0).

rA(0) uex

0.2 1.330~7!

0.3 1.333~5!
4-5
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S. J. O’DONOGHUE AND A. J. BRAY PHYSICAL REVIEW E65 051114
lations are performed on a lattice of size 106 for 2000 time
steps and averaged over 500 runs. In line with our previ
data, we present our results forU(t) on a log-log plot in Fig.
7.

Unfortunately, we do not obtain straight line graph
However, an inspection of individual runs of the data~Fig. 8!
shows that, in this model, statistical fluctuations between
ferent runs become prominent very quickly, whereas ear
times are governed by transient effects. The dominanc
these two regimes renders any determination of an expo
particularly difficult. Using a lower initial density, with the
intention of delaying the onset of noisy data only extends
transient regime, whereas using a higher initial density
minimize transient effects accelerates the onset of large
tistical fluctuations. In view of the power-law behavior w
identified in case~i! and the general trend of our data, w
suggest that, with sufficiently good statistics, the fraction

FIG. 6. Log-log plot of the fraction ofA walkers uninfected by
A particles in the 1D exchange model as a function of time.

FIG. 7. Log-log plot of the fraction ofA walkers uninfected by
both A andB particles in the 1D exchange model as a function
time.
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A walkers uninfected by eitherA or B particles would also
exhibit a power-law decayU(t);t2fAB, where the subscrip
on the exponent denotes infection is permitted by both s
cies. There is, however, a cleaner method of extracting
exponentfAB . We suggest, in analogy with the other mode
we have studied, thatU(t).@P(t)#gex so that

fAB5gexuex . ~7!

If we can establish the validity of the relationU(t)
.@P(t)#gex, and determine the value ofgex , we can then
read off the exponentfAB from Eq.~7!. Our initial condition
specifies a maximum of one particle per site, soU(0)51.
While, in the continuum description of the model,P(0)51
also, on a lattice this becomesP(0)512r0. Therefore, to
place these two quantities on an equal footing in our num
cal study, we define,p(t)5P(t)/P(0), so that bothU(0)
and p(0) are equal to unity. Note, of course, that in th
continuum limit,r0→0, we recoverp(t)→P(t). We present
in Fig. 9 a log-log plot ofU(t) vs p(t).

The plot in Fig. 9 is quite linear, but does not go throu
the origin, suggesting that in factU(t).Kp(t)gex with K
Þ1. We note that in the numerical analysis of the relatio
ship between noninfectedness and persistence in
AB↔BA and A1B→B models@57# the equivalent pref-
actor K was close enough to unity (K.0.99) to tempt the
speculation that it might become unity in the continuu
~low-density! limit, though we stress that in the latter mode
there was good evidence that some of the simulations

TABLE IV. Numerical values for the exponentfA in the 1D
exchange model, whereU(t);t2fA, for initial densitiesrA(0).

rA(0) fA

1.0 1.133~5!

0.5 1.138~8!f

FIG. 8. Log-log plot of the fraction ofA walkers uninfected by
both A andB particles in the 1D exchange model as a function
time, for five individual simulation runs.
4-6
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not reached the asymptotic regime. In order to evaluategex
andK for the present model, we perform a linear regress
on the data in Fig. 9 in the region indicated by the arrow
thereby avoiding initial transients associated with lattice
fects, and the onset of statistical fluctuations between dif
ent runs of the data. We summarize our results forgex andK
in Table V.

Note that the value ofK for rA(0)50.2 is larger than tha
for rA(0)50.3, suggesting the possibility thatK→1 as
rA(0)→0, consistent with our results for other models@57#,
though we have no concrete arguments to support this i
To test our results, we attempt to collapse the data for
uninfected fraction and the persistence on to a single cu
by plotting lnU(t) andgex ln p(t)1ln K as functions of timet,
in Fig. 10.

The data collapse is excellent over both transient
asymptotic regimes, suggesting that the relationU(t)
.K@p(t)#gex holds to a high degree of accuracy for all tim
t. We attribute any deviations between the two curves at
times to the onset of statistical fluctuations between differ
runs of the data. Clearly we can improve the collapse
either early or late times by performing the linear regress
in Fig. 9 on the appropriate part of the curve. We find th
over the whole regime presented in Fig. 10,gex.1.45(1)
works well. For brevity and clarity of presentation, we ha
presented our results forrA(0)50.2 only, although we have
achieved equally good results forrA(0)50.3.

The valuesgex.1.45 anduex.1.33 yield, using Eq.~7!,
fAB.1.4531.33.1.93. We therefore argue that, when i

FIG. 9. Log-log plot of the fraction ofA walkers uninfected by
bothA andB particles, against the fraction of unvisited sites, in t
1D exchange model.

TABLE V. Numerical values ofgex andK in the 1D exchange
model, whereU(t).K@p(t)#gex, for two initial densitiesrA(0).

rA(0) gex K

0.2 1.453~7! 0.863~9!

0.3 1.456~7! 0.754~9!
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fection is caused by both species,U(t);t2fAB with fAB
.1.93.

IV. DISCUSSION AND SUMMARY

In this paper, we have investigated the fraction of un
fected walkersU(t) in the 1Dq-state Potts model evolving
at zero temperature. Our numerical results are consis
with previous work @26,34,47#, suggesting thatU(t)
;t2f(q) with a nontrivial exponentf(q), where 1/2
<f(q)<3/2 for 2<q<`. Although the values off(q) for
q52 and q5` are understood, the exact calculation
f(q) for all q, appears to be a hard problem. In analogy w
the other models we have studied@57#, we have reduced the
familiar study of persistent sitesP(t), to a limiting case in
the study of uninfected walkers and noted thatU(t)
;@P(t)#g(q), with 4/3<g<3/2 for 2<q<`. We discussed
in Sec. I that, with regard to the persistence properties of
Potts model, it is possible to probe the region 1<q<2. Al-
though we have included a point for the stateq51, where
u5f50, in Figs. 2 and 3, we leave a study of the fraction
uninfected walkers in this latter regime as an open challen

We have also studied the 1D exchange model, defined
the reactionsA1A→B andB1B→A. Our numerical simu-

FIG. 10. lnU(t) and gex ln p(t)1ln K plotted as a function of
time, to collapse the data for the uninfected walkers and unvis
sites onto a single curve. We present our results forrA(0)50.2 and
usegex51.45 andK50.86.

TABLE VI. Numerical results for the exponentg in various 1D
models for whichU(t).@P(t)#g ~results for the first two models
from Ref. @57#!.

Model g

AB↔BA 1.39
A1B→B 1.39
q-state Potts Model @4/3,3/2#, qP@2,̀ #

exchange Model 1.45
4-7
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lations indicate similarities between this diffusion-limite
system and the Potts class of models, in that the par
density decays according tor(t);t21/2, independent of the
initial particle density. The amplitude of the particle dec
lies approximately halfway between the minimum and ma
mum values set by the Potts model suggesting that, wi
the context of the particle decay, the exchange model roug
mimics the behavior of two independentq54 Potts models.
We have also shown that the fraction of sites unvisited
either anA or a B particle decays according toP(t);t2uex

where uex.1.33. Our study of the fraction of uninfecte
walkers in the exchange model focused on two cases. In
first instance, we addressed the fraction ofA walkers infected
by only their own species and established that, in this c
U(t);t2fA wherefA.1.13. When cross-species contam
nation was also included in our simulation, we foundU(t)
;t2fAB with fAB.1.93. We presented numerical eviden
that U(t).K@p(t)#gex with gex.1.45. An obvious goal for
the future is to establish a theoretical framework for the
ponents that occur in the exchange model and, in particu
for the observed simple relation betweenU(t) and P(t).
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Across the range of models we have studied, in both this
our previous paper@57#, the fraction of uninfected walkers
U(t) and the fraction of unvisited sitesP(t) are seemingly
related by U(t);@P(t)#g. This remarkable relationship
which seems to hold reasonably accurately across the e
time regime accessible to simulation, merits further attenti
In Table VI, we summarize the values ofg for the various
models we have studied~note, however, that there is som
evidence@57# that, for the first two models, the asymptot
value ofg is smaller 1.39!.

Finally, we note that all values ofg obtained so far lie in
the range 4/3<q<3/2 spanned by theq-state Potts mode
with 2<q<`. Up to now, our analysis ofg has been purely
numerical, and naturally a more fundamental understand
of this exponent is required.
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