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Fraction of uninfected walkers in the one-dimensional Potts model
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The dynamics of the one-dimensiorpktate Potts model, in the zero-temperature limit, can be formulated
through the motion of random walkers which either annihilade-A— J) or coalesce A+A—A) with a
g-dependent probability. We consider all of the walkers in this model to be mutually infectious. Whenever two
walkers meet, they experience mutual contamination. Walkers which avoid an encounter with another random
walker up to time remain uninfected. The fraction of uninfected walkers is known to obey a power-law decay
U(t)~t~*@, with a nontrivial exponent(q) [C. Monthus, Phys. Rev. B4, 4844(1996; S. N. Majumdar
and S. J. Cornelipid. 57, 3757(1998 ]. We probe the numerical values ¢{q) to a higher degree of accuracy
than previous simulations and relate the expong(d) to the persistence exponefifq) [B. Derrida, V.
Hakim, and V. Pasquier, Phys. Rev. Léth, 751(1995], through the relatiorb(q) = v(q) #(q) wherey is an
exponent introduced in the preceding pap8r J. O’'Donoghue and A. J. Bray, Phys. Rev6g 051113
(2002]. Our study is extended to include the coupled diffusion-limited readierA—B, B+B—A in one
dimension with equal initial densities éf and B particles. We find that the density of walkers decays in this
model as(t) ~t~ 2 The fraction of sites unvisited by either Aror aB particle is found to obey a power law,
P(t)~t~? with 9=1.33. We discuss these exponents within the context ofistate Potts model and present
numerical evidence that the fraction of walkers which remain uninfected decayqtyst™ ¢, where ¢
=1.13 when infection occurs between like particles only, g1.93 when we also include cross-species
contamination. We find that the relation betweénand 6 in this model can also be characterized by an
exponenty, where similarly,¢o=y8.
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[. INTRODUCTION \olterra modeld 28,29 and reaction-diffusion systemiS0—
38]. Experimental studies include the coarsening dynamics

When a system is quenched from a homogeneous higtef breath figures[39], foams [13], soap froths[40,41],
temperature disordered state into a low-temperature regiméyisted nematic liquid crystalgt2], and one-dimensional gas
well-defined domains of equilibrium ordered phases formdiffusion [43]. Persistence in nonequilibrium critical phe-
randomly and then grow with timécoarsen”) in a self- nomena has also been studied in the context of the global
similar way, until the domain size becomes comparable t®rder parameteM (t) (e.g., the total magnetization of a fer-
the size of the systerfil]. A dynamic scaling hypothesis romagney, regarded as a stochastic proces$,45. In many
suggests that, at late times, the evolution of the system isystems of physical interest, the persistence decays algebra-
characterized by a single length scalgt) that represents a ically according toP(t)~t~“, where ¢ is the persistence
typical linear size of the domains. It is well established, atexponent and is, in general, nontrivial. The nontrivialitygof
least for systems with a scalar order parameter, tha} emerges as a consequence of the coupling of the iéidit)
~t" with n=1/2 for nonconservedlynamics anch=1/3 for  to its neighbors, since such coupling implies that the stochas-
conservedlynamicg 1]. The Ising spin model evolving with tic process at a fixed point in space and time is nonMark-
Glauber spin-flip dynamicg2] demonstrates behavior char- ovian. For theg-state Potts model ai=0, the fraction of
acteristic of the former while evolution according to Ka- spins which have never flipped up to timéi.e., that frac-
wasaki spin dynamicg3] exemplifies the latter. A generali- tions that havepersistedin their original phasg has been
zation of the Glauber-Ising model is tloestate Potts model observed[15,17-19 to obey a power-law decayP(t)
[4—8], which hasq distinct, but equivalent, ordered phases.~t~ %%, where 6(q) has been obtained exactly, in one di-
Experimental realizations are known fgr=2, i.e., the Ising mension, by Derridat al. [16] for arbitraryq
model and foig= 3,4 [4]. Theq= case describes several

cellular structureq9], e.g., polycrystald10], soap froths 1 2 2—q 2
[11], magnetic bubblegl2], and foamq13]. 0(q)=— §+ — cos Y —||. D
Such coarsening systems are among those which have re- ™ \/fq

ceived considerable attention in recent years with regard to

their persistenceproperties|13—48. The persistence prob- There is a very direct waj49-51 of relating the Glauber
ability P(t) is simply the probability that a given stochastic dynamics of the one-dimensiondlD) g-state Potts model at
variable¢(x,t), with zero mean, does not change sign in thezero temperature to reaction-diffusion modg®,53. Con-
time interval[ O,t]. Theoretical and computational studies of sider uncorrelated initial conditions where each of the
persistence include spin systems in di&,16 and higher phases is present with equal densitg.1During any time
[17-217 dimensions, diffusion fieldg22,23, fluctuating in-  intervaldt, each spir5;(t) has a probabilitydt/2 of becom-
terfaces [24], phase-ordering dynamicg25-27, Lotka- ing equal to its right neighbodt/2 of becoming equal to its
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left neighbor, and a probability 1dt of retaining its own In the limit g—« the Potts model is equivalent to tie
value. The domain walls therefore perform random walks.+A— A single species coalescence process. The dynamics
Upon contact, two domain walls react instantaneously, eithedf this system are particularly simple, since each particle sees
annihilating A+ A—J with probability 1/@—1) or coa-  only the “cage” formed by its two nearest neighbors. It is
lescing A-A—A with probability (q—2)/(q—1), these immaterial that these neighbors may coalesce with more dis-
numbers being the probabilities that the states on the fd@nt particles. Consequently, the kinetics of each particle in-
sides of the walkers are the saranihilation or different volves only itself and its two nearest neighbors and one is
(coalescende This reaction-diffusion model, together with therefore able to calculatg(,c) exactly[26,34

the fact that in the initial condition each bond is occupied by
a domain wall with probability §—1)/q, is completely B
equivalent to the spin problem. The fraction of spins which $(,¢)=

have never flipped up to timeis then simply the fraction of 2cost
sites which have never been visited by a random walker. The

probabilistic algorithm for implementing the Potts model [Note that forc=0, this of course reduces to the static per-
through the annihilation or coalescence of random walkergisience exponeni(,0)=#()=1] In the limit of the

allows q to be a real number but is restrictedde=2. How-  |sing model g=2), there is, however, no corresponding ex-
ever, an equivalent Ising spin representation of the Potts pefct result for generat. An exact result is only known fot
sistence probleni46] permits a study37] of 6(q) in the =0, j.e., ¢(2,0)=6(2)=3/8. A mean-field Smoluchowski
regime 1<q<2. [26] approach predicts fon=2 and generat that, ¢(2,c)

In the present paper, we study the fraction of random= /(1 +c)/8, in good agreement with numerical simulations
walkers which has never encountered another walker, usingp6]. However, when extended to the largelimit, this
the reaction-diffusion representation of the 1D Glauber-PottSmoluchowski approach differs substantially from the exact
model at zero temperature. To facilitate our discussion, wej—co result Eq.(2). More recently, however, a perturbation
consider all the random walkers at tintes0 to be unin- theory developed by Monthy84] has evaluated the expo-
fected. All the walkers are, however, considered to be infechent¢(q,c) to first order inq— 1 for arbitraryc and at first
tious, so that fot>0 any contact between walkefassum-  order inc for arbitraryg. In this paper, we will not study the
ing they survive the encounterleads to mutual exponentp(q,c) in complete generality since we are prima-
contamination. Walkers that avoid all contact remain unin-ily interested in the special case where all of the particles
fected. Our goal, therefore, is to address the fraction of unare equally mobile D'=D) and henceforth we therefore
infected walkerdJ(t) up to timet. write ¢(q,1)= ¢(q).

This problem has been addressed in some detail by a Within the context of the current paper, where we are
number of different authorf26,34,41%, although under the interested in the case=1, the random walkers represent the
guise of a different interpretation. The general approach useshotion of domain walls undergoing zero-temperature coars-
involves monitoring the motion of a tagged test particle, re-ening. The fraction of uncollided domain wal(se., unin-
leased in the system at tinte=0. If the tagged particle dif- fected walkershas previously been interpreted as “domain
fuses with diffusion constarf2’ and the other particles in the wall persistence” or equally, the probability that two adjacent
system diffuse with diffusion constai, the tagged particle domains survive. Under this interpretation, Majumdar and
is viewed as an external impurity diffusing through a homo-Cornell[47] have studied the quantity (t) numerically for
geneous background. One is then interested in addressing tkiariousq. They observed a power-law decay(t) ~t~ ¢
survival probability of the tagged particle, i.e., the probabil-in agreement with the results of Monthi8#] and obtained a
ity that it has not been absorbed by another particle in thepectrum of values fotp(q): 1/2< ¢(q)=<3/2, where 2q
system. Of course in our terminology, this corresponds to thes«. In this paper, we extend and improve these numerical
probability that the tagged particle remains uninfected. It isresults by presentin@Sec. I) more accurate data than previ-
well established 34,47 that U(t) decays according to a ously achieved47] and exploring a larger range of We
power lawU (t)~t~ %49 wherec=D'/D is the ratio of the  also relate the value ap(q) to the static persistent exponent
two diffusion constants in the problem. Wheri=0, corre-  6(q) via ¢(q)=y(q) 6(q), wherey is an exponent that we
sponding to a static impurity, the model clearly maps ontorecently introduced if57].
the problem of persistent spins and in this cagé¢q,0) We additionally considefSec. Ill) the coupled diffusion-
=6(q). The exponents(q,c) is therefore considered a gen- limited reactionA+A— B, B+B—A in one dimension with
eralization of the standard persistence exporgnf, char-  equal initial densitiep(0)= pg(0). We findthat the density
acterizing the survival probability of a mobile particle under of particles decays in this model accordingpte t ~ 2, inde-
the coarsening dynamics of the Potts model. A recent studgendent of the initial walker density, characteristic of “Potts-
of the survival probability of a mobile particle, moving ac- like” behavior [54]. The fraction of sites unvisited by either
cording to either deterministic or stochastic rules, in given inan A or a B particle decays aB(t)~t~ ¢ with #=1.33. We
[47], where the external fluctuating field takes the form ofdiscuss these exponents within the context of ¢hstate
either the solution to the diffusion equation, the coarsenindg?otts model and observe that the fraction of walkers which
dynamics of they-state Potts model, or spatially uncorrelatedremain uninfected by theimwn species decays according to
Brownian signals. U(t)~t~ %, where $=1.13. We also study the fraction of
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0 . . TABLE I. Numerical values of the exponeri(q) in the 1D,
T=0, Glauber-Potts model wheté(t) ~t~ %@, for various values
of q.
q ¢
S a2 | 2 0.50067)
~ 4 0.8675)
=1 8 1.1215)
= aet 16 1.2836)
ol | 25 1.3526)
o 32 1.3807)
16 50 1.4197)
q=
Pk 64 1.4358)
s 100 1.4618)
-15 ! ‘ ‘ L 128 1.4648)
0 2 4 ot 6 8 10 256 1.4819)
% 1.4959)

FIG. 1. Log-log plot of the fraction of uninfected walkers in the
1D, T=0, Glauber-Potts model as a function of time, for variqus
prominent ag increases, especially for largeIn Fig. 2, we
walkers which remain uninfected Hyoth species and find Pplot ¢ as a function ofj, where we choose to represent the
that this too obeys a power law, with=1.93. In analogy to data on a linear-log plot merely for clarity of presentation.
Sec. I, we express the exponeitis terms of the static The caseq=2, which corresponds to the Ising model,
persistence exponefitand similarly obtainp=y6. We con-  reduces to theA+A—(J reaction-diffusion process, where

clude in Sec. IV, with a summary of the results and a discusthe density of uninfected walkers is clearly equal to the par-
sion of some open questions. ticle density. It is well knowr{54] that in theg-state Potts

model the particle density obeys a power-law degdy)
~t~Y2 which is consistent with our value ofs(2)
Il. POTTS MODEL =0.50047). For thecaseq=c, one can obtain the exact

We investigate numerically the fraction of uninfected Value of¢(x=) from Eq.(2), i.e., (,1)=3/2. This is again
walkersU(t) in the 1Dg-state Potts model, at zero tempera- consistent with our numerical resuif() =1.4959). These
ture, as a function ofl. Our simulations are performed on a limiting values, along with our numerics, suggest that the
1D lattice of size 10 with periodic boundary conditions. At fraction of uninfected walkers decays according Udgt)
t=0 a random walker is placed at each lattice site, so that't *¥ where 1/2<¢(q)<3/2, for 2<g==, consistent
p(0)=1. We choose this initial high density of walkers to with the results of Monthuf34] and Majumdar and Cornell
accelerate the system’s evolution into the asymptotic regimé47]- Although the values ofs(q)=1/2 and ¢(=)=3/2 at
Our model is updated using the direct metH&8] i.e., at the limit of theq spectrum are understood, it was pointed out
each computational step, a particle is picked at random and
moved with probabilityD=1/2 to a neighboring site, where 13 ' '
D is the diffusion constant. If the destination site is occupied,
the two particles either annihilate, with probability 4/(
—1), or coalesce, to become a single particle, with probabil-
ity (q—2)/(g—1), in accordance with the reaction-diffusion
dynamics of the Potts model detailed in Sec. |. For each 11 T
move of a particle, time is increased bylt=1/N, whereN
is the current number of particles in the system. Such se@
quential dynamics can be chosen without loss of generality™
as parallel dynamics exhibit similar asymptotic behavior
[56]. Our simulations are performed for 5000 time steps and 0.5 ]
our results are averaged over 100 runs.

Figure 1 clearly shows that the fraction of uninfected
walkers decays according to a power-laift) ~t~ %@ In
Table I, we present our numerical values #(q) in the
range 2 qg=-oc. These values were obtained by performing a 0¢ :
linear regression on log-log curves such as those presented i
Fig. 1. The regression was taken in the range= 1€ 1000.
This range was chosen to avoid initial transients and to avoid FIG. 2. Linear-log plot of¢ as a function ofq for the 1D,
statistical fluctuations between different runs which becom& =0, Glauber-Potts model.

Ing
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15 T T T T Ill. EXCHANGE MODEL

The A+A—B, B+B—A diffusion-limited reaction of-
fers a curious combination of birth and death processes. For
brevity, we dub this model the “exchange model.” The par-
ticles in the exchange model diffuse randomly. Whenever a
particle encounters a walker belonging to its own species, the
two particles annihilate instantaneously, to create a particle
belonging to theother species at the point of annihilation.
For the purposes of this paper, we allow lattice sites to con-
tain multiple particles, enabling two particles of differing
species to cohabit a single lattice site. This feature of our
model ensures that, in one dimension, the lattice structure
---ABABABABABAB-: - continues to evolve. Confining
our system to a maximum of one particle per site would
otherwise mean that the preceding configuration would be
0% 02 oa 06 0.8 4 stable for all timet. We focus our attention on the 1D ex-
0(q) change model with equal initial densities Afand B par-
ticles.
FIG. 3. The exponent) plotted against the exponem for Our numerical simulations are performed on a one-
variousq for the 1D, T=0, Glauber-Potts Model. dimensional lattice with periodic boundary conditions. At
t=0 equal numbers of and B particles are randomly dis-
by Monthus[34] that the formalism that led to the exact tributed on the lattice with a maximum of one particle per
determination of the static persistence expongft) [16] site. Our system then evolves according to the dynamics de-
cannot be easily applied to compute the exact value ocribed above. The system is updated in the same manner as
¢(q,c) for generalc, including the limitc=1. The exact for the g-state Potts model described in Sec. Il.
calculation of(q) therefore remains an open problem.
Recently, we have explored the connection between unin-
fected walkers and unvisited sites in one dimension within
the context of a system of noninteracting randomly diffusing The first question we address is the particle decay. The
particlesAd «— JA, and theA+B—J diffusion-limited re-  unimolecular reactions defining the exchange model are

G

0.5 k

A. Particle density

action[57]. We found that in both of these models characteristic of the-state Potts model and therefore we can
expect the particle density to exhibit similar asymptotic be-
U(t)=[P(t)]?, with y=1.39. (3 havior. Indeed, for every pair of reactions between fwand

two B particles, a singleA and a singleB are produced,
While this relationship is obeyed reasonably accurately ovewhich is the same result as for twp=2 Potts modelsA
the range of times accessible to our simulations, there ig”A—A, B+B—B operating on a single lattice. We there-
evidence, for both processes, thatapproaches a smaller fore expect the particle density to decay in the exchange
value at late time$§57]. Clearly, we can write an analogous Model according tg(t)~Ct™ ¢, with a=1/2, independent

relationship for the g-state Potts model, wherdJ(t)  ©f the initial particle densitf54]. This is indeed confirmed
~t= 4@ p(t)~t~ %D andy is now some function ofj, Py our simulations. In Fig. 4, we present our results for the

i.e., t-¢@=t= DD 5o that particle density for three different initial values pfy(0)
[recall pg(0)=pa(0)]. The simulations were performed on a
(q)=(q) 6(q). (4) lattice of size 18 for 10° time steps and the results averaged

over 100 runs.

In Table II, we present our numerical values for the par-
icle density decay exponent and amplitudeC, where
pa(t)~Ct “. These values were obtained by performing a
linear regression on the plots in Fig. 4 in the asymptotic
regime, 10<t<10°.

For the 1Dg-state Potts model, the amplitu@zis q de-

We plot ¢(q) againsté(q) in Fig. 3, where our values for
¢(q) have been taken from Table | and the correspondin
values of #(q) have been calculated exactly from H4).
The point at the origin correspondsde-1, where¢ and 8
both vanish. Figure 3 indicates thétq) increases mono-
tonically as a function ofg(q). Therefore, given that we

know the exact values of(q) and ¢(q) for g=2,°, and penden{54]
given the convex nature of the plot in Fig. 3, we can use Eq. 1 1
(4) to determine precise bounds eiq) in this range C(q)= a-= _ (6)
q 27D
4/3<y(q)<3/2, ge[2:°]. (5

Is there perhaps a value gfwhich corresponds to the ex-
Thus, while ¢(g) and 6(q) are separately quite strongly change model? A value af=4 in Eq. (6), with D=1/2
dependent o, their ratioy(q) depends only weakly oq. returns a valueC(4)=0.423, in good agreement with the
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. . . ) FIG. 5. Log-log plot of the fraction of unvisited sites as a func-
FIG. 4. Log-log plot of the particle density as a function of time 45 of time in the 1D exchange model.

in the 1D exchange model.

performed in the regime 5680t<5000, to avoid initial tran-
values ofC recorded in Table II. Notice that this value lies sients.
exactly midway between the minimum val@2)=0.282
and the maximum valueC(«)=0.564, set by they-state C. Fraction of uninfected walkers
Potts model. Our numerical results therefore suggest that in Finall ider the fracti f uninfected walkers i
terms of the particle density, the two reactions which define inally, we consider thé fraction ot uninfected walkers in
the exchange modelA+A—B,B+B—A) are equivalent, the exchange model. We focus, without loss of generality, on

in some loose sense, to two independgatd Potts models, Just th? ffafﬂo”togl!”".‘f‘?dfi partti.clles. I_Phthiz\m()dfl’l we
: . : are only interested ioriginal A particles. Those\ particles

though we would not wish to stretch this comparison too far.WhiCh have been created through the reacBenB— A after

t=0, are also therefore considered to be infected. There are

B. Fraction of unvisited sites two distinct cases to considd(i) the fraction ofA particles

hich remain uninfected bpnly their own species andi)

e fraction ofA particles which have avoided infection by

Both types of species. Our approach is wholly numerical. We

address the former case first.

Figure 6 indicates that the fraction of uninfect@dvalk-

s obeys a power-law decay according Wdt)~t~ %A,

We now turn our attention to the persistence properties on/]
the exchange model. Here, we are interested in the fractio
of sitesP(t) that have never been visited by eitherfor a
B particle up to timet. An obvious starting point is to see if
P(t) obeys a power-law decay with an exponent equal to tha(gJr
Ttgrznxeac(jqLrl)tcvieiz,sis?;;\’g(__li zpft;?ql\zﬂzc)jilslzleegpg&r where the subscripA on the exponent denotes infection by

numerical simulations do indeed indicate a power-law decaOnly A particles[case(i)]. The results foip,(0)=1 were
P(t)~t %, However, the decay exponefit,~1.33, in dis- 6enerated from 500 runs on a lattice of siz& BY over

5000 time steps. The results fpr(0)=0.5 were generated

agreement with What one might have naively expected fromusing a lattice of size 0 run for 10 time steps and also
a study of the particle decay.

Our simulations are performed on a lattice of siz8 i averaged over 500 runs. In Table 1V, we present our numeri-

5000 time steps and the results averaged over 200 runs. ﬁl values of¢, for two different |n|t|al_start|ng densme_s.
; e values of the exponent were obtained by performing a
Fig. 5, we present a log-log plot d#(t). In Table IIl, we

show the results of a linear regression performed on th(lemear regression on the curves in Fig. 6 in the regime 100

curves in Fig. 5, to obtain values éf,. The regression was =1="5000. . . . .
" x: We now address casi), the fraction ofA particles which

_ _ ) have avoided infection by both and B walkers. Our simu-
TABLE II. Numerical values for the particle density decay ex-

ponenta and the amplitudeC in the 1D exchange model, where ~ TABLE Ill. Numerical values for the persistence decay expo-

pa(t)~Ct™ ¢, for different initial densitiepa(0). nent f., in the 1D exchange model, wheR{t) ~t~ %x, for initial
densitiespa(0).
pa(0) a C
05 0.50079) 0.4195) Pa(0) ex
0.25 0.5007) 0.4195) 0.2 1.3307)
0.1 0.50005) 0.4169) 0.3 1.3335)
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' " " ' 0 T . .
— pA(0)=0.5
-2 N ——- pa0)=1.0 E Pa=0.3
-5 + 4
2 S
£ 4| | e
-10 + ]
12 1 L I 1
0 2 4 6 8 10 -15 5 2 ‘nt é .
Int Int
FIG' 6. I__og-log plot of the fraction of walkers_ uninfe_cted by FIG. 8. Log-log plot of the fraction oA walkers uninfected by
A particles in the 1D exchange model as a function of time. both A and B particles in the 1D exchange model as a function of

time, for five individual simulation runs.

lations are performed on a lattice of size®@r 2000 time
steps and averaged over 500 runs. In line with our previoug, \yaikers uninfected by eithek or B particles would also
data, we present our results 10(t) on a log-log plot in Fig.  ayhibit a power-law decald (t)~t~ %28, where the subscript
7. , ) . on the exponent denotes infection is permitted by both spe-

Unfortunately, we do not obtain straight line graphs. jes There is, however, a cleaner method of extracting the
However, an inspection of |nd|_V|(_juaI runs of_the défag. 8 _exponentb,g. We suggest, in analogy with the other models
shows that, in this model, statistical fluctuations between dify o have studied, thadl(t)=[ P(t)]"x so that
ferent runs become prominent very quickly, whereas earlier
times are governed by transient effects. The dominance of Das= YexOex- (7
these two regimes renders any determination of an exponent
particularly difficult. Using a lower initial density, with the If we can establish the validity of the relatiod (t)
intention of delaying the onset of noisy data only extends the~[ p(t)]7ex and determine the value of,,, we can then
transient regime, whereas using a higher initial density tqead off the exponenp,g from Eq.(7). Our initial condition
minimize transient effects accelerates the onset of large stapecifies a maximum of one particle per site,$(0)=1.
tistical fluctuations. In view of the power-law behavior we whjle, in the continuum description of the mod®|(0)=1
identified in case(i) and the general trend of our data, we giso, on a lattice this becomé¥0)=1— p,. Therefore, to
suggest that, with sufficiently good statistics, the fraction ofyjace these two quantities on an equal footing in our numeri-

cal study, we definep(t)=P(t)/P(0), sothat bothU(0)

' ' ' and p(0) are equal to unity. Note, of course, that in the
continuum limit,pp— 0, we recovep(t)— P(t). We present
in Fig. 9 a log-log plot ofU(t) vs p(t).

The plot in Fig. 9 is quite linear, but does not go through
] the origin, suggesting that in fadd (t)=Kp(t)?ex with K
#1. We note that in the numerical analysis of the relation-
ship between noninfectedness and persistence in the
Ad—JA and A+B— models[57] the equivalent pref-
actor K was close enough to unityK(=0.99) to tempt the
- speculation that it might become unity in the continuum
(low-density limit, though we stress that in the latter models
there was good evidence that some of the simulations had

In CU®)

TABLE IV. Numerical values for the exponent, in the 1D
exchange model, whetd(t)~t~ A, for initial densitiesp(0).

-14 s s s
0 2 4 6 8
Int pa(0) b
FIG. 7. Log-log plot of the fraction oA walkers uninfected by 1.0 1.1335)
both A and B particles in the 1D exchange model as a function of 0.5 1.1388)

time.

051114-6



FRACTION OF UNINFECTED WALKERS IN THE ONE. .. PHYSICAL REVIEW E 65051114

— 1, {In pMH+In K
1 ol —— - In{U@) i

In QU(t))

7t

pA(0)=0.2

In {p(t)) 0 2 4 6 8
Int

-12

FIG. 9. Log-log plot of the fraction oA walkers uninfected by

both A andB particles, against the fraction of unvisited sites, in the ~ FIG. 10. InU(t) and ye«In p(t)+InK plotted as a function of

1D exchange model. time, to collapse the data for the uninfected walkers and unvisited
sites onto a single curve. We present our resultpfg0)=0.2 and

not reached the asymptotic regime. In order to evalgate US€7ex=1.45 and<=0.86.

andK for the present model, we perform a linear regression

on the data in Fig. 9 in the region indicated by the arrowsfection is caused by both specigd(t)~t~ %8 with ¢ag

thereby avoiding initial transients associated with lattice ef-=1.93.

fects, and the onset of statistical fluctuations between differ-

gnfrrté)rlls \o/f the data. We summarize our resultsyigrandK IV. DISCUSSION AND SUMMARY
in Table V.
Note that the value ok for p(0)=0.2 is larger than that In this paper, we have investigated the fraction of unin-

for pa(0)=0.3, suggesting the possibility that—1 as fected walkerdJ(t) in the 1D g-state Potts model evolving
pa(0)—0, consistent with our results for other modgdg],  at zero temperature. Our numerical results are consistent
though we have no concrete arguments to support this idedith previous work [26,34,47, suggesting thatU(t)
To test our results, we attempt to collapse the data for the-t™#@ with a nontrivial exponenté(q), where 1/2
uninfected fraction and the persistence on to a single curves ¢(q)=<3/2 for 2<qg=<. Although the values oé(q) for
by plotting InU(t) and y.4In p(t)+In K as functions of time, g=2 and g=« are understood, the exact calculation of
in Fig. 10. #(q) for all g, appears to be a hard problem. In analogy with
The data collapse is excellent over both transient andhe other models we have studigs¥], we have reduced the
asymptotic regimes, suggesting that the relatioift)  familiar study of persistent siteB(t), to a limiting case in
=K[ p(t)]”exholds to a high degree of accuracy for all timesthe study of uninfected walkers and noted thd(t)
t. We attribute any deviations between the two curves at late-[ P(t)]"?, with 4/3< y<3/2 for 2<qg=<w=. We discussed
times to the onset of statistical fluctuations between differenin Sec. | that, with regard to the persistence properties of the
runs of the data. Clearly we can improve the collapse aPotts model, it is possible to probe the regiosd=<2. Al-
either early or late times by performing the linear regressiorthough we have included a point for the state 1, where
in Fig. 9 on the appropriate part of the curve. We find thatd= ¢=0, in Figs. 2 and 3, we leave a study of the fraction of
over the whole regime presented in Fig. 3Q,=1.45(1) uninfected walkers in this latter regime as an open challenge.
works well. For brevity and clarity of presentation, we have We have also studied the 1D exchange model, defined by
presented our results fer,(0)=0.2 only, although we have the reaction®A+ A—B andB+ B—A. Our numerical simu-
achieved equally good results fpp(0)=0.3.
The valuesyq,=1.45 andf.,~1.33 yield, using Eq(7), TABLE VI. Numerical results for the exponentin various 1D

dpp=1.45<1.33=1.93. We therefore argue that, when in- models for whichU(t)=[P(t)]” (results for the first two models
from Ref.[57)).

TABLE V. Numerical values ofy,, andK in the 1D exchange

model, whereU (t)=K[p(t)] e for two initial densitiesp(0). Model Y
AT —TA 1.39
0 K
Pa(0) Yex A+B—Q 1.39
0.2 1.4537) 0.8639) g-state Potts Model [4/3,3/12, qe[2.<]
0.3 1.4567) 0.7549) exchange Model 1.45
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lations indicate similarities between this diffusion-limited Across the range of models we have studied, in both this and
system and the Potts class of models, in that the particleur previous papef57], the fraction of uninfected walkers
density decays according f&(t)~t~ %2, independent of the U(t) and the fraction of unvisited sité®(t) are seemingly
initial particle density. The amplitude of the particle decayrelated by U(t)~[P(t)]”. This remarkable relationship,
lies approximately halfway between the minimum and maxi-which seems to hold reasonably accurately across the entire
mum values set by the Potts model suggesting that, withitime regime accessible to simulation, merits further attention.
the context of the particle decay, the exchange model roughlin Table VI, we summarize the values ¢ffor the various
mimics the behavior of two independem=4 Potts models. models we have studieghote, however, that there is some
We have also shown that the fraction of sites unvisited byevidence[57] that, for the first two models, the asymptotic
either anA or a B particle decays according ®(t)~t ’x  value of y is smaller 1.39

where 6,,=1.33. Our study of the fraction of uninfected  Finally, we note that all values of obtained so far lie in
walkers in the exchange model focused on two cases. In thie range 4/3q<3/2 spanned by the-state Potts model
first instance, we addressed the fractiorhatalkers infected  with 2<q=cc. Up to now, our analysis of has been purely

by only their own species and established that, in this caseyumerical, and naturally a more fundamental understanding
U(t)~t~ %A where ¢,=1.13. When cross-species contami- of this exponent is required.

nation was also included in our simulation, we fouddt)
~t~?AB with ¢rp=1.93. We presented numerical evidence
that U (t) =K[ p(t)]”ex with ye,=1.45. An obvious goal for
the future is to establish a theoretical framework for the ex- We thank Satya Majumdar for drawing our attention to
ponents that occur in the exchange model and, in particulagome related work. This work was supported by EPSRC
for the observed simple relation betweék(t) and P(t). (UK).
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