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Uninfected random walkers in one dimension

S. J. O’Donoghue and A. J. Bray
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~Received 26 November 2001; published 20 May 2002!

We consider a system of unbiased diffusing walkers (AB↔BA) in one dimension with random initial
conditions. We investigate numerically the relation between the fraction of walkersU(t) which have never
encountered another walker up to timet, calling such walkers ‘‘uninfected’’ and the fraction of sitesP(t) which
have never been visited by a diffusing particle. We extend our study to include theA1B→B diffusion-limited
reaction in one dimension, with equal initial densities ofA and B particles distributed homogeneously att
50. We findU(t).@P(t)#g, with g.1.39, in both models, though there is evidence that a smaller value ofg
is required fort→`.
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I. INTRODUCTION

Random walks model a host of phenomena and find
plication in virtually all areas of physics@1–5#. In this paper,
we consider a one-dimensional~1D! system of noninteract
ing, unbiased diffusing walkersAB↔BA, with random ini-
tial conditions. In this model each walker undergoes an
dependent random walk, with multiple occupancy of si
allowed@6#. Recently, we have studied thepersistenceprop-
erties of this model@7#. The persistence probabilityP(t) has
been widely studied in recent years@7–20#. In the present
context,P(t) is defined as the fraction of sites which ha
never been visited by a diffusing particle up to timet. Such
sites are termed ‘‘persistent sites.’’ We showed@7# that, in the
case of theAB↔BA processes

P~ t !5exp@2~16r0
2Dt/p!1/2#, ~1!

wherer0 is the particle density andD is the diffusion con-
stant. The fraction of unvisited sites in this model c
equally be thought of as the surviving fraction of immob
particles in the presence of randomly diffusing traps. At
50, consider each site to contain a static particleA so that
rA(0)51. Then fort.0, let particles of another typeB ran-
domly distributed on the lattice with densityr0, diffuse
though the system with theB particles acting as perfect trap
for the A particles so thatA1B→B. This model is just the
well-studied ‘‘scavenger’’ model of Redner and Kang, Bl
menet al., and Bénichouet al. @21–23#. The fraction of un-
visited sites is then justrA(t).

The focus of this paper is to explore the relation betwe
P(t) and the fraction of walkersU(t) that have never en
countered another walker up to timet. To facilitate our dis-
cussion, we introduce the following definition. We consid
all walkers to beuninfectedat time t50. The walkers are
however, considered to be mutually infectious, so that fot
.0 any contact between walkers leads to mutual contam
tion. We therefore define an uninfected walker to be o
which has never encountered~occupied the same site a!
another walker. We can then refer toU(t) as the fraction of
uninfected walkers. The fraction of uninfected walkers is,
fact, isomorphic to the survival probability ofA particles in
the reactionA1B→B, with equal mobility for both species
1063-651X/2002/65~5!/051113~7!/$20.00 65 0511
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@21,24,25,27#. At late times, one expects the asymptotics
this model to be identical to those of theA1B→B
diffusion-limited process withrA(0)!rB(0). For this pro-
cess it was proved rigorously by Bramson and Lebowitz@25#
that

rA~ t !;exp~2lt1/2! ~2!

in one dimension, with unknown constantl. Therefore, we
expect identical asymptotic behavior forU(t). The kinetics
of the two-species annihilation model has received consid
able attention over the past two decades and is largely
derstood@5,24,25,28–32#. It is well appreciated that in this
model, there exists an upper-critical dimensiondc , below
which spatial fluctuations in the initial distribution of th
reactants play a significant role in the evolution of the de
sity of the particles. This dependence on the microsco
fluctuations invalidates traditional approaches such as
mean-field approximation which yieldsr(t);t21. It was
first shown by Toussaint and Wilczek@28# that, for equal
initial densities@rA(0)5rB(0)# of randomly diffusingA and
B particles, the walker density decays anomalously, acco
ing to rA(t);ArA(0)t2d/4 for d<dc54, assuming that the
particles are distributed homogeneously att50. In the case
of this model, we argued heuristically, on the basis of a
model @7# that

P~ t !;exp@2C~r0
2Dt !1/4#, ~3!

whereC is a constant andr05rA(0)1rB(0). Weextend our
study to include an investigation of the fraction of uninfect
walkers in this model in one dimension.

The fraction of uninfected walkersU(t) is related to the
fraction of persistent sitesP(t) in the following manner. In
evaluatingP(t), one considers particles with diffusion con
stantD and addresses the probability that a given sitex has
never been visited by any walker up to timet. Equivalently,
one could consider the sitex to contain a particle with diffu-
sion constantD850 and address the probability that the pa
ticle remains uninfected~i.e., unvisited!. However, if the par-
ticle initially at positionx is given a diffusion constant equa
to that of the other particles in the system, i.e.,D85D, then
the probability that it ‘‘persists’’ up to timet is the probabil-
©2002 The American Physical Society13-1
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ity that it remains uninfected. This suggests that the num
of uninfected particles is a function of the diffusion consta
in the problem, with the limiting caseD850 corresponding
to the standard persistence problem. Clearly, in order
avoid contamination, remaining stationary is a more effect
strategy than diffusing. Therefore, we anticipate that the fr
tion of uninfected walkers decays more rapidly than the fr
tion of uninfected~unvisited, i.e., persistent! sites. This faster
decay ofU(t) is clearly observed in the simulations.

Given the similar decay ofP(t) in the AB↔BA andA
1B→B processes, these models make a sensible comb
tion to study together. We discover that in both cases,U(t)
;@P(t)#g where 1,g&1.39. In fact, the relationU(t)
5k@P(t)#g, with k close to unity andg51.39(1), describes
the data rather accurately in both models over the wh
range of times studied, although there are indications in b
models that the asymptotic value ofg is smaller than 1.39
We discuss theAB↔BA model in Sec. II and follow with
the A1B→B reaction in Sec. III. We conclude in Sec. IV
with a discussion and summary of the results.

II. AB^BA MODEL

We consider a system of noninteracting, unbiased, diff
ing walkers, with random initial conditions. Our numeri
are performed on a 1D lattice of sizeL5107 with lattice-
constanta51 and periodic boundaries. Att50, N random
walkers are randomly distributed on the lattice with a ma
mum of one particle per site so thatU(0)51 andP(0)51
2r0, wherer05r(0)5N/L. Clearly, P(0)Þ1 is a conse-
quence of our lattice description and in the continuum lim
r0→0, where the mean distance between walkers is m
larger than the lattice spacingP(0)→1. Therefore, in order
to place the fraction of persistent sites and the fraction
uninfected walkers on an equal footing in our numeri
study, we define

p~ t !5
P~ t !

P~0!
~4!

so that bothU(0) andp(0) are normalized to one. We now
usep(t) in the description of our numerical results.

Our model is updated using the direct method@33#, i.e., at
each computational step, a particle is picked at random
shifted with probabilityD51/2 to a neighboring site, wher
D is the diffusion constant. Fort.0, any site which is vis-
ited by a walker becomes nonpersistent for all remain
time t. Mutual infection occurs when two or more particle
simultaneously occupy a single lattice site. For each ju
made by a particle, timet is increased bydt51/N, whereN
is the current number of particles in the system~which is
constant in the present model!. Our results are averaged ov
100 independent runs.

Dimensional analysis demands that, on acontinuum, the
fraction of unvisited sites is a function of the dimensionle
combination of parameters in the problem, i.e.,P(t)
5 f (r0

2Dt). Similarly, for the fraction of uninfected walker
U(t)5g(r0

2Dt), whereg is some other function. Howeve
given that our numerical simulations take place on a disc
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lattice, we expect the scaling ofP(t) andU(t) as a function
of r0

2Dt to become strictly true only in the continuum lim
r0→0. In order to approximate this limit as closely as po
sible, we choose as our densitiesr050.007, 0.005, and
0.003, so thatr0!1.

The dimensionless combination of parameters,r0
2Dt, also

defines a natural characteristic time scale in the probl
namely, t* 51/r0

2D. Therefore, one expects to observe t
asymptotic behavior of the system only after a timet@t* has
been reached. However, as far as the persistent propertie
concerned, Eq.~1! is an exact relation in the continuum lim
for all t. Therefore, we expect to observeP(t) approaching
asymptopia very quickly in our numerical data. Clearly,
the discrete description of the model used in our simulatio
Eq. ~1! breaks down at the earliest times since, for very sm
t, lattice effects play a dominant role. Equation~2!, however,
which holds forU(t) is a truly asymptotic relation. Unfortu
nately, the extremely fast decay ofU(t) leads to small-
number effects at very early times in our simulations and
find the limit t@t* unattainable with good statistics. Ther
fore, we limit ourselves to studying the regime up totmax
.t* /2.

The fraction of unvisited sites decays, in the continuu
limit, exactly as the stretched exponential form, Eq.~1! @7#.
In order to make a direct comparison between the fraction
persistent sitesp(t) and the fraction of uninfected walker
U(t), we present these two quantities on a linear-log plot
Fig. 1, using (r0

2Dt)1/2 as abscissa. Figure 1 shows clea
that the data scale as a function of the dimensionless qua
r0

2Dt. U(t) exhibits behavior characteristic of Eq.~2!, with a
faster decay rate than for the fraction of persistent sites,
l.(16r0

2D/p)1/2. The data seem consistent with

U~ t !.K@p~ t !#g, ~5!

with K.1 andg.1. The log-log plot ofU(t) vs p(t) in
Fig. 2 indeed shows an almost linear relationship betw

FIG. 1. Linear-log plot of the fraction of unvisited sitesp(t),
and the fraction of uninfected walkersU(t), as a function of
(r0

2Dt)1/2, for theAB↔BA model.
3-2
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UNINFECTED RANDOM WALKERS IN ONE DIMENSION PHYSICAL REVIEW E65 051113
ln U(t) and lnp(t). In order to evaluateg and K, we per-
formed a linear regression on the data in Fig. 2 in the reg
indicated by the arrows, thereby avoiding initial transie
associated with our lattice description, and the onset of
tistical fluctuations between different runs of the data.
summarize our results forg andK in Table I.

The data are sufficiently good to merit closer inspecti
To check how far our numerics probe the asymptotic regim
we plot 2(r0

2Dt)21/2ln p(t) and2(r0
2Dt)21/2ln U(t) against

ln(r0
2Dt) in Fig. 3. The nature of this plot greatly expands t

early time regime. Whereas the data collapse for differ
densities is excellent in Fig. 1, a systematic splitting of
curves as a function ofr0 is now clearly evident. This fea
ture is a consequence of the discreteness of the lattice
fact, the behavior ofp(t) is well described, for allt, by an
exact lattice calculation@26# which predicts

p~ t !5exp@2r0a f~Dt/a2!#, ~6!

where a is the lattice spacing. The functionf (x) has the
limiting behavior f (x)→2x for x→0 and f (x)
→(16x/p)1/2 for x→`, the latter reproducing the continuum
limit result, Eq. ~1!. Indeed, the structure of Eq.~6! shows
that the continuum limita→0 at fixedt, and the asymptotic
limit t→` at fixeda are the same. Equation~6! also shows
that the quantity2(r0

2Dt)21/2ln p(t) is, for fixeda andD, a
function of t only, i.e., independent ofr0. For small t it
behaves ast1/2, accounting for the small-t behavior in Fig. 3.
Plotting against ln(r0

2Dt) displaces the curves for differen

FIG. 2. Log-log plot of the fraction of uninfected walkers,U(t),
against the fraction of unvisited sites,p(t), in theAB↔BA model.

TABLE I. Numerical values of g and K, where U(t)
.K@p(t)#g, for variousr0, in theAB↔BA model.

r0 g K

0.007 1.391~5! 0.990~3!

0.005 1.391~5! 0.991~3!

0.003 1.391~5! 0.991~3!
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densities in the horizontal direction, as is clear in the figu
The whole region where the curves are split in Fig. 3 cor
sponds to the top left-hand corner of Fig. 1. If the data
plotted against lnt in Fig. 3, instead of ln(r0

2Dt), the data for
different densities recollapse, but the onset of the continu
limit at late times is not as clear.

For large t, where the curves for the different densitie
converge in these scaled variables, the persistence
clearly approach the limiting value 4/Ap, consistent with the
continuum limit displayed in Eq.~1!. By contrast, Fig. 3
shows that all of our data forU(t) is merely preasymptotic
The data reach a maximum and then appear to monotonic
decrease in the region where the different curves conve
~the continuum limit!. Our results are consistent with th
recent simulations of Mehra and Grassberger@27# who probe
U(t) to much smaller values than achieved here. The s
approach to asymptopia forU(t) is not understood and, al
though our numerics seem roughly consistent with Eq.~2!, a
numerical determination ofl appears to be a hard problem
In the light of Fig. 3, Fig. 2 and its associated results~Table
I! are somewhat misleading. Clearly, over the times cove
by our simulations,g cannot be a constant sincel is not.

In Fig. 4 we plot the effective exponentg(t)
5ln U(t)/ln p(t) directly as a function of time. The data sho
that g decreases monotonically with time even in the ‘‘co
tinuum regime’’ where the curves for different densities co
verge. Fort→`, g must tend to a constant if Eq.~2! is
correct. We note that since the fraction of uninfected walk
decreases more rapidly than the fraction of persistent s
g.1. Therefore, if the trend in the data continues, we c
boundg by 1,g,1.39. Asymptotically,U(t);@P(t)#g for
some fixedg where 1,g,1.39.

Let us consider once again the probability of being un
fected of a particle at sitex, with diffusion constantD8, and
diffusing particles to its left and right with diffusion consta
D. Then, we suggest that the fraction of uninfected walk
can be expressed as

FIG. 3. 2(r0
2Dt)21/2ln p(t) and 2(r0

2Dt)21/2ln U(t) plotted
against ln(r0

2Dt) for r050.007, 0.005, and 0.003.
3-3
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S. J. O’DONOGHUE AND A. J. BRAY PHYSICAL REVIEW E65 051113
U~ t !;exp@2~r0
2Dt !1/2F~D8/D !# ~7!

for large t, consistent with the result of Bramson and Le
owitz @25# @Eq. ~2!#. F(x) is some unknown function of the
ratio of the diffusion constants in the system. ForD850, the
problem reduces to the familiar study of unvisited sit
Therefore,F(0)5(16/p)1/2 and U(t)5P(t). The caseD8
5D corresponds to equally mobile particles, and the part
at site x becomes infected more quickly than if it had r
mained stationary. In this case,F(1)5g(16/p)1/2 giving
U(t);@P(t)#g where, according to our numerics, 1,g
,1.39. Although we have explored the valuesD850 and
D85D only, we conjecture that Eq.~7! holds for any ratio of
the diffusion constants.

III. A¿B\B MODEL

We now address the fraction of uninfected walkersU(t)
in the two-species annihilation model. Our simulations
performed on a 1D lattice of sizeL5107 with periodic
boundary conditions. Att50, exactly equal numbers
NA(0)5NB(0), of A and B particles are randomly distrib
uted on the lattice with a maximum of one particle per s
such that at large scales, both densitiesrA(0) andrB(0) are
initially homogeneous. We definerA(0)5rB(0)5NA(0)/L
and r05rA(0)1rB(0). Both species are also given th
same diffusion constantDA5DB5D51/2. Our model is
then updated in the same manner as for theAB↔BA model
described in Sec. II, i.e.,dt51/N(t), where N(t)5NA(t)
1NB(t), is the total current number of particles in the sy
tem. Infection occurs when two or more particles occup
single lattice site, but we impose an instantaneous reac
(A1B→B) so that each lattice contains only one type
particle.

It is well known that in the two-species annihilatio
model in one dimension, there is an effective repulsion
tween theA and B particles that favors segregation in

FIG. 4. Plot ofg vs ln(r0
2Dt), whereg5 ln U(t)/ln p(t), for the

AB↔BA model. Inset: blow up of the right-hand part of the plo
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single species domains@5,28,32#. This domain coarsening
leads to early time transients for bothP(t) and U(t). Al-
though using a high-initial density serves to accelerate
system’s progression into the asymptotic regime, in doing
not only is the continuum limit obscured, but we also fin
that the extremely fast decay of bothP(t) andU(t) leads to
small-number effects at very early times. Therefore
chooser0!1. For consistency, we select our parameters
be the same as those studied in theAB↔BA process, i.e.,
r050.007, 0.005, and 0.003, andr0

2Dtmax.0.5 wheretmax

is the maximum number of time steps in the simulations.
the results are averaged over 100 runs.

The format of our analysis is much the same as in
preceding section. We observe that an algebraic rela
U(t);@p(t)#d betweenU(t) and p(t) also holds approxi-
mately in this case over the range of times studied. Surp
ingly, d seems to have a similar value tog in theAB↔BA
model, i.e., 1,d&1.39. For the two-species annihilatio
process we suggested in our earlier paper, on the basis
toy model, that the fraction of unvisited sites decays asym
totically according to the stretched exponential form, Eq.~3!
@7#. In the manner of Fig. 1, to make a direct comparis
between the fraction of persistent sitesP(t), and the fraction
of uninfected walkersU(t), we present these two quantitie
on a linear-log plot in Fig. 5, this time using (r0

2Dt)1/4 as
abscissa, as suggested by Eq.~3!. Figure 5 shows clearly tha
the data scale excellently as a function of the dimension
quantity r0

2Dt. We appreciate, however, that the stretch
exponential behavior of Eq.~3! is not particularly well real-
ized. This may be due to the prevalence of large initial tra
sients~we presented more convincing evidence of the ex
nential behavior in our earlier paper@7#!. In particular, the
asymptotic behavior represented in Eq.~3! is only expected
for large values ofr0

2Dt, unlike Eq.~1! for P(t), which we
have shown holds for allt on the continuum@7#. Nonethe-
less, even in the regime we have studied, it is clear from F

FIG. 5. Linear-log plot of the fraction of unvisited sitesp(t),
and the fraction of uninfected walkersU(t), as a function ofr0

2Dt,
for the A1B→B model.
3-4
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5 that the fraction of uninfected walkers has a very sim
form of decay to the fraction of unvisited sites, but with
faster decay rate. In Fig. 6, therefore, we plot lnU(t) against
ln p(t) to see whether there is a simple relationship betw
U(t) andp(t).

The approximate linearity of the data in Fig. 6 sugge
U(t);k@p(t)#d. To determined andk, we performed a lin-
ear regression on the data in the region indicated by
arrows, thereby avoiding initial transients associated w
our lattice description, and the onset of statistical fluctuati
between different runs of the data. We summarize our res
for d andk in Table II. Notice thatd andk agree remarkably
well with g and K recorded in Table I for theAB↔BA
process.

In analogy to Fig. 3, we plot (r0
2Dt)21/4ln p(t) and

(r0
2Dt)21/4ln U(t) against ln(r0

2Dt) in Fig. 7. Early-time lat-
tice effects, where the different densities do not overlap,
evident in Fig. 7. It is possible that all of our data forp(t)
andU(t) are within the preasymptotic regime, since thep(t)
curve has not yet saturated to the late-time asymptotic va
implied by Eq.~3!. Note, however, that if the curves in Fig
7 were asymptotically linearly increasing, rather than ev
tually saturating to a constant, the corresponding forms
p(t) andU(t) would be exp@2C(r0

2Dt)1/4ln(r0
2Dt)#, with C a

constant~different for p and U). This form differs only by
the logarithmic term from that predicted in@7# on the basis of
a toy model. It should be noted that neither our present d
nor that presented in@7# can definitively rule out such loga
rithmic corrections, and the asympotic form ofp(t), as well

FIG. 6. Log-log plot of the fraction of uninfected walkers,U(t),
against the fraction of unvisited sitesp(t) in the A1B→B model.

TABLE II. Numerical values of d and k, where U(t)
.k@p(t)#d, for variousr0, in theA1B→B model.

r0 d k

0.007 1.390~5! 0.990~3!

0.005 1.390~5! 0.993~3!

0.003 1.386~5! 0.991~3!
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asU(t), cannot be regarded as being definitively establish
Throughout the preasymptotic regime, however, the rela
U(t)5K@p(t)#d, with d51.39(1), holds rather well. In Fig.
8 we plot the effective exponentd(t)5 ln U(t)/ln p(t) directly
as a function of ln(r0

2Dt).
Figure 8 is remarkably similar to Fig. 4 for theAB↔BA

process. Indeed, except for the earliest times, the corresp
ing curves differ by less by 1% everywhere. In a similar w
we can bound the asymptoticd ~assuming that the late-tim
trend evident in Fig. 8 continues! by 1,d,1.39. Since we
have argued elsewhere@7#, using a toy model, that the
asymptotic behavior ofP(t) is described by Eq.~3!, we con-
jecture that the asymptotics ofU(t) are given by

U~ t !;exp@2dC~r0
2Dt !1/4#, ~8!

FIG. 7. 2(r0
2Dt)21/4ln p(t) and 2(r0

2Dt)21/4ln U(t) plotted
against ln(r0

2Dt) for r050.007, 0.005, and 0.003.

FIG. 8. Plot of d vs ln t, where d5 ln U(t)/ln p(t), for the A
1B→B model. Inset: blow up of the right-hand part of the data
3-5
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whereC is a constant and 1,d,1.39. For theAB↔BA
model, we expressed@Eq. ~7!# U(t) in terms of the ratio
D8/D, whereD8 is the diffusion constant of a tagged pa
ticle, D is the diffusion constant of the other particles, a
U(t) is the probability that the tagged particle remains un
fected at timet. The analogous form for theA1B→B pro-
cess is naturally

U~ t !;exp@2~r0
2Dt !1/4G~D8/D !#, ~9!

whereG(x) is some unknown function. As before, the ca
D850 corresponds to the problem of unvisited sites, so t
G(0)5C and U(t)5P(t). For D85D, the case studied
above, our conjecture impliesG(1)5dC. However, we
stress that a logarithmic correction of the form discus
above cannot be ruled out by the data. The main motiva
for Eq. ~9! is the toy model presented in@7#, applied to the
caseD850.

IV. DISCUSSION AND SUMMARY

In this paper, we have studied two distinct models:~i! a
one-dimensional system of noninteracting, unbiased diff
ing walkersAB↔BA, with random initial conditions and
~ii ! theA1B→B diffusion limited process in one dimensio
with equal initial densities ofA and B particles distributed
homogeneously att50. We have reduced the familiar stud
of persistent sitesP(t), to a limiting case in the study o
uninfected walkers and shown numerically that in both m
els

U~ t !;@P~ t !#g, ~10!

whereg.1.39 for the time regimes covered by our data a
1,g,1.39 for asymptotically large time. The common fe
ture of theAB↔BA and A1B→B processes is that th
fraction of unvisited sites decays according to a stretc
exponential ~possibly with logarithmic corrections forA
1B→B). In our earlier paper@7#, we argued heuristically
on the basis of a toy model, that if the density of walke
decays asymptotically ast2a, then the fraction of unvisited
sites P(t) decays with a stretched exponential form ifa
,1/2. We showed that

P~ t !;exp2@A~a!r0
2Dt# (1/2)2a, a,1/2, ~11!

whereA is some function ofa. This result is consistent with
the results for models studied here. Remarkably, Eq.~10!
nd

ry
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seems to hold for both theAB↔BA and theA1B→B
processes, with approximately the same bounds ong. Fur-
thermore, the effective time-dependent value ofg is very
similar for both models~see Figs. 4 and 8!. An obvious goal
for the future is to try to obtain a theoretical understanding
this simple relationship, and test it against other models w
a,1/2.

Even for the simple casea50 ~the AB↔BA model!
studied in this paper, an analytical calculation ofU(t) is a
challenging problem. For a system consisting of just th
particles, the probability that the central particle has not b
crossed by either of the outer particles can be calcula
exactly @34#, and is found to decay ast23/2. The problem is
solved by mapping it onto diffusion in two dimensions wi
absorbing boundaries on a wedge@34#. For N.3 particles,
the problem maps onto diffusion inN21 dimensions with
absorbing boundaries on a hyperwedge. This problem ha
far proved intractable.

For both models studied here, we expressed the proba
ity that a particle at sitex is uninfected in terms of its diffu-
sion constantD8 and the diffusion constantD of the other
particles@Eqs. ~7! and ~9!#, noting thatP(t) corresponds to
the limit D850. Using Eq.~11!, we can generalize this de
scription to any system of randomly diffusing particles f
which the density decays as;t2a with a,1/2. We conjec-
ture that, in this case, the fraction of uninfected walkers c
be expressed, asymptotically, as

U~ t !;exp@2~r0
2Dt !(1/2)2aR~D8/D,a!#, ~12!

with U(D850)5P(t) and R some unknown function.
Clearly, there is much scope to test the validity of this fo
since we have only considereda50,1/4 andD850,D. Note
that for systems witha.1/2, our toy model predicts@7# that
P(t) approaches a nonzero constant, whileU(t) certainly
behaves differently since it is bounded above byr(t) and
must therefore vanish for larget. More interesting, however
is the borderline case where the particle density falls off l
t21/2. In this case, our toy model predicts thatP(t) @7# de-
cays as a power law,P(t);t2u. A system where such be
havior is observed is the well studiedq-state Potts mode
@9,10,12,13,20#. The results of our study of uninfected walk
ers in this model follows in a separate paper@35#.
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