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Uninfected random walkers in one dimension
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We consider a system of unbiased diffusing walkek&(— @A) in one dimension with random initial
conditions. We investigate numerically the relation between the fraction of walk@)swhich have never
encountered another walker up to timealling such walkers “uninfected” and the fraction of siteét) which
have never been visited by a diffusing particle. We extend our study to include-ttiz— J diffusion-limited
reaction in one dimension, with equal initial densitiesfofind B particles distributed homogeneously tat
=0. We findU(t)=[ P(t)]?, with y=1.39, in both models, though there is evidence that a smaller valye of
is required fort— oo.
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[. INTRODUCTION [21,24,25,2T. At late times, one expects the asymptotics of
this model to be identical to those of thA+B—

Random walks model a host of phenomena and find apdiffusion-limited process wittp,(0)<<pg(0). For this pro-
plication in virtually all areas of physidd—5]. In this paper, cess it was proved rigorously by Bramson and Lebo{a&
we consider a one-dimensiondlD) system of noninteract- that
ing, unbiased diffusing walke’&JJ«— JA, with random ini-
tial conditions. In this model each walker undergoes an in- pa(t) ~exp(—\t'?) (2
dependent random walk, with multiple occupancy of sites
allowed[6]. Recently, we have studied tipersistencegrop- in one dimension, with unknown constant Therefore, we
erties of this modef7]. The persistence probabili§(t) has  expect identical asymptotic behavior fok(t). The kinetics
been widely studied in recent yedig—20. In the present Of the two-species annihilation model has received consider-
context, P(t) is defined as the fraction of sites which have able attention over the past two decades and is largely un-
never been visited by a diffusing particle up to timé&uch  derstood[5,24,25,28-3P It is well appreciated that in this
sites are termed “persistent sites.” We shoy@tithat, in the ~ model, there exists an upper-critical dimensigy, below

case of theAd— A processes which spatial fluctuations in the initial distribution of the
reactants play a significant role in the evolution of the den-
P(t)zex;{—(le%Dt/w)l’z], (1) sity of the particles. This dependence on the microscopic

fluctuations invalidates traditional approaches such as the
wherep, is the particle density anB is the diffusion con- mean-field approximation which yields(t)~t~1. It was
stant. The fraction of unvisited sites in this model canfirst shown by Toussaint and Wilczg28] that, for equal
equally be thought of as the surviving fraction of immobile initial densitieq p(0)= pg(0)] of randomly diffusingA and
particles in the presence of randomly diffusing traps.tAt B particles, the walker density decays anomalously, accord-
=0, consider each site to contain a static partitleo that ing to pa(t)~ pa(0)t~¥* for d<d.=4, assuming that the
pa(0)=1. Then fort>0, let particles of another tyg@ ran-  particles are distributed homogeneoushtat. In the case
domly distributed on the lattice with density,, diffuse  of this model, we argued heuristically, on the basis of a toy
though the system with thig particles acting as perfect traps model[7] that
for the A particles so thaA+B—B. This model is just the

well-studied “scavenger” model of Redner and Kang, Blu- P(t)~exp{—C(p§Dt)1’4], 3)
menet al, and Baichouet al.[21-23. The fraction of un-
visited sites is then jugia(t). whereC is a constant angy= pa(0)+ pg(0). Weextend our

The focus of this paper is to explore the relation betweerstudy to include an investigation of the fraction of uninfected
P(t) and the fraction of walker&)(t) that have never en- walkers in this model in one dimension.
countered another walker up to tineTo facilitate our dis- The fraction of uninfected walkend(t) is related to the
cussion, we introduce the following definition. We considerfraction of persistent siteB(t) in the following manner. In
all walkers to beuninfectedat timet=0. The walkers are, evaluatingP(t), one considers particles with diffusion con-
however, considered to be mutually infectious, so thattfor stantD and addresses the probability that a given siteas
>0 any contact between walkers leads to mutual contaminaaever been visited by any walker up to timeEquivalently,
tion. We therefore define an uninfected walker to be oneone could consider the siteto contain a particle with diffu-
which has never encounterddccupied the same site )as sion constanD’=0 and address the probability that the par-
another walker. We can then refer t{t) as the fraction of ticle remains uninfected.e., unvisiteg. However, if the par-
uninfected walkers. The fraction of uninfected walkers is, inticle initially at positionx is given a diffusion constant equal
fact, isomorphic to the survival probability @& particles in  to that of the other particles in the system, i2!,=D, then
the reactiorA+B— B, with equal mobility for both species the probability that it “persists” up to time is the probabil-
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ity that it remains uninfected. This suggests that the numbel ‘ ' ' ' ‘ ' ' '

of uninfected particles is a function of the diffusion constants —— p,=0.007
in the problem, with the limiting casB’=0 corresponding _44 | ——- p,=0.005
to the standard persistence problem. Clearly, in order to | N>~ 7™ P,=0.003

avoid contamination, remaining stationary is a more effective
strategy than diffusing. Therefore, we anticipate that the frac-
tion of uninfected walkers decays more rapidly than the frac-
tion of uninfectedunvisited, i.e., persistensites. This faster
decay ofU(t) is clearly observed in the simulations.

Given the similar decay oP(t) in the A+ A andA -1.4 - 1
+B—(J processes, these models make a sensible combine In (p(t))
tion to study together. We discover that in both caséd,)
~[P(t)]” where 1<y=1.39. In fact, the relationU(t)
=k[P(t)]?, with k close to unity andy=1.391), describes

the data rather accurately in both models over the whole In (U(t))
range of times studied, although there are indications in botlﬂ_z_4 , . , ,
models that the asymptotic value ¢fis smaller than 1.39. 0 0.2 0.4 0.6 0.8
We discuss thé&— A model in Sec. Il and follow with (0, DY

the A+B—J reaction in Sec. Ill. We conclude in Sec. 1V,

with a discussion and summary of the results. FIG. 1. Linear-log plot of the fraction of unvisited sit@gt),

and the fraction of uninfected walkefd(t), as a function of

I Ao @A MODEL (p2Dt)*2, for the AT~ TIA model.

lattice, we expect the scaling &(t) andU(t) as a function
We consider a system of noninteracting, unbiased, diffusef p2Dt to become strictly true only in the continuum limit
ing walkers, with random initial conditions. Our numerics p,—0. In order to approximate this limit as closely as pos-
are performed on a 1D lattice of size=10" with lattice-  sible, we choose as our densitipg=0.007, 0.005, and
constanta=1 and periodic boundaries. A=0, N random  0.003, so thap,<1.
walkers are randomly distributed on the lattice with a maxi- The dimensionless combination of parametpﬁﬁ)t, also
mum of one particle per site so tha(0)=1 andP(0)=1  defines a natural characteristic time scale in the problem,
—po, Wherepo=p(0)=N/L. Clearly, P(0)#1 is a conse- namely,t* =1/p3D. Therefore, one expects to observe the
quence of our lattice description and in the continuum limitasymptotic behavior of the system only after a titeet* has
po—0, where the mean distance between walkers is mucBeen reached. However, as far as the persistent properties are
larger than the lattice spacirig(0)—1. Therefore, in order concerned, Eq1) is an exact relation in the continuum limit
to place the fraction of persistent sites and the fraction ofgy || t. Therefore, we expect to obserft) approaching
uninfected walkers on an equal footing in our numericalasymptopia very quickly in our numerical data. Clearly, in
study, we define the discrete description of the model used in our simulations,
p Eq. (1) breaks down at the earliest times since, for very small
() : : .
p(t)= = (4) t lattice effects play a dominant role. Equati@, however,
P(0) which holds forU (t) is a truly asymptotic relation. Unfortu-
so that both(0) andp(0) are normalized to one. We now B, 08 BTRTER, B SRR LR e e we
usep(t) in the description of our numerical results, find the limitt>t* unattainable with good statistics. There-

Our model is updated using the direct methad], i.e., at ; limit | to studvina th i ¢
each computational step, a particle is picked at random anﬂf’/zwe Imit ourselves to studying the regime uptig.x

shifted with probabilityD =1/2 to a neighboring site, where The fraction of unvisited sites decays, in the continuum

D is the diffusion constant. Fdr>0, any site which is vis- imit, exactly as the stretched exponential form, Ex. [7]
ited by a walker becomes nonpersistent for all remainingi ’ y ; p L
n order to make a direct comparison between the fraction of

time t. Mutual infection occurs when two or more particles istent sites(t d the fracti f uninfected walk
simultaneously occupy a single lattice site. For each jum ersistent sitep(t) an € fraction of unintected walkers
(t), we present these two quantities on a linear-log plot in

made by a particle, timeis increased bylt=1/N, whereN _ ) ) .
yap v Fig. 1, using paDt)*2 as abscissa. Figure 1 shows clearly

is the current number of particles in the systéwhich is X s X i
constant in the present mogleDur results are averaged over that the data scale as a function of the dimensionless quantity
100 independent runs. pSDt. U(t) exhibits behavior characteristic of E@), with a

Dimensional analysis demands that, oeantinuum the ~ faster decay rate than for the fraction of persistent sites, i.e.,
fraction of unvisited sites is a function of the dimensionlessh>(16p§D/m)*2 The data seem consistent with
combination of parameters in the problem, i.d(t)

. . . U(t)=K[p(t)]?, 5

= f(p3Dt). Similarly, for the fraction of uninfected walkers (=K[p(v)] ©
U(t)=g(p2Dt), whereg is some other function. However, with K=1 andy>1. The log-log plot ofU(t) vs p(t) in
given that our numerical simulations take place on a discret&ig. 2 indeed shows an almost linear relationship between
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FIG. 2. Log-log plot of the fraction of uninfected walkeks(t), FIG. 3. —(p2Dt) YAnp(t) and —(p2Dt) ¥AnU(t) plotted

against the fraction of unvisited sitgg(t), in the A« JA model. against Inpf)Dt) for po=0.007, 0.005, and 0.003.

InU(t) and Inp(t). In order to evaluatey and K, we per- o _ o _ ) .
formed a linear regression on the data in Fig. 2 in the r(:*.gio,qiensmes in the horizontal direction, as is clear in the figure.
indicated by the arrows, thereby avoiding initial transientsThe whole region where the curves are split in Fig. 3 corre-
associated with our lattice description, and the onset of st&sponds to the top left-hand corner of Fig. 1. If the data are
tistical fluctuations between different runs of the data. Weplotted against Inin Fig. 3, instead of Ir‘piSDt), the data for
summarize our results foy andK in Table I. different densities recollapse, but the onset of the continuum
The data are sufficiently good to merit closer inspectionlimit at late times is not as clear.
To check how far our numerics probe the asymptotic regime, For larget, where the curves for the different densities
we plot — (p3Dt) " Yan p(t) and — (p3Dt) ~Yan U(t) against  converge in these scaled variables, the persistence data
In(p3D1) in Fig. 3. The nature of this plot greatly expands theclearly approach the limiting value 4#r, consistent with the
early time regime. Whereas the data collapse for differentontinuum limit displayed in Eq(1). By contrast, Fig. 3
densities is excellent in Fig. 1, a systematic splitting of theshows that all of our data fdo (t) is merely preasymptotic.
curves as a function of, is now clearly evident. This fea- The data reach a maximum and then appear to monotonically
ture is a consequence of the discreteness of the lattice. lflecrease in the region where the different curves converge
fact, the behavior of(t) is well described, for alt, by an  (the continuum limit. Our results are consistent with the

exact lattice calculatiop26] which predicts recent simulations of Mehra and Grassbef@&f who probe
’ U(t) to much smaller values than achieved here. The slow
p(t)=exd — poaf(Dt/a“)], (6)  approach to asymptopia f&¥(t) is not understood and, al-

though our numerics seem roughly consistent with 2y.a
numerical determination of appears to be a hard problem.
In the light of Fig. 3, Fig. 2 and its associated restfable
I) are somewhat misleading. Clearly, over the times covered
by our simulations;y cannot be a constant singeis not.

In Fig. 4 we plot the effective exponenty(t)

where a is the lattice spacing. The functiof{x) has the
limiting behavior f(x)—2x for x—0 and f(x)
—(16x/ 7) Y2 for x— oo, the latter reproducing the continuum
limit result, Eq.(1). Indeed, the structure of Eg6) shows
that the continuum limia— 0 at fixedt, and the asymptotic

limit t—co at fixeda;”“e t[\leizsame.. Equati.dﬁ) also shows =InU(t)/In p(t) directly as a function of time. The data show
that the quantity-(poDt) " np(t) is, for fixeda andD, a 5 ., decreases monotonically with time even in the “con-

function of t/zonly, i.e., independent opo. For smallt it in,ym regime” where the curves for different densities con-
behgves asll ) accogntlng.for the smatl-behavior in Elg. 3. verge. Fort—o, y must tend to a constant if Eq2) is
Plotting against Inf;Dt) displaces the curves for different cqrrect. We note that since the fraction of uninfected walkers
decreases more rapidly than the fraction of persistent sites,
v>1. Therefore, if the trend in the data continues, we can
boundy by 1<y<1.39. AsymptoticallyU(t)~[P(t)]” for
some fixedy where 1< y<1.39.

TABLE 1. Numerical values of y and K, where U(t)
=K[p(t)]?, for variouspy, in the A« A model.

Po 14 K Let us consider once again the probability of being unin-
0.007 1.3915) 0.9903) fected of a particle at site, with diffusion constanD’, and
0.005 1.3915) 0.9913) diffusing particles to its left and right with diffusion constant
0.003 1.3915) 0.99%3) D. Then, we suggest that the fraction of uninfected walkers

can be expressed as

051113-3



S. J. ODONOGHUE AND A. J. BRAY PHYSICAL REVIEW B5 051113

1.8 . . 0
1.4 T T T T =0.007
Y ——- p,=0.005
170\ 1 =0.003
S 1.395 \ . 05 b |
o
Yo
16 | \\ 1.39 | 1
bad * -1} i
1.385 TR S
15 | - 1412 1 —0.8-06-0.4 |
R In (p,-Dt) In {p(t))
14 | —— p,=0.007 1 18 A
——- p,=0.005
------------ p,=0.003 In <U(t)
1.3 L L L 2 1 1 1 !
-12.75 =775 -2.75 o 0.2 0.4 0.6 0.8 1

(pOZDt)Ud

FIG. 4. Plot ofy vs In(p(Z)Dt), where y=In U(t)/In p(t), for the

) FIG. 5. Linear-log plot of the fraction of unvisited sit@gt),
AJ— DA model. Inset: blow up of the right-hand part of the plot.

and the fraction of uninfected walket(t), as a function ob(Z,Dt,
for the A+B—J model.
U(t)~exd — (pgDt)V?F(D'/D)] (7)
single species domain$,28,33. This domain coarsening

for larget, consistent with the result of Bramson and Leb-l€ads to early time transients for bo(t) and U(t). Al-
owitz [25] [Eq. (2)]. F(x) is some unknown function of the though using a high-initial density serves to accelerate the
ratio of the diffusion constants in the system. Bor=0, the ~ System’s progression into the asymptotic regime, in doing so,
problem reduces to the familiar study of unvisited sites.not only is the continuum limit obscured, but we also find
Therefore,F(0)=(16/mr)Y? and U(t)=P(t). The caseD’ that the extremely fast decay of bd#{t) andU(t) leads to
=D corresponds to equally mobile particles, and the particiémall-number effects at very early times. Therefore we
at site x becomes infected more quickly than if it had re- choosepg<<1. For consistency, we select our parameters to
mained stationary. In this cas&(1)=y(16/m)¥? giving be the same as those studied in &@&«— JA process, i.e.,
U(t)~[P(t)]” where, according to our numerics,<ly  po=0.007, 0.005, and 0.003, ap@Dtya,=0.5 Wherety,.,
<1.39. Although we have explored the value$=0 and is the maximum number of time steps in the simulations. All
D’ =D only, we conjecture that E§7) holds for any ratio of  the results are averaged over 100 runs.
the diffusion constants. The format of our analysis is much the same as in the
preceding section. We observe that an algebraic relation
U(t)~[p(t)]° betweenU(t) and p(t) also holds approxi-
mately in this case over the range of times studied. Surpris-

We now address the fraction of uninfected walkert)  ingly, 6 seems to have a similar value foin the A« JA
in the two-species annihilation model. Our simulations argmodel, i.e., K §<1.39. For the two-species annihilation
performed on a 1D lattice of size=10" with periodic  process we suggested in our earlier paper, on the basis of a
boundary conditions. Att=0, exactly equal numbers, toy model, that the fraction of unvisited sites decays asymp-
NA(0)=Ng(0), of A and B particles are randomly distrib- totically according to the stretched exponential form, &.
uted on the lattice with a maximum of one particle per site[7]. In the manner of Fig. 1, to make a direct comparison
such that at large scales, both densifigé0) andpg(0) are  between the fraction of persistent sife&), and the fraction
initially homogeneous. We define,(0)=pg(0)=N,(0)/L of uninfected walkerdJ (t), we present these two quantities
and po=pa(0)+pg(0). Both species are also given the on a linear-log plot in Fig. 5, this time usingdDt)¥* as
same diffusion constanD,=Dg=D=1/2. Our model is abscissa, as suggested by E]. Figure 5 shows clearly that
then updated in the same manner as forAkg— A model  the data scale excellently as a function of the dimensionless
described in Sec. II, i.edt=1/N(t), where N(t)=N4(t)  quantity p5Dt. We appreciate, however, that the stretched
+Ng(t), is the total current number of particles in the sys-exponential behavior of Eq3) is not particularly well real-
tem. Infection occurs when two or more particles occupy dzed. This may be due to the prevalence of large initial tran-
single lattice site, but we impose an instantaneous reactiosients(we presented more convincing evidence of the expo-
(A+B—J) so that each lattice contains only one type ofnential behavior in our earlier papgf]). In particular, the
particle. asymptotic behavior represented in E8). is only expected

It is well known that in the two-species annihilation for large values obSDt, unlike Eq.(1) for P(t), which we
model in one dimension, there is an effective repulsion behave shown holds for all on the continuunj7]. Nonethe-
tween theA and B particles that favors segregation into less, even in the regime we have studied, it is clear from Fig.

. A+B—C MODEL
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FIG. 6. Log-log plot of the fraction of uninfected walkeks(t), In (poth)

against the fraction of unvisited sitpgt) in the A+B— & model.
FIG. 7. —(p3Dt) Yinp(t) and —(p2Dt) " *nU(t) plotted

5 that the fraction of uninfected walkers has a very similaragainst InggDt) for po=0.007, 0.005, and 0.003.
form of decay to the fraction of unvisited sites, but with a
faster decay rate. In Fig. 6, therefore, we ploult) against ~asU(t), cannot be regarded as being definitively established.
In p(t) to see whether there is a simple relationship betweerd hroughout the preasymptotic regime, however, the relation
U(t) andp(t). U(t)=K[p(t)]?, with §=1.391), holds rather well. In Fig.

The approximate linearity of the data in Fig. 6 suggests3 We plot the effective exponeid(t) =In U(t)/In p(t) directly
U(t)~k[p(t)]°. To determines andk, we performed a lin- as a function of IngiDt).
ear regression on the data in the region indicated by the Figure 8 is remarkably similar to Fig. 4 for the&J«— A
arrows, thereby avoiding initial transients associated withprocess. Indeed, except for the earliest times, the correspond-
our lattice description, and the onset of statistical fluctuationgng curves differ by less by 1% everywhere. In a similar way
between different runs of the data. We summarize our resultwe can bound the asymptotit (assuming that the late-time
for § andk in Table 1. Notice thats andk agree remarkably trend evident in Fig. 8 continugby 1<5<1.39. Since we
well with y and K recorded in Table | for theA&« A have argued elsewherg], using a toy model, that the
process. asymptotic behavior oP(t) is described by Eg3), we con-

In analogy to Fig. 3, we plot (3Dt)"*4np(t) and jecture that the asymptotics bf(t) are given by
(p3Dt) " Y¥inU(t) against InpDt) in Fig. 7. Early-time lat-
tice effects, where the different densities do not overlap, are U(t)~exg — 8C(psDt) ], (8)
evident in Fig. 7. It is possible that all of our data foft)
andU(t) are within the preasymptotic regime, since g{¢) 1.8 , ,
curve has not yet saturated to the late-time asymptotic value: 1.4
implied by Eq.(3). Note, however, that if the curves in Fig.
7 were asymptotically linearly increasing, rather than even- {7 L. \
tually saturating to a constant, the corresponding forms for Vo
p(t) andU(t) would be exp—C(piDt)*4in(p3Dt)], with C a Vool
constant(different for p andU). This form differs only by 16
the logarithmic term from that predicted|iii] on the basis of \
a toy model. It should be noted that neither our present daté® R
nor that presented ifi7] can definitively rule out such loga- 151 \
rithmic corrections, and the asympotic form pft), as well .

1.395 | 1

139 | \\\ 1 -

1385 — Pt —— A —— 1
-14-12 -1 -0.8 -0.6 -0.4

TABLE Il. Numerical values of § and k, where U(t) 14 +
=Kk[p(t)]°, for variousp,, in the A+ B— & model.

Po é k

1, ' '
275 -7.75 —2.75
0.007 1.39(6) 0.9903) In (p,Dt)

0.005 1.39(p) 0.9933)
0.003 1.386b) 0.991(3) FIG. 8. Plot of § vs Int, where 6=In U(t)/In p(t), for the A
+B— model. Inset: blow up of the right-hand part of the data.
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whereC is a constant and € 6<1.39. For theAJ«—JA  seems to hold for both thA«— A and theA+B—J
model, we expressefEq. (7)] U(t) in terms of the ratio processes, with approximately the same boundsyoRur-
D'/D, whereD’ is the diffusion constant of a tagged par- thermore, the effective time-dependent valueyofs very
ticle, D is the diffusion constant of the other particles, andsimilar for both modelgsee Figs. 4 and)8An obvious goal
U(t) is the probability that the tagged particle remains unin-for the future is to try to obtain a theoretical understanding of
fected at time. The analogous form for tha+B— & pro-  this simple relationship, and test it against other models with

cess is naturally a<l1/2.
Even for the simple case=0 (the A+ A mode)
U(t)~exd — (p2D1)¥“G(D'/D)], (9)  Studied in this paper, an analytical calculationléft) is a

challenging problem. For a system consisting of just three
whereG(x) is some unknown function. As before, the caseparticles, the probability that the central particle has not been
D’=0 corresponds to the problem of unvisited sites, so thagrossed by either of the outer particles can be calculated
G(0)=C and U(t)=P(t). For D'=D, the case studied exactly[34], and is found to decay &s *2 The problem is
above, our Conjecture |mp||e§(1):5C However, we solved by mapplng it onto diffusion in two dimensions with
stress that a logarithmic correction of the form discussed@Psorbing boundaries on a wedg]. For N>3 particles,
above cannot be ruled out by the data. The main motivatioithe problem maps onto diffusion iIN—1 dimensions with

for Eq. (9) is the toy model presented [i7], applied to the absorbing boundaries on a hyperwedge. This problem has so
caseD’ =0. far proved intractable.

For both models studied here, we expressed the probabil-
IV. DISCUSSION AND SUMMARY ity that a particle at site is uninfected in terms of its diffu-
sion constanD’ and the diffusion constarid of the other
In this paper, we have studied two distinct modéis:a  particles[Eqgs.(7) and(9)], noting thatP(t) corresponds to
one-dimensional system of noninteracting, unbiased diffusthe limit D’ =0. Using Eq.(11), we can generalize this de-
ing walkersAQ— JA, with random initial conditions and scription to any system of randomly diffusing particles for
(i) the A+ B—J diffusion limited process in one dimension which the density decays ast™* with a<1/2. We conjec-
with equal initial densities oA and B particles distributed ture that, in this case, the fraction of uninfected walkers can
homogeneously &t=0. We have reduced the familiar study be expressed, asymptotically, as
of persistent site$?(t), to a limiting case in the study of
uninfected walkers and shown numerically that in both mod- U(t)~exd — (psDt) V2~ *R(D'/D, )], (12)

els
with U(D’=0)=P(t) and R some unknown function.

Clearly, there is much scope to test the validity of this form
~ Y
VO~IPO] (10 since we have only considered=0,1/4 andD’'=0,D. Note

wherey=1.39 for the time regimes covered by our data andthat for systems witlw>1/2, our toy model predicts/] that

1< y<1.39 for asymptotically large time. The common fea- P(t) approaches a nonzero constant, whilt) certainly
ture of theA—JA and A+B—J processes is that the behaves differently since it is bounded above diy) and
fraction of unvisited sites decays according to a stretcheust therefore vanish for largeMore interesting, however,
exponential (possibly with logarithmic corrections foA  is the borderline case where the particle density falls off like
+B—). In our earlier papef7], we argued heuristically, t "> In this case, our toy model predicts tragt) [7] de-

on the basis of a toy model, that if the density of walkerscays as a power lawp(t)~t"’. A system where such be-
decays asymptotically a&s ¢, then the fraction of unvisited havior is observed is the well studiafstate .Potts model
sites P(t) decays with a stretched exponential formaif [9,10,12,13,20 The results of our study of uninfected walk-
<1/2. We showed that ers in this model follows in a separate papes).

2 e1(12)- ACKNOWLEDGMENTS
P(t)~exp—[A(a)pgDt] ¢ a<1/2, (11
We thank Peter Grassberger for useful comments and
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