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We introduce a general method, based on a mapping onto quantum mechanics, for investigating he large-
limit of the distributionP(r,T) of the nonlinear functiona1[V]=(1fI’)fng’ V[X(T')], whereV(X) is an
arbitrary function of the stationary Gaussian Markov proces). For T—oo at fixedr we obtainP(r,T)
~exd—e(r)T], whered(r) is a large-deviation function. We present explicit results for a number of special
cases includiny(X) = XH(X) [whereH(X) is the Heaviside functigpwhich is related to the cooling and the
heating degree days relevant to weather derivatives.
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[. INTRODUCTION earlier in the mathematics literatuf®,7] and more recently
in the statistical physics communif§]. Here we consider a
The “persistence” of a continuous stochastic process hageneral function/(X). We restrict our attention, however, to
been the subject of considerable recent interest among bothe class of processes wheXéT) is a stationary Gaussian
theoreticians and experimentalists in the field of nonequilib/iarkov process, for which some analytic progress can be
rium processes. Persistence is the probabitify) that a sto-  made. A case of some interest, which we analyze in detail, is
chastic variable(t) of zero mean does not change sign up toy/(x) = XH(X). This case is relevant to weather derivatives
time t. Systems studied include reaction-diffusion processes;s we now explain.
phase-ordering kinetics, fluctuating interfaces, and simple |1 has peen estimated that aboutZ@ollars of the
diffusion from random initial condition$1]. Experimental 7% 102 dollar US economy is weather relatéal]. For ex-

measurements have been carried out on breath figaies . - ;
= e ~> ample, weather conditions directly affect agricultural outputs
liquid crystals{ 3], soap frothg4], and diffusion of Xe gas in and the demand for energy products and indirectly affect

one dimension[5]. In “coarsening” systems like these, : ) o L .
. - . retail businessdd 0]. Weather derivatives, first introduced in
which do not possess a definite length aor time scale, th(13[997 are finai[cia]l instruments that allow hedgiby, for
ersistence has a power-law decByt)~t~ % at late times, ' . . ' .
P P ) example, energy supplieragainst adverse weather condi-

and the persistence exponeftis in general nontrivial. In 7 0d of ti “ad » miah
such systems, the normalized two-time correlation functionfions OVer a period of time. Here "adverse” might mean an

Clt, o) = (x(t2)X(t2) [ (X3(t1) }{x2(t2) ) ]¥2 has the “scal- unusually warm wjnter, \{vhen low demand for energy would
ing” form, C(ty,t,)=f(ty/t,), depending only on the ratio affect the suppl.ler.s profits, as well as an unusually cold one
of the two times. In such systems, a simplification iswhen the supplier is unable to meet the demand. Temperature
achieved by introducing the logarithmic time scdle-Int,  derivatives, the most common form of weather derivatives,
and the normalized variab(T) = x(t)/(x2(t))*2 since the are based on the concepts of “heating degree days” and
correlation function oK depends only on the time difference “c00ling degree days,” which arérough measures of the
T,—T,, i.e., the proces¥(T) is stationary. Thus one is led cumulative demand for heating anq cqollng 'respe'ctwely.
to consider stationary stochastic processes. These processed-€t X(T) be the temperature at tiniein a given city. On
are, of course, also of interest in their own right. In the new@ given dayn, the meanX, of the highest and lowest tem-
time variable, the persistence decays exponentiafty, Peratures is recorded. The number of cooling degree days
~ exp(- 6m). (CDD), over a period ofN days, is given byMcpp
In this paper we consider the integrated quantity =33 maxX,—X,,0), whereX, is a reference, or base line,
temperature, while the number of heating degree days
1T (HDD) is nypp==h_;maxX,—X,,0). In the present paper
r= —j dT' V(X(T")), (1)  we will, for simplicity, use an integral over continuous time
TJo rather than a sum, so that the cooling degree days are given
by Mcpp= 15 dT'[X(T') = XoJH(X(T') = X,), whereH(X)
whereV(X) is an arbitrary function of the stochastic variable is the Heaviside step function. Thus CDD is the integrated
X(T). Hencer is a functional ofV. For the special case temperature exces¢over the reference temperaturee-
V(X)=H(X), whereH(X) is the Heaviside step function, stricted to those periods where the temperature is above the
is just the fraction of time for whiclX(T')>0 in the time reference level. It is a crude measure of the amount of cool-
interval O<T'=<T. In this case, the probability distribution ing (air conditioning required during the period and also
P(r,T) of r for givenT is just the “residence-time” distri- of the energy required to produce this cooling. Note that the
bution which, together with the related “sign-time” distribu- power consumption of an air conditioner actually varies, for
tion, whereV(X)=sgn(X), has attracted a lot of attention small temperature differences, as the square of the tempera-
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ture difference between the room and ambient temperatures, 1 (T _
so a better measure of the energy required would be P[X]=N exp[ - 5[ dT/[XATH+XATH]t, 4
JIATIX(T") = Xo]2H(X(T') = X,), instead of CDD. In the 0
notation of this paper, Mcpp=rT, with V(X)=(X : ) o
—X)H(X—X,) in Eq.(1). The number of HDD is similarly whereX(T’)EdX/dT’, andN is a n_qrma_llzatlor_] constant.
given byMpp= /3 d T [Xo—X(T')JH(Xo—X(T")), which Our goal is to calculate t_he prpbablhty d_|str|but|on pfde-
is a measure the amount of heating required in the péfiod f'_”eo_' by_ Eq.(1). In practice it Is convenient to look at the
and of the energy required to produce this heating. Estima@istributionP,(u) of the quantityu=rT. Its Laplace trans-
ing the likelihood of large deviations from the mean in CDD orm s
or HDD is clearly of interest to energy companies. _

To make further progress, a realistic statistical model of Pu(s)=(exp(—rsT))=2(s)/Z(0), 5
temperature fluctuations is required. At this stage, however,
any realistic model is too intractable to allow analytical whereZ(s) is given by the path integral
progress. To illustrate the general approach we will instead
employ a simple, though unrealistic, model in which the tem- 1(7 .
peratureX(T) is taken to be a stationary Gaussian Markov Z(S):J DX(T)GXP[ - Ejo dT/ (X2 +X2+2s VIX]) -
process. We will discuss the limitations of this model, and (6)
possible improvements, in the Conclusion. As a further sim-
plification, we take the reference temperatiigto be the
mean ofX(T), though this simplification is not essential and

can be relaxed. this restriction will not change the results in the lamfémit.

The outline of the paper is as follows. In Sec. Il we _intro- Furthermore, the exponential in E@#) should strictly con-
duce the general approach to the problem of computing the .

distributionP(r) of the quantityr defined by Eq(1). Using ta!n .the combmgtl(?n X+X)* instead of K2_+ X.Z)' The

a path-integral representation, the calculationRa{(r) is ~ Missing term, XX, is however a perfect derivative, whose
mapped onto a problem in quantum mechanics, in which thétégral vanishes for periodic boundary conditions. Finally,
functionV(X) appears in the potential energy. In the limit of With these boundary conditions the functia(s) is the
large T, only the quantum ground-state energy is requiredimaginary-time Feynman path integral that gives the parti-
The final result takes the form+(r)~exd —é(r)T], where  tion function of a quantum particle with HamHtpmeIH
the functioné(r) is a large-deviation function. For the case = P*/2+X*/2+sV(X) at inverse temperaturg, p being the

of the sign-time distribution, corresponding tw(X)  canonical momentum conjugate Xo For T— the ground
=sgn(X), r lies in the range-1<r<1, and it is clear that State dominates to give, in this limit,

0(1) is just the usual persistence expon@éntsincer=1

requiresX(T’)>0 for O<T'<T. In Sec. Ill, the method is (exp(—rsT))=exp{—T[E(s)—E(0)]}, (7
illustrated on a number of special cases, of whi¢fX) )

= X andV(X) = BX?/2 are studied first as exactly solvable whereE(s) is the ground-state energy for the Satirger
tutorial illustrations before turning to the CDD problefin  €quation

the simple form outlined aboyeand finally the sign-time

distribution. The last two examples can be solved analyti- 1 d?y

cally in various regimes, and numerically elsewhere. Section Y FUX)y=E(s) ¢, (8)

IV concludes with a discussion and summary of the results.

We are interested in the limif—c. It is convenient to
impose periodic boundary conditionX(T)=X(0), since

with potential
Il. GENERAL APPROACH

Consider the general stationary Gaussian Markov process U(X)=X22+sV(X). 9
(Ornstein-Uhlenbeck processdx/dt=— ux+ &(t), where
£(t) is the Gaussian white noise with zero mean, and corfor s=0 the problem reduces to a simple harmonic oscilla-
relator (&(t)£(t'))=2D S§(t—t'). After the change of vari- tor, andE(0)=1/2.
ablest=T/u, x=(2D/u)*?X, the equation takes the form The stochastic procesgt) studied above corresponds to
the position of a Brownian particle in an external potential

X ux2[2. For the case of a pure Brownian motiga=0), Kac
aT X+ (), (2) derived a formalisni6] to study the distributions of arbitrary
functionalsV[x] which also used a mapping to the Schro
where(7(T))=0 and dinger equation. Note, however, that the method presented
above for thew# 0 case differs in details from the original
(p(M)p(T")N)=8(T-T"). (3 Kac formalism.

To illustrate the method, we discuss two simple examples,
The probability distribution ofX(T’) for O<ST'<T is  before turning to some nontrivial cases, including the CDD
given by problem.
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Ill. SPECIAL CASES We can easily generalize this method to arbitrsi(x).
A, V(X)=aX The path-integral approach gives the general résglglect-

ing prefactors
For this case we have

u=rT=afonT’ X(T'). (10) PT(V)’foiwdseXr{Tg(S)], (18)

where
This case is actually trivial since, being a sum of zero-

mean Gaussian variables, is itself a zero-mean Gaussian vari- g(s)=rs+E(0)—E(s). (19
able. All we require, therefore, is the variance, given by
Using the steepest-descent method for the integral gives

T T
<U2>:a2f0 dTlfo dT(X(T)X(T5)). (11 G(F)sta){E(S)—%—I’S], (20)

For the Ornstein-Uhlenbeck proce$8), with noise cor- where we have inserteB(0)=1/2. The next example is a
relator (3), one easily find X(T1)X(T,))=(1/2)exp(|T,  Simple application of this idea.
—T,|). Inserting this result in Eq(11), and extracting the

leading largeT behavior, gives(u?)— T, and therefore B. V(X)=BX2
(r?)—a®/T. Hence the asymptotic distribution ofis given This case illustrates the power of the method. The poten-
by (neglecting prefactojs tial energy is now

P(r)~exp —Tr?/2a?), T—x. (12 U(X)=(1+ Bs)X?/2, (21

We now show how the general machinery we have set ugo we have a harmonic oscillator again, but with a modified
in Sec. Il recovers this result. The potentld(X) in the  frequencyw=(1+ Bs)*? giving E(s)=(1+ Bs)Y42. Thus
Schralinger equatiorn(8) takes the form

s o1 BN
U(X)=X?2+saX=(X+sa)?2—s?a?2. (13 6(r)=max 3(1+Bs)Y2— 1 —rs]= AATIE
S
This is just a harmonic oscillator with a shifted origin, so (22

— _ 2,2 i
E(s)=1/2-s"a"2 and, using(7), Note thatf(r) now has its minimum at= /4, which is just

the mean value af [noting that(X?) = 1/2 follows from Egs.
(2) and(3)], while large ¢ —<°) and small (—0) values of
r are strongly suppressed. An expansiondafiear its mini-
mum value gives a Gaussian distributiorP+(r)
~ex{d —4T(r—B/4)?/ B?]. This agrees with the result ex-
= ds pected from the central limit theorem, i.€5(r)~exd —(r
P(r)= Tf —exd T(rs+s%a%2)]. (15  —m?20?], with meanu= /4 and variancer®= 2/8T. For
~ice 271 T—oo, the distribution becomes very narrow such that, at
fixed r, the central limit theorem fails to give the correct
This integral can, of course, be evaluated eXaCtly. H.ere-, hOVV.asymptotics_ The forn’(16) thus gives the behavior in the
ever, we use the method of steepest descents, which is valigtreme tails of the distribution at large The functioné(r)
for large T and can be readily generalized to the other, lesss a “|arge-deviation function” that controls the distribution
trivial, cases that we will discuss. Writing the integrand in of ¢ for largeT.
the form expTg(s)], we haveg(s)=rs+s’a?/2. The inte- We note that this special case WitliX) = 8X2/2 was also
gral is dominated by the saddle pointst —r/a® where  studied recently by Faradd1] in the context of power fluc-
g=—r?/2a®. The integration contour is deformed to passtyations in the Langevin equatidl) by a somewhat differ-
over the saddle point, which lies on the reabxis. The ent method. The probability density function of the dissi-
saddle point is thus a minimum gfs) with respect to varia- pated power in Ref[11] is precisely the distributiofP-(r)
tions of s along the real axis. The final result, ignoring non- studied here and the corresponding large-deviation function

(exp(—rsT))=exp(Ts?a?/2) (14)

for large T. To recoverP+(r) we can invert the Laplace
transform as follows. Neglecting preexponential factors,

exponential prefactors, is identical to H42). 6(r) has the same expression as in E2R). However, our
The structure of Eq(12) is derivation seems simpler and easily generalizable to other
forms of V(X) as we show below.
Pr(r)~exg —6(r)T], (16)
with C. V(X)=XH(X): Cooling degree days
In this case the quantityT gives the integrated value &f
6(r)=r?/2a>. 17 over the intervall, restricted to those values whexXe>0. If
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X is the excess temperature over some baseline value wheF®r s— —oo, the potential has a deep minimum, of depth
cooling becomes necessary, is a crude measure of the —s?/2, located atX=—s. The wave function is exponen-
total energy consumption required to provide the coolingtially small atX=0, (0)~exp(—s7/2), and the change in
[V(X) =X2H(X) would be a better measure, as discussed irthe potential in the regimX<0 has an exponentially small
the Introduction. In the present simple model we have takeneffect on the ground-state energy. Thus

the mean temperature equal to the reference temperature

[with X(T) being the deviation from the mehrthough this
is not an essential restriction. The Safirmer equation(8)
takes the form

W' —X2h—2sXep+ 2E(s) =0, X=0, (23

J'— X2+ 2E(s)y=0, X=<0, (24)

where "=d?y/dX?. The required solutions can be ex-

pressed in terms of parabolic cylinder functiobg,(x), us-

E(s)=—s%2+1/2+0(e %), s—»—x. (30

The same result can be obtained, after some algebra, directly
from Eq. (29). Inserting the result in Eq20) gives 6(r)
=max(—s¥2—rs)=r?/2. Since the maximum occurs at
=—r, the calculation is self-consistent for-e. Thus we

obtain
r—oo,

0(r)—r?/2, (32

ing the standard solutions of the parabolic cylinder equation This larger result has the same form as Eg.), which
y"— (x?/4+a)y=0 [12]. Selecting the solutions that satisfy 9ives the generai-result for potentialV(X)=aX (with «

the physical boundary conditiofi( +)=0 gives

Y(X)=¢,(X)=AD, (J2(X+s)), X=0, (25
=y (X)=BD, (—2X), X<0, (26)
whereA,B are constants and
1 <
p.=E(s)~ 5+ 3, (27
1
p_=E(s)— 5 (28

The ratioA/B and the energy eigenvaluggs) are obtained
from matching the wave function and its derivative at

=0, i.e., we requiray,(0)=¢_(0) andy,'(0)=_"(0).
This yields the eigenvalue equation

Dp,'(\25) D (0)
D, (V2)  Dp (0

(29

The determination oE(s) from these equations is not pos-

sible analytically for generas. However, in the regimes
—oo, ands— —oo, which determine the smatl-and larger

behaviors respectively, of(r), analytical progress is pos-

sible. We consider these in turn.

1. The limit r— o

As we shall see, in this limit it is sufficient to compute
E(s) in the limit s— —oc0. This can either be done directly

from Eq. (29), or using the following(simplen physical ar-
gument.

Recall that, foV(X) = XH(X), the potentiald (X) in the
Schralinger equation is

U(X)=X?2+sX, X=0,
=X?/2,

X=0. (30

=1 herg. This correspondence is not so surprising: For
—oo, the dominant processegT'), for O<T'<T, will cor-
respond to large positiv, so the step functiofd (X) in
V(X) plays no role in this limit.

2. The limit r—0

We shall see that this limit correspondsge-«. Again,
one can use physical arguments as a short cutsFor, one
has U(X)=X?/2 for X<0, with essentially a hard wall at
X=0. This gives, to leading ordeE(s)—3/2. We need,
however, the leading correction to this result. Since the wave
function does not penetrate far into the wall, we can neglect
the X2 term in the potential foX>0, i.e., writeU(X)=sX.
The Schrdinger equation then simplifies to

Y —2sXyp+2E(s)y=0, X=0, (33

' — X2+ 2E(s)y=0, X=<O. (34)
The wave function forX=0 is again a parabolic cylinder
function, while forX=0 it can be expressed as an Airy func-
tion:

P(X)=AAI((25)*X),

X=0, (35

=BD, (—2X), X<0 (36)

where AB are constants, angp_=E(s)—1/2 as before.
Matching the wave function and its first derivativeXat0
gives the eigenvalue equation

1-p_
<2s>1’3Ai'<0)__Dé(0>_ﬁF( 2 ) 37
J2Ai(0)  Dp(0) F( p_) '

2

whereI'(x) is the Gamma function. In the limg—o, the
left-hand side of Eq(37) tends to infinity, so the right-hand
side (RHS) must also diverge in this limit. The ground state
corresponds to the first divergence, whpre— 1. Therefore
we writep_=1—¢€in Eq. (37), and seek the leading behav-
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ior as e—0. This gives RHS» — (2/m)YY €. Inserting this
result in Eq.(37) gives, to leading order,

11
7 A’ (0)

_ \/Zile (13 s V3=g5 13

N 7313 I(2/3) - ’

the last equation defining the constamtFinally we have
E(s)=p_+1/2=3/2— €. Inserting this in Eq(20) gives, for
r—o0,

1/3

(38)

6(r)=max1—as **~rs)=1-br¥*, (39
where
a\¥ 42 (T(1/3))%*
b=4|3 :3773/8(“2/3)) =20476&... . (40

Note that the value of at which the maximum occurs in Eq.
(39) is s=(a/3r)%*, justifying our use of a largs-analysis
of E(s) for the limit r—0.

That 6(r)—1 for r—0 is intuitively clear, sincer=0

PHWBICAL REVIEW E 65 051112

o(r)

05 |

FIG. 1. The functiond(r) for the CDD problem, showing the

requiresX(T)=0 for all T. This reduces to the usual persis- asymptotic behavior for small and large

tence probability of the Markov proces®), for which 6
=1.
3. 0(r) for r near (r)

Equationg32) and(39) give analytical results foé(r), in
the limits of large and smat, respectively. For genera) 0

has to be computed numerically. There is, however, one other
regime where analytical progress is possible, namelyy for
close to its mean value, where the central limit theorem ap-

plies.
The mean value is given by

(r)=(V(X))=(XH(X))
=2((X)+(IXI)). (41)
The Gaussian distribution foX gives immediatelyX)=0
and(|X|)= \2/m(X?)*?=1/\/=. Thus
(1= @2)

r=——.

2\m
In a similar way, the variance aof can be calculated, by

exploiting the Gaussian properties of the proci$3). A
tedious but straightforward calculation gives, for oo,

azz<r2>—<r>2=%(w+m2—2). (43

The central limit theorem then gives the behaviorRa{(r)
for r nearr, asP(r)=(2mwo?)  Y2exg — (r—(r)%25?]. In-
serting the explicit expressions for) and o gives P+(r)

~exd — 6(r)T], with

o(r)= (44)

77+|:2—2)(r_23;)2’

correct to leading nontrivial order irr ((r})).

The full result for §(r) can be obtained by numerically
solving Eq.(29) for the ground-state enerdy(s) for each
value ofr, then using Eq.(20) to find the corresponding
6(r). The result is displayed in Fig. 1, with the asymptotic
forms forr — andr—0 indicated. Note the very sharp rise
to the value unity as— 0, as indicated by Eq39).

In terms of the CDD problem, the behavior below the
minimum (i.e., forr<(r)) determines the probability of an
unusually small CDDOcool summey, while the region above
the minimum corresponds to an unusually large C[ibt
summey. The fact that the functio(r) initially increases
less rapidly to the right of the minimum than to the left
indicates thatwithin this very simple modeglsummers with
a slightly larger than average CDD are more probable than
those with a slightly smaller than average CDD. This asym-
metry is a consequence of the nonlinear relation between
CDD and the temperature fluctuations, which are symmetric
about the mean in our model. It should be stressed that the
integration periodl has been taken to be large, to justify the
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steepest descent calculation. In practice this meansTthat 5=5%In2—cs*+0(sd), (54)
(the length of a summer, spynust be large compared to the
correlation time of the temperatufa few days, perhaps where
which is not totally unreasonable. 5
1 T 1
=—-(In2)3+ —=In2—-¢(3)=0.26986 ..., (55
D. V(X)=sgn(X): The “Sign-time distribution” ¢=3n2)™ 5in2=7439) (55)

The structure of the calculation is similar to that of the

preceding section. The Scliliager equation is

' —X2¢y—2[s—E(s)]y=0, X>0, (45)
Y — X2+ 2[s+E(s)]¢p=0, X<O. (46)

The solutions are parabolic cylinder functions;
Y=, (X)=ADp,(V2X), X=0,  (47)

= (X)=BDy (—2X), X=0,
(48)
where now

p-=E(s)Fs—1/2. (49

Matching the wave function and its derivativeXat 0 gives
the eigenvalue equation

Dp,'(0) Dy '(0)
D,.(0) D, (0)°

(50

which, using standard identities relatiimg,(0) andD,’(0)
to I' functions[12], reduces to

{2

=— . (51

Although this equation cannot be solved analytically for gen
eral s, the limits s—0 ands—o are tractable. Note that
E(s)=E(—s) by symmetry, so there is no need to consider

s— —oo separately.

The analysis starts from the potential well(X)=X?2/2
+ssgn(X). For smalls, the ground-state enerd(s) is per-
turbatively close to, but slightly smaller thag(0)=1/2.
Therefore, we write

E(s)=1/2—- §(s), (52
where we anticipateS(s) =0(s?) from the symmetryE(s)
=E(—5). Inserting this form in Eq(49), Eq. (51) becomes

1+s+6 1-s+6

=) =

sto| [ —sto| (53
T) 2 )

Expanding to fourth order is and second order i& gives

and{(n) is the Riemann zeta function. Inserting this result in
Eq. (20) gives

6(r)=max —rs—s’In2+cs*+O(s%)]

2 4

' +0(r®).

r
:4In2+c(2In2 (56)

The maximum occurs &= —r/2 In 2+0(r®), so our study at
smallsis self-consistent at smail

Fors—oo, on the other hand, the potential develops a hard
wall at the origin, and has a depth efs next to the wall.
Therefore we writeE(s) = — s+ 3/2— ¢, with € small. Put-
ting this form in Eq.(49), Eq. (51) becomes

[[s+e2]  T[el2] :
[[s+(e—1)/2] T[(e-1)/2]° (57

Taking the limitss>1, ande<1 readily leads to
e=(ms) 2 (58

to leading order for largs. Using this in Eq.(20) gives

(r)=max{1—(1+r)s— 1/(ms)*?]

3/2 1/3
:1__(_(1+r)) I (59)
a

2

The maximum occurs @=[2+/7(1+r)] %, which tends
to infinity asr— —1 so the calculation is self-consistent in
this limit. The symmetry of the problem under- —r leads

‘to the more general result

1/3

32 )
6(r)—l—§ ;(1—|r|) + r—=1. (60

The functiond(r) is plotted in Fig. 2, with only the region
r=0 shown explicitly. The limiting behavior for smailland
r close to unity is also shown.

IV. CONCLUSION

In this paper we have presented a general method for
computing the asymptotic behavior of the probability distri-
bution of the quantityr=(1/T)f{dT" V(X(T')), where
V(X) is an arbitrary function and(T) is an Ornstein-
Uhlenbeck stochastic process representing the motion of a
Brownian particle in the presence of a stable parabolic po-
tential uX?/2. The main result is that fqz>0, the distribu-
tion of r, for large window sizeT has the formP+(r)
~exgd —a(r)T], where 6(r) is the large-deviation function.
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1 : : . . (iii) The reference temperature for the calculation of CDD
and HDD should in general be different from the expected
temperature. We hope to incorporate some of these features
in future studies.

The second nontrivial application is to the “sign-time”
distribution. In the context of “sign time,” we point out that
the asymptotic form of the “sign-time” distribution has a
markedly different behavior in the Ornstein-Uhlenbeck pro-
cess(where a Brownian particle moves in a stable parabolic
potential uX?/2) studied here compared to the ordinary
Brownian motion = 0). In the latter case, the “sign-time”
distribution P+(r) is independent of the window sizZE for
all T and is given byP(r)=1/7\y1—r? [7]. In the former
case +>0), on the other hand, the “sign-time” distribution
depends explicity on the window siz& and P+(r)

0 . , , ~exd —6(r)T] for largeT where the large-deviation function
0 0.2 0.4 0.6 0.8 1 0(r) has been computed exactly in this paper.

r We further note that for this “sign-time” problem, the
function 6(r) can also be obtained using the “independent
interval approximation”(l1A) [13,14], which exploits the
fact that the intervals between zero crossings are statistically

The calculation proceeds via a mapping onto a quantum mdbdependent for a Markov process. In fact, for renewal-type
chanical problem described by the Satirmer equatior(8) processes where the successive intervals are statistically in-
for a particle moving in the potentia9), wheres is the ~ dependent, the “sign-time” distribution has been computed
Laplace variable conjugate td . The inverse Laplace trans- by Godrehe and LucK15] using the interval size distribu-
form can be performed using steepest descents in the limfton as an input. Their result can be simply extended to cal-
T oo, culate the “sign-time” distribution for the Ornstein-

Two nontrivial applications have been presented. The firsPhlenbeck process. The I1A also has the virtue that it can be
is a calculation of the large-deviation functiigr) for the ~ used to obtain approximate results for non-Markov pro-
cooling degree days problem, based on a simple model d¥€SS€s. Persistence exponents, for exar_nple, are of_ten given
temperature fluctuations. The model used assumes that tiather accurately by the IIAL]. However, it is not straight-
temperature fluctuatioX(T) is described by the Ornstein- forward to adapt this IIA method to general nonlinear func-
Uhlenbeck proces), i.e., thatX(T) is a stationary Gauss- 10nsV(X), whereas the path-integral approach and mapping
ian Markov process with time-independent noise strength@Mto quantum mechanics adopted here is readily applicable
This may not be a realistic model for several reasons. to anyV(X). _ _

(i) A simple Markov process is not thought to be an opti- Here we have only considered Gaussian Markov pro-
mized model of temperature fluctuations, which tend to ex£€SSes mainly because they are simple and amenable to ana-
hibit stronger autocorrelations than a Markov process. Avtical calculations. Recently the calculations of the
more plausible statistical model, according 18], gives the ~ asymptotic distributions for the “sign-time” and other re-

fluctuationX,, of the mean(average of daily high and low lated quantities such as “local time” have been extended to
temperature on dayn as the linear combinationX, non-Gaussian Markov processes where a Brownian particle
=Eﬁ1=1anme+ 7, where the “memory kerneltv, ,is MOVeS in an a;rbltra%/ _:,]tablebor unts):a%&!pothentlatlh and,
a decreasing function ef—m and »,, is uncorrelated Gauss- moreover, exact resulls have been oblaifsal when the
underlying potential is random as in the Sinai model. The

ian noise. The Markov case correspond&tol. HereX, is 4
xtension of these methods and results presented here to non-

the difference between the measured mean temperature _ :
day n and its expected value. The latter should contain ark(_)v processes, however, still remains as one of the out-
standing challenges for the future.

365-day seasonal variatiqmoughly sinusoidal

(ii) The noise strength should also contain a 365-day sea-
sonal variation: the variance of the temperature fluctuations
can be different at different times of the year. S.M. thanks A. Comtet for useful discussions.

0.8

0.6

6(r)

04 +

FIG. 2. The functiond(r) for the sign-time distribution, show-
ing the limiting behavior for —0 andr—1.
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