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Kinetic behavior of aggregation processes with complete annihilation
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The kinetic behavior of an aggregation-annihilation process ofspecies (=2) system is studied. In this

model, an irreversible aggregation reaction occurs between any two clusters of the same species and an
irreversible complete annihilation reaction occurs between any two different species. Based on the mean-field

theory, we investigate the rate equations of the process with constant reaction rates to obtain the asymptotic
solutions for the cluster-mass distributions. We find that the cluster-mass distribution of each species satisfies

a modified scaling law, which reduces to the standard scaling law in some special cases. The scaling exponents
of the system may strongly depend on the reaction rates for most cases; however, for the case with all the

aggregation rates twice the annihilation rate, these exponents depend only on the initial concentrations. All the

species annihilate each other completely except in the case in which at least one aggregation rate is less than
twice the annihilation rate.
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[. INTRODUCTION aggregation and annihilation processes rofspecies A'
(I1=1,2,...n, n=2). We assume that irreversible aggrega-
The phenomenon of aggregation and annihilation is cention occurs only between two clusters of the same species,
tral to a wide range of fields, such as physics, chemistry, and IKI(' 1)
biology. Considerable interest has been focused on aggreghitA; — Al,;, and the irreversible complete annihilation
tion and annihilation processes since the 19fDs13. It reaction occurs simultaneously between two clusters of dif-
was found that the cluster-mass distribution in aggregation | mJ'm("')_ |
systems possesses scaling behavior in some particular cad8%Nt Speciesh; + A" — mertl whereA; denotes a cluster
[11-19. Krapivsky studied an irreversible aggregation- Consisting ofi-mers of specied’ (I,m= 1.2,...n, |#m).
annihilation process of a two-species system and found thathe rate of the aggregation reaction betwéélandA clus-
the cluster-mass distribution obeys a scaling law in the longters is equal td&(i,j), and that of annihilation betwee@q
time limit [11]. Zhang and Yang generalized the two- spemesandAm clusters isJ;(i,j).
model to the process in anspecies system and analyzed the The present investigation is based on the mean-field
scaling properties of the cluster-mass distribution in soméheory, which assumes that the reaction proceeds with a rate
symmetrical casefl2]. Most of this research was devoted proportional to the reactant concentrations. Thus the mean-
only to partial annihilation, where the larger cluster is con-field approximation neglects spatial fluctuation of the reac-
served after the reaction with the number of monomers equdént densities and therefore applies when the spatial dimen-
to the difference between the two clustéfd,12. Mean- siond of the system is greater than or equal to the critical
while, few studies were concerned with irreversible aggregadimensiond, [11,13. Whend<d,, fluctuations in the den-
tion processes with complete annihilation, where the annihisities of reactants may lead to dimension-dependent kinetic
lation reaction between two clusters of different speciedbehavior in the long-time limit; however, the mean-field pre-
always results in inertness independent of their masses. Bediction may provide a useful description of the kinetic be-
Naim and Krapivsky investigated the kinetics of a two- havior for moderate timegl1]. Numerical simulations have
species aggregation process with complete annihilation in theonfirmed the mean-field predictions above the critical di-
special case where all the reaction rates are equal to 2 amdension[13]. The investigation of aggregation process can
found scaling descriptions of their mass distributions in thealso be based on the particle coalescence m@i{eM) in the
long-time limit [13]. In fact, these irreversible aggregation diffusion-controlled limit [13,20,2]1. For the PCM, it is
processes with complete annihilation are of great practicalound thatd.=2 [20]. Hence, it was suggested by Ben-Naim
significance. For example, in a two-species chemical systerand Krapivsky thatd.=2 for the aggregation-annihilation
with constituent high polymeré and B, aggregation of the model[13]. In this paper, we assume that in our system the
same species can produce energetic open chains, while tvgpatial dimensiomnl is greater than 2. Thus we have derived
clusters of different species can bond into an inert closedhe asymptotic solutions for the cluster-mass distributions
chain. The open chains continue to participate in the reactiobased on the mean-field assumption. The results show that
process, but the closed chains will withdraw from the reacthe evolution behaviors aof types of cluster satisfy the stan-
tion process because of their lower energy. dard scaling or modified scaling laws, and their exponents
In this work, we investigate the competition between theare strongly dependent on the reaction rates. The initial con-
centrations also play important roles in some special cases.
The paper is organized as follows. In Sec. Il, we describe
*Email address: kejianhong@263.net an irreversible aggregation-annihilation model with
"Email address: linzhenquan@yahoo.com.cn (n=2) species, and give the corresponding rate equations
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TABLE I. Organization of Sec. Il. da 1| A
7 5 1A

Case Title of subsection dt 2
A All aggregation rates greater thad 2twice the dA B I|A|2 2 Amn =10

annlhllatlon ratg dt ~ 1-a renEime 1ma, n.
B All aggregation rates equal taJ2 (4
C All aggregation rates less thad 2
D Some aggregation rates less thahvith others equal to  Correspondingly, the initial conditions of Eqgl) become

or greater than 2
E Some aggregation rates equal tb\&ith others greater a=0, A=Ap, I=12...n, at t=0. (5

than 2J

Introducing new variableg,(t),

—(1_a-1 _
with constant reaction rates on the basis of mean-field theory. a=(1-a) 5 [=12,...n, (6)

Then we determine the asymptotic solutions of the clusterye recast the differential equatio® as the following equa-
mass distributions in the cases illustrated in Table I. A briefjons:

summary is given in Sec. Ill.

d?q, da 2J dap
Il. MODEL OF n-SPECIES AGGREGATION PROCESS G2 At 1em @i T dt I=12,...n,
=m=n, m~m
WITH COMPLETE ANNIHILATION )

I_n our investigation, the theoretical app_roach to the aggre: 1 ihe initial conditions of Eq€7) are
gation process is based on the mean-field rate equations.
There aren types of cluster in the syster#y clusters,| da
=1,2,...n. The concentration oA clusters ofk-mers is a=1, rTa §||A|o, [=1,2,...n, att=0. (8)

denoted asy. Here, we consider a model with constant
r_eaction rates. In order to invgstigate thorOL_lgth thg _eV_c"quuations(?) can be integrated as follows:

tion behavior of the irreversible aggregation-annihilation

system, we assume that the reaction rates of aggregation and de, 1 ey

annihilation have different constant values. All the annihila- 5= 5110 [l e 1=12,...n. 9
tion reaction rates are equaldand the aggregation rates of t=m=nm#l

Al clusters are different constarlts We generalize the rate Then we can derive the following equations from E¢.
equations of the aggregation-annihilation process given by

Ben-Naim and Krapivsky13] and write out the correspond- oy dey o dap
. . . | — m
ing rate equations for this system as follows: I mAmoe, W—hAmam TR
day 1 - 1=1,2,...n, m=1.2,...n. (10
—— =15 2 aaj—axY (10
dt 2 i+j=k j=1

In order to thoroughly investigate the kinetic behavior of
* the system, we discuss the solutions of E&s.and (10) in
—Jag X X am, 1=12,...n. ()  several different cases.
lsm=snm#l =1

As we aim to find the analytical solutions of the evolution A. All aggregation rates greater than 2J
behavior of the clusters and investigate their long-time scal- In this case, one can derive the following equations from
ing properties, we assume that there exist only monomekgs. (10):
clusters at=0 and the cluster concentration Af species 123 123
equalsA|y. Then the monodisperse initial conditions are a1 o -1

Amo(lm—23) ~ Al —2J)"

a|k(0):A|05k1, =1,2,...n. (2)
I=12,...n, m=12,....(11
In the above case, the set of rate equations can be solved
with the help of the ansatz in Rdfl1]. We assume, has  Substituting Eqs(11) into Egs.(9), we obtain
the form

day LA ~ Ano(ln—2J)

a()=AD[a ()]t 1=12,...n 3 dt 2 1emit e Aol —29)
Substituting Eq(3) into Egs.(1), we can transform it into Amo(lm=23) 3 g5, [P/ 10
the following differential equations: Ao(l,—23) “ ,
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I1=1,2,...n. (120  The total numbeN(t) and the total maski(t) of the clus-
ters of one species in the long-time limit can then be ex-
The system is assumed to reach its steady state-at and  pressed in power-law forms §%1]
its steady conditions are then given as follows:

da 1 da N(t)= 2 cu(t)t™,  M(t)= 2, koy(t)ot -,
—=——=0, k=1 k=1
dt 42 dt (19
2 2 The four exponentsw,z,\,u) are universally used to de-
dA| 2 d a) 4 da| . . . i .
=5 ——— || =0, [=1,2,...n. scribe the scaling nature of aggregation-annihilation pro-
dt  laf dt? Il dt cesses in the long-time limit. From Eqd.8) and(19), one
(13 can find the following exponent relations:
Thus we can conclude that eithef— or de;/dt—0 att N=w—2z, u=w—2z. (20)
— oo, Further, from Eqgs(9) and(11) we know thata,— oo at
t—oo for this case. Hencey>1 att>1. In the long-time  |n this case, the asymptotic solutionsaf(t) show that
limit, Egs. (12) can be rewritten as the following asymptotic the cluster-mass distribution of each species satisfies the
equations: standard scaling lawl8) in the long-time limit. From Egs.

(17), we obtain the four exponents as follows:

da;  11A; 1 Amoum—ZJ)rJ’(”'m)
dt 2 jem=nmel | Ao(l—2J) ’
21,—23+23 2 (1,=2d)/(1y—2J)
% alu|—2J)/||21$mgn'm¢I 20/(20- 1) W= n;:l ,
11—23+23> (1,—23)/(1,—2J)
1=1,2,...n. (14) ' = m

The asymptotic solutions o, in the long-time limit are I
directly given as zZ= A , A=1, (22

w=Cytfy. =12, .n. 15 I,—2J+2JmE:l(I|—2J)/(Im—2J)
where n
. . 2JmZ=l (1,—20)/(1 ,—23)— 23
R1|=I|{I|—2J+2sz_l(I|—2J)/(Im—2J)} w= 5
1 —23+23 > (1,—2D)/(1,,—2J)
and m=1
| —
~ LA n Am0(|m_2J)rJ/(2J—|m)]R1| for A' clusters, 1=1,2,...n.
=
! 2Rym=1 | Aio(l—2J) It is shown that the exponents, z, and u depend on the

values of the reaction ratég andJ. The total numbers and
the total mass of all the species are found to decrease with
time because\.,u>0, and no species remains tat-o, in-
dependent of the initial datd,; (I1=1,2,...n).

We then obtain the following asymptotic solutions for the
cluster-mass distributions:

ap(t)y=Cyt rRufr—cptt Rkt 1=12,...p,
(16)
B. All aggregation rates equal to 2

whereCy,=2Ry /1,Cy . Further, Eqs(16) can be rewritten In this case, we determine the following integrals of Egs.

as (10):
~~'+—1-R _ —

a(t)=Cyt " "exp(—x), 1=12,...n, (17 ato=gfmo 1=12 . .p, m=12,...n. (22
which are wvalid in the regions k>1, t>1, x L , ,
= (k/Cy)t~Ru=finite. ' Substituting Egs(22) into Eqgs.(9), one can obtain

Krapivsky used a functio(t) to denote the characteris- d

tic cluster mass in the long-time limit of such an aggregation ﬂ=JA|OaR2' C1=12,...n, (23
system and wrote the concentratiop(t) of k-mer aggre- dt !

gates in scaling form gsl1] _
whereRy =1—30_;Ano/Ajo. The exact solutions af, can

()=t "Wd[k/S(t)], S(t)ot? (18)  easily be derived from Eq$23):
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R

. 1=12,...n, (24

n
a|=(JmE_l Aot +1

whereR3 = Ajq/2 11— 1Amo- Then we obtain the scaling solu-
tions of a;(t) in the long-time limit as follows:

n —1-Rg
a(t)=Ao szl Amot expl—X),
1=1,2,...n, (25)
and the different scaling variables 8t clusters are
n *R3|
X, = k( I At (26)
m=1

According to the standard scaling for(@8), we determine
the scaling exponents

n

A+ 2 Ao
m=1 A|0
W n s Z=—j s
E AmO 2 AmO
m=1 m=1
n
E AmO_AIO
m=1
AN=1, p=—m——
> Amo
m=1

for Al clusters, 1=1,2,...n.

(27)
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Whel’e CZl: (l 1A1(/2)H|n/ =2[1_A| /O(ZJ_ | | /)/A10(2J
—1,)]12/@=1) The asymptotic solution of; can be ob-
tained as

alzczﬂi. (29)

Substituting Eq(29) into Egs.(11), we derive the solutions

for a;, as follows:
a’|r:C2|r_C3|rt172J“1,

I'=2,3,...n, (30

whereCy =[1—A;o(2J—1,/)/A1(23—1,)]""/(1'=2) and
1-23/1

C3|/: I |rA|rocz|rC21 l/ [Alo(ZJ - I l) _A|70(2J_ I |I) ]

We then obtain the standard scaling solution for the cluster-

mass distribution ofA! species, which has the maximum
value of Ajg(2J—1))

2
ay(t)= |1—(:21t_2 exp(—x1), X1=k(Cyt)™*, (31

and the exponents for th&* species are

w=2, z=1, A=1, u=0. (32)

One can determine the asymptotic behaviors for the cluster-
mass distributions of\'’ species as

K
2(2J—11)Cq/ [ Cy—1
A1) = ( 1; 3 [ Ca )t_zJ,ll
|1||/C2|, C2|/
XeXF(_XV), |’=2,3,---n, (33)
where X, =[Cg//Cy:(Cy,—1)]kt~ @~ 1D11 Equations

(33) are valid in the regiorkt™ (??~'0/l1=finite. The result
implies that the standard scaling descriptiB) of the

cluster-mass distribution breaks down fal’ species with

The results show that all the species obey the standard scamaller values of/o(2J—1).

ing law in this case. The exponents z, andu are related

One can modify the standard scaling descripti®8) as

to the initial dataA;, and are independent of the reaction fojlows [11]:

ratesl, and J. It is obvious that the heavy species with the

larger initial concentration has the smaller valuewgfand

dominates over the light one in the long-time limit. The re-

Ce()=b"t Wd[k/S(t)], S(t)oct?, (34)

sults also indicate that both the total number and the totavhereb is a constant and-9b<1. In this case, the scaling
mass of each species decrease with time and all the speciesponent relations become

annihilate each other completely in the end.

C. All aggregation rates less than 2

We can also obtain Eq$11) and (12) for this case. The
solutions ofa, are dependent on the valuesA{(23—1,).
Without any loss of generality, one can assume that2J
—11)=A(2)—1y)="---=A0(2I-1,).

When A(23—11)>A0(23—1)), 1'=23,...n, it
can be found from Eq(12) that a;— at t—o. So,
ai_ZJ“%l att>1. Thus we obtain the asymptotic differ-
ential equation fory; in the long-time limit from Eqs(12):

dal

ot (28)

=Cy,

A=W, u=Ww. (39
Thus the exponents for the’ species ('=2,3,...n) are
given as
w=A=pu=2J,, z=(2J-1/l. (36)

This shows that all th!’ species’'=2,3, ... n) have the
same scaling exponents, which depend on the aggregation
rate of Al species and the annihilation raten this caseA!’
clusters havg.=2J/1,>1 in contrast tou=0 for A clus-
ters, which implies that onlA® species remain at the end.

Now let us turn to the general case in which thererdre
kinds of species (£n’<n) with the same largest values of
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Ao(2J—1)). When the system consists of only two species,

we haven’=n=2. Thus we can obtain the following equa-
tions from Eqgs.(11):

1-23/14_  1-2JI,
al —C!Z .

(37

In this case, we find that;,a,—> at t—o. Hence,
aq,a,>1 in the long-time limit. Substituting Eq37) into
Egs. (12), we obtain the differential equation far,(t) as
follows:

1

2

dal

23(11-23)/17(23-1,)
dt 1 '

1A10x (39

One can determine the exact solutionagf from Eq. (38):

432=1.1,)A (2113-141)/(43%=1415)
e ( 112)A10 ‘1 (39
2(23—1y)
and the solution fow, can then be obtained as
432=1.1)A (21,3 141,)/(43%—1415)
@,= ( 1 2) 20 (40)
2(23—1y)

Thus we obtain the standard scaling descriptions for Bdth
andA? clusters in the long-time limit as

an(t)= L_IZ)F(‘”Z*Z'1J*2I1I2)/(4327|1|z)

B1(43%1412)

Xexp —Xq),

k 2
X1:B—t_(2'l‘]_'1lz)/(43 —l1l2).
1
(41)

ax(t)= 22T oy

Ba(43%—141,)

X exp(—Xz),

XZ:E%t‘@'ﬂ"1'2)/(432—|1'2)'

where B;=[(43%—111,)A1g2(2]—1,)]@I-1112/(42%-1112)
and  B,=[(4J2—1,1,)Ay2(2]—1)]@23 111247~ 1112,
The scaling exponents are

43%+21,3-2141, 21,3— 141,
f— Z:

' , ,
43%—141, 43141,
432-21,J L
AN=1, wu=———— for A" clusters,
432—141,
(42)
4324 21,2141, 21,J— 141,
W= VAS

432141, 432141,

PHYSICAL REVIEW E 65 051107

432-21,J

PR, for A? clusters.
—Il2

A=1, u=

The results show that the exponents z, andu are depen-
dent on the values of the reaction ratgs I,, andJ. In this
case, both the total number and total mass of either species
decrease with time. Neithek! species noA? species re-
mains att— o, independent of the initial dat&;y and Ayg.

In the n-species systemn(>2), we assume thaky(2J
_||):A10(2J_|1) fOI‘ 1<|$n, and A|ro(2J_||r)
<A(23—1,) for n’<l’=<n. Thus we obtain the following
equations from Eq911):

1-23_  1-23/1
a =«

| 1 , 1=12,...n,

. 1-2J/
ai 2014 a '_1q

A10(|1_2J) :A|/o(||/_2J)'

["'=n"4+1n"+2,...n.
(43)

In this case, we find that;>1 (1=1,2,...n’) in the long-
time limit. Substituting Eqs(43) into Egs.(12), we obtain
the asymptotic differential equation far(t):

n

I

I"=n"+1

11A10
2

dal

dt

ob,

(44)

Aprg(23—1y,) 2@~
B Alo<23—ll>}

where B=[(1,—23)/1,]1="_,[23/(2—1,)]. One can de-
termine the asymptotic solution af; from Eq. (44) as

a;=Cyyt"a, (45
where
o
Fe41=|1/[|1—23+23|21 (2J—I1)/(2J—I,)]
and
- Aprg(23— 1) [PRa/@IZ00 [ A ) Raa
e S Wi (2R41) |
The solutions ofw; and ¢, can then be obtained as
a=Cytfal 1=12...n,
a;=Cy—Cg it R I"'=n"+1n"+2,...n,
(46)
where
o _
Ra=li| 11-23+23 3, sz:llr'n ,

chi2a=1N3(23-1))
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Aprg(23—=1y) |1 /=29
Cupr| 1= Arol237 1) ,
A10(2\]_|1)
—2J/1
I|IA|IOC4|IC4111 1
C5|r:

Ag(23—11)—Ag(23—111)

’ -1
”2 20
m=1 2\] - I m '
Thus we determine the standard scaling descriptionAfor
species in the long-time limit:

R5|r:

2R
()=t 1 Raexp(—x),
1Ca
X tRa 1=1.2 ' (47)
X == y =1,Z,...Nn,
' Cy
and the scaling exponents for thé species are
n!
21,—-23+232, (23—1)/(23-1,,)
=1
W: r:l/ 1
[ —234+23 > (23—1)/(23—1 )
m=1
I
z= p , A=1, (48
1 —23+23> (23—1))/(23—1)
m=1
n!
232 (23-1)/(23—1,)—23
m=1
m= z ,

n

I —23+2J 21 (23—1)/(23-1,,)

which are similar to Eq(21). Meanwhile, the standard scal-

ing description(17) breaks down forA'" species and we
obtain the modified scaling description for them:

2C5|/R5|I
2
||1C4|,

C4|1_ 1
C4|/

k
ay(t)= ) t 1 Rsi exp(—x;1),

I'=n"+1n"+2,...n (49

with the different scaling variables; =[Cg//C4/(Cy:
—1)]kt R8s’ The same exponents for all tide’ species are

n’

> 231(23-1,,)
m=1
W:)\:M: n ,

> 231(23-1,)—1
m=1

PHYSICAL REVIEW E 65 051107

1

7= — (50)

n

> 23/(23-1,)—1
m=1

The values ofu for Al species(=1,2, ... n’), which have

the largest value of\(2J—1,), are less than those o’
species ('=n’+1,n’"+2,...n). This implies thatA' spe-
cies dominate oved!’ species at>1. The results show that
all the species annihilate each other completely and no spe-
cies remains at last, independent of the initial data.

It can be concluded from the above analyses that the mass
distribution of the species with the largest valueAg§(2J
—1,) satisfies the standard scaling law, while the standard
scaling description breaks down for the species with smaller
values ofA;o(2J3—1,). If there is only a certain species that
has the largest value d%o(2J—1,), it will remain in the
end; meanwhile, all the other species will be annihilated
completely. If there are more than two species having the
same largest value oA(2J—1,), all the species will be
annihilated completely in the end.

D. Some aggregation rates less thanJ2with others equal to
or greater than 2J

Now we investigate the case of some aggregation rates
being less than 2 while the others are equal to or greater
than 2J. Without any loss of generality, we assumg<2J
for m=1,2,...n9 (1<ng<n) and Il ,,=2J for m'=n,
+1,n9+2,...,n. This case is similar to that in Sec. IIC.
The characteristics of the cluster-mass distributions are con-
cerned with the values ol y(2J—1,). For simplicity, we
assume  that Alo(ZJ—I1)>A|10(2J—I|1) for I

=2,3,...Nng. From Egs.(10), one can obtain the following
equations for this case:

ai_zJ“l—l ) a|1,*23/||'_1
AlO('l_Z‘J) A|ro(||1_2\])
for 1,,#2J, I'=23,...n,
B Ao 1-23/1, _
a|/—exp{m a, 1) for l,=2J.

(51)

Whenng=1 orAo(23—17)>Ao(2J—1,,), we find that
a;— and a—b;, (b, are constants and, >1, |’
=2,3,...n) att—oo. Thus one can obtain the asymptotic
differential equation fory, in the long-time limit,

n

da; 1A
a2 il

=231y
6'7 )

(52
I'=2

where Cg =[1—Ao(23— 1)/ Ao(23— 1)1 /(1" =2) for
||/7£2J andC6|/:quA|/0||//A10(2J_I]_)] fOI‘ ||/:2J. The
solution for a4 can then be given as

a;=Cgt, (53
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whereCGlz%IlAmH,”,:ZCJJ”". Substituting Eq(53) into
Egs.(51), we obtain the asymptotic solutions af,(t) as

a|/2C6|/—C7|/t1723“1, |,:2,3, ... N, (54)

where  Coi=11/ACe Cay 2 H[Are( 23— 11) = Ayro(23
—1;,)]. Equationg53) and(54) are similar to Eqs(29) and

(30). So this case has the same results as in Sec. lIC. In t

long-time limit, the cluster-mass distribution 8f species,
which has the largest value &\ y(2J—1,), has the same
standard scaling description as Eg1), whereC,, is substi-

tuted byCg,. Meanwhile, we also determine similar modi-

fied scaling descriptions a$33) for A’ species [’
=2,3,...n), whereC,, andCy, are substituted byg,
andC-,, respectively. HenceA? and A species have the
same scaling exponent32) and (36), respectively.

In the general case afiy>1, we assume tha#y(2J
—1)=A(23—1) for 1=23,...n" (1<n"<ngy) and
A|1O(2J—I|1)<Alo(2J—I1) forl;=n"+1n"+2,... Nng.In
this case, we haveyy—x (I=1,2,...n") and a;:—c;
(¢, are constants and,>1, |'=n"+1n"+2,... n) att

—o0, Thus in the long-time limit, we obtain the asymptotic

differential equations for, from Egs.(9),

n

dey  11Aj 20l R
—=—— Il ;7 e, I1=12...p",
where
23 "3,
Re=—| 1— ,
. ||< mElZJ_Im)

Cair=[1—=A1o(23— 1)) /A1 2]— 1) ] /11 =2
for 1,,#2J,
Carr=exd Aol [A1(23—17)] for 1,,=2J.

The asymptotic solutions far; anda,: can be determined as
follows:
a=CgtRn, =12 ...n",

C(|/2C8|7_C9|rt_R8|,, I,:n’,+1,n,/+2,...,n,

(56)
where
” -1
d23-1,
R, =1, ||—2J+2Jm§‘,12J_I ,
= m
R
LA o |
C8|_ 2R7||’=];]’;+1 C8|’ )
n” -1
2J
Rg = mz‘lZJ—lm_l) :
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C8|IA|IOI|/
Arg(23—11)—Apg(23—1,1)

1-2J/14
81

Coir=

Equations(56) are similar to Eqs(46). Substituting for the
constants C4, Cs, Cs/, and n’ in Sec. IIC with
Cg, Cgq, Cq, andn”, respectively, we can obtain the
@odified equationg47)—(50) of the cluster-mass distribu-

ihons and scaling exponents for this case. The results show

that the kinetic behavior of this system is similar to that in
Sec. IIC. Moreover, if we hava”=n’, the results of this
case are just identical to those in Sec. Il C.

E. Some aggregation rates equal to 2 with the others greater

than 2J
For simplicity, we assume |,=2J for m
=12,...n; (1=m<n) and |, >2J for m"=n;+1n;
+2,...,n. Then we can derive the following equations from
Egs.(10):
a?mozaglo, m=23,... N4,
1-23/
|n aq amr -1
= m=n;+1n;+2,...n.

| 1A10_Am,0(l m—2J) '
(57)

Substituting Eqs(57) into Egs.(9), we obtain the differential
equation ofa, as follows:

n
n
51 Aqg/A
m. =2 Amo/A10
o 11

(¢4

|:|n aq

m'=n;+1

231(1 gy —23) dar
1

dt

Axdly
Amro(lmo—2J)

n

1
=§|1A10 H

m’'=n{+1

Am,0(|m,o—zJ)rJ’(ZJ—'m'>
AlOIl .

(58)

It can be decisively concluded from Eq®) and (57) that
a—w (1=2,3,...n) att—o. We integrate Eq(58) and
then derive the solution af; in the implicit form att>1:

(—% m)ﬂl -
m=1 A10 ]=0 m’=n1+l|m’_2J

n
P 1_ A O/Alo s n _
Xalml—l m (ln 011) I+Em,:n1+12J/(lmr 2J)

Ny
N azmlzlAmO IA10 SN
1

m—ny 129 U =29)

(Inay)

n

I1

m’'=n;+1

Aol m,—zJ)}2J F(@ =)
EEerE— t.

AlOI 1

1 &
=512 Ano

(59
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If there exists integral N satisfying the equation
E”m=n1+12J/(Im—2J)— =0, the infinite terms in Eq(59)

will be simplified to finite terms of =1~ N. In the long-time
limit, the value of the summation in E@59) is far smaller

/A n .
than that ofa my-1/Am0 N ay)®mr=n,+:20w =2 and is neg-

ligible. Then Eq (59) reduces to

n
=1 Anol/Agg
1m1—1 m (|n

n
o ay)Sm—ng12Y (m=29)

n

10X
2§|1m§=:l Amo H

m’'=n{+1

Aol — 2J)rJ/<2J—'m'>
t.

AlO' 1

(60)

The asymptotic solution fog, in the long-time limit can be
given as

a;=Cyot?oy(In t)Re1, (61

where Ci0={3! 1Enl AmOHm/—n w1lAmo(lmro
—2J)/ Al 1122w} Ran, Rgl—(szl mo/A19) ', and
Rg,= Em,_n +12JRg1/(2J—1 ). Substituting Eq(61) into
Egs.(57), one can derive the asymptotic solutions dgy and
an as follows:
tty=Cagntom(In t)Rom,

m=12,...Nnq,

(1 —23)

amrzcloﬂr(lnt)lm m’=n1+ 1,n1+ 2, LN,

(62

where Rgm:(E”l1=1 mo/Amo) "h Rgn=3]

X2JRom/(23=11),  Cygn=Chm0"10 and  Cygy
=[{Amo(lm— 2J)/2JAmO}R9m]' o V=20 . The asymptotic

solutions for the long-time mass distributionsASf andA™
clusters are then obtained as follows:

m'=n;+1

™ t=1-Rom(|nt) ~Rom exp( — X,,),

Ami(t)= I Coon
m

m=1,2,...nq, (63

-1
ClOm’

am’k(t): tfl(lnt)f(ZIm/—ZJ)/(Imr—ZJ)

m’

Xexp —Xmp), m=n;+1n,+2,...n,

which are wvalid in the scaling regionsk>1,
t>1, Xp= (K/Cion)t Rem(Int) Rom=finite, and X,
= (k/C1opy) (INt)'m Im =2 =finijte, respectively.

The solutions show that the standard scaling description

(18) of the cluster-mass distribution breaks down for all the
Al clusters (=1,2, ... n) in this case and they come into a

rather peculiar scaling regime. We may modify the above

scaling descriptior{18) further into

PHYSICAL REVIEW E 65 051107

c(1)=Coh*[g(H) ] f(t)]~"2d[Kk/IS(1)],

S(He[g(t) ][ f(1)]%2,

where C, and h denote two constants, and<h=<1. g(t)
and f(t) are unusual functions of time, such es Int, 2,
and so on.
The total number and the total mass of the clusters can
then be rewritten as

g'(),f' (>0, (64

oo

N(t) =2 cp(t)[g(t)] M F(1)] 2,

M<t>=k§lkck<t>oc[g(t)]*#l[f(t)]w. (65)

The exponent relations are derived from E@1) and (65)
to be

N1=Wi—23, M1=W1—22Z3, Np=Wp— 2,
Mo=Wy—27Z, for h=1, (66)
)\l Wl, M1= Wl, )\2:W2, M2:W2 fOI’ O<h<1

When f(t)=g(t)=t, one can find the relations between
(W,z,\, 1) and @W;,Wo,23,25,N1,Np, i1,4t0) @S

W:W1+W2, Z:ZJ_"‘Zz,

(67)

In this case, we find the scaling exponents by letting
g(t)=t andf(t)=Int for A™ clusters n=1,2,...n;)

A=Nit Ay, p=prtus.

ny

>

m'=n;+1

2J1(23— 1)

Wo=2= — po= ny ,

2 Ano/Amo

mi=1

(68)
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andA™ clusters ' =n;+1n;+2, ... n)

21, —2J |
lel, szm—, 21—0, 22 m f
|y — 23 |y — 23

ui=1, u,= for A" clusters.

201,y

For the two-species system, it is obvious thgt=1.

Equations(68) and (69) are then simplified as

5 2] 1 2]
Wime WemoyTy ATh 275
2J
p1=0, p2=7—>3 for Al clusters,
o
1 2'2_2J 0 |2
Wi=h W Toy ATt 2T Ty
N=1, N,=1, (71
2J )
m1=1, M2=537 for A< clusters.
— 12

It is shown that the exponents are dependent only on the
larger aggregation rate (1,>1,=2J) and the annihilation
rateJ, and they are independent of the initial data. Compar

son between the total masshk;(t)o(Int)~2/(272) of Al

PHYSICAL REVIEW E 65 051107

22: f )\1:1, )\221, (73)

2
231y

m1=1, u2

for A" clusters,m'=2,3,...n.

The results show that the exponents also depend on the larger
aggregation rates,, (I,,>1,=2J, m"=23,...n) and
the annihilation ratel, and they are independent of the ag-
gregation rate oA' species and all the initial concentrations.
In this case, the largA® clusters dominate over the corre-
sponding clusters of the other species in the long-time limit.
For A™ species ' =2,3,...n), the species with lower
aggregation rate has the minimum value @ and thus
dominates over the others in the long-time limit, which is
also independent of the initial data. The results imply that no
clusters remain in the end.

In the general cases af>2 andn;>1, Eq.(70) indicates
that the exponents &A™ clusters n=1,2, ... n,) depend
both on the reaction rates &™ species fn'=n,+1n;
+2,...,n) and on the initial concentrations & species.
But the exponents oA™ clusters depend only on their own
reaction rates. It is obvious that in this cgee<1 for A™
species 1=1,2, ... n;) while u;=—1 for all theA™ spe-
cies (m'=n;+1n,+2,...n). Making a comparison be-
tween the total massed ,(t)«t #1(Int)~#2 of A™ species
and M, (t) =t~ 2(Int)"#2 of A" species, one finds th&™
Clusters dominate oveA™ clusters in the long-time limit,

i_independent of the initial data. It is not surprising because we

have assumed th#&™ species have lower aggregation rates

clusters andM,(t) =t~ 1(Int)212=2) of A2 clusters shows (1,=2J) thaQAm species [, >2J). Itis also shown that
that Al clusters dominate ove? clusters in the long-time for all the A™ species (=1,2, ... n,), the species with
limit. The results also show that both the total number and@'gest initial concentration has the minimum valueof
total mass of either species decrease with time. In this cas@Nd thus dominates over the others. Moreover, all the kinds
the two species annihilate each other completely and no clugf species annihilate each other completely in the end.

ters remain at the end.
When the system consists ofkinds of species(>2)

and there is only one speci#g whose aggregation rate is

equal to 2, Egs.(68) and(69) can be rewritten as

n

wi=2, w2=m2:2 ZJZ—JIm/ , Z21=1,
zz—mé2 2J2Jlm, , 1=1, A,=0, (72
w1=0, u,= i 2) for Al clusters,
m=2lm—
wy=1, 2_2|Imn:,__22JJ, 1=0,

. SUMMARY

We studied an irreversible aggregation-annihilation sys-
tem consisting oh kinds of distinct species on the basis of
the mean-field theory. Considering the constant-reaction-rate
model, we analyzed the kinetic behavior of the aggregation
process with complete annihilation. In the first case of all the
aggregation rates being greater thah e found that the
cluster-mass distribution of each species obeys the standard
scaling law in the long-time limit, and its exponents are de-
pendent on the aggregation rates and the annihilation rate,
but independent of all the initial concentratiog, (I
=1,2,...n).Inthe second case of all the aggregation rates
being equal to 2, the system also has the standard scaling
description for the mass distribution of each species, but the
scaling exponents depend only on the initial concentrations.
In the third case of all the aggregation rates being less than
2J and in the fourth case of some aggregation rates being

051107-9
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less than 4, we have found that only a certain species whichthan 2J, whether a certain species still remains in the end or
has the largest value ok o(2J—1,) satisfies the standard all the species annihilate completely is strongly dependent on
scaling law, and the exponents are dependent only on thigoth the reaction rates and the initial concentrations. If there
aggregation rates and the annihilation rate. Meanwhile, thgs only one species which has the largest valueAg{2J
standard scaling description breaks down for the other spe-| ) among those species whose aggregation rates are less
cies with the smaller values @o(2J—1)), and they have than 2, it dominates over the others in the long-time limit
other modified scaling behaviors. In the fifth case of someynq finally remains alone. In short, the aggregation process
aggregation rates being equal td and others greater than yith complete annihilation always satisfies a standard scaling
2J, we find that no species has standard scaling behavior, bt modified scaling law and its exponents strongly depend on
they satisfy modified scaling laws. the reaction rates. Of course, the initial concentrations also

In any case, the evolution behavior of the total numberay an important role in the evolution behavior of the sys-
and total mass of the clusters of all the species strongly degm.

pends on the reaction rates and the initial concentrations.

When all the aggregation rates are equal to or greater than

2J, both th(_a toftal number and t_otal mass of each species ACKNOWLEDGMENT

decrease with time and no species remains-ate. In the

case that there are more than one species whose aggregationThis project was supported by Zhejiang Provincial Natu-
rates are less thanJavhile the others are equal to or greater ral Science Foundation of China under Grant No. 199050.
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