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Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations
with true probability distribution functions
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Traditionally, quantum Brownian motion is described by Fokker-Planck or diffusion equations in terms of
quasiprobability distribution functions, e.g., Wigner functions. These often become singular or negative in the
full quantum regime. In this paper a simple approach to non-Markovian theory of quantum Brownian motion
using true probability distribution functions is presented. Based on an initial coherent state representation of the
bath oscillators and an equilibrium canonical distribution of the quantum mechanical mean values of their
coordinates and momenta, we derive a generalized quantum Langevin equation inc numbers and show that the
latter is amenable to a theoretical analysis in terms of the classical theory of non-Markovian dynamics. The
corresponding Fokker-Planck, diffusion, and Smoluchowski equations are the exact quantum analogs of their
classical counterparts. The present work is independent of path integral techniques. The theory as developed
here is a natural extension of its classical version and is valid for arbitrary temperature and friction~the
Smoluchowski equation being considered in the overdamped limit!.
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I. INTRODUCTION

A model quantum system coupled to its environme
forms the standard paradigm of quantum Brownian moti
The initiation of early development of this stochastic proc
took place around the middle of the 20th century@1–3#. A
major impetus was the discovery of lasers in the 1960s
lowed by significant advances in the fields of quantum op
and laser physics in the 1970s, where extensive applicat
of nonequilibrium quantum statistical methods were ma
Various nonlinear optical processes/phenomena were
scribed with the help of operator Langevin equations, den
operator methods, and the associated quasi-classical dist
tion functions of Wigner, Glauber, Sudarshan, and oth
centering around the quantum Markov processes@1–6#. Sub-
sequent to this early development the quantum theory
Brownian motion again emerged as a subject of imme
interest in the early 1980s when the problem of macrosco
quantum tunneling was addressed by Leggett and ot
@7–11#, and almost simultaneously the quantum Kram
problem attracted the serious attention of a number of wo
ers@12–15#. The method that received major attention in t
1980s and 1990s in a wide community of physicists a
chemists in these studies is the real time functional inte
@16,17#. This method has been shown to be an effective t
for treatment of quantum transition states@18#, and dissipa-
tive quantum coherence effects@8,19# as well as incoheren
quantum tunneling processes@13,14,20# and many related
problems@21#.

In spite of this phenomenal success it may, however,
noted that compared to the classical theory the quan
theory of Brownian motion based on functional integra
rests on a fundamentally different footing. While the clas
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cal theory is based on the differential equations for evolut
of the true probability density functions of the particle ex
ecuting Brownian motion, the path integral methods rely
a noncanonical quantization procedure and the evaluatio
the quantum partition function of the particle interacting w
the heat bath, and one is, in general, led to the time evolu
equations of quasiprobability distribution functions such
Wigner functions@15,22–26#. The question is whether ther
is any natural extension of the classical method to the qu
tum domain in terms of true probability distribution func
tions. It is therefore worthwhile to seek for a natural exte
sion of the classical theory of Brownian motion to th
quantum domain in the non-Markovian regime for arbitra
friction and temperature within the framework of a we
behaved true probabilistic description. Our aim in this pa
is thus twofold:~i! To enquire whether there exists a qua
tum generalized Langevin equation~QGLE! in c numbers
whose noise correlation satisfies the quantum fluctuat
dissipation relation~FDR! but which~the QGLE! at the same
time is a natural analog of its classical counterpart;~ii ! to
formulate exact quantum Fokker-Planck and diffusion eq
tions which are valid for arbitrary temperature and frictio
We also intend to look for the overdamped limit to obtain t
exact quantum analog of the classical Smoluchowski eq
tion.

Before proceeding further it is important to stress the m
tivation for the present scheme.

~1! As we have already pointed out, the traditional the
ries of quantum Brownian motion in optics@1–5# and con-
densed matter physics@7# are based on quasiprobabilit
functions. Apart from the usual shortcomings that they m
become negative or singular@27# in the full quantum regime
when the potential is nonlinear, the quasiprobability fun
tions are, in general, not valid for non-Markovian proces
with arbitrary noise correlation. While in the majority o
quantum optical situations a Markovian description is su
cient, non-Markovian effects of noise correlation are stron
©2002 The American Physical Society06-1
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BANIK, BAG, AND RAY PHYSICAL REVIEW E 65 051106
felt in the problems of quantum dissipation in condens
matter and chemical physics at low temperature. To incl
these effects even in the case of a free particle~see, for
example, Ref.@11#! one has to use a suitable cutoff frequen
of the heat bath to avoid intrinsic low frequency divergen
Clearly this poses serious difficulties for studying transi
behavior for arbitrary noise correlation and temperature
what follows we show that the present treatment is free fr
such difficulties.

~2! Our second motivation is to understand the quantu
classical correspondence in the problem of Brownian mo
in a transparent way. To this end we note that in the class
theory the Fokker-Planck equation with nonlinear poten
contains derivatives of probability distribution functions u
to second order. The equations in terms of Wigner functio
on the other hand, involve higher~than two! order deriva-
tives of distribution functions in the corresponding quantu
formulation@28#. The higher derivative terms contain powe
of \ and derivatives of the potential signifying purely qua
tum diffusion in which quantum corrections and nonlinear
of the potential get entangled in the description of the s
tem. Because of the occurrence of higher derivatives,
positivity of the distribution function is never ensured a
the equation cannot be treated as a quantum analog o
classical Fokker-Planck equation. Any attempt to reduce
order of the derivatives to two amounts to a semiclass
approximation. Again, there exists no systematic proced
for this reduction. Keeping in view these problems we inte
to derive exact quantum analog@Eqs.~42!, ~47!, and~50!# of
the classical Fokker-Planck, diffusion, and Smoluchow
equations, respectively, in terms oftrue probability distribu-
tion functions, where the equations contain derivatives
distribution functions up to second order only, for which t
diffusion coefficients are positive definite. Since the eq
tions are classical looking in form but quantum mechani
in their content, one can read the quantum drift and diffus
coefficients and also construct the quantum corrections
to the nonlinearity of the system systematically order by
der in a straightforward way, so that the quantum-class
correspondence can be checked simply by taking the l
\→0 both in the Markovian and in the non-Markovian d
scription. We mention in passing that, in contrast to a rec
treatment@29# of the large friction limit in a similar context
the quantum Smoluchowski equation as discussed here
tains its validity in the full quantum regime asT→0.

~3! Since over the last two decades classical n
Markovian theories@30,31# and numerical methods of gen
erating classical noise processes have made signifi
progress@32–34#, the mapping of the quantum theory o
Brownian motion into a classical form, as achieved he
suggests that the classical treatment can be extended t
quantum domain without much difficulty. Since the prese
scheme describes the generation of quantum noise@Eqs.~10!
and ~11!# as classical numbers which follow the quantu
fluctuation-dissipation relation, it is easy to comprehend t
the classical numerical techniques for the generation of n
and solving the stochastic Langevin equation@32–34# can be
utilized in the present case in a straightforward way to so
the quantum Langevin equation@35#. The procedure is there
05110
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fore much easier to implement compared to other metho
like path integral Monte Carlo techniques@36#.

In what follows we consider the standard system-reserv
model and make use of the coherent state representatio
the bath oscillators to derive a GLE for the quantum m
chanical mean value of position of a particle in contact w
a thermal bath whose quantum mechanical properties ca
defined in terms of a classical-looking noise term and a
nonical distribution of initial quantum mechanical mean v
ues of the coordinates and momenta of the bath. This sim
approach allows us to show that, although the equation
essentially quantum mechanical it is amenable to a theo
cal analysis in terms of the classical theory of no
Markovian dynamics@30,31#.

The rest of the paper is organized as follows. The syste
reservoir model, the associated QGLE, and the canonical
tribution for the bath oscillators are introduced in Sec.
This is followed by a general analysis of the QGLE in t
Sec. III and an illustration with an exponential memory ke
nel in Sec. IV to calculate the variances required for sett
up a quantum Fokker-Planck equation and a quantum di
sion equation in Secs. V and VI, repectively. Section VII
devoted to the quantum overdamped limit and the Smo
chowski equation. The paper is summarized and conclu
in Sec. VIII.

II. THE QUANTUM GENERALIZED LANGEVIN
EQUATION IN c NUMBERS

We consider a particle in a medium. The latter is mode
as a set of harmonic oscillators with frequency$v i%. The
evolution of such a quantum open system has been stu
over the last several decades under a variety of reason
assumptions. Specifically, our interest here is to develop
exact description of quantum Brownian motion within th
purview of this model described by the following Hami
tonian @37#:

Ĥ5
p̂2

2
1V~ x̂!1(

j
F p̂ j

2

2
1

1

2
k j~ q̂ j2 x̂!2G . ~1!

Herex̂ andp̂ are the coordinate and momentum operators
the particle and the set$q̂ j ,p̂ j% is the set of coordinate an
momentum operators for the reservoir oscillators coup
linearly to the system through their coupling coefficientsk j .
The potentialV( x̂) is due to the external force field for th
Brownian particle. The coordinate and momentum opera
follow the usual commutation relation@ x̂,p̂#5 i\ and

@ q̂ j ,p̂ j #5 i\d i j . Note that in writing down the Hamiltonian
no rotating wave approximation has been used.

Eliminating the reservoir degrees of freedom in the us
way @1,38–40#, we obtain the operator Langevin equatio
for the particle,

ẍ̂~ t !1E
0

t

dt8 g~ t2t8! ẋ̂~ t8!1V8~ x̂!5F̂~ t !, ~2!
6-2
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GENERALIZED QUANTUM FOKKER-PLANCK, . . . PHYSICAL REVIEW E 65 051106
where the noise operatorF̂(t) and the memory kernelg(t)
are given by

F̂~ t !5(
j

@$q̂ j~0!2 x̂~0!%k j cosv j t

1 p̂ j~0!k j
1/2sinv j t# ~3!

and

g~ t !5(
j

k j cosv j t, ~4!

with k j5v j
2 ~the masses have been assumed to be unity!.

Equation ~2! is an exact quantized operator Langev
equation which is now standard textbook material@1,4# and
for which the noise properties ofF̂(t) can be defined using
suitable initial canonical distribution of the bath coordina
and momenta. Our aim here is to replace it by an equiva
QGLE in c numbers. Again, this is not a new problem
long as one is restricted to standard quasiprobabilistic m
ods using, for example, Wigner functions@15,22–26#. To ad-
dress the problem of quantum non-Markovian dynamics
terms of a true probabilistic description, however, we follo
a different procedure. We first carry out the quantum m
chanical average of Eq.~2!:

^ ẍ̂~ t !&1E
0

t

dt8 g~ t2t8!^ ẋ̂~ t8!&1^V8~ x̂!&5^F̂~ t !&, ~5!

where the averagê•••& is taken over the initial produc
separable quantum states of the particle and the bath os
tors at t50, uf&$ua1&ua2&•••uaN&%. Here uf& denotes any
arbitrary initial state of the particle andua i& corresponds to
the initial coherent state of thei th bath oscillator.ua i& is
given by ua i&5exp(2uaiu2/2)(ni 50

` (a i
ni/Ani !) uni&, a i being

expressed in terms of the mean values of the coordinate
momentum of the i th oscillator, ^q̂i(0)&5(A\/2v i)(a i

1a i
!) and^ p̂i(0)&5 iA\v i /2(a i

!2a i), respectively. It is im-

portant to note that̂F̂(t)& of Eq. ~5! is a classical-like noise
term which, in general, is a nonzero number because of
quantum mechanical averaging over the coordinate and
mentum operators of the bath oscillators with respect to
initial coherent states and arbitrary initial state of the p
ticle, and is given by

^F̂~ t !&5(
j

@$^q̂ j~0!&2^ x̂~0!&%k j cosv j t

1^ p̂ j~0!&k j
1/2sinv j t#. ~6!

It is convenient to rewrite thec-number equation~5! as fol-
lows:

^ ẍ̂~ t !&1E
0

t

dt8 g~ t2t8!^ ẋ̂~ t8!&1^V8~ x̂!&5F~ t ! ~7!
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where we let the quantum mechanical mean value^F̂(t)&
5F(t). We now turn to the second averaging. To real
F(t) as an effectivec-number noise we now assume that t
momenta ^ p̂ j (0)& and the shifted coordinates$^q̂ j (0)&
2^x̂(0)&% of the bath oscillators are distributed according
a canonical distribution of Gaussian forms as

Pj5N expH 2@^ p̂ j~0!&21k j$^q̂ j~0!&2^x̂~0!&%2#

2\v j S n̄ j1
1

2D J
~8!

so that for any quantum mechanical mean va
Oj„^ p̂ j (0)&,$^q̂ j (0)&2^x̂(0)&%… the statistical average
^•••&S is

^Oj&S5E Oj„^ p̂ j~0!&,$^q̂ j~0!&2^x̂~0!&%…

3Pj„^ p̂ j~0!&,$^q̂ j~0!&2^x̂~0!&%…

3d^ p̂ j~0!&d$^q̂ j~0!&2^x̂~0!&%. ~9!

Here n̄ j indicates the average thermal photon number of
j th oscillator at temperatureT, n̄ j51/@exp(\vj /kBT)21#, and
N is the normalization constant.

The distribution~8! and the definition of the statistica
average~9! imply that F(t) must satisfy

^F~ t !&S50 ~10!

and

^F~ t !F~ t8!&S5
1

2 (
j

k j\v j S coth
\v j

2kBTD
3cosv j~ t2t8!. ~11!

That is, thec-number noiseF(t) is such that it is zero cen
tered and satisfies the standard quantum fluctuat
dissipation relation as known in the literature@38# in terms of
the quantum statistical average of the noise operators.

To proceed further we now add the force termV8(^x̂&) on
both sides of Eq.~7! and rearrange it to obtain formally

Ẍ~ t !1E
0

t

dt8 g~ t2t8!Ẋ~ t8!1V8~X!5F~ t !1Q~X,t !,

~12!

where we let̂ x̂(t)&5X(t) for simple notational convenienc
and

Q~X,t !5V8~^x̂&!2^V8~ x̂!& ~13!

represents the quantum mechanical dispersion of the f
operatorV8( x̂) due to the system degree of freedom. Sin
Q(t) is a quantum fluctuation term, Eq.~12! offers a simple
interpretation. This implies that the classical-looking QGL
is governed by ac-number quantum noiseF(t) which origi-
6-3
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BANIK, BAG, AND RAY PHYSICAL REVIEW E 65 051106
nates from the quantum mechanical heat bath characte
by the properties~10! and ~11! and a quantum fluctuation
term Q(t) due to the quantum nature of the system char
teristic of the nonlinearity of the potential. In Sec. VII w
give a recipe for calculation ofQ(t).

Summarizing the above discussion, we point out that i
possible to formulate a QGLE~12! of the quantum mechani
cal mean value of position of a particle in a medium, p
vided the classical-like noise termF(t) satisfies Eqs.~10!
and ~11!, where the ensemble average has to be carried
with the distribution~8!. It is thus apparent that to realiz
F(t) as a noise term we have split up the standard quan
statistical averaging procedure into a quantum mechan
mean^•••& by explicitly using an initial coherent state rep
resentation of the bath oscillators and then a statistical a
age ^•••&S of the quantum mechanical mean values. T
pertinent points are to be noted: First, it may be easily v
fied that the distribution of quantum mechanical mean val
of the bath oscillators~8! reduces to the classical Maxwel
Boltzmann distribution in the thermal limit\v j!kBT. Sec-
ond, the vacuum term in the distribution~8! prevents the
distribution of quantum mechanical mean values from be
singular atT50; or in other words the width of the distribu
tion remains finite even at absolute zero, which is a sim
consequence of the uncertainty principle.

III. GENERAL ANALYSIS: DAMPED FREE PARTICLE

It is now convenient to rewrite the QGLE~12! of the
quantum mechanical mean value of position of a particle
the absence of any external force field in the form

Ẍ~ t !1E
0

t

g~ t2t8!Ẋ~ t8!dt85F~ t !. ~14!

g(t) is the dissipative memory kernel as given by Eq.~4! and
F(t) is the zero centered stationary noise, i.e.,

^F~ t !&S50 and^F~ t !F~ t8!&S5C~ ut2t8u!5C~t!, ~15!

whereC(t) is the correlation function which in the equilib
rium state is connected to the memory kernelg(t) through
an FDR of the form@7#

C~ t2t8!5
1

2E0

`

dv k~v!%~v!\v

3S coth
\v

2kBTD cosv~ t2t8!. ~16!

Equation~16! is the continuum version of Eq.~11!. %(v)
denotes the density of modes of the bath oscillators. He
is important to note that Eq.~16! is the generalized FDR
valid at any arbitrary temperatureT. g(t2t8) is the con-
tinuum version of Eq.~4! and is given by
05110
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g~ t2t8!5E
0

`

dv k~v!%~v!cosv~ t2t8!. ~17!

In the high temperature limit, i.e., for\v!kBT, we arrive at
the well-known classical FDR of the second kind@41#,

C~ t2t8!5kBT g~ t2t8!. ~18!

The general solution of Eq.~14! is given by

X~ t !5^X~ t !&S1E
0

t

H~ t2t!F~t!dt ~19!

where

^X~ t !&S5X01V0H~ t ! ~20!

with X05X(0) andV05Ẋ(0) being the initial quantum me
chanical mean values of position and velocity of the partic
respectively.H(t) is the inverse form of the Laplace tran
form

H̃~s!5
1

s21sg̃~s!
~21!

with

g̃~s!5E
0

`

g~ t !e2stdt ~22!

the Laplace transform of the dissipative memory kernelg(t).
The time derivative of Eq.~19! gives

V~ t !5^V~ t !&S1E
0

t

h~ t2t!F~t!dt ~23!

where

^V~ t !&S5V0h~ t ! ~24!

and

h~ t !5
dH~ t !

dt
. ~25!

Hence

h̃~s!5
1

s1g̃~s!
. ~26!

Before proceeding further it is important to recall th
physical significance of the two functionsH(t) andh(t). It
has already been assumed that the initial quantum mech
cal velocityV0 is independent of the random forceF(t),

^V0F~ t !&S50. ~27!

Thus multiplying Eqs.~19! and~23! by V0 and using relation
~27! we obtain
6-4
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GENERALIZED QUANTUM FOKKER-PLANCK, . . . PHYSICAL REVIEW E 65 051106
^V0V~ t !&S /^V0
2&S5h~ t !, ~28!

^V0„X~ t !2X0…&S /^V0
2&S5H~ t !. ~29!

HenceH(t) andh(t) are the two relaxation functions;h(t)
measures how the quantum mechanical mean velocity
gets its initial value andH(t) measures how the quantu
mechanical mean displacement forgets the initial velocity.
a result, the quantum mechanical mean velocity of the p
ticle relaxes to a stationary state with zero statistical aver
of the quantum mechanical mean velocity.

Now, using the symmetry property of the correlation fun
tion

^F~ t !F~ t8!&S5C~ t2t8!5C~ t82t !

and using the solution forX(t) andV(t) we obtain the fol-
lowing expressions for the variances:

sXX
2 ~ t ![Š@X~ t !2^X~ t !&S#2

‹S

52E
0

t

H~ t1!dt1E
0

t1
H~ t2!C~ t12t2!dt2 , ~30a!

sVV
2 ~ t ![Š@V~ t !2^V~ t !&S#2

‹S

52E
0

t

h~ t1!dt1E
0

t1
h~ t2!C~ t12t2!dt2 , ~30b!

and

sXV
2 ~ t ![Š@X~ t !2^X~ t !&S#@V~ t !2^V~ t !&S#‹S

5
1

2
ṡXX

2 ~ t !

5E
0

t

H~ t1!dt1E
0

t

h~ t2!C~ t12t2!dt2 . ~30c!

The above three expressions are valid for arbitrary temp
ture and friction and include quantum effects. However,
the high temperature classical limit~i.e., \v!kBT) one can
derive simplified versions of the variances:

sXX
2 ~ t !5kBTF2E

0

t

H~ t8!dt82H2~ t !G , ~31a!

sVV
2 ~ t !5kBT@12h2~ t !#, ~31b!

and

sXV
2 ~ t !5kBT H~ t !@12h~ t !#. ~31c!

Before closing this section we emphasize a pertinent p
at this stage. Equations~30a!–~30c! are the expressions fo
the statistical variances of the quantum mechanical m
valuesX andV. These are not to be confused with the sta
dard quantum mechanical variances, which are conne
through uncertainty relations.
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IV. A SPECIFIC EXAMPLE: EXPONENTIALLY
CORRELATED MEMORY KERNEL

The very structure ofg(t) given in Eq.~17! suggests that
it is quite general and a further calculation requires pr
knowledge of the density of modes%(v) of the bath oscil-
lators. As a specific case we consider in the continuum li

k~v!%~v!5
2

p

g0

11v2tc
2

~32!

so thatg(t) takes the well-known form

g~ t !5
g0

tc
e2utu/tc, ~33!

whereg0 is the damping constant andtc refers to the corre-
lation time of the noise. Once we get an explicit express
for g(t) in closed form and its Laplace transform, it is po
sible to make use of Eq.~21! to calculate the relaxation func
tion H(t), which for the present case is given by

H~ t !5
1

g0
@12Ae2t/2tc sin~lt1a!# ~34!

where

A5
g0

l
,

l5S g0

tc
2

1

4tc
2D 1/2

, and a5tan21S 2ltc

122g0tc
D .

~35!

Now making use of the expressions forH(t) and the cor-
relation functionC(t) in Eqs. ~30a!–~30c! we calculate ex-
plicitly after lengthy but straightforward algebra the time d
pendent expressions for the variances of the quan
mechanical mean value of position and momentum of
particle,

sXX
2 ~ t !5

2\

p E
0

` v

11v2tc
2 S coth

\v

2kBTD
3FX~v,t !dv, ~36!

sVV
2 ~ t !5

2g0\

pl2 E0

` v

11v2tc
2 S coth

\v

2kBTD
3FV~v,t !dv, ~37!

and

sXV
2 ~ t !5

1

2
ṡXX

2 ~ t !. ~38!

In the Appendix we provide the explicit structures
FX(v,t) andFV(v,t).
6-5
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BANIK, BAG, AND RAY PHYSICAL REVIEW E 65 051106
To examine the consistency of our calculation we che
the long time behavior of the classical high temperat
Ohmic limit of the variancessXX

2 (t) andsVV
2 (t). In this limit

we have

sXX
2 ~ t !5

4kBT

p E
0

`

dv
1

11v2tc
2
FX~v,t !.

Only the first term ofFX(v,t) gives the long time behavio
of sXX

2 (t) in the Markovian limit, the contributions of the
rest of the terms being zero. Taking this leading order c
tribution we have

sXX
2 ~ t !5

4kBT

pg0
E

0

`

dv
1

11v2tc
2

1

v2
~12cosvt !

5
8kBT

pg0
S 1

11v2tc
2U

v50
D E0

`

dv

sin2
1

2
vt

v2

which gives

FIG. 1. Plot ofsXX
2 (t) against time to show the short time b

havior of the variances for different temperatures with fixed para
etersg051.0 andtc51.0. Inset: The same as in the main figure b
for a higher temperaturekBT510.0 ~units are arbitrary!.

FIG. 2. Plot ofsXX
2 (t) against time to show long time behavio

of the variances for different temperatures. Other parameters
same as in Fig. 1. Inset: The same as in the main figure but f
higher temperaturekBT510.0 ~units are arbitrary!.
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sXX
2 ~ t !5

2kBT

g0
t for t→`. ~39!

Similarly one can show that for the classical high tempe
ture Markovian limit

sVV
2 ~ t !5kBT for t→`. ~40!

Since we are unable to further evaluate analytically
explicit time dependent structures of the variances in
general case, we resort to numerical integration of Eqs.~36!
and ~37!. In Figs. 1 and 2 we show the short time and lo
time behavior of the variancessXX

2 (t) as functions of time
for different values of temperature but for a fixed value
correlation timetc . It is apparent that, while the short tim
dynamics has a simplet2 behavior, the asymptotic depen
dence is linear int with a clear crossover around some inte
mediate time. Figure 3 exhibits the asymptotic constancy
sVV

2 (t) as a function of time for different temperatures. T
effect of the correlation timetc on the variancesXX

2 (t) is
examined in Fig. 4 for a fixed high temperaturekBT510.0. It
is interesting to note that the crossover region gets longer
larger correlation times.

-
t

re
a

FIG. 3. Plot ofsVV
2 (t) against time to show long time behavio

of the variances for different temperatures. Other parameters
same as in Fig. 1~units are arbitrary!.

FIG. 4. Plot of sXX
2 (t) against time for different correlation

times tc with fixed parametersg051.0 andkBT510.0 ~units are
arbitrary!.
6-6
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Figures 5 and 6 illustrate the zero temperature situat
In this regime non-Markovian effects are strong, which
evident from the vacuum fluctuations growing in time in
oscillatory fashion at early stages for different values of
correlation time as shown in Fig. 5. In Fig. 6 we show ho
the initial growth of the variancesVV

2 (t) finally settles down
to a constant nonthermal energy value.

V. THE GENERALIZED QUANTUM FOKKER-PLANCK
EQUATION

We now return to our general analysis as carried ou
Sec. III. To write down the Fokker-Planck description for t
evolution of the probability density function of the quantu
mechanical mean values of the coordinate and momentu
the particle, it is necessary to consider the statistical dis
bution of noise, which we assume here to be Gaussian.
Gaussian noise processes we define the joint characte
function in terms of the standard mean values and varian
as follows:

P̃~m,r,t !5expF im^X~ t !&S1 ir^V~ t !&S

2
1

2
$sXX

2 ~ t !m212sXV
2 ~ t !mr1sVV

2 ~ t !r2%G .
~41!

FIG. 5. Same as in Fig. 4 but forkBT50.0 ~units are arbitrary!.

FIG. 6. Plot ofsVV
2 (t) against time to show long time behavio

due to vacuum fluctuations. Other parameters are same as in F
~units are arbitrary!.
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Using the standard procedure@30,31# we write down below
the Fokker-Planck equation~FPE! obeyed by the joint prob-
ability density functionP(X,V,t), which is the inverse Fou-
rier transform of the characteristic function:

S ]

]t
1V

]

]XD P~X,V,t !

5j~ t !
]

]V
VP~X,V,t !1w~ t !

]2

]V2
P~X,V,t !

1c~ t !
]2

]X]V
P~X,V,t ! ~42!

where

j~ t !52ḣ~ t !/h~ t !, ~43a!

w~ t !5j~ t !sVV
2 ~ t !1

1

2
ṡVV

2 ~ t !, ~43b!

and

c~ t !52sVV
2 ~ t !1j~ t !sXV

2 ~ t !1ṡXV
2 ~ t !. ~43c!

The above FPE is the exact quantum mechanical versio
the classical non-Markovian FPE and is valid at any arbitr
temperature and friction.

The decisive advantage of the present approach is a
noteworthy. We have mapped the operator generali
Langevin equation into a generalized Langevin equationc
numbers@Eq. ~14!# and its equivalent Fokker-Planck equ
tion @Eq. ~42!#. The present approach bypasses the ear
methods of quasiprobabilistic distribution functions em
ployed widely in quantum optics over the decades@1–5# in a
number of ways. First, unlike the quasiprobabilistic distrib
tion functions, the probability distribution functionP(X,V,t)
is valid for non-Markov processes. Second, while the cor
sponding characteristic functions for quasiprobabilistic d
tribution functions are operators, we make use of charac
istic functions which are numbers. Third, as pointed o
earlier the quasidistribution functions often become nega
or singular in the strong quantum domain and pose ser
problems. The present approach is free from such shortc
ings since the probability density functionP(X,V,t) behaves
here as a true probability function rather than a quasipr
ability function.

VI. GENERALIZED QUANTUM DIFFUSION EQUATION

In their landmark paper on classical Brownian motio
Uhlenbeck and Ornstein@42# solved the classical Markovian
FPE to findP(X,V,t) and then in a bid to obtain Einstein’
diffusion equation tried to evaluatep(X,t), the probability
density function in configuration space, by integrating ov
V. It was shown that it is difficult if not impossible to obtai
a differential equation forP(X,V0 ,t) from the classical Mar-
kovian FPE which fort@1/g0 would become a diffusion
equation. However, for the classical non-Markovian ca
. 1
6-7
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Mazo @30# in the late 1970s addressed this problem by c
sidering an initial Maxwellian distributionF(V0) of the ini-
tial velocity V0, and then derived the exact differential equ
tion satisfied byp(X,t) where

p~X,t !5E P~X,V0 ,t !F~V0!dV0 .

The resulting equation thus reduces to the diffusion equa
for t@1/g. We follow Mazo’s procedure to derive an exa
quantum mechanical version of the classical non-Markov
case, a differential equation which fort@1/g goes over into
a quantum diffusion equation. To this end we proceed
follows. From Eq.~41! for r50 we have

p̃~m,t !5E p̃~m,t !F~V0!dV0

5expS 2
1

2
m2sXX

2 ~ t ! Dexp~ imX0!

3E exp@ imV0H~ t !#F~V0!dV0 . ~44!

Here we take the initial Gaussian distribution of the quant
mechanical mean values of the velocity of the particle,

F~V0!5S 1

2pD0
D 1/2

expS 2
V0

2

2D0
D ~45!

where

D05w~`!/j~`!. ~46!

It is not difficult to note that the above choice is dictated
the stationary solution of the QFPE~42!, i.e., Eq.~45! satis-
fies Eq.~42! at equilibrium. The explicit time dependent e
pressions forw(t) and j(t) have been given in Eqs.~43a!
and~43b!. Inserting Eq.~45! in Eq. ~44! and then performing
the inverse Fourier transform after integration overV0, we
arrive at the following equation after a little algebra:

]p~X,t !

]t
5Dq~ t !

]2p~X,t !

]X2
. ~47!

This is the quantum analog of Einstein’s diffusion equat
where the explicit structure of the time dependent quan
diffusion coefficientDq(t) is given by

Dq~ t !5sXV
2 ~ t !1D0H~ t !h~ t !. ~48!

The required variances, the relaxation functions, and o
related quantities in Eq.~48! are given in Eqs.~30c!, ~25!,
~21!, and ~46!. We now discuss the limiting cases. For t
classical Markovian limit the variancesXV

2 (t) giveskBT/g0

for t@1/g0 and the second term inDq(t) vanishes in the
long time limit, so that we recover Einstein’s diffusion coe
ficient in configuration space. In the low temperature lim
however, the quantum effects begin to dominate. It is in
esting to note that based on the Feynman-Vernon path
05110
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gral technique@16,17#, Hakim and Ambegaokar@11# consid-
ered explicit quantum corrections to classical diffusion
examine the differential behavior of high and low tempe
ture dependence in the dynamics for Leggett-Caldeira in
conditions. The non-Markovian nature of the dynamics
taken into account by considering the frequency depende
of the bath with a suitable low frequency cutoff. The tra
sient behavior in the quantum correction to classical dif
sion is therefore only observable on time scales longer t
the inverse cutoff frequency. The present treatment, be
exact, equipped to deal with arbitrary noise correlation at
temperatures, and free from divergences, does not req
any such cutoff. The quantum diffusion coefficient can
followed arbitrarily from the transient to the asymptotic r
gions. To explore the associated non-Markovian nature of
dynamics in the present case it is necessary to go ove
numerical evaluation ofDq(t). In Fig. 7 ~compare with Fig.
1 of Ref. @11#! we plot the variation of quantum diffusion
coefficientDq(t) for several values of the temperature as
function of time for the exponential memory kernel cons
ered in our example in Sec. IV. It is apparent that, while t
short time behavior is characterized by a sharp increase
lowed by a maximum, the diffusion coefficient settles dow
to a constant value in the asymptotic limit. The short tim
behavior is dominated by the second term in Eq.~48! due to
the relaxation functionsH(t) and h(t), of which the latter
vanishes in the long time limit. Again, the first term in E
~48! offers no contribution to the diffusion coefficient from
its classical part in the vacuum limit atT50. The solid curve
in Fig. 7 thus shows the evolution of a nonthermal diffusi
coefficient of pure quantum origin.

VII. QUANTUM SMOLUCHOWSKI EQUATION

We now consider the diffusion of a particle in an extern
potentialV(X) as described by the QGLE~12!. In the over-
damped limit we drop the inertial termẌ(t) and the damping
kernelg(t2t8) is reduced tog0d(t2t8) for vanishingtc in
Eq. ~33!. g0 is the Markovian limit of dissipation. Equation
~12! then assumes the following form:

FIG. 7. Plot of quantum diffusion coefficientDq(t) against time
for different temperatures and forg050.275 andtc51.0. Inset:
Same as in the main figure but for a higher temperaturekBT
510.0 ~units are arbitrary!.
6-8
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Ẋ1
1

g0
@V8~X!2Q~X,t !#5

F~ t !

g0
. ~49!

ExpressingV8(X)2Q(X,t) as a derivative of an effective
quantum potentialVquant(X,t) with respect toX, the equiva-
lent description in terms of the true probability distributio
function p(X,t) is given by

]p~X,t !

]t
5

1

g0

]

]X
@Vquant8 ~X,t !p~X,t !#1Dqo

]2p

]X2
,

~50a!

with

Vquant8 ~X,t !5V8~X!2Q~X,t ! ~50b!

whereQ(X,t) is defined in Eq.~13!. HereDqo is the quan-
tum diffusion coefficient in the overdamped limit, which ca
be obtained with the help of the following definition@1#:

2Dqo5
1

DtEt

t1Dt

dt1E
t

t1Dt

dt2
1

g0
2 ^F~ t1!F~ t2!&S . ~51!

Here the correlation function̂ F(t1)F(t2)&S /g0
2 of the

c-number quantum noise is given by Eq.~16! in the con-
tinuum limit. We then make use of Eq.~32! for vanishingtc
in Eq. ~51! to obtain after explicit integration

Dqo5
1

2g0
\ṽ@2n̄~ṽ !11# ~52!

where the frequencyṽ in Eq. ~52! refers to the linearized
frequency of the nonlinear system@1#. We now discuss the
classical and vacuum limits of the quantum Smoluchow
equation ~50a!. It is easy to check that in the limit\ṽ
!kBT Dqo reduces to Einstein’s classical diffusion coef
cient kBT/g0. At the same timeQ(X,t) vanishes so tha
Vquant8 (X,t) goes over toV8(X) and one recovers the usu
classical Smoluchowski equation. In the opposite limit asT
→0, however, both quantum noise due to the nonlinearity
the system and vacuum fluctuations orginating from the h
bath make significant contributions.Dqo in this limit as-
sumes the form\ṽ/2g0. In this context we refer to a recen
treatment on the large friction limit in quantum dissipati
dynamics@29# to point out that the latter theory does n
retain its full validity asT→0 since the quantum noise of th
heat bath disappears in the vacuum limit.

The second noteworthy feature about the quantum Sm
chowski equation~50a! is that, unlike Wigner function base
equations@28#, it does not contain higher order~higher than
second! derivatives ofp(X,t). The positive definiteness o
the probability distribution function is thus ensured.

It is important to emphasize at this juncture that, so far
the general formulation of the theory is concerned, Eq.~50a!
contains quantum corrections to all orders. In this sense
~50a! is formally an exact quantum analog of the classi
Smoluchowski equation. To make it more explicit we retu
05110
i

f
at

u-

s

q.
l

to the quantum mechanics of the system in the Heisenb
picture to write the operatorsx̂ and p̂ as

x̂~ t !5^x̂~ t !&1d x̂ and p̂~ t !5^ p̂~ t !&1d p̂. ~53!

^ x̂(t)& and ^ p̂(t)& are quantities signifying quantum me
chanical averages andd x̂ and d p̂ are quantum corrections
By construction^d x̂& and ^d p̂& are zero and they obey th
commutation relation@d x̂,d p̂#5 i\. Using Eq. ~53! in

^V8( x̂)& and a Taylor expansion around^x̂& it is possible to
expressQ(X,t) as @see Eq.~13!#

Q~X,t !52 (
n>2

1

n!
Vn11~X!^d x̂n~ t !& ~54a!

where Vn(X) is the nth derivative of the potential atX
([^x̂&). Equation~54a! suggests a simple expression for t
effective potentialVquant(X,t) as

Vquant~X,t !5V~X!1 (
n>2

1

n!
Vn~X!^d x̂n~ t !& ~54b!

where the classical potentialV(X) is modified by the quan-
tum corrections to all orders. To solve the quantum Smo
chowski equation it is therefore necessary to calcul

^d x̂2(t)&, ^d x̂3(t)&, etc. To the lowest order̂x̂& and ^d x̂2&
follow a coupled set of equations as given below:

d

dt
^x̂&5^ p̂&, ~55a!

d

dt
^ p̂&52V8~^ x̂&!2

1

2
V-~^x̂&!^d x̂2&, ~55b!

d

dt
^d x̂2&5^d x̂d p̂1d p̂d x̂&, ~55c!

d

dt
^d x̂d p̂1d p̂d x̂&52^d p̂2&22V9~^ x̂&!^d x̂2&, ~55d!

d

dt
^d p̂2&52V9~^x̂&!^d x̂d p̂1d p̂d x̂&. ~55e!

The above set of equations can be derived@43# from Heisen-
berg’s equation of motion. If one is interested in the loc
dynamics around a point~say, at the bottom or top of the
potential well!, the set of equations becomes decoupled a
it is easy to obtain simple analytic solutions of Eqs.~55a!–
~55e! for ^x̂& and ^d x̂2& for Eq. ~54a!. The higher order es-
timates~e.g., fourth order! of the quantum corrections can b
obtained from the solutions of the equations of successiv
higher order derived earlier by Sundaram and Milonni@43#
or otherwise@44#. Since the quantum corrections due to t
system are calculated by different sets of equations for s
cessive orders, the measure of accuracy of truncation ca
understood easily. It is therefore obvious that the pres
scheme provides a simple, systematic, and quantitative
6-9
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mate of the mean field and other decorrelation methods
the basis of quantum-classical correspondence.

VIII. CONCLUSIONS

The main purpose of this paper is to enquire whethe
stochastic differential equation inc numbers in the form of a
generalized Langevin equation and its corresponding Fok
Planck, diffusion, and Smoluchowski equations in terms
true probability functions are viable for description of no
Markovian quantum Brownian motion. Based on an init
coherent state representation of the bath oscillators an
equilibrium distribution of the quantum mechanical me
values of their coordinates and momenta, which satisfy
essential properties of the associated noise of the bath
grees of freedom, we derive a QGLE for the quantum m
chanical mean value of the position of the particle. The m
conclusions of this study are the following.

~i! Our QGLE~14! is amenable to analysis in terms of th
methods developed earlier for the treatment of classical n
Markovian theory of Brownian motion.

~ii ! The generalized Langevin equation~12!, the corre-
sponding Fokker-Planck equation~42!, and the diffusion
equation~47!, and also the Smoluchowski equation~50a!,
are the exact quantum analog of their classical versi
05110
n

a

r-
f

l
an

e
e-
-
n

n-

s

@30,31#. The probability distribution functions as employe
here bear the true notion of statistical probability rather th
that of quasiprobability.

~iii ! The theory of quantum Brownian motion develop
here is valid for arbitrary noise correlation and temperat
and is free from divergences.

~iv! The realization of noise as a classical-looking ent
which satisfies the quantum fluctuation-dissipation relati
ship ~11! allows us to envisage quantum Brownian motion
a natural extension of its classical conterpart. The metho
based on a canonical quantization procedure and make
reference to path integral formulations.

We conclude by mentioning that the method discus
here is promising for simple differential equation based
proaches@15# to quantum activated processes, tunneli
problems as shown elsewhere@45#, the quantum ratchet@46–
48#, and problems relating to motion in periodic fields@49–
52# and allied issues.
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APPENDIX: THE EXPLICIT FORMS OF FX„v,T… AND FV„v,T…

FX(v,t) consists of eleven terms which are given below:

FX~v,t !5F X
(1)~v,t !1F X

(2)~v,t !1F X
(3)~v,t !1F X

(4)~v,t !1F X
(5)~v,t !1F X

(6)~v,t !1F X
(7)~v,t !1F X

(8)~v,t !1F X
(9)~v,t !

1F X
(10)~v,t !1F X

(11)~v,t !. ~A1!

The explicit structures ofF X
( i )(v,t) ( i 51, . . .,11) are given by

F X
(1)~v,t !5~1/g0v2! ~12cosvt !, ~A2!

F X
(2)~v,t !5

AA3
(v)

g0v
@cos~a1vt !2cosa#2

AA4
(v)

g0v
@cos~a2vt !2cosa#2

AA5
(v)

g0v
@sin~a1vt !2sina#

1
AA6

(v)

g0v
@sin~a2vt !2sina#, ~A3!

F X
(3)~v,t !52

AA1
(v)

2g0
2 @e2t/2tc$sin~lt1a!12ltccos~lt1a!%2$sina12ltccosa%#, ~A4!

F X
(4)~v,t !52

AA2
(v)

2g0
2 @e2t/2tc$cos~lt1a!22ltcsin~lt1a!%2$cosa22ltcsina%#, ~A5!

F X
(5)~v,t !5

A 2A2
(v)

8g0
2 @e2t/tc$sin 2~lt1a!12ltccos 2~lt1a!%2$sin 2a12ltccos 2a%#, ~A6!

F X
(6)~v,t !5A 2A1

(v)S tc

2g0
D Fe2t/tc1

e2t/tc

4g0tc
$2ltcsin 2~lt1a!2cos 2~lt1a!%2H 11

1

4g0tc
~2ltcsin 2a2cos 2a!J G ,

~A7!
6-10
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F X
(7)~v,t !52

A
g0v

†A3
(v)

„e2t/2tc$2tc~l2v!sin@a1~l2v!t#2cos@a1~l2v!t#%22tc~l2v!sina1cosa…

2A4
(v)

„e2t/2tc$2tc~l1v!sin@a1~l1v!t#2cos@a1~l1v!t#%22tc~l1v!sina1cosa…‡, ~A8!

F X
(8)~v,t !5

A 2A3
(v)

g0
†A3

(v)$e2t/2tc@2tc~l2v!sin~l2v!t2cos~l2v!t#11%2A4
(v)

„e2t/2tc$2tc~l1v!sin@2a1~l1v!t#

2cos@2a1~l1v!t#%2@2tc~l1v!sin 2a2cos 2a‡…‡, ~A9!

F X
(9)~v,t !5

A 2A4
(v)

g0
@A4

(v)$e2t/2tc@2tc~l1v!sin~l1v!t2cos~l1v!t#11%2A3
(v)

„e2t/2tc$2tc~l2v!sin@2a1~l2v!t#

2cos@2a1~l2v!t#%2@2tc~l2v!sin 2a2cos 2a#…‡, ~A10!

F X
(10)~v,t !52

A 2A5
(v)

g0
†A4

(v)
„e2t/2tc$sin@2a1~l1v!t#12tc~l1v!cos@2a1~l1v!t#%2@sin 2a12tc~l1v!cos 2a#…

1A3
(v)$e2t/2tc@sin~l2v!t12tc~l2v!cos~l2v!t#22tc~l2v!%‡, ~A11!

and

F X
(11)~v,t !52

A 2A6
(v)

g0
†A3

(v)
„e2t/2tc$sin@2a1~l2v!t#12tc~l2v!cos@2a1~l2v!t#%2@sin 2a12tc~l2v!cos 2a#…

1A4
(v)$e2t/2tc@sin~l1v!t12tc~l1v!cos~l1v!t#22tc~l1v!%‡, ~A12!

where

A1
(v)5tcF 1

114tc
2~l2v!2

1
1

114tc
2~l1v!2G ,

A2
(v)52tc

2F l2v

114tc
2~l2v!2

1
l2v

114tc
2~l1v!2G ,

A3
(v)5

tc

114tc
2~l2v!2

, A4
(v)5

tc

114tc
2~l1v!2

,

A5
(v)5

2tc
2~l2v!

114tc
2~l2v!2

, and A6
(v)5

2tc
2~l1v!

114tc
2~l1v!2

. ~A13!

Similarly, we have

FV~v,t !5F V
(1)~v,t !1F V

(2)~v,t !1F V
(3)~v,t !1F V

(4)~v,t !1F V
(5)~v,t !1F V

(6)~v,t !1F V
(7)~v,t ! ~A14!

with

F V
(1)~v,t !5

1

4 S A1
(v)

2tc
1lA2

(v)D Fe2t/tc1
e2t/tc

4g0tc
$2ltcsin 2~lt1a!2cos 2~lt1a!%2H 11

1

4g0tc
~2ltcsin 2a2cos 2a!J G ,

~A15!

F V
(2)~v,t !5

ltc

2 S lA1
(v)2

A2
(v)

2tc
D Fe2t/tc2

e2t/tc

4g0tc
$2ltcsin 2~lt1a!2cos 2~lt1a!%2H 12

1

4g0tc
~2ltcsin 2a2cos 2a!J G ,

~A16!
051106-11
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F V
(3)~v,t !5

21

8g0
S lA1

(v)

tc
1l2A2

(v)2
A2

(v)

4tc
2 D 3@e2t/tc$sin 2~lt1a!12ltccos 2~lt1a!%2$sin 2a12ltccos 2a%#,

~A17!

F V
(4)~v,t !5S A3
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