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Traditionally, quantum Brownian motion is described by Fokker-Planck or diffusion equations in terms of
quasiprobability distribution functions, e.g., Wigner functions. These often become singular or negative in the
full quantum regime. In this paper a simple approach to non-Markovian theory of quantum Brownian motion
using true probability distribution functions is presented. Based on an initial coherent state representation of the
bath oscillators and an equilibrium canonical distribution of the quantum mechanical mean values of their
coordinates and momenta, we derive a generalized quantum Langevin equatimmibers and show that the
latter is amenable to a theoretical analysis in terms of the classical theory of non-Markovian dynamics. The
corresponding Fokker-Planck, diffusion, and Smoluchowski equations are the exact quantum analogs of their
classical counterparts. The present work is independent of path integral techniques. The theory as developed
here is a natural extension of its classical version and is valid for arbitrary temperature and fiticion
Smoluchowski equation being considered in the overdamped .limit
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[. INTRODUCTION cal theory is based on the differential equations for evolution
of the true probability density functions of the particle ex-

A model quantum system coupled to its environmentecuting Brownian motion, the path integral methods rely on
forms the standard paradigm of quantum Brownian motion@ noncanonical quantization procedure and the evaluation of
The initiation of early development of this stochastic procesghe quantum partition function of the particle interacting with
took place around the middle of the 20th cent{ity-3]. A the heat bath, and one is, in general, led to the time evolution
major impetus was the discovery of lasers in the 1960s fol€gquations of_quasmrobablllty dlstrlbutl_on functlons such as
lowed by significant advances in the fields of quantum opticsVigner functiong15,22—2§. The question is whether there

and laser physics in the 1970s, where extensive applicatior]s @Y natural extension of the classical method to the quan-

of nonequilibrium quantum statistical methods were madelUm domain in terms of true probability distribution func-

Various nonlinear optical processes/phenomena were dé@ns. It is therefore worthwhile to seek for a natural exten-

scribed with the help of operator Langevin equations, densit lon of the cle'lssflcal theory of Br'owman. motion to' the
: . : ... guantum domain in the non-Markovian regime for arbitrary
operator methods, and the associated quasi-classical distrib,

tion functi £ Wi Glauber. Sudarsh d oth iction and temperature within the framework of a well-
lon functions ob VWigner, tlauber, sudarshan, and otergqpn,yeq true probabilistic description. Our aim in this paper
centering around the quantum Markov proce$éest]. Sub-

is thus twofold:(i) To enquire whether there exists a quan-

sequent to this early development the quantum theory of,, generalized Langevin equatid®GLE) in ¢ numbers

Brownian motion again emerged as a subject of immensg;hose noise correlation satisfies the quantum fluctuation-
interest in the early 1980s when the problem of macroscopigissipaﬂon relatiofFDR) but which(the QGLBE at the same
quantum tunneling was addressed by Leggett and otheffme is a natural analog of its classical counterpéit; to
[7-11, and almost simultaneously the quantum Kramer§ormulate exact quantum Fokker-Planck and diffusion equa-
problem attracted the serious attention of a number of worktions which are valid for arbitrary temperature and friction.
ers[12—-15. The method that received major attention in thewe also intend to look for the overdamped limit to obtain the
1980s and 1990s in a wide community of physicists andexact quantum analog of the classical Smoluchowski equa-
chemists in these studies is the real time functional integrafion.
[16,17). This method has been shown to be an effective tool Before proceeding further it is important to stress the mo-
for treatment of quantum transition stafds], and dissipa- tivation for the present scheme.
tive quantum coherence effedi®,19] as well as incoherent (1) As we have already pointed out, the traditional theo-
quantum tunneling process¢$3,14,2Q and many related ries of quantum Brownian motion in opti¢d—5] and con-
problems[21]. densed matter physick7] are based on quasiprobability
In spite of this phenomenal success it may, however, béunctions. Apart from the usual shortcomings that they may
noted that compared to the classical theory the quanturbecome negative or singulg27] in the full quantum regime
theory of Brownian motion based on functional integralswhen the potential is nonlinear, the quasiprobability func-
rests on a fundamentally different footing. While the classi-tions are, in general, not valid for non-Markovian processes
with arbitrary noise correlation. While in the majority of
quantum optical situations a Markovian description is suffi-
*Electronic-mail: pcdsr@mahendra.iacs.res.in cient, non-Markovian effects of noise correlation are strongly

1063-651X/2002/66)/05110613)/$20.00 65 051106-1 ©2002 The American Physical Society



BANIK, BAG, AND RAY PHYSICAL REVIEW E 65 051106

felt in the problems of quantum dissipation in condensedore much easier to implement compared to other methods,
matter and chemical physics at low temperature. To includdike path integral Monte Carlo techniqug36].

these effects even in the case of a free partiskee, for In what follows we consider the standard system-reservoir
example, Ref[11]) one has to use a suitable cutoff frequencymodel and make use of the coherent state representation of
of the heat bath to avoid intrinsic low frequency divergencethe bath oscillators to derive a GLE for the quantum me-
Clearly this poses serious difficulties for studying transientchanical mean value of position of a particle in contact with
behavior for arbitrary noise correlation and temperature. I thermal bath whose quantum mechanical properties can be

what follows we show that the present treatment is free fronfiéfined in terms of a classical-looking noise term and a ca-
such difficulties. nonical distribution of initial guantum mechanical mean val-

(2) Our second motivation is to understand the quantumy€S of the coordinates and momenta of the bath. This simple

classical correspondence in the problem of Brownian motiofPProach allows us to show that, although the equation is
in a transparent way. To this end we note that in the classicgSSentially qguantum mechanical it is amenable to a theoreti-
theory the Fokker-Planck equation with nonlinear potentiac@ analysis in terms of the classical theory of non-
contains derivatives of probability distribution functions up Markovian dynamic$30,31. _

to second order. The equations in terms of Wigner functions, | N€ rest of the paper is organized as follows. The system-
on the other hand, involve highéthan twg order deriva- '€Servoir model, the assoc_lated QGLE_, and the ca_lnonlcal dis-
tives of distribution functions in the corresponding quantumtribution for the bath oscillators are introduced in Sec. II.
formulation[28]. The higher derivative terms contain powers 1 his is followed by a general analysis of the QGLE in the
of # and derivatives of the potential signifying purely quan- Sec.. Il and an illustration with an_exponentla[ memory kgr—
tum diffusion in which quantum corrections and nonlinearity "€l in Sec. IV to calculate the variances required for setting
of the potential get entangled in the description of the sys{P & quantum Fokker-Planck equation and a quantum diffu-
tem. Because of the occurrence of higher derivatives, th&!On €quation in Secs. V and VI, repectively. Section VIl is
positivity of the distribution function is never ensured anddevoted to the quantum overdamped limit and the Smolu-
the equation cannot be treated as a quantum analog of tﬁ)@OWSkI equation. The paper is summarized and concluded

classical Fokker-Planck equation. Any attempt to reduce th& S€c. VIII.

order of the derivatives to two amounts to a semiclassical

approximation. Again, there exists no systematic procedure || THe QUANTUM GENERALIZED LANGEVIN

for thl_s reduction. Keeping in view these problems we intend EQUATION IN ¢ NUMBERS

to derive exact quantum analpgqs.(42), (47), and(50)] of

the classical Fokker-Planck, diffusion, and Smoluchowski We consider a particle in a medium. The latter is modeled
equations, respectively, in terms tofie probability distribu- as a set of harmonic oscillators with frequenfay;}. The

tion functions where the equations contain derivatives ofevolution of such a quantum open system has been studied
distribution functions up to second order only, for which theover the last several decades under a variety of reasonable
diffusion coefficients are positive definite. Since the equaassumptions. Specifically, our interest here is to develop an
tions are classical looking in form but quantum mechanicaexact description of quantum Brownian motion within the
in their content, one can read the quantum drift and diffusiorpurview of this model described by the following Hamil-
coefficients and also construct the quantum corrections du@nian[37].

to the nonlinearity of the system systematically order by or-

der in a straightforward way, so that the quantum-classical ~o 82
correspondence can be checked simply by taking the limit H= p_+v()‘()+2 &Jr _Kj(aj_)‘()z _ (1)
fi—0 both in the Markovian and in the non-Markovian de- 2 T2 2

scription. We mention in passing that, in contrast to a recent

treatmen(29] of the large fr|9t|on "“.“'t ina S|_m||ar context, Herex and|6 are the coordinate and momentum operators of
the quantum Smoluchowski equation as discussed here re-

tains its validity in the full quantum regime ds—0. the particle and the s¢tj;,p;} is the set of coordinate and

(3) Since over the last two decades classical nonimomentum  operators for the reservoir _oscnlato_rs_ coupled
Markovian theorie$30,31 and numerical methods of gen- linearly to the s¥stem through their coupling coefficients
erating classical noise processes have made significalihe potentialV(x) is due to the external force field for the
progress[32—34, the mapping of the quantum theory of Brownian particle. The coordinate and momentum operators
Brownian motion into a classical form, as achieved herefollow the usual commutation relatiomﬁ,f)]ziﬁ and
suggests that the classical treatment can be extended to tr@_ p:]=i# 4, . Note that in writing down the Hamiltonian

o wi itfi i PP G o

quantum domain without much difficulty. Since the presentyq yotating wave approximation has been used.
scheme describes the generation of quantum ri&igs. (10) Eliminating the reservoir degrees of freedom in the usual

and (11)] as classical numbers which follow the quantumyyay [1,38—4Q, we obtain the operator Langevin equation
fluctuation-dissipation relation, it is easy to comprehend thaty; ‘the particle,

the classical numerical techniques for the generation of noise

and solving the stochastic Langevin equafid@—34 can be .

utilized in the present case in a straightforward way to solve ;'((t)+f dt’ y(t—t’)?((t’)JrV’()A(): IA:(t), ®)
the quantum Langevin equati¢85]. The procedure is there- 0
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where the noise operatét(t) and the memory kerney(t) where we let the quantum mechanical mean vdlﬁ(et))

are given by =F(t). We now turn to the second averaging. To realize
F(t) as an effective-number noise we now assume that the
ﬁ(t):; [{aj(O)—Q(O)}K,— cosot momenta (p;(0)) and the shifted coordinate$(q;(0))

—(x(0))} of the bath oscillators are distributed according to
a canonical distribution of Gaussian forms as

+p;j(0)k}*sinw;t] 3
1D, 24 e 10 _ /3 2
o 7= exg| POV H{G0) (O
Zﬁ(x)j Fj'f’ E)
y(1)=2, Kjcoswjt, (%) 8
J

so that for any quantum mechanical mean value
with k;=w? (the masses have been assumed to be unity O;((p;(0)),{(q;(0))—(x(0))}) the statistical average
Equation (2) is an exact quantized operator Langevin(---)gis
equation which is now standard textbook matefigh| and
for which the noise properties &f(t) can be defined using a 0. :f 0:({p;i(0)),1(0;(0)) —(x(0
suitable initial canonical distribution of the bath coordinates (Op)s i (P3(00).4(0;(0)) = (x(0))})
and momenta. Our aim here is to replace it by an equivalent - A -
QGLE in ¢ numbers. Again, this is not a new problem so XPi(pi(0)),{(a;(0)) = {x(0))})
long as one is restricted to standard quasiprobabilistic meth- o - 2
ods using, for example, Wigner functioftss,22—28. To ad- X d(p;(0))d{(q;(0))—(x(0))}. €)

dress the problem of q_ua_ntum n(_)nTMarkowan dynamics "Hereﬁj indicates the average thermal photon number of the
terms of a true probabilistic description, however, we follow —

a different procedure. We first carry out the quantum meJth oscillator at temperaturg n; =1fexp(iw; /kgT)—1], and
chanical average of Eq2): Nis the normalization constant.

The distribution(8) and the definition of the statistical
B ¢ A A A average(9) imply that F(t) must satisfy
(x(t))+f dt’ y(t—t")(x(t"))+{(V' (x))=(F(1)), (5
0 (F(1))s=0 (10
where the averagé- - -) is taken over the initial product and
separable quantum states of the particle and the bath oscilla- 1 .
tors att='0.,.|¢>{|a1>|a2>- -~|a|\!>}. Here|¢) denotes any (FOF(t))e== > Kjﬁwj(COt i )
arbitrary initial state of the particle arfj@;) corresponds to 25 kT
the initial coherent state of thigh bath oscillator.|«;) is
given by [a)=exp(-|a[¥2)2; _ (a"/\ni!)|n), « being
expressed in terms of the mean values of the coordinate arfthat is, thec-number noisd-(t) is such that it is zero cen-
momentum of theith oscillator, <ai(o)>:(\/ﬁ/2wi)(ai tered and satisfies the standard quantum fluctuation-
+a?) and(P;(0)) =i @ /2(a} — a;), respectively. It is im- dissipation relation as known in the literatiB8] in terms of
' ' Lo e _ the quantum statistical average of the noise operators.
portant to note thatF(t)) of Eq. (5) is a classical-like noise T d furth dd the f ‘ -
term which, in general, is a nonzero number because of th tho p(;oceef Eur7 er v(\;e nowa 'tei orgte .G‘T“X))”OH
guantum mechanical averaging over the coordinate and m oth sides of Eq(7) and rearrange it to obtain formally
mentum operators of the bath oscillators with respect to the
X(t)+ f

X cosw(t—t’). (12

tdt’ Y(t—tHX{A)+ V' (X)=F(t)+Q(X,t),
0

initial coherent states and arbitrary initial state of the par-
ticle, and is given by

(12
(F(1)y= 2 [{(0;(0))—(x(0))} k| cosmt where we le{X(t))= X(t) for simple notational convenience
i and
+(py(0))xjsin]. ©® QUXLD=V/ ()~ (V' () 13

It is convenient to rewrite the-number equatiort5) as fol-  represents the quantum mechanical dispersion of the force
lows: operatorV’(x) due to the system degree of freedom. Since
. Q(t) is a quantum fluctuation term, E¢L2) offers a simple
<';((t)>+f dt’ y(t_t,)<;((t,)>+<vf(;()>=F(t) @ interpretation. This implies that the classical-looking QGLE
0 is governed by @-number quantum noisé(t) which origi-
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by the propertieg10) and (11) and a quantum fluctuation dw k(w)e(w)cosw(t—t'). (17)

term Q(t) due to the quantum nature of the system charac-

teristic of the nonlinearity of the potential. In Sec. VIl we |, e high temperature limit, i.e., fdrw<kgT, we arrive at

give a recipe for calculation d(t). , _ . the well-known classical FDR of the second kipt],
Summarizing the above discussion, we point out that it is

possible to formulate a QGLEL2) of the quantum mechani- C(t—t")=kgT y(t—t'). (18)
cal mean value of position of a particle in a medium, pro-

vided the classical-like noise terf(t) satisfies Eqs(10) The general solution of Eq14) is given by

and (11), where the ensemble average has to be carried out
with the distribution(8). It is thus apparent that to realize

F(t) as a noise term we have split up the standard quantum
statistical averaging procedure into a quantum mechanical
mean(- - -) by explicitly using an initial coherent state rep- where
resentation of the bath oscillators and then a statistical aver-
age(---)g of the quantum mechanical mean values. Two (X(t))s=Xo+ VoH(t) (20
pertinent points are to be noted: First, it may be easily veri- )

fied that the distribution of quantum mechanical mean valuewith Xo=X(0) andVy=X(0) being the initial guantum me-
of the bath oscillator¢8) reduces to the classical Maxwell- chanical mean values of position and velocity of the particle,
Boltzmann distribution in the thermal limitw;<kgT. Sec-  respectively.H(t) is the inverse form of the Laplace trans-
ond, the vacuum term in the distributidi®) prevents the form

distribution of quantum mechanical mean values from being

singular atT=0; or in other words the width of the distribu- ~ 1
H(s)= ——=— (21

nates from the quantum mechanical heat bath characterized ) o
y(t—t")= f

0

t
X(t)=(X(t))s+ JOH(t—T)F(T)dT (19

tion remains finite even at absolute zero, which is a simple 2,
) =< s2+sy(s)
consequence of the uncertainty principle.
with
I1l. GENERAL ANALYSIS: DAMPED FREE PARTICLE -
> — —st
It is now convenient to rewrite the QGLEL2) of the 7(3)_f0 y(the Tdt (22
guantum mechanical mean value of position of a particle in
the absence of any external force field in the form the Laplace transform of the dissipative memory kery(g).
The time derivative of Eq(19) gives
t
v INNC (4! ’_ t
X(t)+fo =X =F (D). s VO =)t [ hie-nFmer @9
0
(1) is the dissipative memory kernel as given by Ej.and ~ Where
F(t) is the zero centered stationary noise, i.e.,
® Y (V(D)s=Voh(D) (24
(F(1))s=0 and(F(t)F(t'))s=C(|t—t'|)=C(7), (15 and
. . . . . dH(t)
whereC(t) is the correlation function which in the equilib- h(t)= T (25)
rium state is connected to the memory kernét) through
an FDR of the forn{7] Hence
o F(s)= —= (26
iy = S)=——=—.
C(t—t") Zfo dow k(w)o(w)hw s+ (3)
ho , Before proceeding further it is important to recall the
x| cot KgT cosw(t—t"). (16 physical significance of the two functiom$(t) andh(t). It

has already been assumed that the initial quantum mechani-

) ] ] ] cal velocityV, is independent of the random forégt),
Equation(16) is the continuum version of Eq1l). o(w)

denotes the density of modes of the bath oscillators. Here it (VoF(t))s=0. (27
is important to note that Eq.16) is the generalized FDR

valid at any arbitrary temperaturé y(t—t’) is the con-  Thus multiplying Egqs(19) and(23) by V and using relation
tinuum version of Eq(4) and is given by (27) we obtain
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(VoV(1))s/(V2)s= h(D), 28 IV. A SPECIFIC EXAMPLE: EXPONENTIALLY
CORRELATED MEMORY KERNEL
(Vo(X(t) = Xo))s/(VEys=H(t). (29) The very structure of/(t) given in Eq.(17) suggests that

) ) it is quite general and a further calculation requires prior
HenceH(t) andh(t) are the two relaxation function§(t)  knowledge of the density of modes(w) of the bath oscil-
measures how the quantum mechanical mean velocity foliiors, As a specific case we consider in the continuum limit
gets its initial value andH(t) measures how the quantum

mechanical mean displacement forgets the initial velocity. As 2 %
a result, the quantum mechanical mean velocity of the par- k(w)o(w)=— >3 (32
ticle relaxes to a stationary state with zero statistical average T 1t o7
of the quantum mechanical mean velocity.
Now, using the symmetry property of the correlation func-SO thaty(t) takes the well-known form
tion y
_ _0 —|t|/ 7
(F(OF(t))s=C(t—t")=C(t' —t) = e 63
and using the solution faX(t) andV(t) we obtain the fol- Wherey, is the damping constant andg refers to the corre-
lowing expressions for the variances: lation time of the noise. Once we get an explicit expression
for y(t) in closed form and its Laplace transform, it is pos-
o2 (D) ={[X(1) = (X(1))s]Ds sible to make use of E@21) to calculate the relaxation func-

. t tion H(t), which for the present case is given by
~2 [ Hityd [ "HtC -t (30a
0 0

1 )
H(t)=y—[l—Ae_”ZTcsm()\t+a)] (34)
0
a2 ()= V) —(V(1))s]P)s here
—2ftht dt flht C(t,—t,)dt,, (30D
- 0(1)10(2)(1 2) 21 A:E
o
and
, vo 1\%? [ 2
FrAD =X = (X)) STV —(V(D)s])s A=| o) and astan | 5
1 ’ (35

= Eb'ix(t)
Now making use of the expressions td(t) and the cor-
e t relation functionC(t) in Egs.(30a—(300 we calculate ex-
- J’OH(tl)dt1JOh(tZ)C(tl_tZ)dtZ' (309 plicitly after lengthy but straightforward algebra the time de-
pendent expressions for the variances of the quantum
The above three expressions are valid for arbitrary temperdl€chanical mean value of position and momentum of the
ture and friction and include quantum effects. However, inParticle,
the high temperature classical linfite., # w<<kgT) one can

derive simplified versions of the variances: o2 (1) = % © W (cotk‘ hw )
. X T Jo 1+w275 2kgT
2 _ ’ ’ 2

2 _ 2 2voh (* ho
o) =kgTI1=h2(1)], (31 2 g 2Y0 f (Coﬂ, )

q rwt) w2 Jo 1+a)27'§ ?kBT

an
XFy(ot)do, (37)
i) =ksT H(O[L=h(D)]. (319
and

Before closing this section we emphasize a pertinent point
at this stage. Equation809—(30¢ are the expressions for
the statistical variances of the quantum mechanical mean
valuesX andV. These are not to be confused with the stan-
dard quantum mechanical variances, which are connectdd the Appendix we provide the explicit structures of
through uncertainty relations. Fx(w,t) and Fy(w,t).

1.
TRt = 50%(1). (38)
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2.04 kBT= 1.0 1.61 kBT=1_0
. 1.4-
B 2]
- e o e  kgT=05 - 1.0 kT =05
~, 1.0 ~ 087 e s
o o~ 0.6
0.5+ 0.4 kT =0.05
. 0.2
0.0 : . : : : 0.0 : : .
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 6 8 10

FIG. 1. Plot ofo2,(t) against time to show the short time be- FIG. 3. Plot ofa2,(t) against time to show long time behavior
havior of the variances for different temperatures with fixed param-of the variances for different temperatures. Other parameters are
etersy,=1.0 andr.=1.0. Inset: The same as in the main figure but same as in Fig. lunits are arbitrary
for a higher temperaturkegT=10.0 (units are arbitrary

2kgT
To examine the consistency of our calculation we check U>2<x(t)= 5t for t—c. (39
the long time behavior of the classical high temperature Yo
Ohmic limit of the variances2,(t) ando?2,(t). In this limit
we have xx(t) andoyy(t) Similarly one can show that for the classical high tempera-
ture Markovian limit
2(1) 4kBde L (o 2 (0=kgT for t (40)
[ = w w,l). g = or — 0,
XX 7 Jo 1+w27§ X vV B

Only he frst term offy (1) gives the long time behavior o Lo, T8 B8 8T 0 8 SO O e n the
of a%y(t) in the Markovian limit, the contributions of the P b

rest of the terms being zero. Taking this leading order Congegeral clasle: we 1reso(;t ;0 numherlcalhmterg];ranon of Boﬁ
tribution we have nd(37). In Figs. 1 and 2 we show the short time and long

time behavior of the variances(t) as functions of time

KeT (= 1 1 for different values of temperature but for a fixed value of
oy (t)= J 22, — (1—coswt) correlation timer.. It is apparent that, while the short time
Yo “Itotr dynamics has a simpl€ behavior, the asymptotic depen-
dence is linear irt with a clear crossover around some inter-
sm2 ot mediate time. Figure 3 exhibits the asymptotic constancy of
_ 8kgT f do—o o-\z,v(t) as a function of time for different temperatures. The
Yo |\ 1+ a)27'2 B effect of the correlation time, on the variancarix(t) is

examined in Fig. 4 for a fixed high temperatlgel = 10.0. It
which gives is interesting to note that the crossover region gets longer for
larger correlation times.

20
kgT=1.0 200
15¢; _ 10
15_ Ng 10¢. tc
\:Sg =
5 1504 v tc—1.5
. T 4 6 8 B 2 | S 1. =20
= 107 ' Kk T=05 SO
% - = 1004 R
bx ) /’/
" )
501
14 0 . . . ; . .
t 0 2 4 6 8 10 12

FIG. 2. Plot ofa%(t) against time to show long time behavior
of the variances for different temperatures. Other parameters are FIG. 4. Plot of aix(t) against time for different correlation
same as in Fig. 1. Inset: The same as in the main figure but for #mes 7. with fixed parameterg,=1.0 andkgT=10.0 (units are
higher temperatur&sT=10.0 (units are arbitrary arbitrary).
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Using the standard procedur@0,31 we write down below
2.09 =10 the Fokker-Planck equatidiffPE) obeyed by the joint prob-
15 ability density functionP(X,V,t), which is the inverse Fou-
1.5 e ' rier transform of the characteristic function:
- T =20
s J +V i P(X,V,t
t\é§ 10' . E R ( Ll ’ )
0.57 ......................... d pr:
[ =§(t)WVP(X,V,t)ﬁLﬁD(t)WP(X,V,t)
0.0 T T T T T T
0 2 4 6 8 10 12 pr:
t + i(t) XV P(X,V,t) (42
FIG. 5. Same as in Fig. 4 but fégT= 0.0 (units are arbitrary
where
Figures 5 and 6 illustrate the zero temperature situation. _
In this regime non-Markovian effects are strong, which is E(t)=—h(t)/h(1), (43a

evident from the vacuum fluctuations growing in time in an

oscillatory fashion at early stages for different values of the 5 1.,

correlation time as shown in Fig. 5. In Fig. 6 we show how PO =&V oy (t) F5au(D), (43b)
the initial growth of the variance\z,v(t) finally settles down

to a constant nonthermal energy value. and

V. THE GENERALIZED QUANTUM FOKKER-PLANCK Y1) = — a2 (1) + E() 02 (1) + a2 (1), (430
EQUATION
The above FPE is the exact quantum mechanical version of

Se\éV?IIn9|'\c,)vv:/?ittlérgot\?vnoijr:eglfglir:lr-I?’?;r?ésklz:sscrciatrircl)?]dfoorut:ulan[he classical non-Markovian FPE and is valid at any arbitrary
LT P temperature and friction.

evolution of the probability density function of the quantum The decisive advantage of the present approach is again

mechanical mean values of the coordinate and momentum of .
the particle, it is necessary to consider the statistical distri?mteworthy' We have mapped the operator generalized

bution of noise. which we assume here to be Gaussian. Langevin equation into a generalized Langevin equation in
. o : S " . Humbers[Eq. (14)] and its equivalent Fokker-Planck equa-
Gaussian noise processes we define the joint characteris i

e ! on [Eqg. (42)]. The present approach bypasses the earlier
tausn?(;llfor:/vlg terms of the standard mean values and vanantepethods of quasiprobabilistic distribution functions em-

ployed widely in quantum optics over the decafies5| in a
_ number of ways. First, unlike the quasiprobabilistic distribu-
P(M:P,t):eXF{W(X(t»s‘F ip(V(D)s tion functions, the probability distribution functid®(X,V,t)
is valid for non-Markov processes. Second, while the corre-
1, 5 ) ) ) sponding characteristic functions for quasiprobabilistic dis-
— 10O p "+ 205D upt oy (D% tribution functions are operators, we make use of character-
istic functions which are numbers. Third, as pointed out
(41) earlier the quasidistribution functions often become negative
or singular in the strong quantum domain and pose serious

0.5 problems. The present approach is free from such shortcom-
kgT =00 ings since the probability density functiét(X,V,t) behaves
0.44 here as a true probability function rather than a quasiprob-
ability function.
= 0.3
“t‘); 0.0- VI. GENERALIZED QUANTUM DIFFUSION EQUATION
In their landmark paper on classical Brownian motion,
0.14 Uhlenbeck and Ornstei#2] solved the classical Markovian
FPE to findP(X,V,t) and then in a bid to obtain Einstein’s
0-00 z : T z 5 diffusion equation tried to evaluate(X,t), the probability

density function in configuration space, by integrating over
V. It was shown that it is difficult if not impossible to obtain
FIG. 6. Plot ofo2,(t) against time to show long time behavior & differential equation foP(X,V,,t) from the classical Mar-

due to vacuum fluctuations. Other parameters are same as in Fig.kpvian FPE which fort>1/y, would become a diffusion
(units are arbitrary equation. However, for the classical non-Markovian case
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Mazo [30] in the late 1970s addressed this problem by con-
sidering an initial Maxwellian distributio® (V) of the ini-

tial velocity V, and then derived the exact differential equa-
tion satisfied byp(X,t) where

p(X,t) = f P(X,VO ,t)(I)(Vo)dVO .

The resulting equation thus reduces to the diffusion equation
for t>1/y. We follow Mazo’s procedure to derive an exact
guantum mechanical version of the classical non-Markovian
case, a differential equation which foe 1/y goes over into

a quantum diffusion equation. To this end we proceed as t
follows. From Eq.(41) for p=0 we have

FIG. 7. Plot of quantum diffusion coefficielt,(t) against time
~ ~ for different temperatures and foy,=0.275 andr,=1.0. Inset:
D(M't):f p(u,t)®(Vo)dVg Same as in the main figure but for a higher temperaky®

=10.0 (units are arbitrary

expli uXo) gral techniqud 16,17, Hakim and Ambegaokdi1] consid-
ered explicit quantum corrections to classical diffusion to
; examine the differential behavior of high and low tempera-
Xf exfll wVoH (D] (Vo) dVo. “4 ture dependence in the dynamics for Leggett-Caldeira initial
o ] o conditions. The non-Markovian nature of the dynamics is
Here we take the initial Gaussian distribution of the quantumgken into account by considering the frequency dependence
mechanical mean values of the velocity of the particle,  f the path with a suitable low frequency cutoff. The tran-
EREL V2 sient behavior in the quantum correction to classical diffu-
) e '{ _ _0) (45 sion is therefore only observable on time scales longer than
2mA, 2A¢ the inverse cutoff frequency. The present treatment, being
exact, equipped to deal with arbitrary noise correlation at all
where temperatures, and free from divergences, does not require
any such cutoff. The quantum diffusion coefficient can be
Ao=(*)/&(=). (46) followed arbitrarily from the transient to the asymptotic re-
gions. To explore the associated non-Markovian nature of the
dynamics in the present case it is necessary to go over to
numerical evaluation oD 4(t). In Fig. 7 (compare with Fig.
1 of Ref.[11]) we plot the variation of quantum diffusion
coefficientD 4(t) for several values of the temperature as a
function of time for the exponential memory kernel consid-
ered in our example in Sec. IV. It is apparent that, while the
short time behavior is characterized by a sharp increase fol-
ap(X,1) 2p(X,1) lowed by a maximum, the diffusion c_oel_‘fic_ient settles dqwn
=Dy (t)————. (47)  to a constant value in the asymptotic limit. The short time
ot a G behavior is dominated by the second term in E®) due to
the relaxation function#i(t) and h(t), of which the latter
This is the quantum analog of Einstein’s diffusion equationyanishes in the long time limit. Again, the first term in Eq.
where the explicit structure of the time dependent quantumsg) offers no contribution to the diffusion coefficient from

1
= exl{ - §M20'>2<x(t)

D(Vo)=

It is not difficult to note that the above choice is dictated by
the stationary solution of the QFRE2), i.e., Eq.(45) satis-
fies EQ.(42) at equilibrium. The explicit time dependent ex-
pressions forp(t) and é(t) have been given in Eq$43a)
and(43b). Inserting Eq(45) in Eq. (44) and then performing
the inverse Fourier transform after integration oVky; we
arrive at the following equation after a little algebra:

diffusion coefficientD 4(t) is given by its classical part in the vacuum limit @=0. The solid curve
5 in Fig. 7 thus shows the evolution of a nonthermal diffusion
Dg(t)=o%y(t) +AoH()N(1). (48)  coefficient of pure quantum origin.
The required variances, the relaxation functions, and other
related quantities in EC(48) are given in EQS(SOC), (25), VII. QUANTUM SMOLUCHOWSKI EQUATION
(21), and (46). We now discuss the limiting cases. For the
classical Markovian limit the varianae2,(t) givesksT/ 7y, We now consider the diffusion of a particle in an external

for t>1/y, and the second term iBy(t) vanishes in the PotentialV(X) as described by the QGLE?2). In the over-
long time limit, so that we recover Einstein’s diffusion coef- damped limit we drop the inertial terd(t) and the damping
ficient in configuration space. In the low temperature limit,kernely(t—t") is reduced toy,8(t—t') for vanishingr. in
however, the quantum effects begin to dominate. It is interEq. (33). vy, is the Markovian limit of dissipation. Equation
esting to note that based on the Feynman-Vernon path inté12) then assumes the following form:
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o1 F(t) to the quantum mechanics of the system in the Heisenberg
X+ %[V (X)=Q(X,1)]= B (49 picture to write the operatoss andp as

ExpressingV’ (X) —Q(X,t) as a derivative of an effective X()=(X(1))+x and p(t)=(p(t))+sp. (53
quantum potentiaV/y,.,(X,t) with respect toX, the equiva- | . N o
lent description in terms of the true probability distribution (X(t)) and (p(t)) are quantities signifying quantum me-

function p(X,t) is given by chanical averages anék and sp are quantum corrections.
) By construction( 5x) and(&p) are zero and they obey the
ap(X,t 1 9 d : ; oo . :
p( )=——[v(;uam(x,t)p(x,t)]+qu—z, comrputanon relatlon[éx,épJ it U§|ng .Eq. (53) in
ot Yo 9X X (V'(x)) and a Taylor expansion arour®) it is possible to

(508  expres(X,t) as[see Eq(13)]
ith 1 -
" QXD==3 TVaaXN(SK(W) (54
Viuand XD =V (X) = Q(X,t) (50) e
where V,(X) is the nth derivative of the potential ak

(E(f()). Equation(54a suggests a simple expression for the
effective potentiaV,an{X,t) as

whereQ(X,t) is defined in Eq(13). HereD, is the quan-
tum diffusion coefficient in the overdamped limit, which can
be obtained with the help of the following definiti¢f]:

1 N
1 Vauanl XD =V(X)+ 2 tVa(X)(6X(1) (54D

t+At t+At 1
gt [ dt S (FR)s. 6
7o where the classical potentigl(X) is modified by the quan-
Here the correlation functior(p(tl)p(tz»s/yg of the tum cor.rections. to a}ll prders. To solve the quantum Smolu-
c-number quantum noise is given by E@6) in the con- chowski equation it is therefore necessary to calculate
tinuum limit. We then make use of E(B2) for vanishingr,  (8x(t)), (8x*(t)), etc. To the lowest ordefx) and(5x?)

in Eq. (51) to obtain after explicit integration follow a coupled set of equations as given below:
1 - . d . -
Dq0=2—yoﬁw[2n(w)+1] (52) G0 =(p), (558
ol ; ; d . - 1 - -
where the frequencyb' in Eq. (52) refers to the'lmearlzed —(PY=—V'({X)) = V" ((X)){ 5x2), (55h)
frequency of the nonlinear systej]. We now discuss the dt 2

classical and vacuum limits of the quantum Smoluchowski

equation (50a. It is easy to check that in the limitw —(
<kgT Dg, reduces to Einstein’s classical diffusion coeffi- dt
cient kgT/vyy. At the same timeQ(X,t) vanishes so that
VguandX;t) goes over tov’(X) and one recovers the usual
classical Smoluchowski equation. In the opposite limifTas
—0, however, both quantum noise due to the nonlinearity of
the system and vacuum fluctuations orginating from the heat
bath make significant contribution®, in this limit as-

sumes the fornk w/2y,. In this context we refer to a recent

treatment on the large friction limit in quantum dissipative The above set of equations can be deril#8] from Heisen-
dynamics[29] to point out that the latter theory does not berg's equation of motion. If one is interested in the local
retain its full validity asT— 0 since the quantum noise of the dynamics around a poirfsay, at the bottom or top of the
heat bath disappears in the vacuum limit. potential wel), the set of equations becomes decoupled and

The second noteworthy feature about the quantum Smoldt iS €asy to obtain simple analytic solutions of E¢s5a—
chowski equatior{504 is that, unlike Wigner function based (55¢ for (x) and(dx?) for Eq. (548. The higher order es-
equationg 28], it does not contain higher ordénigher than timates(e.g., fourth orderof the quantum corrections can be
secondl derivatives ofp(X,t). The positive definiteness of obtained from the solutions of the equations of successively
the probability distribution function is thus ensured. higher order derived earlier by Sundaram and Milof%8]

It is important to emphasize at this juncture that, so far aor otherwise[44]. Since the quantum corrections due to the
the general formulation of the theory is concerned, (83 system are calculated by different sets of equations for suc-
contains quantum corrections to all orders. In this sense Eaessive orders, the measure of accuracy of truncation can be
(509 is formally an exact quantum analog of the classicalunderstood easily. It is therefore obvious that the present
Smoluchowski equation. To make it more explicit we returnscheme provides a simple, systematic, and quantitative esti-

X2y =(5XSp+ SpSX), (550
(b + 6D =2(55%) - 2V (R))(5%), (550

%<5b2>: —V"((X))(8XEp+ SpSX). (558
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mate of the mean field and other decorrelation methods of80,31. The probability distribution functions as employed

the basis of quantum-classical correspondence. here bear the true notion of statistical probability rather than
that of quasiprobability.
VIIl. CONCLUSIONS (iii) The theory of quantum Brownian motion developed

) . . . here is valid for arbitrary noise correlation and temperature
The main purpose of this paper is to enquire whether gnq s free from divergences.

generalized Langevin equation and its corresponding Fokketyhich satisfies the quantum fluctuation-dissipation relation-
Planck, diffusion, and Smoluchowski equations in terms Ofship(ll) allows us to envisage quantum Brownian motion as
true probability functions are viable for description of non- 3 natural extension of its classical conterpart. The method is
Markovian quantum Brownian motion. Based on an initial ygsed on a canonical guantization procedure and makes no
coherent state representation of the bath oscillators and g@ference to path integral formulations.

equilibrium distribution of the quantum mechanical mean \ye conclude by mentioning that the method discussed
values of their coordinates and momenta, which satisfy thggre is promising for simple differential equation based ap-
essential properties of the associated noise of the bath dBroaCheS[l5] to quantum activated processes, tunneling
grees of freedom, we derive a QGLE for the quantum mepoplems as shown elsewhé#s), the quantum ratchéti6—

conclusions of this study are the following. 52] and allied issues.

(i) Our QGLE(14) is amenable to analysis in terms of the
methods developed earlier for the treatment of classical non-
Markovian theory of Brownian motion.
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APPENDIX: THE EXPLICIT FORMS OF Fy(w,T) AND F/(@,T)

Fx(w,t) consists of eleven terms which are given below:
Fxlo,)=FP(w,t)+ FP(w,t) + FP(0,t) + FO(w,t) + F(0,t) + F&(w,) + FO(0,t) + FE(w,t) + FO(w,1)
+ FO 1)+ F w,t). (A1)

The explicit structures o {)(w,t) (i=1, ...,11) are given by

FB(w,t)=(1/y,0?) (1-coswt), (A2)
o (@ AA@ AAW)
FX'(w,t)= cog a+ wt) —cosa]— co§ @ — wt) —cosa]— sin(a+ wt) —sina
X (o,1) yow[i ) ] yOw[S( ) ] yow[n( ) ]
AAg‘")[ in( t)—sina] (A3)
+ SI(a— wt)—SINa |,
Yo®
aw>
Fw,t)=— ——-[e "#e{sin(\t+ @) + 2\ 7,cOg At + @)} — {sina+ 2\ 7.cosar}], (A4)
Yo
%
f§(4)(w,t)= - —Z[e‘t’27°{cos()\t+ a)— 2N 7 SiN(At+ @)} —{cosa— 2\ 7Sina} ], (A5)
Yo
2A(w)
Fw,t)=———[e""7e{sin 2(\t+ a)+ 2\ 7,€0S ANt + @)} —{Sin 2a+ 2\ 7,C0S 20} ], (A6)
Yo
T —t/7g 1
f<X6>(w,t):A2A<1w>(—°) e Vet {2\ 7SI 2(\t+ ) —cos ANt +a)}—{ 1+ (ZATCSinZa—COSZa)H,
2y 4yo7e 4yoTe

(A7)
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F(w,t)=— i[A(“’)(e_tlz%{ZT (AN —w)siMa+(A—w)t]—cod a+ (A — w)t]}—27.(\— w)Sina+ cosa)
x (@, Yoo 3 c c

— AP (e e[ 2 7, (N + w)siM a+ (A + w)t]—cog a+ (N + w)t]} — 27,(\ + w)sina+ cosa)], (A8)
2 ga))
F®w,t)= [AL) e Y27 27 (N — w)SINA — w)t— cog A — w)t]+ 1} — Al (e V2e{ 27 (N + w)siM 2+ (A + w)t]
—cog2a+ (A + w)t]}—[27.(\+ w)sin 2a— cos 2o])], (A9)
ZAS;:))
Fw,t)= [A{ e 2 27 (A + w)SiN(\ + o)t —cog N + w)t]+ 1} — AL (e 272 7(A — w)siN 2a+ (A — w)t]
—co§2a+ (A= w)t]}—[27.(\ — w)sin 2a—cos 2u])], (A10)
2A'(5w)
Fw,t)=— [A{) (e Y27ef{siN 2a+ (A + w)t]+27(A + ©)c0§ 2+ (N + w)t]} — [ Sin 20+ 27¢(A + w)CcOS 2])
+ AL e T S\ — w)t+ 275(A — w)COS\ — w)t] — 276(A — w)}], (ALD)
and
2 (Gu))
FD(w,t)=— » [AY) (e~ P?7elsi 2a+ (N — w)t]+27(A — w)cog 2a+ (A — w)t]} — [ sin 2a+ 27,(\ — w)cos 2a])
0
+ A e 7 sin(\ + w)t+ 27(A + ) COI A + w)t] — 27(A + w)}], (A12)
where
Al ! + !
=T s
! ¢ 1+4T§()\—w)2 1+4T§()\+w)2
A—w A—w
AL =27 2 2 2 2|
1+47i(A—w)° 1+47 (Nt w)
AW=— T Ao
1+475(\— w)? 1+475(\ + w)?
272 (N —w) 272N+ w)
A= A= — (A13)
1+472(N—w)? 1+47(\+ )2
Similarly, we have
Flo)=FP(0,t)+ FP(0,t)+ F(w,t) + FP(w,t) + FO(w,t) + F(w,t) + FP(w,1) (A14)
with
(1) LAY AW U _
1 [ ® —t/7g i _ _ i _
Fy'(w,t) 4(2TC+AA2 ) e + 7/OTC{ZMCsm2()\t+oz) CosANt+a)} [1+4707c(2)wcsm2a cos?a))_,
(A15)
(2) )\TC A(w) A(Zw) —t/T e 2 in2 1 2 in2 2
Fy (w’t)_T NAY — 27, e —4)/0%{ N7 SIN2(Nt+a)—cos ANt +a)}— —470%( N 7.Sin2a—cos ) | |,

(Al16)
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-1 ( VAR AL)

FPw,t)= o 7_—1 +N2AL) — F) x[e V7e{sin 2(\t+ a) + 2\ 7,08 ANt + a)} — {sin 2a+ 2\ 7,c0s 2} ],

c Tc

(A17)

(@)

FMw,t)= Ai{e—”%[zf (A= w)SiN(A — w)t—cog A — w)t]+ 11+ NAL (e~ ¥27e{sif 2a+ (A — w)t]
\Y ’ ZTC c 3

AL
3 AW
5 FAL

+27(A—w)cog2a+ (A — w)t]}—e V2 sin(A — w)t+27.(\ — ) COS\ — w)t]—[Sin 2a+ 27(\ — w)COS 2]

Ale)
+27.(N\—w))— %(e_t/ZTC{ZTC()\ +w)sif2a+ (A +w)t]—co§2a+ (A + w)t]} —[27,(\ + w)sin 2a

—cos Za])} , (A18)

Agw) AE{A})
FPw,t)= (Z—TC + xAg@) {?[et’z%[zrc(x + ) SN\ + )t —Ccog\ + w)t]+1]

C

(@)
3

27
+AAL) (e V27 siM 2a+ (A — )t]+ 27¢(A — w)cog 2a+ (N — w)t]} — [ Sin 20+ 27¢(\ — w)cOS 2x])

(e*"ZTc{ZTC()\—w)sir[2a+(>\— w)t]—co§2a+(N—w)t]}—[27:(\ — w)sin 2a—cos 2x])

— MA@ Y2 sin(A + w)t+27¢(A + @) COI N + w)t] — 27N + @)} |, (A19)

(@) _ 3
MAS 27, )| 27¢

()
+ %(e*t’ZTc{sir[ZaﬂL()\Jr o)t]+27(A+w)co§2a+ (N + w)t]}—(sin2a+27.(\ + w)cos 2x])

FPlw)=

Al T Alw)
S —t/27, H
) {e7 " sin(A — w)t+ 27, (N —w)COS\ — w)t] - 27.(\ —w)}

+AA (e V27e[ 27 (N + w)SiN 2a+ (N + w)t]—cog 2a+ (N + w)t]} — [ 274(\ + w)sin 2a— cOS 2x])

+AAP e 27 27 (N — w)SiN(A — w)t— COg\ — w)t]+1} |, (A20)
and
gw) (3w)
]—‘§,7)(w,t)=()\AE(")— o ) T—(e—“zfc{sin[zw(7\—w)t]+2rc(>\—w)co§2a+(>\—w)t]}
C C

Al)
—[sin2a+271,(\— w)cos 2a])+ TL{e*"ZTc[sin()\ +w)t+27: (AN +w)cogN+ w)t]-27.(A+ )}

c

+AAL) (e V27e[ 27 (N — w)siN 2a+ (N — w)t]—cog 2a+ (N — w)t]} — [ 274(\ — w)sin 2a— cOS 2x])

+ANAP e Ve[ 27 (N + w)SIN(\ + w)t—COI N + w)t]+ 1} |. (A21)
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