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String ratchets: ac driven asymmetric kinks
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We simulated numerically the time evolution of a one-kink bearing, damped elastic string sitting on noise-
less periodic substrates of two typéb: asymmetric, time independerit|) symmetric, periodically deform-
able. An asymmetric kink subjected to an ac drive is shown to drift steadily with finite average speed inde-
pendent of its initial kinetic conditions. In the overdamped regime the resulting net kink transport can be
attributed to the rectification of the Brownian motion of a pointlike particle with oscillating mass. For inter-
mediate to low damping completely different features show up, due to the finite size of the objects being
transported; in particular, the kink current hits a maximum for an optimal value of the damping constant,
resonates at the kink internal-mode frequency and, finally, reverses sign within a certain range of the drive

parameters.
DOI: 10.1103/PhysReVE.65.051103 PACS nunier05.60.Cd, 05.50:q, 11.27+d
[. INTRODUCTION that an isolatedrictionlesskink may travel in either direc-

tion depending on the tilt parameters and, most importantly,

A transport mechanism of potential relevance both to apen its initial conditions(momentum modulus and phase
plied physics and nanobiology is the so-called ratchet effecBuch an effect follows from the spontaneosgmmetry
[1]. In its simplest instance a ratchet device can be assimibreakinginduced by the external tilt; indeed, on averaging
lated to a Brownian particle with coordinatét) moving in ~ over all initial conditions the kink current vanishes, as one
an asymmetric periodic potentiaV/(x), with V(x+a) would expect on the ground of simple symmetry arguments.
=V(x), subjected to viscous damping and ac drixecked ~ Furthermore, adding damping, no matter how small, makes
ratchet[2]): The natural direction and the intensity of the this effect vanish completely.

: N . As stated in the earlier ratchet literatudg, the onset of a
ratchet curren{x) results from a rather intricate interplay of | . . g
S . X i ink ratchet current requires a sufficient amount of asymme-
particle inertia, spatial asymmetry, and time correlation o

he forci including fl . h A try in the system. In this paper we address two classes of
the forcing terms(including fluctuations when presgn agsymmetric kink dynamicgi) Ratchet Potential (RPV[ ¢]

similar .me.chamsm 1S expegted to operatg also when |n§tee} intrinsically asymmetric and time independent; the kink is
of a pc_)|ntl|ke_ Browma_n par_tlcle one considers a ﬂUCt”at'ngasymmetric also in the absence of a (ilnperturbed kink
(one-dimensionalelastic stringp(x,t) [3] and replaces, ac- qye to the asymmetry of the barrier separating any two ad-
cordingly, V(x) with a periodic substrate potentid[¢],  jacent potential valleys(ll) Deformable Potentials (DP)
such thatv[ ¢ +a]=V[¢]. The kinks and antikinks born by /[ 4] is symmetric at all times; its shape is modulated so that
the string as it connects adjacent substrate valleys tend §gs valleys broaden and shrirfith constant heightperiodi-
glide apart, so that the string center of mass advances effegally in time [6]; the tilt is phase locked to the substrate
tively in the natural ratchet directigt]. In rocked ratchets modulation, thus providing for an effective cycle asymmetry.
noise is required either to aid the escape of the Browniaio avoid further complications, we assume that the strings of
particles over the potential barriers or to nucleate kink-both classes bear one species of kink, only; this implies that
antikink pairs along the string, directed parallel to the sub-all V[ ¢] valleys are degenerate and have the same curvature.
strate valleys. In both cases a sufficiently large drive ampliEntropic rectification effects like those described in Refs.
tude can activate a net ratchet current even in the absence [of,8] are thus ruled out.
fluctuations. The main conclusion of our study is that strings of classes
In the present paper we address the ratchet dynamics of dnand 1l possess sufficient asymmetric coupling to the ac
elastic string diffusing on a periodically tilted substrate. Indrive to sustain steady kink transport even in the presence of
order to catch the essence of the mechanism at work wenite damping. The rather complicated dependence of the
ignore the spatiotemporal fluctuations responsible for thé&ink ratchet current on the damping constant and the tilt
thermalization of unperturbed striig]; instead, we impose parameters makes a detailed analysis of the system at hand
that the string always bears at least one kink, that isvorthy our extensive numerical simulation effort reported on
¢(,t) — p(—,t)=a. The initial problem is thus reduced here. Our presentation is organized as follows. In Sec. Il we
to the question as how each individudmpedkink (anti-  introduce an example for each class of asymmetric strings
kink) responds to an external periodic drive. In the case of &P and DP; we then estimate the effect of a small periodic
symmetric substrate [ —¢]=V[¢], like in the sine- tilt on the relevant kink dynamics in the adiabatic limit, thus
Gordon theory and a sinusoidal tilt, it has been noticgsl  explaining why we expect a finite kink current. In Sec. Ill we
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present the outcome of our simulation work and focus on the

kink current dependence on the damping constant and the tilt - .
frequency; intriguing effects like non-Smoluchowski over- Vi¢]
damped laws, optimal ratchet damping and parametric reso- i |

nant current inversions are thus revealed. Finally, in Sec. IV A N R R B R
we outline a summary of the results and conclusions, as well -
as an outlook of potential extensions of this work. L _
DP /2

IIl. ASYMMETRIC SUBSTRATES

A damped elastic stringp(x,t) moving on a periodic sub- Vigl | 0 i
strate is described by the classical field equaf@nll]

bu— Coduxt woV' [d]=— ad+F(1). (1) i 1
i -2 1
Here,cy andwg are the parameters of the unperturbed string
equation; the potentiaV[ ¢] is periodic in ¢, i.e., V[ ¢ PR [ S . [ E—
+a]=V[¢], and its amplitude was set to one following an
appropriate choice obg; the potential minimgvalleys are ¢

located ar¢=0(mpda) and separated py barriers centered at FIG. 1. Substratea) RP of Eq.(4); (b) DP of Eq.(7) in the

$= po(mod a) with 0<$o=<a depending on the degree of ,jconce of tiltFo=0. In the snapshots db) the deformation pa-

asymmetry of the substrate; denotes the string damping rameters(t), Eq.(11), has constant amplitudg=0.5 and decreas-

constant and the periodic tif(t) is taken sinusoidal, i.e., ing phase, corresponding t=0.5,0-0.5, respectively. Note that

F(t) =Fosin(Qt), for simplicity. the natural ratchet direction of the double-sine potential plotted in
The unperturbed stringF(t)=0,=0] bears both ex- (a) is positive(see text

tended(phonon$ and localized solutiongsolitong [9-11].

Localized solutions can be conveniently approximated to lin- A. Ratchet potentials
ear superpositions of moving kinks'” and antikinks¢(®, The RP model used in our simulations is the benchmark
potential of the current literature on rocked ratchtst],
2\ 1/2 (0) dd’
u Co [sPx—x(t)) namely,
Xx=Xt)=x(1-—=| —| ~ —_—, (2
Co/ @oldo V2V[ ¢]

+ K
Zsm

|27 — 4 —
V[¢]=k3|r{?(¢—¢) ?(45—45)}, 4

provided that the separation between their centers of mass

X(t)=Xp+ut(Xe,+ andu are integration constantss very ) 4 12 —

large compared with their sizecy/wn;, with w2, ~ With k="=(3+ V3)(V3/2)%a/8m  and  ¢=(al2m)

=w2V"[0] (dilute gas approximationAs anticipated in ggc X cos (—1+/3)/2]. Substrate4) can be regarded as the
0 " most straightforward variation of the sine-Gordd8G)

| we ignore the kink-antikink pair nucleation mechanism,th that all f tial anisot Such
where thermal fluctuations would play a central ri@¢& and eory that allows Tor spatial anisotropy. such an occurrence
has been considered, for instance, in the context of disloca-

focus on the response of a single preexistiggometrical . . . )
kink d)‘f) subjected to the perturbation on the right-hand sid t'fz 1t%eory[4,13] and long Josephson junction array design

of Eq. (1), i.e., in the absence of noise. Note that the ratche In Fig. 1(a) and throughout the present paper we aet

(0) ; i i 0). -
current 0f¢_. is necessarily opposite to that ¢f+ ; more —27. The asymmetry of the substra@) is apparent as the
over, the string center of mass advances by one full step _ i . —
potential barriers are located a@h(mod 27) with ¢g=2¢

the right as a kink travels all the way frodd=« to X= ; ) . 10)
and 0< ¢y<<r. The resulting unperturbed kink solutuz;isf+

—oo (or vice versa for an antikink ¢ |
A static (U=0) perturbed kinkg . (x,t) can be regarded 'S stable under small perturbations due to the degeneracy of
' the V[ ¢] minima; its masdM is a constant inverse propor-

as an extended quasiparti¢l?] of radiuscy/ i, and mass " _ X
tional to the kink sizecy/ wpmp -

x ) In the presence of the tiE(t), the minima of the effec-
M(t)=f [ (x,1)]5dx (3)  tive potentialw3V[ ¢]—F(t)¢ shift back and forth around
o their unperturbed position(thod 277); as a consequence, the

(throughout the present papkt . . ], denotes a spatial de- curva.\ture of the ti'lted valley®?, (t) ggcillates iq time w.ith

rivative; here the dependence accounts for the kink shape2Mplitude proportional t6,. An explicit calculation carried

modulation. The time dependence df(t) is induced by the outin thg adiabatic limif)— 0 and for small tilt amplitudes

periodic tilt F (t); however, it takes an intrinsic asymmetry or Fo<<@o Yields

a tilt-dependent deformation of the substra@é/w] for the 1\ F

kink mass modulation to cause a rectification of the kink 1+(1_T) _2°k+ . ] (5)
3/ ®wo

2 2
whin(t) = o
dynamics as shown in the following section. min(t) = @nin
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with  w?,,=wik(3\/3/2)Y2  Accordingly, being M(t)
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Accordingly, forsg<<1 the kink massvl (t) =M (s(t)) oscil-

= wmin(t), One sets the maximum amplitude of the kink masdates around its unperturbed vali, with maximal ampli-

oscillation to

M 1 Yog,

My 4

wg'

(6)

Nz

tude 5M/M0: 280/3.

Of course thes-F phase may be changed thus altering the
kink ratchet current in a predictable fashigsee, for in-
stance, Sec. lll C, bottomsome of the simulation results
reported in Sec. Il for our DP model may depend indeed on

[Notice that for a regular SG potential the time modulationthe choice(11), whereas the underlying physical interpreta-

of wﬁqin(t) would be quadratic ifF(t).] Our derivation of Eq.

tion does not. More importantly, one should notice that a

(6) clearly hints at a coupling mechanism between kink centime-dependent DP model may have practical applications,

ter of mass and kink internal mode, as invoked in R&%].

B. Deformable potentials

for instance, in dislocation theory. Equatiéb) is known to
describe the motion of a noiseless linear defectdisloca-
tion) ¢ gliding on a Peierls-Nabarro substratéV[qS] under
the action of an external uniform periodic stress fiElgt)

The class of the soliton-bearing DP strings was introduceg 3] if one assumes that the applied stress can perturb peri-
by Peyrard and Remoissen(@] as an improved model of ' qgjically the lattice substrate, too, then compressions and di-
real one-dimensional atomic chains where typical potentiajaiations are likely to affect the curvature of the Peierls-
wells and barriers have different curvature, as opposed to thQaparro barriers differently, as suggested in R&F.

oversimplified Frenkel-Kontorovdor discrete SG model
[11], which is invariant under “inversion,” i.e.\[ ¢+ a/2]
V[ ¢]. Following Ref.[6] with minor notation changes,
we define[Fig. 1(b)]:

1

201 _
V[¢;S]=§ (1+5s)°(1—cose)

(1—s)2+2s(1—cos¢)

1y, (@)

with |s|<1 and string constarg= 2. The curvature of the
substrate valleys and barriers are, respectively,

2 2
” wo 1+S
a)zmm(S)Iw(z)V [0]: 7 E

(8)

and w?,(9)=wj|V" [7]|=w?,(—9). Note that the DR7) co-
incides with a SG potential fos=0 and is¢— — ¢ sym-
metric for any allowed value of.

The mass of the DP kink . (x;s) has been derived in the
original paperg6]; in our notation

M(s)  u(s) (tanhlx/,u(s)z—l|, s<0, ©
Mo _\/|M(5)2_1| tan 'V|u(s)?-1], s=0,

where w(S)= 0min(9/®min, Omin=omin(0) and My is the
mass of the SG kinkp'O(x)=¢. (x;0), i.e., My=M(0)
=8wmin/Cy. ONn assuming thats| <1 the cumbersome ex-
pression(9) can be approximated to

1+2 +
§S e

M(s):MO( . (10)

In our simulations—we depart here from the modelization of

Ref. [6]—it was assumed that the deformation paramster
oscillates in times— s(t), with amplitudes,<1 and angular
frequency(). Moreover, the relative phase of the potential
modulations(t) and the external tilE(t) was set arbitrarily
in such a way that, whe¥([ ¢;t]=V[ ¢;s(t)] is tilted to the
right [ F(t)>0], its valleys(barriers get narrower(broadey
and vive versa, namely,
s(t)=sp sin(Qt),

F(t)=F,sin(Qt). (11)

C. Kink ratcheting

We are now in the position to argue why we expect a
nonvanishing kink ratchet current for both potentigdsand
(7). A simple perturbation approa¢h?2,16 valid in theadia-
batic limit 1 —0, only, leads to state that a single kifdén-
tikink) moving along the elastic stringd) obeys the noiseless
Langevin equatioriLE)

p=—apFaF(t), (12
wherea=21, p=M(t)cy//1— (u/cy)? denotes the kinetic
momentum of the kink and=X is the velocity of its center
of mass. ForFy<wy and a>wg the modulus ofu(t) is
much smaller tharc, and, therefore, the LE12) can be
rewritten in nonrelativistic formp=M (t)u and

M(t)X=—aM(t)XTaF(t). (13
It follows immediately that kinks and antikinks are pulled
apart with stationary speed(t)=+aF(t)/aM(t); in par-
ticular, when the substrate is tilted to the righ(t) >0, the
kinks move to the left with negative velocity and vice versa.

In the same parameter regimey<wg, a>wqy, and
—0, the masdvi(t) of both the RP and DP kinks oscillates
with time according to Eqgs(5),(6), and (10),(11), respec-
tively: A kink with a negative velocity, i.e., foF(t)>0, is
more massive, or slower, than a kink with positive velocity,
i.e., for F(t)<0; hence,

aFg
ZaMé

— 1 (Ta
u=<u(t)>=ﬂj0 u(t)dt= oM, (14

with To=27/Q and 5M/M0:0.23(F0/w§) for the RP(4)
and SM/M y=0.67s, for the DP(7). In Fig. 2a) we display
the average ratchet velocfyFo for a kink of either class: as
predicted in Eq(14),UocF€ with =1 (DP) andB=2 (RP).

We make now an important remark. As mentioned earlier

in this section, by pulling the kinks to the righ(t) —oe,
and the antikinks to the lefX(t) — — oo, the string center of
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L - L =0 and ¢y =27 to accommodate one kink and long enough
for the moving kink not to experience boundary for¢@8s
Details of the integration code employed in our numerical
study are reported in Refgl6,17. Here we limit ourselves

to noticing that, due to the presence of the viscous damping

term —ad,, the kink ratchet velocityy does not depend
appreciably on its initial conditions. This might be an issue at
extremely smalle values, where the string dynamics is ex-
pected to turn chaotic. In such a limit, however, the string
configuration would be no longer separable into a linear su-
perposition of stable kinks and antikinks and the present ap-
proach would become untenalilee Sec. Il B.

._.
o
I
©
Ty
o

A. The overdamped regime

The numerical results of Fig(B) already show that in the

limit «— o the kink ratchet velocitys decays likea ™ (1728)
with =1 (DP) and 8=2 (RP), as opposed to the standard
Smoluchowski lawB=0 applicable to stationary dynamics.

A gqualitative explanation of such an asymptotic behavior
lies beyond the reach of the adiabatic lifiit—~0 adopted so
far. For small amplitude modulations the kink madgt)
oscillations are expected to conform to the linear response
theory, i.e.,

o7
Q

FIG. 2. Kink ratchet velocityu in the overdamped regiméa)
dependence on the tilt amplitud®, at «=50; (b) dependence on
the damping constant at Fy=0.5. Other simulation parameters:
Co=50 andQ=8x10"3. The asymptotic lawgdashed lineshave
been drawn for the reader’s convenience.

mass drifts with negative average velociy(¢))<O0,
{(---)) denoting the double average &{x,t) with respect M(t)=Mg+ SM(Q)siM Qt—o(Q)], a7
to time and space. A negative string current is to be expected

for the RP of Fig. 1a): On replacings with x in Eq. (4) one  whereg(Q1—0)=0+ is a phase lag and

obtains the standard double-sine potential of R&f. which

in the overdamped regime corresponds to a rocked ratchet oM ()
with negative natural direction. The case of the DP in Fig. SM(0)
1(b) is more intriguing. A particle with coordinatemoving

along the periodic potentia¥(x;s), obtained by settingh  with r=a/w?,, andéM (0)=6M given in Eq.(6) for the RP
—X in Eq. (7), and subject to the modulation of E€L1),  kink and in Eq.(11) for the DP kink.

B
: (18

1
1+(Q7)?

would obey the equation of motion The result of Eq(18) was derived through the following
. : ) perturbation argumen®,18]. Let 5¢(x,t)=O(F,) quantify
x=—ax=V'(x;s)+(sl[s|)Fo. (19 the amount of deformation the static kigh®)(x) underwent

because of the perturbatidf(t), i.e., ¢ (x,t)= O (x,t)
+ 8¢(x,t). On employing definition(3) the perturbed kink
mass reads

As V(x; —s)=—V(x—m;s), one can easily prove that in the
stationary regimex(t;s):=—x(t;—s) (i.e., x(t;s) and
—X(t; —s) obey the same equation of motjoifior any con-
stant value of, and theref(le, after averaging over an entire -
deformation cycle ofs(t), u=(x(s(t)))=0. Note that this M(t)=M0+2f [P ()1 S(x,t)1xdX
property of Eq.(15) depends crucially on the choi¢&l) of o

the s—F phase. The observed net string ratchet current o 5

{(¢))#0 should remind us that in our DP model asymmetry + fﬁm[&ﬁ(x,t)]xdx. (19)
comes into play only because of the finite extension of the

ratchetet objects, namely, the kinks and antikinks born by thg-,o O[ 54] term on the rhs of Eq(19) is of the same order

string. as the potential deformation factor @¢/co)?f (V[ ¢'¥]
—V[ ¢, ])dx. Recalling that for thenondeformableRP (4)
Il NUMERICAL ANALYSIS this quantity is (’)(F(Z)) [18], we conclude thatsM

We simulated17] a one-kinkbearing chain X—iAx) =0(|66|%).

In order to estimate the magnitude &b one can replace
bi— oA+ V' [ di]= F—agpi+ (1), (16) ¢ in Eq. (1) with ¢Y+ 5¢ and then solve the ensuing pho-
non equation 9]
with i=1,2,... N, where Ax=1, A,p;=¢i 1t di_1
—2¢,, andV[ ¢] denotes either on-site potentid) or (7). S— Co8hyy=— waV"[ $O(x)]6¢— adeh+ F(1).
The chain{¢;} is free-end (o= ¢1,Pn+1= Pn) With @ (20
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o ﬁ -4 -_ _-
FIG. 3. Kink ratchet velocity vs « (logarithmic scalgon the 64 ]
DP substraté?) for different values of the ac frequen€y. Dashed el el vl ueal
curve: adiabatic approximatiof21) with M(t) given by Eq.(10) 10° 10” 107 10 10° 10
with s(t) of Eq. (11). Other simulation parametersy=0.5, cg o

=50, andF,=0.3. . . — .
FIG. 4. Kink ratchet velocityu vs « (linear scalg¢ on the RP

ubstratd4) for different values of the ac frequen€y. Other simu-

The kink deformations that contribute the most to the actuaf".
ation parametersc,=50 andF;=0.3.

value of M(t) are the so-called kink internal moe[15],
whose characteristic frequency is typically closewtg,. In
the overdamped limitd¢;=0, and forQQ<w,, one imme-
diately recovers the linear response formula
|66(Q)|/|64(0)|~[1+(Q7)?] * and, eventually, Eq(18)

for SM(Q). ate valuea of the damping constant.

Finally, inserting Eq.(18) into the velocity expression (i) TheT(a) plateau The quadratic branch Q_f(a) pre-
(14) [with M — 6M(Q)] leads to the asymptotic power law dicted by Eq.(21) is actually observable only at fairly small
ucca~ (128 that fits the simulation data of Fig(t® for «  values of the tilt frequency; instead, the curves of Figs. 3
>w3/Q (or Qr>1). and 4 approach a plateau ass decreased below a charac-
teristic value of the order of}.

The explanation of this property touches upon the mecha-
) ) ) nism of phonon dampindg19,20Q, viz. the interplay of dis-

Our analysis of the kink ratchet velocity dependence Onyateness and relativistic effects. At extremely lawalues,
the damping constant is summarized in Fig. 3 for a DP subg,q yink responds to an external tilt by raising the modulus of
strate and in Fig. 4 for a RP substrate, respectively. Curves q{s speed up close ta,; as a result its effective size, see Eq.
u a have been drawn at increasing values of the tilt fre-2), contracts until it becomes of the order of the discretiza-
quency in order to highlight a few important properties of tion constantAx introduced in Eq(16), no matter how large
kink ratchets: - the static kink size co/wp,. At this point the kink starts

(i) The Ut) peak The curvesu(«) peak for an optimal radiating phonons, thus dissipating the excess kinetic energy
valuea of the damping constant. At variance with Rgf5]), ~ being pumped into it by the external forcing term; as a con-
we relate this effect to the relativistic nature of the kink Sequence, the kink speed levels off, growing insensitive to
dynamics, as on lowering the nonrelativistic approxima- any further decrease of; this means that fon—0 the
tion p=M (t)u is no longer tenable. In the parameter regimeeffective dampinga,,, acting on the moving kink is caused
Fo<wo and Q—0, but with no restrictions om, LE (12) ~ Mostly by phonon radiation, that is,n> a [17]. As phonon

yields immediately the relativistic version of E(.4), radiation is essentially a resonant process taking place at the
bottom of the substrate valleys, we expect the underdamped

> limit of the phononless law21) to fail us fora< [17], in

underdamped regim_a<wmm, the kink veIocityU grows
quadratically witha, u(a)/cy=a?sM(cq/aMyFo)?; hence,
the appearance of a peak in théx) curve at an intermedi-

B. Damping constant dependence

(21)  agreement with our numerics.
One might wonder why in Figs. 3 and 4 théa) plateaus

plotted in Fig. 3 for the reader’s convenience. In the overincrease with. In the limit «—0, the effective kink damp-
damped regimea> wi,, EQ. (21) tends to the Smolu- N9 constant boils down to the p_honon damping constant
chowski limit (14); as a matter of fact, we know from Sec. aph; accordingly, each plateau valug0) is expected to rest
Il A that this law only applies forwy,<a<w?;/Q, thatis  close to the corresponding ideal valu ), obtained from

as long as the adiabatic approximati@m<1 holds. In the Eqg. (21) by replacinga with a,, in the absence of phonon

u(a) aF(t)/aM(t)co
Co \ViI+[aF(O)/aM(t)col?
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radiation. Moreoverg,, increases witi) (stimulated pho-
non radiation and so does the relevant kink velocity plateau
u(0), aslong asa,p=a.

One might also argue that the propertiesu¢f) due to 1.0
discreteness are a mere numerical artifact, as we actuall
integrated Eq(1) instead of Eq(16) (namely, the dynamics 5
of a chain instead of a strind 6]). Although more sophisti-
cated simulation algorithms may be especially devised to
eliminate such a difficulty, most of the physical systems we
can model by means of an elastic string, are indeed discret
on the microscopic scalgl7], such as like dislocations in
crystals, magnetic flux lines through layered type Il super-
conducting films, etc. Therefore, the discreteness effects re ! . ! . ! . ! . ! . !
ported here have a physical interest of their own, beyond the
moot question of their numerical explanation. Q

(iii ) u(a) inversionsAt higher() values instability effects FIG. 5. Kink ratchet velocityy Q on the RP substratét) for
start plgying an important role. Ir? Fig. 3 for the DP SUbStratedifferent values of the damping constamt Note thatu has been
we notice that an abrupt dynamics change occurs Er@md rescaled by the relevant factar Inset: the extremely underdamped
=0.2: When on increasing the corresponding plateaif0) casea=10"2 in the adiabatic regime of smdll. Other simulation
attains the maximum of the ideE(aph) curve(21), allofa  parameterscy=50 andFy=0.3.
sudden the actuaT(a) peak shifts to highew values. The
same behavior was detected for the RP substrate|see

main resonance peak of Fig. 5. When accounting for higher
; ; : order corrections, Eq(19), one soon recognizes that the
Fig. 4@)]. In the case of a DP kink we could not incredse time-dependent kink profile sustaimg) harmonics of the

any further (over the entirea domain), as a fast kink- drive frequency(with amplitude decreasing with increasin
antikink nucleation phenomenon sets in, thus making us un- q P 9 9

able to monitor the time evolution of the tagged kink; in n); therefore, for sufficiently smakk values, the kink defor-

other words, kink and antikink become unstable, thus signalmat'°n5¢ (viz. the kink masgmay appear to resonate under

ing a route to the chaotic string dynamics. The RP kink isf[he parametric condition @~ w, [22]. In the limit of van-

more stable towards periodic tiltingsee Sec. Ill A and ishingly small ac frequencies the ratchet current turns posi-

therefore, we did manage to see what happens on increasiﬁ'é’e again as explained in |t¢|(1|1|) of.Sec. llI'B. .
Q: In the limit 0 U( ) drops fast but continuously to The argument above, while locating correctly the position
. a—0, o -

wards negative values, namely, a kink current inversion takegf the_resonance pea_ks 0{(2), fails to explain the current
— ) inversion corresponding to the onset of the parametric reso-
place whenx,,<a (not an unusual occurrence in the under-

, nance Z)~ wy,. This question would require a sophisticated
damped particle rocked ratchefts,2,21)). The Q1 depen-  errhation analysi§23] capable of reaching beyond the

dence ofu(a=0) in the adiabatic regime is shown in the |eading order approximation adopted throughout the present
inset of Fig. 5. work. On the other hand, current inversions in particle
rocked ratchet at low damping and/or high frequency
C. Frequency dependence [1,2,2] have never been related to a resonant dynamics.

The dependence of the kink ratchet velocityon the
modulation frequency) is also interesting. In Fig. 5 we

display three curveE(Q) for the RP kink in the low damp- In the present work we addressed the problem of ac

ing regime. Thex values were chosen in order to explore thed . A )
- ) ) riven asymmetric kinks. The kink ratchet current has been

() dependence of the(a) peak of Fig. 4a). All curves in  ghown to exhibit nontrivial dependence on both the string
Fig. 5 exhibit a main(positive resonance peak &=w,  gamping constant and the drive frequency. More importantly,
with w,=0.8wp,,; the peak height increases with decreasingye have analyzed two classes of asymmetric kiksThe
a. At the lowesta value, a secondarinegative peak shows  Rp kinks, whose asymmetry is built-in due to the anisotropy
up at half the fundamental resonance frequency, i.e.{¥or of the substrate. In such a case the kink shapel masks
~ wp/2. The onset of such a negative peak is clearly relategets modulated in second order and, consequently, the rel-
to theu inversion shown in Fig. @). evant kink ratchet velocity decays like > in the over-

The fundamental frequency,, lends itself to a simple damped regime. The existence of a ratchet mechanism for
interpretation in terms of the perturbation Eg0). By means this class of kinks is largely expected in view of the rocked
of standard numerical integraticisee also Ref[15]), one ratchet theory for pointlike Brownian particled|) The DP
can prove that the RP kink admits of one internal m¢ale  kinks, supported by a deformable symmetric substrate,
bound statewhose eigenfrequency coincides right wibl . whose valleys and barriers change continuously in time; sub-
In the presence of the periodic kink mass modulatib(t), strate modulation and external tilt are arbitrarily phase
Eq. (17), such an internal mode gets easily excited, hence thiocked. The ensuing kink mass modulation is of the first

IV. CONCLUSIONS
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order in the substrate perturbation, as proved by theeconstruct posteriorithe corresponding time evolution of
asymptotica 2 decay of the corresponding kink ratchet ve- the entire string. Noise, however, is capable of influencing
locity. The ratchet mechanism for a string on a symmetric DAhe diffusion of a single kink, as well, a possibility ignored

substrate has no counterpart in the theory of particle ratchet?.
As stated in the Introduction, we neglected the presence ..
of noise sources, otherwise required for the string to thermalg,

[together in the present study. It is believed, though, that at
ow temperaturesi.e., in the presence of low intensity fluc-
on sources the ratchet efficiency is only marginally af-
ed by noise. The diffusion of an ac driven asymmetric

ize. The role of thermal fluctuations as the trigger of kink-yink in equilibrium at finite temperature and, eventually, the

antikink nucleation has been mimicked by simulatingree-

ab initio simulation of athermalizedstring diffusing on a

kink bearing string. In our strategy a full understanding of therocked asymmetric substrate are certainly topics that deserve
dynamics of an individual ac driven kink ought to allow us to more accurate investigation.
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