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Stochastic modeling of daily temperature fluctuations
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Classical spectral, Hurst, and detrended fluctuation analysis have been revealed asymptotic power-law cor-
relations for daily average temperature data. For short-time intervals, however, strong correlations characterize
the dynamics that permits a satisfactory description of temperature changes as a low order linear autoregressive
procesgdominating the texts on climate researdHere we propose a unifying stochastic model reproducing
correlations for all time scales. The concept is an extension of a first-order autoregressive model with power-
law correlated noise. The inclusion of a nonlinear “atmospheric response function” conveys the observed skew
for the amplitude distribution of temperature fluctuations. While stochastic models cannot help to understand
the physics behind atmospheric processes, they are capable to extract useful features promoting to benchmark
physical models, an example is shown. Possible applications for other systems of strong short-range and
asymptotic power-law correlations are discussed.
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I. INTRODUCTION II. DFA ANALYSIS AND MODELING

Here we exploit the method of detrended fluctuation

Climate research aims to identify and utilize persistentanalysis(DFA) [9] that has proven useful in revealing the
features of the atmosphere for predicting climatic anomaliesextent of long-range correlations in time series. Power-law
Any substantial anomaly in temperature or precipitation mayeorrelations are obtained for diverse systems such as cardiac
result from a relatively small number of significant weatherdynamics[10], DNA sequence§9,11], economic time series
events localized in space and time. That is why numerical12]; and meteorology{4,5,13,14. Recently, Talkner and
models for the coupled atmosphere-ocean system retain fifeber5], and Heneghan and McDarby5] pointed out that
temporal and spatial scales even if the goal is long-term glo-DFA_ and traditional power spectr@ee, e.g.[2]) pr(_)wd_e
bal prediction[1]. A better physical understanding gradually equivalent characterizations of _correlz_ated stochastic signals,
achieved by modeling requires a proper description for corapart .”0”? that DFA.can eﬁgctlvely f'lt.er.OUt slow trends.
relation properties of local variables, such as daily averag he situation for stationary signals is similar to the connec-

temperature. on a scale spannind from davs to decades. 1°" between power spectra and autocorrelation functions
b ' b 9 y " manifested by the Wiener-Khintchin theorem: the informa-

Yion mathematically is the same, but in many cases spectral

the fluctuations of high frequency meteorological data.jensity functions are more sensitive and better exploratory
Power density specti@] have been routinely computed for o5 for real datasee, e.g.[5,7)). From this point of view,

decades. PelletigB] determined the temperature spectra forracent empirical analyses on synthetic time series with dif-

hundreds of stations and ice core records, and identified diffarent correlation properties and background trends by

ferent power-law behavior for continental and maritime lo-Talkner and Webej5], Kantelhardtet al.[16], and Huet al.

cations. Koscielny-Bundet al.[4] observed a near universal [17] are very illuminating.

exponent value in the fluctuations of daily temperatures, |tis easy to summarize the methodology of DFA based on

however, Talkner and Webg5,6] found differences depend- the theoretical papeif,5,9,15—1T. We consider a fluctuat-

ing on the altitude of the meteorological station. In generaljng time seriex;,(i=1,... N) sampled at equidistant times

scaling can be identified asymptotically from the longestiAt. We assume that; are increments of a random walk

available records only, shorter-time correlations are almosprocess around the average)=N"'=N x;=0, thus the

fully explained by using first-or second-order linear autore-“trajectory” or “profile” of the signal is given by

gressive model§7]. Here we propose a unified description

reproducing the observed correlation properties both for j

short and long times. Y= X 1)
The data we use for illustration are historical records of =1

daily mean temperatures measured at 16 weather stations in

Hungary in the period from 1 January 1951 until 31 Decem-We divide the profile into nonoverlapping segments of equal

ber 1989. Amplitude distributions, power spectra, and autolength n indexed byk=1,...[N/n]. In each segment, the

correlation functions are analyzed earlier essentially for théocal trend is fitted by a polynomial of order f{P(y), and

same data set by dasi and Vattay8]. Note that clear scal- the profile is detrended by subtracting this local )

ing was observed only for shorter times with an exponent=yi—f(kp)(yi) A possible measure of fluctuations can be

characteristic for Markovian random walk processes. given by the root mean square
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Ju N NS N EFE FE E T S T ment with the analysis of Het al. [17]. This yearly trend
=l C can be removed with the seasonal variation function
] raw data @006 0000000P0 r
25— | » detrended data d°'° -
] - periodic trend o _ 2
E . T(d)=Ty+Acos z—=d+ ¢/, 4
2 ] . ( ) av 0{ 365 (P ( )
215 - — .
= ] C whereT(d) is the average mean temperature of a given cal-
o 13 e o endar dayd=1, . ..,365(leap days are omittedA and¢ are
< 3 R c amplitude and phase parameterg, is the long-time aver-
054 103 - age temperature. The temperature anomaly seki€s is
3 jwo E given by the difference between the actual temperature and
0 - the average temperature of that particular dayt;=T;
. Szombathely 1951-1989 F — .
05 (@ E —T(d). DFA1 analysis for the anomaly daftheavy squares
LA AU in Fig. 1(a)] reveals gradually decreasing level of correla-
0.5 1 1.5 2 2.5 3 3.5 . . n i )
log, (n) t|(_)ns, the asymptotic exponedt= 0._63i 0.02 is consistent
| | | | 1|° | | | | with other reported values for continental climéte-6,14.
i e —— Note that the overall mean-temperature variance is domi-
J[ = detrended data o nated by seasonal changes, as clearly indicated by the hori-
a5 | ffﬁlﬁt‘.n ,;x}"' - zontal plateau in Fig. (). The same level of variance
[ == correlated noise =l . for temperature anomalies could be extracted from a
2 . ~200-year-long time series, if scaling with the same expo-
z 1 C nent holds.
B 5] F Short-time correlations in meteorological records are usu-
=2 3 . .
O C ally explained by low order autoregressive process@s
- 1_3 - One can assume, e.g., that the dynamics obeys a first-order
] C ordinary linear differential equation
0.5 —: :— dx(t) .
] mF ar—g; Hax(H)=&(1), 5
0 I TTTT I TTTT I TTTT I TTTT I TTTT I TTTT I TTTT I TTTT I
05 1 15 2 25 3 35 4 45

where £(t) represents uncorrelated Gaussian noise of unit
variance, an@, anda, are constants. Standard time discreti-
zation yields a first-order autoregressidR1) process

log, ,(n)

FIG. 1. (a) DFA1L results for the raw mean-temperature data
(empty circle$, temperature anomaly seriesquarey and the har-
monic component Eq(4) (dotted ling. Characteristic slopes are
indicated. (b) DFA1 results for temperature anomaliésquares . B _ .
fitted AR1 series Eq(6) (crosses CARL1 process driven by power- with a,=a,/(a,+a;) and = U(ap+ay). An Important .
law correlated noise Eq13) (heavy ling, and pure power-law property of such a process is that the autocorrelation function

correlated noise with fitted amplitude distributictashed ling see ~ C(7)= (Xi+,X) decays as

X = a1Xj_1+ € (6)

text. .
Cari(7)=0ag, (7)
N7
= _ \/ n[zn] v(P)2 @) where stationarity condition warrantg <1. Fitting the pa-
p(M)= n[N/n] <1 (Yi™) rametersw, and e for an empirical data set is a trivial task,

all statistical software packages include this feafli@.

DFA1 test for a simulated time series with fitted AR1
parameters is shown in Fig(ld (crosses Numerical values
are «@,=0.805-0.010¢=2.1+0.19, the errors reflect
weather-station dependence. It is remarkable that the chang-
s ing DFA slope is explained by such a simple process, devia-

Fp(n)~n?, (3 tion is visible only for the largest window sizes The
asymptotic DFA slope for an AR1 process is 1/2 as the con-

Figure X&) shows the results of DFA1 analysis for a given sequence of uncorrelated noigeFor the sake of compari-
station. All the other series give very similar curves: Hun-son, we show the DFAL result for a pure power-law corre-
gary (in the middle of the Carpathian Bagioan be consid- lated (colored noise [dashed line in Fig. (b)] with an
ered as climatically uniform. We emphasize that higher ordeamplitude distribution fitted to the empirical data. Its auto-
DFA tests did not reveal any further structure in the timecorrelation function reads
series. The curve for raw dafampty circles in Fig. ()]
indicates a strong periodic background in complete agree- Cen(m)=72P"1 (8

for a given segment length. A power-law relationship be-
tween Fy(n) and n indicates scaling with an exponeat
(DFAp exponenk,
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wherep € (0,0.5). Power-law correlated data sets were gen- 1 L T T T
erated with the algorithm developed by Pang, Yu, and
Halpin-Healy[19]. We verified that the DFA1 exponerd
depends on the parameter of the autocorrelation function
Eq. (8) as expectedl4,5]

1
5cn:P+§- 9 © 0.1

It is clear from Fig. 1b) that a pure colored noise strongly

underestimates the varian¢eote again that the amplitudes

are fitted, but the asymptotic slope is well reproduced. i
One of the main findings of Het al. [17] is that DFA

results on signals with different correlation properties and 01 L v 0| 1 1 1

background trends can be fully explained by the assumption 0.05 0.1 0.2 03 0405

of variance superposition. Based on this observation, we pro- p

pose a simple extension of the AR1 process Byin order

to reproduce the observed correlation properties for tempera- FIG. 2. Fitted AR1 coefficient [see Eq.(12)] for power-law

ture time series. We assume that correlated series with different autocorrelation parameteee Eqg.

(8)]. Several realizations with different random seeds are evaluated.

The straight lingnot fitted obeysc=2p%2

Xj= a1+ e, (10

where the noise termy is power-law correlated according to
Eq. (8) with a Gaussian amplitude distributiof®(#)
=(1/J2m)exp(= 77/2). We expect for such a colored noise
driven autoregressiv€CAR1) process that correlations for
short times are determined by the autoregressive part accor
ing to Eq.(7), but for long times the correlation properties of
the noisen will dominate. Indeed, the result shown in Fig.
1(b) (heavy ling is rather convincing, DFA slopes for the
observed data are reproduced for all window sizes. IIl. ATMOSPHERIC RESPONSE FUNCTION
We emphasize here that the noise teynmn Eq. (10) has
a “true” power-law autocorrelation upto the sample size.
This approach is different from the traditional modeling of
colored noise by means of an autoregressive moving avera
process given by

dure are the following(i) extract AR1 parameters; ande
from the temperature recordij) measure asymptotic DFA
slope; (iii ) construct power-law correlated noise series with
Hw_e desired DFA slope(iv) measure apparent AR1 coeffi-
cientc for the noise;(v) produce a data set by E(L3). The
result is shown in Fig. (b) with heavy line.

Further details can be revealed by direct statistical tests of
the basic assumptions. In Fig. 3 we plotted the average tem-
[ferature stedT;.,—T;) and its standard deviatioor as a

finction of temperature anomalyT; (recall that this is the
" N measure of deviation from the long-term average tempera-
ture for the particular calendar dayApparently this function
X”:Z’l aixnfi+26 €ién-i 11 represents a negative feedback: the larger the anomaly, the
more probable is a step backward on the next day. It is re-
where long-memory effects can be modeled, but correlationgiarkable that this “atmospheric response function” is
have always finite range for any finité andM [2]. strongly asymmetri¢positive excursions are hindered stron-

The fitting procedure of Eq10) for empirical data needs gen and strictly nonlinear. The best empirical representations
some remarks. First of all, it is obvious that a power-lawwe found are a fifth-order polynomial fqfT;.;—T;) with
correlated noise;= 7; cannot be represented as an autorecoefficients  b;=-0.1898, b,=-0.0021413, by
gressive process of any order. Nevertheless, standag AR=0.000314 8, b,=—3.200%2—-05, and bs=—-4.380%
fitting algorithms detect linear correlations for such data, too— 06, and a quadratic functioor(AT)=2.049-0.005&T

Figure 2 shows the results fpr=1, i.e., the relationship +0.0094(AT)% By means of this response function the pro-
m=Cm_ 1+ & (12) cess Eq(13) can be refined as
I I— |

is tested. For small and largevalues[see Eq/(8)] the vari- AT, 1=[f(AT)) —CJAT,;+ (AT 7, (14)
ance is very larggdifferent realizations can be produced

from different random seefishowever, the empirical trend where the functional form&(AT;) ando(AT;) are obtained
allows an estimate for the apparent AR1 coefficient of col-from the fits shown in Fig. 3. Note that a linear approxima-

ored noise. Variance superposition assumption yields tion around the originf(AT;)=—(1—«;) and a constant
o(AT,;)=€ give back the linear process Ed.3).
Xi=(a;—C)Xi_1+€n;, (13 The first-order nonlinear autoregressive process with cor-

related noiséNLCAR1) given by Eq.(14) results in a DFA1
wherea, andc are the fitted AR1 coefficients for the mea- curve indistinguishable from that of E@13). However, it
sured time series and for the computer generated noise sigescribes much better the empirical probability distribution
nal, respectively. Summarizing, the steps of the fitting procefor temperature fluctuations, as shown in Fig. 4.
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1] - FIG. 5. Autocorrelation function for measured data at station
i : [ Bekescsaba, for AR1 fitted series E(p), and fitted by Eq(14).
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e | (. 0 5 10 data.
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FIG. 3. The components of the empirical “atmospheric responsé“on functions is more pronounceig. 5). The measured

function” f(AT) for the 16 weather stations in Hungary: the aver- autocorrelation for the AR1 process can be perfectly fitted by
age temperature stéfy, ., — T;)=f(AT,)AT, (top) and its standard Eq. (7), t.h.e NLCAR1 model _reproduces.the slow decay for
deviation o (bottom as a function of temperature anomalyr,. e empirical data up to a time lag of five montfisrther
Cubic (thin line) and fifth-order polynomiaithick line) fits for the ~ COmMparison is not possible because of the noise level of real
temperature steps, as well as a quadratic fitf@are indicatedsee data.
text).
IV. DISCUSSION

We evaluated both basic representatioAR1 and NL- ) ]
CAR1) by means of the more traditional power spectral and At first we discuss shortly the relevance of a more accu-
autocorrelation methods. The difference between powef@t€ model representation for data of asymptotic power-law
spectra(not shown hergare not very large, they reproduce correlations. As for daily temperature fluctuations, the sim-
the gradually increasingnegative slope of the empirical Pleést AR process performs rather well by reproducing
data. However, the spectrum of an AR1 process flattens olRFAL curve[Fig. 1(b)], power spectrum, and even autocor-
for small frequencies by rule, while the nonlinear process.relat'On for a few daygFig. 5. Nevertheless it is obvious
with power-law correlated noise E¢L4) approximates this that many important problems, related, e.g., to climatic

range much better. The difference between the autocorrel&h@nges, involve much longer time scales than a couple of
days or months. In an otimal case, computed data can be

compared directly with observations. Govindahal. [14]

L1 11 I | I | I L1 11 I 1111 I | | I L1 11 I Ll 11
2 1 o memsmred| C illustrated that four state-of-the-art coupled atmosphere-
o | Eﬁ}u C ocean models used_to estimat_e future Warming failed _to re-
] C produce the correlation properties of two long time series of
4 C monthly mean temperatures, even for the time interval cov-
] E ered by observations.
g -5 - An improved representation of fluctuating signals can
§ : - help to extract features that are directly not available from
E -6 - records of limited lengths. As an example, we computed the
] C so called run-length distributiofi7] for the empirical and
1] - model data. The run-length distribution gives the probability
] u P(L) for a sequence of temperature anomalies of the same
'8_: :_ sign with lengthL, i.e., the statistics of zero crossind@e-
o1 .°.°. SN (S S W r tween tvvo.zero.—crossing events lotime units the.tempera—
20 .15 -10 5 0 5 10 15 ture remains either above or below the long-time average

value) The result is plotted in Fig. 6. If we consider daily
temperature anomalies, there is no difference between the
FIG. 4. Probability distribution of temperature fluctuations mea-AR1 and NLCAR1 model$Fig. 6@a)], since short-time cor-
sured for the 16 statior(gircles), fitted by a CAR1 process E¢L3)  relations are dominated by the autoregressive part of the pro-
(thin line), and by NLCARL1 Eq(14) (thick line). cess. Clear difference appears on a longer time scale. Figure

AT [°C]
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10° W@u@mu@uuuuhuuu&g_ P A Lo v Lo v Loy -
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] C 1 ---- correlated noise | [
0 _ ] 1.43 — CARZfit -
E 1 —
C T | LI I T 1T I T TTT I LI
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L [day] log, ,(n)
10° = v b b b e | FIG. 7. Analysis of daily water level anomaliesh for the
e ra—y— E Danube: DFA1 curves for the empirical data, for the best AR2 fit,
1 % PRI ﬁﬁcd slear1| F for a pure power-law correlated noise and for the fitted CAR2 pro-
1 u, N cess Eq(15). Characteristic slopes are indicated.
-1 ",
10773 ., =
] "'B:;;... c next order approximatiofAR2) gave a satisfactory correla-
o ] ‘ne, C tion behavior up to an interval of 5—6 montlisee the
& 102 = R S L crosses in Fig. )/ Here the difference between the
3 [=] . E . ..
3 ‘e, 3 asymptotic slopes of the DFAL curves for the empirical data
] .. . c (squares in Fig. )7and for the AR2 model is more pro-
5] Bed e i nounced. A pure power-law procegswith p=0.32[see Eq.
1073 o0 » 3 (8)] reproduces the required asymtotic slope but fails for
: o) *.. E short times agaiidashed line in Fig. )7 An extension of the
TTTTTTTTT I TTTTTTTTT I TTrTTT ?I? T I TTT 7I?I?I‘r ARZ GaUSSIan mOdeI
0 > L [l;)ear] 15 20 Ahi=B1Ahi_1+ BoAhi o+ ym, (15)

FIG. 6. () Normalized probabilty densit (L) of run-lengthl. works quite well(solid line in Fig. 7, fitted numerical values

for daily average temperature anomalig®.The same as above for are f1=1.547,= —0.606, andy= 15.4. Since we use this
example merely to illustrate the applicability of the concept,
annual average temperatures. more details are not presented here.
Finally we note that the linear approximations Ed0)

6(b) shows the probability distribution for excursions in an- and Eq.(15) are the first steps in the modeling only. They
nual average temperaturésmpirical data are too short for reproduce linear correlations detected by DFA, Hurst, spec-
such a statistigs The NLCAR1 model process with power- tral or autocorrelation methods. The response function Fig. 3
law correlated noise indicates definitely higher probabilitiesclearly indicates that the system is strictly nonlinear, thus the
for long excursions of annual average temperature anomaeproduction of finer details, such as the strongly skewed
lies. amplitude distribution, requires the incorporation of nonlin-

This modeling procedure can be applied for any processarities shown by Eq(14).
obeying strong correlations for short times and asymptotic |n conclusion, our main result is a unified model explain-
scaling. A particularly well discussed example in the litera-ing the correlation properties from days to decades for daily
ture is related to hydrological recorfi20,21. Actually, the  mean temperatures. Autoregressive processes have a huge
first systematic study of asymptotic power-law correlations isnumber of variant§7], however, this is the first extension
given in the classical work by Hurst al. [22]. Modeling  involving power-law correlated noise, as far as we know. We
and prediction have very sophisticated tools in hydrologythink that the analysis of asymptotic correlations and atmo-
nevertheless low order autoregressive representations agpheric response functions for different climates can contrib-

common, at least as a starting poji@0]. ute to the debate on possible universality in temperature fluc-
We repeated our analysis for daily water lev€3d 776  tyations.

data points of the river Danube recorded at Nagymaros

(Hungary, for the ggneral dgscription of the data see Ref. ACKNOWLEDGMENTS
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