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Stochastic modeling of daily temperature fluctuations
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Classical spectral, Hurst, and detrended fluctuation analysis have been revealed asymptotic power-law cor-
relations for daily average temperature data. For short-time intervals, however, strong correlations characterize
the dynamics that permits a satisfactory description of temperature changes as a low order linear autoregressive
process~dominating the texts on climate research!. Here we propose a unifying stochastic model reproducing
correlations for all time scales. The concept is an extension of a first-order autoregressive model with power-
law correlated noise. The inclusion of a nonlinear ‘‘atmospheric response function’’ conveys the observed skew
for the amplitude distribution of temperature fluctuations. While stochastic models cannot help to understand
the physics behind atmospheric processes, they are capable to extract useful features promoting to benchmark
physical models, an example is shown. Possible applications for other systems of strong short-range and
asymptotic power-law correlations are discussed.
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I. INTRODUCTION

Climate research aims to identify and utilize persist
features of the atmosphere for predicting climatic anomal
Any substantial anomaly in temperature or precipitation m
result from a relatively small number of significant weath
events localized in space and time. That is why numer
models for the coupled atmosphere-ocean system retain
temporal and spatial scales even if the goal is long-term
bal prediction@1#. A better physical understanding gradua
achieved by modeling requires a proper description for c
relation properties of local variables, such as daily aver
temperature, on a scale spanning from days to decades

Various methods are used to characterize quantitativ
the fluctuations of high frequency meteorological da
Power density spectra@2# have been routinely computed fo
decades. Pelletier@3# determined the temperature spectra
hundreds of stations and ice core records, and identified
ferent power-law behavior for continental and maritime
cations. Koscielny-Bundeet al. @4# observed a near universa
exponent value in the fluctuations of daily temperatur
however, Talkner and Weber@5,6# found differences depend
ing on the altitude of the meteorological station. In gene
scaling can be identified asymptotically from the long
available records only, shorter-time correlations are alm
fully explained by using first-or second-order linear auto
gressive models@7#. Here we propose a unified descriptio
reproducing the observed correlation properties both
short and long times.

The data we use for illustration are historical records
daily mean temperatures measured at 16 weather statio
Hungary in the period from 1 January 1951 until 31 Dece
ber 1989. Amplitude distributions, power spectra, and au
correlation functions are analyzed earlier essentially for
same data set by Ja´nosi and Vattay@8#. Note that clear scal-
ing was observed only for shorter times with an expon
characteristic for Markovian random walk processes.
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II. DFA ANALYSIS AND MODELING

Here we exploit the method of detrended fluctuati
analysis~DFA! @9# that has proven useful in revealing th
extent of long-range correlations in time series. Power-l
correlations are obtained for diverse systems such as ca
dynamics@10#, DNA sequences@9,11#, economic time series
@12#, and meteorology@4,5,13,14#. Recently, Talkner and
Weber@5#, and Heneghan and McDarby@15# pointed out that
DFA and traditional power spectra~see, e.g.,@2#! provide
equivalent characterizations of correlated stochastic sign
apart from that DFA can effectively filter out slow trend
The situation for stationary signals is similar to the conn
tion between power spectra and autocorrelation functi
manifested by the Wiener-Khintchin theorem: the inform
tion mathematically is the same, but in many cases spec
density functions are more sensitive and better explora
tools for real data~see, e.g.,@5,7#!. From this point of view,
recent empirical analyses on synthetic time series with
ferent correlation properties and background trends
Talkner and Weber@5#, Kantelhardtet al. @16#, and Huet al.
@17# are very illuminating.

It is easy to summarize the methodology of DFA based
the theoretical papers@4,5,9,15–17#. We consider a fluctuat-
ing time seriesxi ,(i 51, . . . ,N) sampled at equidistant time
iDt. We assume thatxi are increments of a random wal
process around the average^x&5N21( i 51

N xi50, thus the
‘‘trajectory’’ or ‘‘profile’’ of the signal is given by

yj5(
i 51

j

xi . ~1!

We divide the profile into nonoverlapping segments of eq
length n indexed byk51, . . . ,@N/n#. In each segment, the
local trend is fitted by a polynomial of orderp fk

(p)(y), and
the profile is detrended by subtracting this local fit:Yi

(p)

5yi2 f k
(p)(yi) A possible measure of fluctuations can

given by the root mean square
©2002 The American Physical Society02-1
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Fp~n!5A 1

n@N/n# (
i 51

n[N/n]

~Yi
(p)!2 ~2!

for a given segment lengthn. A power-law relationship be-
tween Fp(n) and n indicates scaling with an exponentd
(DFAp exponent!,

Fp~n!;nd. ~3!

Figure 1~a! shows the results of DFA1 analysis for a give
station. All the other series give very similar curves: Hu
gary ~in the middle of the Carpathian Basin! can be consid-
ered as climatically uniform. We emphasize that higher or
DFA tests did not reveal any further structure in the tim
series. The curve for raw data@empty circles in Fig. 1~a!#
indicates a strong periodic background in complete ag

FIG. 1. ~a! DFA1 results for the raw mean-temperature da
~empty circles!, temperature anomaly series~squares!, and the har-
monic component Eq.~4! ~dotted line!. Characteristic slopes ar
indicated. ~b! DFA1 results for temperature anomalies~squares!,
fitted AR1 series Eq.~6! ~crosses!, CAR1 process driven by power
law correlated noise Eq.~13! ~heavy line!, and pure power-law
correlated noise with fitted amplitude distribution~dashed line!, see
text.
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ment with the analysis of Huet al. @17#. This yearly trend
can be removed with the seasonal variation function

T̄~d!5Tav1A cosS 2p

365
d1w D , ~4!

whereT̄(d) is the average mean temperature of a given c
endar dayd51, . . .,365~leap days are omitted!, A andw are
amplitude and phase parameters,Tav is the long-time aver-
age temperature. The temperature anomaly seriesDTi is
given by the difference between the actual temperature
the average temperature of that particular day:DTi5Ti

2T̄(d). DFA1 analysis for the anomaly data@heavy squares
in Fig. 1~a!# reveals gradually decreasing level of corre
tions, the asymptotic exponentd50.6360.02 is consistent
with other reported values for continental climate@4–6,14#.
Note that the overall mean-temperature variance is do
nated by seasonal changes, as clearly indicated by the
zontal plateau in Fig. 1~a!. The same level of variance
for temperature anomalies could be extracted from
;200-year-long time series, if scaling with the same exp
nent holds.

Short-time correlations in meteorological records are u
ally explained by low order autoregressive processes@7#.
One can assume, e.g., that the dynamics obeys a first-o
ordinary linear differential equation

a1

dx~ t !

dt
1a0x~ t !5j~ t !, ~5!

where j(t) represents uncorrelated Gaussian noise of u
variance, anda0 anda1 are constants. Standard time discre
zation yields a first-order autoregressive~AR1! process

xi5a1xi 211ej i ~6!

with a15a1 /(a01a1) and e51/(a01a1). An important
property of such a process is that the autocorrelation func
C(t)5^xi 1txi& decays as

CAR1~t!5a1
t , ~7!

where stationarity condition warrantsa1,1. Fitting the pa-
rametersa1 ande for an empirical data set is a trivial task
all statistical software packages include this feature@18#.

DFA1 test for a simulated time series with fitted AR
parameters is shown in Fig. 1~b! ~crosses!. Numerical values
are a150.80560.010,e52.160.19, the errors reflec
weather-station dependence. It is remarkable that the ch
ing DFA slope is explained by such a simple process, de
tion is visible only for the largest window sizesn. The
asymptotic DFA slope for an AR1 process is 1/2 as the c
sequence of uncorrelated noisej. For the sake of compari
son, we show the DFA1 result for a pure power-law cor
lated ~colored! noise @dashed line in Fig. 1~b!# with an
amplitude distribution fitted to the empirical data. Its aut
correlation function reads

Ccn~t!5t2r21, ~8!
2-2
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whererP(0,0.5). Power-law correlated data sets were g
erated with the algorithm developed by Pang, Yu, a
Halpin-Healy @19#. We verified that the DFA1 exponentd
depends on ther parameter of the autocorrelation functio
Eq. ~8! as expected@4,5#

dcn5r1
1

2
. ~9!

It is clear from Fig. 1~b! that a pure colored noise strong
underestimates the variance~note again that the amplitude
are fitted!, but the asymptotic slope is well reproduced.

One of the main findings of Huet al. @17# is that DFA
results on signals with different correlation properties a
background trends can be fully explained by the assump
of variance superposition. Based on this observation, we
pose a simple extension of the AR1 process Eq.~6! in order
to reproduce the observed correlation properties for temp
ture time series. We assume that

xi5a18xi 211eh i , ~10!

where the noise termh is power-law correlated according t
Eq. ~8! with a Gaussian amplitude distributionP(h)
5(1/A2p)exp(2h2/2). We expect for such a colored nois
driven autoregressive~CAR1! process that correlations fo
short times are determined by the autoregressive part acc
ing to Eq.~7!, but for long times the correlation properties
the noiseh will dominate. Indeed, the result shown in Fi
1~b! ~heavy line! is rather convincing, DFA slopes for th
observed data are reproduced for all window sizes.

We emphasize here that the noise termh in Eq. ~10! has
a ‘‘true’’ power-law autocorrelation upto the sample siz
This approach is different from the traditional modeling
colored noise by means of an autoregressive moving ave
process given by

xn5(
i 51

M

a ixn2 i1(
i 50

N

e ijn2 i , ~11!

where long-memory effects can be modeled, but correlati
have always finite range for any finiteN andM @2#.

The fitting procedure of Eq.~10! for empirical data needs
some remarks. First of all, it is obvious that a power-la
correlated noisexi5h i cannot be represented as an auto
gressive process of any order. Nevertheless, standardp
fitting algorithms detect linear correlations for such data, t
Figure 2 shows the results forp51, i.e., the relationship

h i5ch i 211j i ~12!

is tested. For small and larger values@see Eq.~8!# the vari-
ance is very large~different realizations can be produce
from different random seeds!, however, the empirical trend
allows an estimate for the apparent AR1 coefficient of c
ored noise. Variance superposition assumption yields

xi5~a12c!xi 211eh i , ~13!

wherea1 andc are the fitted AR1 coefficients for the me
sured time series and for the computer generated noise
nal, respectively. Summarizing, the steps of the fitting pro
05110
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dure are the following:~i! extract AR1 parametersa1 ande
from the temperature record;~ii ! measure asymptotic DFA
slope;~iii ! construct power-law correlated noise series w
the desired DFA slope;~iv! measure apparent AR1 coeffi
cient c for the noise;~v! produce a data set by Eq.~13!. The
result is shown in Fig. 1~b! with heavy line.

III. ATMOSPHERIC RESPONSE FUNCTION

Further details can be revealed by direct statistical test
the basic assumptions. In Fig. 3 we plotted the average t
perature step̂Ti 112Ti& and its standard deviations as a
function of temperature anomalyDTi ~recall that this is the
measure of deviation from the long-term average tempe
ture for the particular calendar day!. Apparently this function
represents a negative feedback: the larger the anomaly
more probable is a step backward on the next day. It is
markable that this ‘‘atmospheric response function’’
strongly asymmetric~positive excursions are hindered stro
ger! and strictly nonlinear. The best empirical representatio
we found are a fifth-order polynomial for̂Ti 112Ti& with
coefficients b1520.1898, b2520.002 141 3, b3
50.000 314 8, b4523.2005e205, and b5524.3807e
206, and a quadratic functions(DT)52.04920.0058DT
10.0094(DT)2. By means of this response function the pr
cess Eq.~13! can be refined as

DTi 115@ f ~DTi !2c#DTi1s~DTi !h i , ~14!

where the functional formsf (DTi) ands(DTi) are obtained
from the fits shown in Fig. 3. Note that a linear approxim
tion around the originf (DTi)52(12a1) and a constant
s(DTi)5e give back the linear process Eq.~13!.

The first-order nonlinear autoregressive process with c
related noise~NLCAR1! given by Eq.~14! results in a DFA1
curve indistinguishable from that of Eq.~13!. However, it
describes much better the empirical probability distributi
for temperature fluctuations, as shown in Fig. 4.

FIG. 2. Fitted AR1 coefficientc @see Eq.~12!# for power-law
correlated series with different autocorrelation parameterr @see Eq.
~8!#. Several realizations with different random seeds are evalua
The straight line~not fitted! obeysc52r3/2.
2-3
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We evaluated both basic representations~AR1 and NL-
CAR1! by means of the more traditional power spectral a
autocorrelation methods. The difference between po
spectra~not shown here! are not very large, they reproduc
the gradually increasing~negative! slope of the empirical
data. However, the spectrum of an AR1 process flattens
for small frequencies by rule, while the nonlinear proce
with power-law correlated noise Eq.~14! approximates this
range much better. The difference between the autocorr

FIG. 3. The components of the empirical ‘‘atmospheric respo
function’’ f (DT) for the 16 weather stations in Hungary: the ave
age temperature step^Ti 1 i2Ti&5 f (DTi)DTi ~top! and its standard
deviations ~bottom! as a function of temperature anomalyDTi .
Cubic ~thin line! and fifth-order polynomial~thick line! fits for the
temperature steps, as well as a quadratic fit fors are indicated~see
text!.

FIG. 4. Probability distribution of temperature fluctuations me
sured for the 16 stations~circles!, fitted by a CAR1 process Eq.~13!
~thin line!, and by NLCAR1 Eq.~14! ~thick line!.
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tion functions is more pronounced~Fig. 5!. The measured
autocorrelation for the AR1 process can be perfectly fitted
Eq. ~7!, the NLCAR1 model reproduces the slow decay f
the empirical data up to a time lag of five months~further
comparison is not possible because of the noise level of
data!.

IV. DISCUSSION

At first we discuss shortly the relevance of a more ac
rate model representation for data of asymptotic power-
correlations. As for daily temperature fluctuations, the si
plest AR1 process performs rather well by reproduc
DFA1 curve@Fig. 1~b!#, power spectrum, and even autoco
relation for a few days~Fig. 5!. Nevertheless it is obvious
that many important problems, related, e.g., to clima
changes, involve much longer time scales than a couple
days or months. In an otimal case, computed data can
compared directly with observations. Govindanet al. @14#
illustrated that four state-of-the-art coupled atmosphe
ocean models used to estimate future warming failed to
produce the correlation properties of two long time series
monthly mean temperatures, even for the time interval c
ered by observations.

An improved representation of fluctuating signals c
help to extract features that are directly not available fr
records of limited lengths. As an example, we computed
so called run-length distribution@7# for the empirical and
model data. The run-length distribution gives the probabi
P(L) for a sequence of temperature anomalies of the sa
sign with lengthL, i.e., the statistics of zero crossing.~Be-
tween two zero-crossing events ofL time units the tempera
ture remains either above or below the long-time aver
value.! The result is plotted in Fig. 6. If we consider dai
temperature anomalies, there is no difference between
AR1 and NLCAR1 models@Fig. 6~a!#, since short-time cor-
relations are dominated by the autoregressive part of the
cess. Clear difference appears on a longer time scale. Fi

e

-

FIG. 5. Autocorrelation function for measured data at stat
Békéscsaba, for AR1 fitted series Eq.~6!, and fitted by Eq.~14!.
Dashed line indicates the 95% confidence limit for the empiri
data.
2-4
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6~b! shows the probability distribution for excursions in a
nual average temperatures~empirical data are too short fo
such a statistics!. The NLCAR1 model process with powe
law correlated noise indicates definitely higher probabilit
for long excursions of annual average temperature ano
lies.

This modeling procedure can be applied for any proc
obeying strong correlations for short times and asympt
scaling. A particularly well discussed example in the lite
ture is related to hydrological records@20,21#. Actually, the
first systematic study of asymptotic power-law correlations
given in the classical work by Hurstet al. @22#. Modeling
and prediction have very sophisticated tools in hydrolo
nevertheless low order autoregressive representations
common, at least as a starting point@20#.

We repeated our analysis for daily water levels~31 776
data points! of the river Danube recorded at Nagymar
~Hungary!, for the general description of the data see R
@23#. The quantity of interest is the daily water level anoma
Dhi @cm#, that is the difference between the actual level a
the long-time average value for the particular day. The s
plest AR1 model obeyed weak convergence, however,

FIG. 6. ~a! Normalized probability densityP(L) of run-lengthL
for daily average temperature anomalies.~b! The same as above fo
annual average temperatures.
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next order approximation~AR2! gave a satisfactory correla
tion behavior up to an interval of 5–6 months~see the
crosses in Fig. 7!. Here the difference between th
asymptotic slopes of the DFA1 curves for the empirical d
~squares in Fig. 7! and for the AR2 model is more pro
nounced. A pure power-law processh i with r50.32@see Eq.
~8!# reproduces the required asymtotic slope but fails
short times again~dashed line in Fig. 7!. An extension of the
AR2 Gaussian model

Dhi5b1Dhi 211b2Dhi 221gh i ~15!

works quite well~solid line in Fig. 7!, fitted numerical values
areb151.547,b2520.606, andg515.4. Since we use this
example merely to illustrate the applicability of the conce
more details are not presented here.

Finally we note that the linear approximations Eq.~10!
and Eq.~15! are the first steps in the modeling only. The
reproduce linear correlations detected by DFA, Hurst, sp
tral or autocorrelation methods. The response function Fi
clearly indicates that the system is strictly nonlinear, thus
reproduction of finer details, such as the strongly skew
amplitude distribution, requires the incorporation of nonli
earities shown by Eq.~14!.

In conclusion, our main result is a unified model expla
ing the correlation properties from days to decades for d
mean temperatures. Autoregressive processes have a
number of variants@7#, however, this is the first extensio
involving power-law correlated noise, as far as we know. W
think that the analysis of asymptotic correlations and atm
spheric response functions for different climates can cont
ute to the debate on possible universality in temperature fl
tuations.
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FIG. 7. Analysis of daily water level anomaliesDh for the
Danube: DFA1 curves for the empirical data, for the best AR2
for a pure power-law correlated noise and for the fitted CAR2 p
cess Eq.~15!. Characteristic slopes are indicated.
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