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Temporal and spatial properties of fluctuations below a supercritical primary bifurcation
to traveling oblique-roll electroconvection

Michael A. Scherer and Guenter Ahlers
Department of Physics and iQUEST, University of California, Santa Barbara, California 93106

~Received 3 December 2001; published 26 April 2002!

We present measurements of thermally-induced oblique-roll traveling-wave~TW! fluctuations below the
supercritical primary bifurcation to electroconvection~EC! in the nematic liquid crystal
4-ethyl-2-fluoro-48-@2-~trans-4-pentylcyclohexyl!ethyl#-biphenyl~I52!. First we analyze time sequences of one-
dimensional shadowgraph images taken parallel to the director to obtain the TW frequencyv and the fluctua-
tion lifetime t. Within our resolution we find thatv is independent ofe[V/Vc21 (V is the applied voltage
amplitude andVc its value at the onset of convection!. Contrary to linear theory, the relaxation rate 1/t remains
finite at the bifurcation. Next we present the analysis of temporally uncorrelated two-dimensional shadowgraph
images of the fluctuations for several values of the electrical conductivitys. We fitted an anisotropic two-
dimensional Lorentzian function, corresponding to oblique-roll EC, to the time-averaged structure factorsS(k)
derived from the images. This yielded information about the components of the mean wave vectork0 and about
the correlation lengthj as a function ofs and e. The angle of obliquenessq of the roll patterns was
independent ofs but decreased anomalously ase approached zero. The modulusk0 of k0 depended ons. It
also showed an anomalous reduction close to onset. The anomalouse dependence ofk0 andq disagrees with
linear theory, which predicts a smooth, essentially linear dependence one, and presumably is caused by
nonlinear interactions between the fluctuations.

DOI: 10.1103/PhysRevE.65.051101 PACS number~s!: 05.40.2a, 64.60.Fr
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I. INTRODUCTION

Pattern formation is common in our daily life: The deve
opment of vortices while mixing coffee and milk in a cu
the formation of sand ripples on the beach by wind or wa
or the buildup of clouds in the sky by rising hot, humid a
present just a few examples@1#. There is even evidence tha
pattern formation played a significant role in the early u
verse, in the preheating stage at the end of inflation w
explosive particles were produced@2#. Common aspects o
pattern-forming systems are that they are dissipative
driven far from equilibrium. The appearance of the sa
patterns such as stripes, squares, hexagons, or spirals
verse systems suggests an underlying universality of the
nomenon. During the last two decades much work has b
devoted to understanding the governing principles of pat
formation by using systems based on, e.g., reaction-diffus
processes, solidification, vertically vibrated layers of sand
fluid flow @3#.

Even below the bifurcation to patterns there already e
fluctuations away from the spatially uniform state. These
driven by external noise, which under carefully controll
experimental conditions can be dominated by the ther
noise associated with the Brownian motion of the atoms
molecules. When the control parameter is raised above
critical value, patterns often evolve from inhomogeneities
the experimental system; but when these inhomogeneities
kept at a negligible level, the structures will grow from flu
tuations @4#. In the present paper we present experimen
results for the properties of fluctuations below the onse
pattern formation in one particular system, namely, elec
convection~EC! in a nematic liquid crystal~NLC!. Indeed,
the first quantitative experimental study of fluctuations in
1063-651X/2002/65~5!/051101~13!/$20.00 65 0511
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hydrodynamic system of which we are aware was done us
EC of a NLC @5#; but for this system there is as yet n
quantitative theory and only semiquantitative general ar
ments about the influence ofkBT could be used for compari
son. This comparison yielded good agreement for the ro
mean-square ~rms! fluctuation amplitudes at a
semiquantitative level.

Rayleigh-Bénard convection~RBC! has been used mos
extensively for the study of pattern formation@3,6#. Here a
horizontal fluid layer, confined at the bottom and top,
heated from below. When the temperature difference exce
a threshold, the system undergoes a sharp bifurcation fro
uniform state to a state where patterns occur. The stea
state pattern amplitude grows continuously beyond the tr
sition, i.e., the bifurcation is supercritical. Below the bifu
cation there exist fluctuationsdT of the temperature field
which are induced by thermal noise. Near the bifurcat
point the fluctuations become ‘‘large’’ in the sense that line
theory ~LT! predicts that they diverge@7#; but in practice
they remain quite small and difficult to measure. The flu
tuation amplitudes have zero mean but a finite mean sq
^dT2&. Predictions of^dT2& were already made three de
cades ago@8–12# on the basis of LT, and a quantitativ
evaluation based on linear Landau fluctuating hydrodyna
ics @13# was provided by van Beijeren and Cohen@14#. Very
recently Ortiz de Za´rate and Sengers calculated the ent
structure factorS(k0) of dT in the linear approximation (k0
is the wave number of the fluctuation! @15#. The integral of
S(k0) yields ^dT2& and recovers the earlier result near t
onset of convection@14#. Since ^dT2& is extremely small,
quantitative experimental verification could be obtained o
much more recently. Quentin and Rehberg@16# measured the
amplitudes of fluctuating patterns in a laterally confined~i.e.,
©2002 The American Physical Society01-1
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pseudo-one-dimensional! binary mixture of water and etha
nol and found good agreement with a theoretical predicti
but the theory does not take the influence of mixture effe
and of the near sidewalls quantitatively into account.
about the same time Wuet al. @17# reported quantitative
measurements of rms fluctuation amplitudes for a RBC s
tem extended in two dimensions using compressed CO2 as
the fluid; these results agreed quantitatively with the cal
lations of van Beijeren and Cohen@18# which, given linear
Landau fluctuating hydrodynamics@13# as a starting point,
are the exact linear results for a two-dimensional latera
infinite system.

Sufficiently close to the bifurcation fluctuation amplitud
become so large that one expects interactions between
fluctuations due to the nonlinear terms in the determini
equations of motion. In this parameter range LT should br
down. In analogy with critical phenomena in equilibriu
systems, one then expects a modified ‘‘critical’’~rather than
‘‘mean field’’! behavior of the system. For RBC it was pr
dicted by Swift and Hohenberg@11,12# that the fluctuation
interactions should lead to a first-order transition, i.e., t
subcritical bifurcation. Experimentally this interesting ph
nomenon has been out of reach so far because under
circumstances it is expected to become noticeable o
within a few parts per million of the bifurcation poin
@11,12,19#.

A more favorable system to study the influence of therm
noise, and in particular of nonlinear effects, is EC in a NL
@20#. In the class of EC systems considered here the NLC
confined between parallel glass plates with a spacing t
cally in the range of 10 to 100mm between them, and th
director of the NLC is aligned in a unique direction paral
to the plates~‘‘planar’’ alignment!. On their inside the glass
plates are covered with transparent electrodes, and an a
nating voltage of amplitudeV is applied to the cell. The role
of the temperature difference is now taken byV, and EC
occurs forV.Vc . The pattern that forms can consist of ro
with their axes orthogonal to the director~normal rolls!, or
the axes can be oriented at some other angle~oblique rolls!.
The effects of thermal noise are larger than for RBC for t
reasons. First, the effective noise intensity@5# F5kBT/E is
large because the relevant dissipative energyE5d^k̃& of the
system involves a combination of elastic constants^k̃& which
is an order of magnitude smaller than the typical correspo
ing termrn2 for RBC ~herer is the density andn the kine-
matic viscosity of the fluid!. This large susceptibility to ex
ternal noise was recognized long ago by Graham@10#.
Second, the effect of this intrinsically large susceptibility
supplemented by the very small thicknessd of the cells used
in EC, which~compared to RBC! enhancesF by yet another
order of magnitude. As mentioned above, it was shown
ready a decade ago that it was possible to visualize the
tuating convective patches and to measure their amplitu
below onset by using the NLC N-~p-methoxybenzylidene!-p-
butylaniline~MBBA ! @5#. Consistency with semiquantitativ
considerations based on LT was found. These findings h
been confirmed more recently by additional measurem
using ‘‘Merck Phase V’’~MPV! @21# and 4-ethyl-2-fluoro-
05110
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48-@2-~trans-4-pentylcyclohexyl!ethyl#-bi-phenyl ~I52!
@22–24#.

Recently, it was shown experimentally@24# that there are
deviations from LT of the fluctuation amplitudes below th
supercritical primary bifurcation to EC. The mean-squa
director-angle fluctuationŝu2& were measured for the two
different NLCs MPV and I52. Foremf[V2/Vc,mf

2 21&
20.1 it was found that̂ u2&}uemfu2g with g given by LT.
Closer to the bifurcation a smaller exponentg and a shifted
onsetVc

2.Vc,mf
2 were found. A detailed nonlinear theory fo

this system is not available. Its critical behavior need not
the same as that of RBC because the anisotropy of the N
suggests that it may belong to a different universality cla

For the work presented in this paper we used the N
I52. EC in I52 exhibits a large variety of different pattern
@26# which are determined by the electrical conductivity a
by the frequency of the applied voltage. They range fro
localized structures~so-called ‘‘worms’’! at low conductivi-
ties @27# to spatiotemporal chaos at intermediate conduct
ties @28#. At even higher conductivities the patterns rema
stationary. In this work we deal with the intermediate regim
where oblique rolls bifurcate supercritically from the co
duction state. The degeneratezig andzag rolls, which make
anglesq and 2q with the director, consist of traveling
waves~TWs!. Interaction between the zig and zag right- a
left-traveling waves leads to spatiotemporal chaos imme
ately above the onset of EC@28#.

In spite of its complexity, pattern formation in EC is re
markably well understood theoretically and overall agre
ment with the very rich experimental observations is exc
lent. Bodenschatzet al. @25# gave a theoretical description o
the threshold and near-threshold behavior of what is n
known as the standard model~SM! of electroconvection.
Based on the hydrodynamic equations they derived
Ginzburg-Landau equation for the amplitudeA of the hydro-
dynamic fields, expected to be valid near threshold@29#,
which for the case of oblique rolls@see Eq.~5.13! in @25## is
given by

t0d tA5@jx
2dx

21jy
2dy

21jxy
2 dxdy1e2uAu2#A. ~1!

Heree[V2/Vc
221 andjn ,n5x,y,xy are the components o

the correlation lengthj. In the linear regime below onset w
may neglect the nonlinear term, and expect the fluctuati
to be determined by a stochastic version of this equation

Comparison with several experiments revealed that
SM provided good estimates of the voltageVc at the onset of
convection and of the initial wave numberkc of the pattern.
However, it failed to predict the Hopf bifurcation to TWs an
the subcritical nature of the bifurcation which were observ
over some parameter ranges@5,30–36#. This motivated
Treiber and Kramer@37# to extend the SM by introducing a
weak-electrolyte model~WEM!. The WEM includes the
dissociation-recombination reaction of the ionic dopant
the sample. It correctly predicts the Hopf bifurcation to TW
in good agreement with experiments in I52@38# and MPV
@39#. It yields a Ginzburg-Landau equation like Eq.~1!, but
the correlation-length componentsjn are supplemented by
additive imaginary terms.
1-2
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In previous work a one-dimensional Lorentzian functi
was fitted to an azimuthal average of the experimen
structure-factor data. For thermal fluctuations in I52~see
Refs. @22–24#! a good fit was obtained~see Fig. 3 in Ref.
@23#! even though the system does not have the rotatio
symmetry that would justify an azimuthal average. T
analysis yielded an average wave number and correla
length. In the present paper we extend the analysis of
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thermal fluctuations in Fourier space and present
two-dimensional analysis of the Fourier peaks us
the two-dimensional structure factorL corresponding to Eq.
~1! @29#. Since the data are time averaged and contain
frequency information, we used the integral ofL(k,ṽ) over
the frequenciesṽ. The integral causes all imaginar
contributions to vanish, and the structure function is th
given by
L~kx ,ky!5
S0

jx0
2 ~kx2kx0!21jy0

2 ~ky2ky0!21jxy0
2 ~kx2kx0!~ky2ky0!1«

. ~2!
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Using this two-dimensional fitting function has the adva
tage that the components of the dominant wave vector of
patternkx0 and ky0 and the correlation-length componen
jx0 , jy0, andjxy0 are accessible separately.

In the next section we describe the experimental meth
used in our experiments. Next, in Sec. III A, we present n
data for the temporal behavior of the thermal fluctuatio
Then, in Secs. III B and III C, we give a reanalysis of t
structure-factor data for several conductivities of I52 th
were previously used in Ref.@24#. In Sec. III B we present
results for the mean wave vector, and the data for
correlation-length components are given in Sec. III C.
nally, in Sec. IV we summarize our results and give a br
outlook on remaining problems.

II. EXPERIMENTAL METHODS

For the experiments reported here we used the same
paratus and the same NLC cell-assembly technique as
scribed in Ref.@23#. The only difference is that we replace
the light source by a tungsten-halogen light source@40# to
obtain better long-time stability of the light intensity. Th
following steps were taken to prepare the electroconvec
cell. First, the NLC I52 was doped with 4.27% by weight
molecular iodine. The mixture was then stored for 28 day
a temperature of about 50 °C. Next, the cell was assem
and filled, obtaining a sample with planar alignment. Fina
the cell was sealed and stored at room temperature for a
8 months@41#. The cell had a thickness ofd52861 mm
and, in units of its thickness, had dimensions of 6
3105:7.03105:1.

We kept the cell in a state of turbulent convection f
about 9 days to allow for a homogeneous distribution
iodine in the cell before starting the experiments. For
different runs we changed the conductivitys of the NLC by
varying the temperature. The conductivity was measured
frequency of 50 Hz and at a voltage of 2.0 V right before a
after an experimental run. Measurements ofs at 64°C and
over a time period of about 400 h showed that the cond
tivity dropped slowly over time at a rate of 7.
310211 V21 m21 day21.

The only difference between the experimental procedu
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for results reported in~a! Sec. III A and~b! Secs. III B and
III C is as follows. In~a! we tookT51024 single horizontal
lines with a width ofX5256 pixels and a rate of 30 Hz an
assembled them into space-time images for each voltage
~b! we took 128 images at 10 s intervals with the dimensio
of 2563256 pixels for each voltage.

For calibrating the intensity of our shadowgraph signal
took ~a! a space-time image for results reported in Sec. II
or ~b! 128 images 10 s apart for results reported in Sec. II
without applying a voltage and before starting a run. T
was done first with a glass filter@42# inserted into the filter
slot of the tungsten-halogen light source and second with
a filter. The mean intensity of the averaged images with a
without filter was later used for calculating the zero offset
the frame grabber.

After the calibration was done and the conductivity w
measured we increased the applied alternating voltage am
tude V in small steps. The alternating voltage had a f
quency of 25 Hz. At eachV we waited 110 s. During this
time we measuredV ten times to obtain an average valu
Finally we took~a! a space-time image or~b! 128 images 10
s apart.

For results reported in Sec. III A the temperature w
50 °C, which resulted in a conductivity ofs55.94
31029 V21 m21. In Sec. III B the temperature and thus th
conductivity was changed to investigate the influence os
on the fluctuations. We used~i! 38 °C, s55.16
31029 V21 m21, ~ii ! 42 °C, s56.3631029 V21 m21,
~iii ! 46 °C, s57.7631029 V21 m21, ~iv! 50 °C, s59.51
31029 V21 m21 ~see also Table I in Ref.@24#!.

III. EXPERIMENTAL RESULTS

In the next subsection we report on the temporal beha
of the thermal fluctuations, and then in Sec. III B on t
dependence of the structure factor on the conductivity.

A. Temporal structure of the fluctuations

Figure 1~a! shows the spatiotemporal evolution of th
thermal fluctuations fore52231024. Each single line is
divided by a background line which consists of an average
1-3
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MICHAEL A. SCHERER AND GUENTER AHLERS PHYSICAL REVIEW E65 051101
all the 1024 lines of the space-time image. Note that in F
1~a! we cannot distinguish between zig and zag modes
cause only a single line parallel to the director is used.
order to obtain the onset voltageVc we followed the method
described in Refs.@23# and@24# and performed a multimode
analysis which was adapted to the space-time images:
calculatedI i(x,e)[ Ĩ i(x,e)/ Ĩ 0(x,e)21 for each horizontal
line Ĩ i(x,e), i 51, . . . ,1024. Herex is the coordinate in rea
space parallel to the director, andĨ 0(x,e) is a background
line obtained by averaging 1024 lines at the samee. For each
I i(x,e) we derived the structure factor~the square of the
modulus of the Fourier transform! Si(kx ,e) and averaged
1024 Si(kx ,e) to get S(kx ,e). Here kx is the wave-vector
component in the direction of the director. We computed
total power under the peak ofS(kx) as described in@23#, and
then converted it tôu2& @43# @see also Eq.~5! in @23##. Since
the primary bifurcation is supercritical the points above on
follow a square-root law. A square-root fit above onset
134.711 <V2<135.027 V2 gaveVc

25134.6 V2.
Because the background divided space-time ima

showed high-frequency noise we applied a filter in Four

FIG. 1. ~a! Spatiotemporal evolution of the thermal fluctuatio
for e52231024. The image is background divided. The horizo
tal axis represents thex axis and is parallel to the director. In thi
direction the image has a size of 502mm. The vertical axis is the
time axis. Top is 0 s and bottom is 34.3 s.~b!, ~c!, and~d! are the
central parts (211.2/d<kx<11.2/d and214.0 Hz< f <14.0 Hz)
of the Fourier-filtered structure factorsS(kx , f ). ~b! e521.25
31022; ~c! e52231024; and ~d! e5131024.
05110
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space. This can be seen in Figs. 1~b!–1~d! which show the
structure factorsS(kx , f ) after applying the Fourier filter and
for different values ofe. The four main peaks in Figs
1~b!–1~d! are the two pairs of right- and left-traveling wave

After applying the filter in Fourier space we transform
the images back to real space. Figures 2~a! and 2~b! show
examples below the onset while Fig. 2~c! is an example right
above the onset of convection. The two images below
onset do not show much of a difference whereas the im
above onset reveals that the right- and left-traveling wa
are more ordered. The remaining disorder fore.0 is due to
the spatiotemporal chaos of the pattern. Because the ri
and left-TWs are superimposed in these images, we s
pressed the right-traveling one in Fourier space, allowing
a better visualization of the left-traveling wave. This
shown in Fig. 3.

For extracting the Hopf frequencyv and the exponentia
decay time t we calculated the autostructure functio
Sx(Dt). We choseSx(Dt) instead of the autocorrelatio
function for reasons discussed in Ref.@44#. The autostructure
function is given by

Sx~Dt !5 (
Dt50

T/221
1

X~T2Dt !

3 (
i 50

X21

(
t50

T2Dt21

@ I ~x,t !2I ~x,t1Dt !#2, ~3!

whereX5256 is the dimension of thex axis andT51024
the dimension of the time domain in pixels.

FIG. 2. Spatiotemporal evolution of the right- and left-travelin
wave for differente. ~a! e521.2531022; ~b! e52231024; and
~c! e5131024. The images are background divided and Four
filtered. The horizontal axis represents thex axis and is parallel to
the director. In this direction the image has a size of 502mm. The
vertical axis is the time axis. Top is 0 s and bottom is 34.3 s.
1-4



-

ca
ib
s

s

s,
is

illa-
e is

n

at

ld
to

-

re-
ey
eir

es-
is

e-
on-
as

or

ed
o
s

f all
l
e
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In Fig. 4 Sx(Dt) is shown for a right-traveling and a left
traveling wave. Fits of the function

Sx~Dt !5Sx~`!@12cos~vDt !exp~2Dt/t!# ~4!

to the data are given by the solid lines in the figures. As
be seen, the data for the longer time delays are not descr
very well by Eq.~4!. Most likely the statistics of the runs i
not sufficient. Note that the amount of image data at eache is
only 1/32 of the amount taken for the results presented
Ref. @24# and in Sec. III B. More work with better statistic
would be desirable. Nonetheless, the fits to theSx(Dt) data

FIG. 3. Spatiotemporal evolution of the left-traveling wave f
different e. ~a! e521.2531022; ~b! e52231024; and ~c! e51
31024. The images are background divided and Fourier filter
The right-traveling wave is suppressed in Fourier space. The h
zontal axis represents thex axis and is parallel to the director. In thi
direction the image has a size of 502mm. The vertical axis is the
time axis. Top is 0 s and bottom is 34.3 s.

FIG. 4. The autostructure functionSx(Dt) for a right-traveling
~a! and a left-traveling~b! wave for e521.2531022. The solid
line shows a fit of Eq.~4! to the data~open circles!.
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give a good estimate forv. As can be seen from the figure
the oscillation frequency of the data and the fitted function
essentially the same. The results fort are not as good; they
correspond to the decay rate of the envelope of the osc
tions in the figures. However, a semiquantitative estimat
still obtained from the fits.

Both v andt are given in Fig. 5 as a function ofe. It is
seen thatv is constant within our resolution and has a
averaged value of 1.48 s21. According to mean-field theory
the inverse of the exponential decay length should go to 0
emf50 ~or e524.631022) as

1/t5e/t0 . ~5!

All our data are in the critical region beyond the mean-fie
onset. There they tend toward a constant value close
0.2 s21 at e50.

Measurements oft based on the time correlation of fluc
tuations below onset were made before by Winkleret al.
@45#. These authors used the NLC MBBA. Their measu
ments were fore&20.03, and in that parameter range th
found consistency with linear theory in the sense that th
data could be described by Eq.~5!. However, the values for
t0 derived from their data were larger than a theoretical
timate @25# by nearly a factor of 2. So far as we know th
disagreement with linear theory remains unexplained.

B. The wave vector of the fluctuations

In this section we present spatially extended and tim
averaged results for the fluctuations as a function of the c
ductivity and of e. We use the same experimental data
presented in Ref.@24# for I52. While Ref.@24# emphasized

.
ri-

FIG. 5. ~a! The Hopf frequencyv as a function ofe for mea-
surements below the onset. The dashed line is the average o
data points and gives 1.48 s21. ~b! The inverse of the exponentia
decay length 1/t as a function ofe for measurements below th
onset.
1-5



tu
m

he
he
g
rs
di

by
ul
z

te
w
re

ho

er
ch

tion
xpo-

tly

n
ned
ier

we
of

o

-
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the dependence of the mean-square director-angle fluc
tions ^u2& on e and showed that there are deviations fro
mean-field theory as the onset of convection is approac
we focus here on thee dependence of the components of t
mean wave number and of the correlation length by fittin
two-dimensional Lorentzian function to the structure facto

Figure 6 shows four examples of single snapshots at
ferent e and for s57.831029V21 m21. Far below onset
@Fig. 6~a!# the patterns are very weak. However, dividing
a background image, Fourier filtering, and using the f
available gray scale uncovers the expected zig and
modes. The patches grow ase is increased@Figs. 6~b! and
6~c!#. Very close to onset@Fig. 6~d!# a pattern containing
extended patches of zig and zag rolls is found.

For visualizing the structure factorsS(k,e) @see Figs.
7~a!, 7~c!, 7~e!, and 7~g!#, where k5(kx ,ky) is the wave
vector, we first calculatedI i(x,e)[ Ĩ i(x,e)/ Ĩ 0(x,e)21 for
each imageĨ i(x,e), i 51, . . . ,128. Herex5(x,y) are the
coordinates in real space andĨ 0(x,e) is a background image
obtained by averaging 128 images at the samee. For each
I i(x,e) we derived the structure factorSi(k,e) ~the square of
the modulus of the Fourier transform! and averaged 128
Si(k,e) to getS(k,e). Figures 7~a!, 7~c!, 7~e!, and 7~g! show
two pairs of peaks corresponding to two sets of rolls orien
obliquely to the director which get sharper and larger as
approach the onset of convection. These observations a
agreement with those reported in Refs.@21–23#. The two
modes are called zig and zag modes and correspond to t
of the extended chaos above onset@27#.

Instead of the multimode analysis presented in Ref.@24#,
we fitted a two-dimensional function

S~k,e!5L~k,e!1B~kx ,e! ~6!

to the experimental data for the structure factors. H
B(kx ,e) is a one-dimensional background function whi

FIG. 6. The background divided and Fourier-filtered snapsh
of size 5023502 mm2 at s57.831029V21 m21. ~a! e520.320;
~b! e520.104; ~c! e520.011; ~d! e520.001. The director is
horizontal.
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contains the experimental noise. To a good approxima
the background was seen from experiment to increase e
nentially with kx and to be independent ofky . Thus we
chose

B~kx ,e!5aexp~bkx!, ~7!

wherea andb are fitting parameters that depend only sligh
on e. The termL(k,e) is the two-dimensional Lorentzian
function given by Eq.~2!. There S0 /e is the maximum
height of the function at the positionk05(kx0 ,ky0) and
jx0 ,jy0, and jxy0 are the components of the correlatio
length. Usually the mean wave number of a pattern is defi
as the first moment of the distribution function of the Four
peak. This is not possible here because Eq.~2! is not inte-
grable and there is no first moment. Thus in the following
refer to k0 as the mean wave number. For the purpose
fitting we used

ts

FIG. 7. The central parts211.2/d<kx ,ky<11.2/d of the time-
averaged structure factorsS(k) @~a!,~c!,~e!,~g!# and the correspond
ing visualization of the two-dimensional least-squares fit of Eq.~6!
to the data@~b!,~d!,~f!,~h!#. ~a!,~b! e520.320; ~c!,~d! e520.104;
~e!,~f! e520.011;~g!,~h! e520.001. The director is horizontal.
1-6
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L~kx ,ky!5
S̃0

jx
2~kx2kx0!21jy

2~ky2ky0!21jxy
2 ~kx2kx0!~ky2ky0!11

~8!
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with S̃05S0 /e andjn5jn0 /e1/2 for n5x,y, andxy.
A two-dimensional nonlinear least-squares fitting rout

was used to fitS(k,e)5L(k,e)1B(kx ,e) to the experimen-
tal data. In Fig. 7 we compare the experimental tim
averaged structure factors with the corresponding visual
tion of the fitting results. The left column shows th
experimental data and the right column gives the simula
S(k,e). The simulated images of the structure factors ag
well with the experimental data. Taking difference imag
between the experimental and the simulated images did
reveal any significant systematic deviations.

Very close to and above onset our two-dimensional fitt
procedure failed because the peaks became too narrow
consisted of only a few pixels. Therefore we chose a diff
ent procedure to extract the coordinatesk05(kx0 ,ky0) of the
peak. We first detected the maximum valueSmax(k) of S(k)
in the quadrantkx.0, ky.0 for the zig mode orkx.0,ky
,0 for the zag mode and forB(kx),Smax(k) ~the latter
condition was only important fore far below the onset!. Next
we calculated

kn05( S~kn!kn /( S~kn!,n5x,y, ~9!

FIG. 8. The components (kx0 ,ky0) of the mean wave vectork0

for s57.831029V21 m21 as a function ofe. Open circles:kx0.
Solid squares:ky0. The data are averages for the zig and the z
modes. The solid curves are fits to a power law. The lower fig
gives an expanded view of the data close to the transition.
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where we summed over an area of 939 pixels withSmax at
the center. Comparing the values fork0 as a function ofe for
the two different methods showed that they are in go
agreement for values close to the onset. For values far be
the onset there is only a reasonable agreement because
the background is significant and the peaks are much bro
than the 939 pixels used in the second method. Hence
obtainedk0 from the second method when the method
fitting the two-dimensional Lorentzian failed, i.e., very clo
to and above the onset. Unfortunately the second met
does not give results for the correlation lengths.

We found within our resolution that the zig and za
modes gave equivalent results for the fitting paramet
Thus, in the following we give only the averages over the
two modes. In Fig. 8 we show the coordinatesk0
5(kx0 ,ky0) of the peak of the fitted Lorentzian function fo
s57.831029V21 m21 and as a function ofe. For e very
far from the onset it is seen thatkx0 is smaller thanky0. For
e520.092 both components have an equal value. Close
the onset and above we getkx0.ky0.

In the lower part of Fig. 8 the region very close to onset
shown on an expanded horizontal scale. One sees thakx0
andky0 are continuous ate50, although they seem to hav
a mild singularity.

An interesting property is the angle of obliquenessq of
the rolls, which is defined asq5arctan(ky0 /kx0). First, in Fig.
9, we look at the ratioky0 /kx0 as a function ofe for s
57.831029V21 m21. We fitted the data in three ways. Firs
a straight line

ky0 /kx05a0~11a1e! ~10!

g
e

FIG. 9. The ratio between the components of the mean w
vectorky0 /kx0 for s57.831029V21 m21 as a function ofe. The
double-dotted double-dashed line ate528.831022 gives the up-
per limit of the region that was used in Fig. 2 of Ref.@24# for fitting
in the mean-field region. The solid line is a straight-line fit to t
data in the mean-field region, the dashed curve is a power-law fi
the data in the mean-field region, and the dotted line is a power-
fit to the data fore,0.
1-7
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was used in the mean-field region. For the mean-field reg
we used the same range ofe as was used for the fits in Fig
2 of Ref. @24#. The upper limit of this region is marked by
vertical double-dotted double-dashed line in Fig. 9, and
fit is given as a solid straight line. It yieldeda050.88 and
a1521.37. A second fit was a power law

ky0 /kx05a21a3ueua4 ~11!

for data with e,0 ~dotted line in Fig. 9! and gavea2
50.82, a351.26, anda450.82. Finally, for comparison we
fitted a power law in the mean-field range only~dashed line
in Fig. 9! and obtainedky0 /kx050.7911.2ueu0.73. The three
fits do not show any significant difference in the mean-fi
region. However, for values in the critical region the tw
fitting functions deviate from each other. From a theoreti
point of view a straight-line fit is favored in the mean-fie
region. The deviations of the experimental data from
straight line show thatky0 /kx0 deviates from LT, i.e., that it
is influenced by nonlinear fluctuation interactions; but t
good fit obtained with the power law fore,0 and the result-
ing exponent remain to be explained.

We performed straight-line fits in the mean-field regi
and power-law fits for the whole region for four differe
runs with different conductivities. Table I shows the resu
a0 ,a1 ,a2 ,a3, and a4 as a function of the conductivity
Within their uncertainties~which are omitted in the table! all
five fitting values are independent ofs and can be averaged

Finally, we present the dependence of the angle of
liqueness one in Fig. 10. Here we averaged the data of
four different conductivities contained within a window co
ering ane rangede51.531022. The two fits, namely, the
straight-line fit in the mean-field region and the power-law
in the whole region, based on parameters in the last colu
of Table I, are plotted. The fits suggest a critical angle
obliqueness at onset ofqc50.72 rad for the extrapolation
from the mean-field fit and ofqc50.69 rad for the power-
law fit.

Next we calculated the modulus of the mean wave vec
k05Akx0

2 1ky0
2 as a function ofe and for different conduc-

tivities s. Unlike the angle of obliqueness, we see in Fig.
that k0 depends on the conductivity, being somewhat lar
at lower conductivity. We found thatk0 decreases with in-
creasinge.

TABLE I. Parameters obtained from fits of Eqs.~10! and~11! to
the ratioky0 /kx0 for different conductivitiess.

109s
(V21 m21) 5.16 6.36 7.76 9.51 Average

a0 0.866 0.879 0.880 0.868 0.8760.01
a1 -1.48 -1.50 -1.56 -1.57 -1.5360.05
a2 0.818 0.829 0.820 0.815 0.8260.01
a3 1.16 1.20 1.26 1.24 1.2260.04
a4 0.834 0.828 0.821 0.819 0.8360.03
05110
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For fitting the data we followed the approach for fittin
the ky0 /kx0 data: First, we used a straight-line fit in th
mean-field region,

k05b0~11b1e!, ~12!

and second a power-law fit for the whole region ofe,0,

k05b21b3ueub4. ~13!

Table II summarizes the results for the fitting parameters
different conductivities. We found that the fitting parame
depends on the conductivity.

C. The correlation length of the fluctuations

From linear theory it is expected that

jn5jn,0~e!21/2 ~14!

with n5x,y, or xy. The amplitudesjn,0 are expected to be
regular functions ofe, i.e., they should be essentially linea
in e.

FIG. 10. The angle of obliquenessq as a function ofe. Each
data point is the result of averaging over all four different cond
tivities and over a rangede51.531022.

FIG. 11. The modulus of the wave vectork0 as a function ofe
and for different conductivities s. Open circles: s55.2
31029 V21 m21. Solid squares:s56.431029 V21 m21. Open
triangles s57.831029 V21 m21. Solid diamonds: s59.5
31029 V21 m21. The solid lines are straight-line fits to the data
the mean-field region. The dashed curves are power-law fits to
data fore,0.
1-8
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Fluctuations below onset were used before to study
correlation-length components of EC in NLCs by Ho¨rner and
Rehberg@46,21#. These authors investigated the materi
MBBA @46# and Merck Phase V@21#. For MBBA in a
normal-roll parameter range they found that their data forjx
andjy could be described well by Eq.~14! with jx,0 andjy,0
independent ofe and somewhat smaller than theoretical v
ues based on linear theory@25# ~for normal rolls there is no
jxy). The measurements for Phase V were more deta
@21#, and particularly forjx deviations from linear theory
were detected near onset, although the interpretation of

FIG. 12. The amplitudes of the correlation lengths~a! jx0, ~b!
jy0, and~c! jxy0 as functions ofe and for different conductivitiess.
Open circles: s55.231029V21 m21. Solid squares:s56.4
31029V21 m21. Open triangles:s57.831029V21 m21. Solid
diamonds:s59.531029V21 m21. The solid lines are straight-line
fits of the data in the mean-field region. The dashed curves
power-law fits to the data in the critical region.

TABLE II. Parameters obtained from fits of Eqs.~12! and ~13!
to the modulusk0 of the wave vector for different conductivitiess.

109s
(V21 m21) 5.16 6.36 7.76 9.51

b0 5.62 5.50 5.40 5.31
b1 -0.24 -0.29 -0.31 -0.32
b2 5.24 5.18 5.09 5.02
b3 1.30 1.47 1.54 1.54
b4 0.421 0.509 0.540 0.552
05110
e

s

-

d

he

data apparently assumed that thejn,0 aree independent over
a widee range.

Here we report our results for I52 which were obtain
from the fits of Eq.~8! to the two-dimensional structure fac
tor discussed in the previous section. This fit gives the th
correlation-length componentsjx ,jy , and jxy . Figure 12
shows the three amplitudes for different conductivities.
the mean-field region they decrease linearly and can be fi
by straight lines:

jn0~e!5jn0~0!~11cne!. ~15!

In Table III the resulting parameters are listed. One sees
jn0 increases slightly withs. The absolute values of th
coefficientscn are of order unity, as expected for a regul
function of e.

In the critical region the data deviate from the straig
lines, and thus from linear theory. There they are better
scribed by a power law:

jn0~e!5jn1~2e!2(nn21/2). ~16!

The parameters obtained from fitting this function to the d
are given in Table IV. One sees thatjx1 ,jy1, andjxy1 do not
depend noticeably ons, but that the exponentsnn decrease
with increasing conductivities. This is somewhat surprisi
since exponents are usually universal; but we do not re
believe that the data are good enough to unambiguo
identify a critical region in which the fit should be carried o
and to determine the critical parameters reliably. They
however, indicate thatn has a value less than its mean-fie
value 1/2.

re

TABLE III. Parameters obtained from fitting Eq.~15! to the
correlation-length amplitudes in the mean-field region.

109

s(V21 m21) 5.16 6.36 7.76 9.51

jx0(0) 0.258 0.288 0.299 0.302
jy0(0) 0.129 0.134 0.145 0.136
jxy0(0) 0.149 0.153 0.164 0.152

cx 21.11 20.97 20.77 20.79
cy 22.48 22.54 21.59 21.83
cxy 22.55 22.65 21.87 22.24

TABLE IV. Parameters obtained from fitting Eq.~16! to the
correlation-length amplitudes in the critical region.

109s
(V21 m21) 5.16 6.36 7.76 9.51 Average

jx1 0.407 0.398 0.374 0.382 0.3960.04
jy1 0.223 0.220 0.171 0.161 0.1960.04
jxy1 0.302 0.283 0.302 0.286 0.2960.06
nx 0.35 0.39 0.43 0.44 —
ny 0.34 0.37 0.46 0.32 —
nxy 0.28 0.32 0.32 0.34 —
1-9
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A cut through the structure factors@see, e.g., Fig. 7# par-
allel to the (kx ,ky) plane yields an elliptical area. Howeve
due to the cross termjxy

2 (kx2kx0)(ky2ky0) in the denomi-
nator of Eq.~8! the two axes of the ellipse are not parallel
the kx andky axes. In order to study the angle of inclinatio
a of the ellipse, we shifted the origin to the center of t
peak, yielding new coordinates (k̃x ,k̃y). Then we carried out
a rotation through an anglea so as to align the axes of th
coordinate system with the axes of the ellipse, yielding
ordinates (k̄x ,k̄y). This alignment is achieved when the cro

FIG. 13. Illustration of the coordinate transformationk̃→ k̄. The
rotation angle is given bya. The ellipse is a result of a cut throug
the Lorentzian peak parallel to the (kx ,ky) plane at the height of
S(k)5S(kx0 ,ky0)/2.

FIG. 14. The amplitude of the transformed correlation leng
~a! ja0 and~b! jb0 as a function ofe and for different conductivities
s. Open circles:s55.231029V21 m21. Solid squares:s56.4
31029V21 m21. Open triangles:s57.831029V21 m21. Solid
diamonds:s59.531029V21 m21. The solid lines are straight-line
fits to the data in the mean-field region. The dashed curves
power-law fits to the data in the critical region.
05110
-

term vanishes. The transformation is illustrated in Fig. 13
In polar coordinates (r ,f) one now has

L~r ,w2a!5
S̃0

ja
2r 2cos2~w2a!1jb

2r 2sin2~w2a!11
~17!

for the Lorentzian function. As seen in Fig. 13,ā andb̄ now
denote the axes of the ellipse. ForL( k̄x ,k̄y)5S̃0/2 one has
ā51/ja and b̄51/jb . For ja , jb , anda one obtains

ja,b5~1/2!@jx
21jy

26A~jx
22jy

2!21jxy
4 # ~18!

and

a1,25arctanF jy
22jx

2

jxy
2

6A~jx
22jy

2!2

jxy
4

11G . ~19!

The anglea1 (a2) aligns thek̃x( k̃y) axis with theā axis of
the ellipse~see Fig. 13!. In the following we chosea5a1 as
our rotation axis.

The Lorentzian function Eq.~17! now contains three
transformed parameters, namely, the correlation lengthsja
andjb and the rotation anglea. The correlation-length am
plitudes ja05ja(2e)1/2 and jb05jb(2e)1/2 are shown in
Fig. 14 as a function ofe. As one would expect, we find
behavior similar to that of the amplitudesjx0 ,jy0, andjxy0.
In the mean-field regionja0 and jb0 decrease linearly with
increasinge. In the critical region the data can be describ
by a power law. Tables V and VI show the dependences
the fitting parameters on the conductivity.

Figure 15 illustrates the dependence of the rotation an
a on e ands. We note thata and the angle of obliquenessq
of the rolls~see Fig. 10! are two unrelated quantities. Indee

s

re

TABLE V. Parameters obtained from fitting an equation like E
~15! to the correlation-length amplitudesja0 andjb0 in the mean-
field region.

109s
(V21 m21) 5.16 6.36 7.76 9.51

ja0(0) 0.260 0.288 0.302 0.304
jb0(0) 0.123 0.130 0.138 0.132

ca 21.33 21.18 20.88 20.91
cb 21.84 21.88 21.22 21.36

TABLE VI. Parameters obtained from fitting an equation lik
Eq. ~16! to the correlation-length amplitudesja0 and jb0 in the
critical region.

109s
(V21 m21) 5.16 6.36 7.76 9.51 Average

ja1 0.423 0.410 0.386 0.390 0.4060.04
jb1 0.199 0.186 0.154 0.146 0.1760.04
na 0.34 0.38 0.43 0.44
nb 0.36 0.40 0.48 0.50
1-10
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a is much smaller thanq over the entiree range. One see
that a decreases slightly with increasings. The rotation
angle decreases linearly with increasinge in the mean-field
region and also somewhat closer to onset. Fore&0.01a
seems to decrease precipitously, perhaps toward zeroe
50; but we do not have the resolution to determine the
havior very close to onset with certainty. We note also t
the determination ofa becomes more difficult at smalle
since the Lorentzian peak becomes more narrow. We fitte
straight line

a5d0~11d1e! ~20!

to the data in the mean-field region for different conducti
ties and give the parameters in Table VII.

Another property to look at is the eccentricity of the e
lipse as a function ofe ands. It is defined as

e5A12ā2/b̄25A12jb
2/ja

2. ~21!

Figure 16 gives the dependence ofe on e ands. We observe
that e increases with increasinge in the mean-field region
where a straight line

e5e0~11e1e! ~22!

describes the data~see Table VIII for values ofe0 ande1).
This means that the ellipse becomes more elliptic as we
creasee in the mean-field region. However, as we get clo
to the onset the value ofe drops, i.e., the ellipse become
more circular although the eccentricity remains pronounc

FIG. 15. The rotation anglea as a function ofe and for different
conductivities s. Open circles:s55.231029 V21 m21. Solid
squares: s56.431029 V21 m21. Open triangles: s57.8
31029 V21 m21. Solid diamonds:s59.531029 V21 m21. The
solid lines are straight-line fits to the data in the mean-field reg

TABLE VII. Parameters obtained by fitting Eq.~20! to the data
for the rotation anglea in the mean-field region.

109s
(V21 m21) 5.16 6.36 7.76 9.51

d0 ~rad! 0.219 0.178 0.192 0.156
d1 22.76 23.66 22.19 23.02
05110
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IV. SUMMARY AND OUTLOOK

We presented two different sets of measurements.
first consisted of an experimental run at an intermediate c
ductivity where the primary bifurcation to electroconvectio
is supercritical. The temporal behavior of thermal fluctu
tions below the onset but only in the critical region w
investigated by taking and analyzing space-time images.
space coordinate was parallel to the director. Within our re
lution the Hopf frequencyv was independent one and had a
value of 1.48 s21. The correlation timet was determined
only semiquantitatively because data with adequate statis
could not be obtained within the scope of this work. Ho
ever, it appears that 1/t remains finite ate50, contrary to
expectations based on LT.

The second set of measurements consisted of the I52
presented in Ref.@24#, where images of the fluctuations fa
below and very close to onset were taken for four differe
conductivities covering a wide range ofs over which the
primary bifurcation to electroconvection is supercritical.
Ref. @24#, the focus was on the mean-square director-an
fluctuations, and it was demonstrated that there are de
tions from LT as the onset is approached. Here we analy
the components of the mean wave vector and the correla
length. To do so we used a two-dimensional Lorentzian fu
tion to fit the data, instead of fitting a one-dimension
Lorentzian function to the azimuthally averaged structu
factors as was done before@22,23#.

We showed that the ratioky0 /kx0 of the wave vector com-
ponents is a linear function ofe in the mean-field region. In
the critical region there are deviations from the straight lin
and a power law provides an excellent fit for all the data. T

.

FIG. 16. The eccentricitye as a function ofe and for different
conductivities s. Open circles:s55.231029 V21 m21. Solid
squares: s56.431029 V21 m21. Open triangles: s57.8
31029 V21 m21. Solid diamonds:s59.531029 V21 m21. The
solid lines are straight-line fits to the data in the mean-field regi

TABLE VIII. Parameters obtained by fitting Eq.~22! to the data
for the eccentricitye in the mean-field region.

109s
(V21 m21) 5.16 6.36 7.76 9.51

e0 ~rad! 0.878 0.890 0.888 0.899
e1 0.10 0.13 0.07 0.08
1-11
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angle of obliqueness of the rolls is given byq
5tan21(ky0 /kx0). Well below onset, neare520.3, it is as
large as 52°. It decreases as the onset is approached
close to onset is near 40°. We also found thatq is indepen-
dent of s. The modulusk0 of the wave vector decrease
linearly with increasinge in the mean-field region, and de
creased more rapidly in the critical zone. The modulus
creased mildly with increasings.

With increasinge the three amplitudesjx0 ,jy0, andjxy0
of the correlation length decreased linearly in the mean-fi
region and more rapidly in the critical region. In the critic
region a power law provided an excellent fit. The amplitud
of the correlation lengths vary only slightly withs.

The cross section of the structure factor parallel to
kx2ky plane has an elliptical shape. The minor~major! axis
ā(b̄) of the ellipse is rotated relative to theky(kx) axis by an
anglea. We determined the correlation lengthsja andjb in
the direction of theā and b̄ axes, as well as the anglea. As
expected, the behavior ofja andjb was qualitatively similar
to that of jx and jy . The anglea was near 17°, i.e., much
smaller than the angle of obliquenessq. It decreased slightly
with increasinge. We also determined the eccentricity of th
ellipse and found it to increase very slightly in the mean-fi
region but to decreases rapidly in the critical region. T
anglea and the eccentricity depend slightly on the condu
tivity.

In summary, we found the following scenario for the Fo
rier peak as the onset to electroconvection is approac
he
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e
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The center of the peak shifts from a larger to a smaller an
of obliqueness and the wavelength of the pattern beco
larger. More subtle is the fact that the tilt of the Fourier pe
becomes smaller and the eccentricity of its cross section
comes larger in the mean-field region; but both drop in
critical zone.

Finally, we remark that much remains to be done in t
study of nonlinear fluctuations in EC. From the theoretic
viewpoint it would be useful to obtain quantitative data for
system with a stationary bifurcation. In that case the us
renormalization-group methods, which assume the existe
of a potential for the deterministic system, would be mo
readily applicable. In order to explore the richness of ph
nomena that occur in these systems, it would be desirab
study systems with different symmetries. Obvious candida
are oblique and normal rolls, that may belong to differe
universality classes. The crossover from one to the othe
the vicinity of a Lifshitz point, would be particularly inter
esting.
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