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Temporal and spatial properties of fluctuations below a supercritical primary bifurcation
to traveling oblique-roll electroconvection
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We present measurements of thermally-induced oblique-roll traveling-@WEW® fluctuations below the
supercritical primary bifurcation to electroconvectiofEC) in the nematic liquid crystal
4-ethyl-2-fluoro-4-[ 2-(trans-4-pentylcyclohexygthyl]-biphenyl(152). First we analyze time sequences of one-
dimensional shadowgraph images taken parallel to the director to obtain the TW frequemdythe fluctua-
tion lifetime 7. Within our resolution we find thad is independent 0oé=V/V.—1 (V is the applied voltage
amplitude and/, its value at the onset of convectijoiContrary to linear theory, the relaxation rate iémains
finite at the bifurcation. Next we present the analysis of temporally uncorrelated two-dimensional shadowgraph
images of the fluctuations for several values of the electrical conductvitye fitted an anisotropic two-
dimensional Lorentzian function, corresponding to oblique-roll EC, to the time-averaged structure 3écjors
derived from the images. This yielded information about the components of the mean waveyegtdrabout
the correlation lengtk¢é as a function ofe and €. The angle of obliqueness§ of the roll patterns was
independent ofr but decreased anomalously asapproached zero. The moduligg of k, depended omwr. It
also showed an anomalous reduction close to onset. The anonzattmendence df, and 9 disagrees with
linear theory, which predicts a smooth, essentially linear dependenae and presumably is caused by
nonlinear interactions between the fluctuations.
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I. INTRODUCTION hydrodynamic system of which we are aware was done using
EC of a NLC[5]; but for this system there is as yet no
Pattern formation is common in our daily life: The devel- quantitative theory and only semiquantitative general argu-
opment of vortices while mixing coffee and milk in a cup, ments about the influence kT could be used for compari-
the formation of sand ripples on the beach by wind or waterson. This comparison yielded good agreement for the root-
or the buildup of clouds in the sky by rising hot, humid air mean-square (rms) fluctuation amplitudes at a
present just a few exampl¢$]. There is even evidence that semiquantitative level.
pattern formation played a significant role in the early uni- Rayleigh-B@ard convectionfRBC) has been used most
verse, in the preheating stage at the end of inflation wheextensively for the study of pattern formatid,6]. Here a
explosive particles were producé®l]. Common aspects of horizontal fluid layer, confined at the bottom and top, is
pattern-forming systems are that they are dissipative anteated from below. When the temperature difference exceeds
driven far from equilibrium. The appearance of the samea threshold, the system undergoes a sharp bifurcation from a
patterns such as stripes, squares, hexagons, or spirals in diniform state to a state where patterns occur. The steady-
verse systems suggests an underlying universality of the phetate pattern amplitude grows continuously beyond the tran-
nomenon. During the last two decades much work has beesition, i.e., the bifurcation is supercritical. Below the bifur-
devoted to understanding the governing principles of pattergation there exist fluctuationdT of the temperature field
formation by using systems based on, e.g., reaction-diffusiowhich are induced by thermal noise. Near the bifurcation
processes, solidification, vertically vibrated layers of sand, opoint the fluctuations become “large” in the sense that linear
fluid flow [3]. theory (LT) predicts that they divergg7]; but in practice
Even below the bifurcation to patterns there already existhey remain quite small and difficult to measure. The fluc-
fluctuations away from the spatially uniform state. These areuation amplitudes have zero mean but a finite mean square
driven by external noise, which under carefully controlled(sT2). Predictions of( §T?) were already made three de-
experimental conditions can be dominated by the thermatades agd8-12 on the basis of LT, and a quantitative
noise associated with the Brownian motion of the atoms oevaluation based on linear Landau fluctuating hydrodynam-
molecules. When the control parameter is raised above thies[13] was provided by van Beijeren and CoHdd]. Very
critical value, patterns often evolve from inhomogeneities ofrecently Ortiz de Zeate and Sengers calculated the entire
the experimental system; but when these inhomogeneities astructure factoiS(ky) of 8T in the linear approximationkg
kept at a negligible level, the structures will grow from fluc- is the wave number of the fluctuatipfl5]. The integral of
tuations[4]. In the present paper we present experimentaB(ky) yields (5T?) and recovers the earlier result near the
results for the properties of fluctuations below the onset obnset of convectiod14]. Since(5T?) is extremely small,
pattern formation in one particular system, namely, electroquantitative experimental verification could be obtained only
convection(EC) in a nematic liquid crysta(NLC). Indeed, much more recently. Quentin and Rehbgt§] measured the
the first quantitative experimental study of fluctuations in aamplitudes of fluctuating patterns in a laterally confiriegl.,
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pseudo-one-dimensionabinary mixture of water and etha- 4’-[2-(trans-4-pentylcyclohexygthyl]-bi-phenyl (152

nol and found good agreement with a theoretical predictionf22—24.

but the theory does not take the influence of mixture effects Recently, it was shown experimenta[l§4] that there are

and of the near sidewalls quantitatively into account. Atdeviations from LT of the fluctuation amplitudes below the

about the same time Waet al. [17] reported quantitative supercritical primary bifurcation to EC. The mean-square

measurements of rms fluctuation amplitudes for a RBC sysdirector-angle fluctuationé6”) were measured for the two

tem extended in two dimensions using compressed different NLCs MPV and 152. Foren=V2/VZ 1<

the fluid; these results agreed quantitatively with the calcu—0.1 it was found that 6%)o|ey{ =7 with y given by LT.

lations of van Beijeren and Cohéf8] which, given linear ~ Closer to the bifurcation a smaller expongnand a shifted

Landau fluctuating hydrodynamidd3] as a starting point, onsetVe>V; . were found. A detailed nonlinear theory for

are the exact linear results for a two-dimensional laterallythis system is not available. Its critical behavior need not be

infinite system. the same as that of RBC because the anisotropy of the NLC
Sufficiently close to the bifurcation fluctuation amplitudes SU99€sts that it may belong to a different universality class.

become so large that one expects interactions between the FOT the work presented in this paper we used the NLC

fluctuations due to the nonlinear terms in the deterministi o2. EC_ in 152 exhibit_s a large variety .Of different pe_ltterns
equations of motion. In this parameter range LT should breal 6] which are determined by the electrical conductivity and

down. In analogy with critical phenomena in equilibrium y the frequency of the applied voltage. They range from

systems, one then expects a modified “criticétther than localized structureéso-called “worms” at low conductivi-
“y . -XP . ties[27] to spatiotemporal chaos at intermediate conductivi-
mean field”) behavior of the system. For RBC it was pre-

. ) . ties [28]. At even higher conductivities the patterns remain
dicted by Swift and Hohenberfl1,12 that the fluctuation stationary. In this work we deal with the intermediate regime

interactions should lead to a first-order transition, i.€., 10 g qrq oblique rolls bifurcate supercritically from the con-
subcritical bifurcation. Experimentally this interesting phe-duction state. The degeneratig and zagrolls, which make
nomenon has been out of reach so far because under m gles § and — 9 with the director consi,st of traveling
C|rc;]gmsta?ces It Is expecﬁﬁ.d to fbeﬁon;)gf notlgeable _On|¥vaves(TWs). Interaction between the zig and zag right- and
within ‘a_few parts per million of the biturcation point left-traveling waves leads to spatiotemporal chaos immedi-

[11,12,19. el
. y above the onset of E[28].
A more favorable system to study the influence of thermala In spite of its complexity, pattern formation in EC is re-

noise, and in particular of nonlinear effects, is EC in a NLC b1y well understood theoretically and overall agree-

[20]];. Inéhg class of EC ”sylsteims colnsidergc:] here thg NLC Ynent with the very rich experimental observations is excel-
confine etween parallel glass plates wit ha spacing r:yp'Fent. Bodenschatet al.[25] gave a theoretical description of
cally in the range of 10 to 10Qxm between them, and the o yhreshold and near-threshold behavior of what is now

director of the NLC is aligned in a unique direction parallel | ,0\n as the standard modéBM) of electroconvection.
to the plateg“planar” alignment. On their inside the glass Based on the hydrodynamic equations they derived a

plates are covered with transparent electrodes, and an alt%inzburg-Landau equation for the amplitudlef the hydro-
nating voltage of amplitud¥ is applied to the cell. The role dynamic fields, expected to be valid near threshial,

of the temperature difference is now taken Wy qnd EC " Which for the case of oblique rollsee Eq(5.13 in [25]] is
occurs forV>V,. The pattern that forms can consist of rolls given by

with their axes orthogonal to the direct@rormal rollg, or
the axes can be orlented_at some other atajéique rolls. ToétA=[§)2(5)2(+§§5§+§)2(y5,(6y+ e—|AI2]A. (1)
The effects of thermal noise are larger than for RBC for two

reasons. First, the effective noise inteng®} F=kgT/E is Heree=V?/V2—1 and¢, ,n=x,y,xy are the components of

large because the relevant dissipative endigyd(k) of the  the correlation lengtl. In the linear regime below onset we
system involves a combination of elastic constgiiswhich  may neglect the nonlinear term, and expect the fluctuations
is an order of magnitude smaller than the typical correspondto be determined by a stochastic version of this equation.
ing termpv? for RBC (herep is the density and the kine- Comparison with several experiments revealed that the
matic viscosity of the fluil This large susceptibility to ex- SM provided good estimates of the voltaggat the onset of
ternal noise was recognized long ago by Grahgif]. convection and of the initial wave numbley of the pattern.
Second, the effect of this intrinsically large susceptibility is However, it failed to predict the Hopf bifurcation to TWs and
supplemented by the very small thicknesf the cells used the subcritical nature of the bifurcation which were observed
in EC, which(compared to RBCenhance$ by yet another over some parameter rang¢5,30—-36. This motivated
order of magnitude. As mentioned above, it was shown alTreiber and Krame[37] to extend the SM by introducing a
ready a decade ago that it was possible to visualize the fluaweak-electrolyte mode[WEM). The WEM includes the
tuating convective patches and to measure their amplitudedissociation-recombination reaction of the ionic dopant in
below onset by using the NLC Kp-methoxybenzylidenep-  the sample. It correctly predicts the Hopf bifurcation to TWs
butylaniline(MBBA) [5]. Consistency with semiquantitative in good agreement with experiments in 1528] and MPV
considerations based on LT was found. These findings ha&9]. It yields a Ginzburg-Landau equation like Ed,), but
been confirmed more recently by additional measurementhe correlation-length componenfs are supplemented by
using “Merck Phase V'(MPV) [21] and 4-ethyl-2-fluoro- additive imaginary terms.
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In previous work a one-dimensional Lorentzian functionthermal fluctuations in Fourier space and present a
was fitted to an azimuthal average of the experimentalwo-dimensional analysis of the Fourier peaks using
structure-factor data. For thermal fluctuations in I&2e the two-dimensional structure factbrcorresponding to Eq.
Refs.[22—24) a good fit was obtainedsee Fig. 3 in Ref. (1) [29]. Since the data are time averaged and contain no
[23]) even though the system does not have the rotationdrequency information, we used the integrallafk, ») over
symmetry that would justify an azimuthal average. Thethe frequenciesw. The integral causes all imaginary
analysis yielded an average wave number and correlatiosontributions to vanish, and the structure function is then
length. In the present paper we extend the analysis of thgiven by

L(kx aky): SO . (2)

5)2(0( kx_ kx0)2+ 532/0( ky_ ky0)2+ fiyo( kx_ kxO)(ky_ kyO) te

Using this two-dimensional fitting function has the advan-for results reported iria) Sec. 11l A and(b) Secs. Il B and
tage that the components of the dominant wave vector of th#l C is as follows. In(a) we tookT= 1024 single horizontal
patternk,, and ko and the correlation-length components lines with a width ofX=256 pixels and a rate of 30 Hz and
§x0y €yor @nd§, o are accessible separately. assembled them into space-time images for each voltage. In

In the next section we describe the experimental methodg&) we took 128 images at 10 s intervals with the dimensions
used in our experiments. Next, in Sec. Il A, we present newof 256X 256 pixels for each voltage.
data for the temporal behavior of the thermal fluctuations. For calibrating the intensity of our shadowgraph signal we
Then, in Secs. Il B and Ill C, we give a reanalysis of thetook (a) a space-time image for results reported in Sec. Ill A
structure-factor data for several conductivities of 152 thator (b) 128 images 10 s apart for results reported in Sec. Il B
were previously used in Ref24]. In Sec. lll B we present without applying a voltage and before starting a run. This
results for the mean wave vector, and the data for thavas done first with a glass filt¢¥42] inserted into the filter
correlation-length components are given in Sec. Il C. Fi-slot of the tungsten-halogen light source and second without
nally, in Sec. IV we summarize our results and give a briefa filter. The mean intensity of the averaged images with and
outlook on remaining problems. without filter was later used for calculating the zero offset of
the frame grabber.

After the calibration was done and the conductivity was
measured we increased the applied alternating voltage ampli-

For the experiments reported here we used the same apude V in small steps. The alternating voltage had a fre-
paratus and the same NLC cell-assembly technique as dguency of 25 Hz. At eaclV we waited 110 s. During this
scribed in Ref[23]. The only difference is that we replaced time we measured/ ten times to obtain an average value.
the light source by a tungsten-halogen light soid@] to  Finally we took(a) a space-time image @b) 128 images 10
obtain better long-time stability of the light intensity. The s apart.
following steps were taken to prepare the electroconvection For results reported in Sec. Ill A the temperature was
cell. First, the NLC 152 was doped with 4.27% by weight of 50°C, which resulted in a conductivity ofr=5.94
molecular iodine. The mixture was then stored for 28 days a 10" ° Q~*m™1. In Sec. lll B the temperature and thus the
a temperature of about 50 °C. Next, the cell was assemblecbnductivity was changed to investigate the influencerof
and filled, obtaining a sample with planar alignment. Finally,on the fluctuations. We used(i) 38°C,o=5.16
the cell was sealed and stored at room temperature for abowt10°° Q" *m™1, (ii) 42°C,0=6.36x10"° Q 'm1,

8 months[41]. The cell had a thickness af=28+1 um  (iii) 46°C,o=7.76x10° Q" 'm™?, (iv) 50°C, 0=9.51
and, in units of its thickness, had dimensions of 6.4x10°° QO 'm™! (see also Table I in Ref24)).
X 10°:7.0x10°:1.

We kept the cell in a state of turbulent convection for
about 9 days to allow for a homogeneous distribution of
iodine in the cell before starting the experiments. For the |n the next subsection we report on the temporal behavior
different runs we changed the conductivityof the NLC by of the thermal fluctuations, and then in Sec. Il B on the

varying the temperature. The conductivity was measured at @ependence of the structure factor on the conductivity.
frequency of 50 Hz and at a voltage of 2.0 V right before and

after an experimental run. Measurementsooét 64°C and
over a time period of about 400 h showed that the conduc-
tivity dropped slowly over time at a rate of 7.2 Figure Xa) shows the spatiotemporal evolution of the
X101 O " tm tday l. thermal fluctuations foe=—2x10 . Each single line is
The only difference between the experimental proceduredivided by a background line which consists of an average of

Il. EXPERIMENTAL METHODS

IIl. EXPERIMENTAL RESULTS

A. Temporal structure of the fluctuations
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FIG. 2. Spatiotemporal evolution of the right- and left-traveling
kx wave for differente. (@) e=—1.25x1072; (b) e=—2%x10"%; and

(c) e=1x10“ The images are background divided and Fourier
filtered. The horizontal axis represents thexis and is parallel to
the director. In this direction the image has a size of 50@. The
vertical axis is the time axis. Top i0 s and bottom is 34.3 s.

FIG. 1. (a) Spatiotemporal evolution of the thermal fluctuations space. This can be seen in Figéb):1(d) which show the
for e=—2Xx 107 The image is background divided. The horizon- structure factor$(k, ,f) after applying the Fourier filter and
tal axis represents theaxis and is parallel to the director. In this for different values ofe. The four main peaks in Figs.
direction the image has a size of 5Q2m. The vertical axis is the 1(b)—1(d) are the two pairs of right- and left-traveling waves.
time axis. Top$ 0 s and bottom is 34.3 &), (c), and(d) are the After applying the filter in Fourier space we transformed
central parts_(—l_l.ZUstsll.ZU and —14.0 Hz=f<14.0 Hz) the images back to real space. Figurés) 2nd 2b) show
of the Fourier-filtered structure factor§(ky f). (b) €==1.25  gyamples below the onset while FigcRis an example right
X104 (c) e=—2X10 % and(d) e=1x10 *. above the onset of convection. The two images below the
all the 1024 lines of the space-time image. Note that in Fig@nSet do not show much of a difference whereas the image

1(a) we cannot distinguish between zig and zag modes be@bove onset reveals that the right- and left-traveling waves
re more ordered. The remaining disorder §or0 is due to

cause only a single line parallel to the director is used. Ine;‘ X | ch f th B he riah
order to obtain the onset voltayk we followed the method the spatiotemporal chaos of the pattern. Because the right-

described in Refg23] and[24] and performed a multimode 2nd |€ft-TWs are superimposed in these images, we sup-
analysis which was adapted to the space-time images: essed th? nght-tr_avellng one in Fourier space, aIIOW|_ng _for

~ ~ . a better visualization of the left-traveling wave. This is
calculatedl;(x,e)=1;(x,€)/1y(x,e)—1 for each horizontal

~ shown in Fig. 3.
line 1i(x,e), i=1,...,1024. Hereis the coordinate inreal  For extracting the Hopf frequenay and the exponential
space parallel to the director, ang(x,€) is a background decay time r we calculated the autostructure function
line obtained by averaging 1024 lines at the samieor each S, (At). We choseS,(At) instead of the autocorrelation
li(x,e) we derived the structure factdthe square of the function for reasons discussed in Regf4]. The autostructure
modulus of the Fourier transfopns;(k,,€) and averaged function is given by
1024 S;(ky,€) to get S(ky,€). Herek, is the wave-vector
component in the direction of the director. We computed the 1
total power under the peak &k,) as described ifi23], and S(Ay)= AIZO X(T—At)
then converted it t¢62) [43] [see also Eq5) in [23]]. Since
the primary bifurcation is supercritical the points above onset 5
follow a square-root law. A square-root fit above onset for X i_EO tZO [I(xH)—1(x,t+AD]5 (3
134.711 <V?<135.027 \f gaveV2=134.6 \2. - -

Because the background divided space-time imagewhereX=256 is the dimension of thg axis andT=1024
showed high-frequency noise we applied a filter in Fourierthe dimension of the time domain in pixels.

T2-1

X-=1 T-At-1
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FIG. 5. (&) The Hopf frequencyw as a function ofe for mea-
FIG. 3. Spatiotemporal evolution of the left-traveling wave for sureme_nts below_the onset. The dashed line is the average of all
differer;t 6’ (@ e=—1.25¢10°2 (b) e=—2x10"* and(c) e=1 data points and gives 1.48‘_35 (b) The inverse of the exponential

o ) ' - ’ L decay length X as a function ofe for measurements below the

X 10" *. The images are background divided and Fourier f'ltered'onset.
The right-traveling wave is suppressed in Fourier space. The hori-
zontal axis represents theaxis and is parallel to the director. In this
direction the image has a size of 5Q2m. The vertical axis is the

time axis. Top $ 0 s and bottom is 34.3 s.

give a good estimate fan. As can be seen from the figures,
the oscillation frequency of the data and the fitted function is
essentially the same. The results foare not as good; they
correspond to the decay rate of the envelope of the oscilla-
tions in the figures. However, a semiquantitative estimate is
still obtained from the fits.

S (At) =S, ()[1—cog wAt)exp —At/7)] (4) Both w and 7 are given in Fig. 5 as a function ef It is

seen thatw is constant within our resolution and has an

to the data are given by the solid lines in the figures. As camveraged value of 1.48~$. According to mean-field theory
be seen, the data for the longer time delays are not describefle inverse of the exponential decay length should go to 0 at
very well by Eq.(4). Most likely the statistics of the runs is ¢.=0 (or e= —4.6x10 ?) as
not sufficient. Note that the amount of image data at esish
only 1/32 of the amount taken for the results presented in lr=¢€l1q. )
Ref.[24] and in Sec. Ill B. More work with better statistics

would be desirable. Nonetheless, the fits to §At) data All our data are in the critical region beyond the mean-field
' onset. There they tend toward a constant value close to

In Fig. 4 S (At) is shown for a right-traveling and a left-
traveling wave. Fits of the function

2 , : : 0.2 state=0.
@ Measurements of based on the time correlation of fluc-
tuations below onset were made before by Winlkéeral.
i 1 [45]. These authors used the NLC MBBA. Their measure-

ments were fore< —0.03, and in that parameter range they
' found consistency with linear theory in the sense that their
2 ‘ ‘ " data could be described by E@). However, the values for

(®) 7o derived from their data were larger than a theoretical es-
timate [25] by nearly a factor of 2. So far as we know this
disagreement with linear theory remains unexplained.

105 Auto-structure Function
L ]

00 2 :1 é 8 10 B. The wave vector of the fluctuations

Time del . . . .
ime delay () In this section we present spatially extended and time-

FIG. 4. The autostructure functid® (At) for a right-traveling ~ averaged results for the fluctuations as a function of the con-
(@ and a left-traveling(b) wave for e=—1.25x10 2. The solid  ductivity and ofe. We use the same experimental data as
line shows a fit of Eq(4) to the datalopen circle presented in Refl.24] for 152. While Ref.[24] emphasized
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FIG. 6. The background divided and Fourier-filtered snapshots
of size 50X 502 um? atc=7.8x10°Q tm 1. (a) e=—0.320;
(b) e=—0.104; (c) e=—0.011; (d) e=—0.001. The director is
horizontal.

the dependence of the mean-square director-angle fluctua-
tions (#%) on e and showed that there are deviations from
mean-field theory as the onset of convection is approached,
we focus here on the dependence of the components of the ky‘ h
mean wave number and of the correlation length by fitting a (g) ( )
two-dimensional Lorentzian function to the structure factors.

A . i “ ‘ i
Figure 6 shows four examples of single snapshots at dif- ’
ferent e and for c=7.8x10 °Q "tm~1. Far below onset Kx
[Fig. 6(a)] the patterns are very weak. However, dividing by L ¢ ' '

a background image, Fourier filtering, and using the full
available gray scale uncovers the expected zig and zag
modes. The patches grow asis increasedFigs. b) and
6(c)]. Very close to onsefFig. 6(d)] a pattern containing FIG. 7. The central parts 11.26=<k, ,k,<11.24 of the time-
extended patches of zig and zag rolls is found. averaged structure factogk) [(a),(c),(e),(g)] and the correspond-
For visualizing the structure factorS(k,e) [see Figs. ing visualization of the two-dimensional least-squares fit of &.
7(a), 7(c), 7(e), and 1g)], wherek=(ky.k,) is the wave to the datd[(b),(d),(),(h)]. (a),(b) e=—0.320_;(c),(d)_ e=—_0.104;
vector, we first calculated, (x, ) ETi(X,e)/TO(X, €)—1 for (e),(f) e=—0.011;(g),(h) e=—0.001. The director is horizontal.

each .|magel.i(x,e), =1, = 128, Herex=(x,y) arg the contains the experimental noise. To a good approximation
coordinates in real space ahg(x,€) is a background image the packground was seen from experiment to increase expo-

obtained by averaging 128 images at the sam&or each  pentially with k, and to be independent &, . Thus we
li(x,€) we derived the structure fact§(k, €) (the square of hose

the modulus of the Fourier transfoynand averaged 128
Si(k,€) to getS(k,€). Figures Ta), 7(c), 7(e), and 7g) show
two pairs of peaks corresponding to two sets of rolls oriented
obliquely to the director which get sharper and larger as we
approach the onset of convection. These observations are Y#herea andb are fitting parameters that depend only slightly
agreement with those reported in Ref@1-23. The two OnN €. The termL(k,€) is the two-dimensional Lorentzian
modes are called zig and zag modes and correspond to thoB#ction given by Eq.(2). There Sy/e is the maximum

B(ky ,€)=aexp(bk,), (7)

of the extended chaos above on@j{]_ height of the function at the pOSitiOhOZ(kxo,kyo) and
Instead of the multimode analysis presented in R&4],  &xo.&yo. and &, are the components of the correlation
we fitted a two-dimensional function length. Usually the mean wave number of a pattern is defined
as the first moment of the distribution function of the Fourier
S(k,€)=L(k,e)+B(ky,€) (6)  peak. This is not possible here because ®j.is not inte-

grable and there is no first moment. Thus in the following we
to the experimental data for the structure factors. Hergefer tok, as the mean wave number. For the purpose of
B(ky,€) is a one-dimensional background function which fitting we used

051101-6



TEMPORAL AND SPATIAL PROPERTIES 6. .. PHYSICAL REVIEW E 65 051101

So
L(ky,ky)= )
U ko) £y~ kyo) 5y (kKo (Ky— kyo) 1
|
with Sy=Sy/e and &,= &qo/ €2 for n=x,y, andxy. where we summed over an area 0f 9 pixels withS,, at

A two-dimensional nonlinear least-squares fitting routinethe center. Comparing the values foras a function of for
was used to fis(k,€) =L (K, e) +B(ky, €) to the experimen- the two different methods showed that they are in good
tal data. In Fig. 7 we compare the experimental time-agreement for values close to the onset. For values far below
averaged structure factors with the corresponding visualizsthe onset there is only a reasonable agreement because here
tion of the fitting results. The left column shows the the background is significant and the peaks are much broader
experimental data and the right column gives the simulatedhan the 9<9 pixels used in the second method. Hence we
S(k,€). The simulated images of the structure factors agre@btainedk, from the second method when the method of
well with the experimenta| data. Takmg difference imagesﬁtting the two-dimensional Lorentzian failed, i.e., very close
between the experimental and the simulated images did né@ and above the onset. Unfortunately the second method
reveal any significant systematic deviations. does not give results for the correlation lengths.

Very close to and above onset our two-dimensional fitting We found within our resolution that the zig and zag
procedure failed because the peaks became too narrow aftPdes gave equivalent results for the fitting parameters.
consisted of only a few pixels. Therefore we chose a differ-Thus, in the following we give only the averages over these
ent procedure to extract the coordinakgs- (K,o,Kyo) of the ~ two modes. In Fig. 8 we show the coordinatég
peak. We first detected the maximum vaBig,(k) of S(k) = (Kxo.kyo) of the peak of the fitted Lorentzian function for
in the quadrank,>0, k,>0 for the zig mode ok,>0,k,  0=7.8X 10—99_1m__1 and as a function ok. For e very
<0 for the zag mode and foB(k,)<Sn.(k) (the latter far from the onset it is seen thky, is smaller tharky,. For

condition was only important fos far below the onsg¢tNext ~ €= —0.092 both components have an equal value. Closer to
we calculated the onset and above we dg> Kyo.

In the lower part of Fig. 8 the region very close to onset is
shown on an expanded horizontal scale. One seeskipat

kno=z S(kn)kn/E S(ky),N=X,Y, (9) andk,, are continuous a¢=0, although they seem to have
a mild singularity.

An interesting property is the angle of obliquengsof
the rolls, which is defined a8 = arctank/k,o). First, in Fig.
9, we look at the ratick,,/k,o as a function ofe for o
=7.8x10 °Q " tm™ 1. We fitted the data in three ways. First,
a straight line

kxo. kyo (17d)

kyolkxoza0(1+ a]_E) (10)

0.8 b . . s . .
03 -025 -02 -045 -01 -005 O
€

FIG. 9. The ratio between the components of the mean wave
vectorkyo /Ky for ¢=7.8x10"°Q"*m™* as a function ofe. The
double-dotted double-dashed lineet —8.8x 102 gives the up-

FIG. 8. The componentsk{q,k,o) of the mean wave vectdq, per limit of the region that was used in Fig. 2 of Rg4] for fitting
for 0=7.8x10"°Q0"*m™? as a function ofe. Open circlesk,p. in the mean-field region. The solid line is a straight-line fit to the
Solid squaresk,,. The data are averages for the zig and the zagdata in the mean-field region, the dashed curve is a power-law fit to
modes. The solid curves are fits to a power law. The lower figurghe data in the mean-field region, and the dotted line is a power-law
gives an expanded view of the data close to the transition. fit to the data fore<0.

-0.015 -0.01 -0005 O 0.005 0.01
€
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TABLE I. Parameters obtained from fits of Eq$0) and(11) to

the ratiokyq /Ky for different conductivitiess. 0.9
1000 0.85
(Q tm™Y 516 636 7.76 9.51 Average )
£ 08
ag 0.866 0.879 0.880 0.868 0.80.01 ®
a; -148 -1.50 -1.56 -1.57 -1.530.05 0.75
a, 0.818 0.829 0.820 0.815 0.8D.01 N
ag 116 120 126 124  1.220.04 07} 8l
a, 0.834 0.828 0.821 0.819 0.83.03 03 025 02 015 01 005 0

€

FIG. 10. The angle of obliqueneds as a function ofe. Each
was used in the mean-field region. For the mean-field regioflata point is the result of averaging over all four different conduc-
we used the same range ofas was used for the fits in Fig. tivities and over a rangée=1.5x 10",

2 of Ref.[24]. The upper limit of this region is marked by a

vertical double-dotted double-dashed line in Fig. 9, and the For fitting the data we followed the approach for fitting
fit is given as a solid straight line. It yieldea,=0.88 and  the kyo/kyo data: First, we used a straight-line fit in the
a;=—1.37. A second fit was a power law mean-field region,

k02b0(1+ blf), (12)
kyolkxoza2+ a3|6|a4 (11)
and second a power-law fit for the whole regionesf 0,

for data with e<0 (dotted line in Fig. 9 and gavea, Ko=b,+ b ], (13)
=0.82,a3=1.26, anda,=0.82. Finally, for comparison we
fitted a power law in the mean-field range ortlashed line

in Fig. 9 and obtainedyy/kyo=0.79+1.2€[*"2 The three
fits do not show any significant difference in the mean-field
region. However, for values in the critical region the two
fitting functions deviate from each other. From a theoretical

point of view a straight-line fit is favored in the mean-field C. The correlation length of the fluctuations
region. The deviations of the experimental data from the From linear theory it is expected that
straight line show thak,q/k,o deviates from LT, i.e., that it

Table Il summarizes the results for the fitting parameters for
different conductivities. We found that the fitting parameter
depends on the conductivity.

is influenced by nonlinear fluctuation interactions; but the En=Eno(e) 2 (14)
good fit obtained with the power law fe<<0 and the result-
ing exponent remain to be explained. with n=x,y, or xy. The amplitudes, o are expected to be

We performed straight-line fits in the mean-field regionregular functions ok, i.e., they should be essentially linear
and power-law fits for the whole region for four different in .
runs with different conductivities. Table | shows the results
ag,a;,a,,a3, and a, as a function of the conductivity.
Within their uncertaintie$which are omitted in the tablell
five fitting values are independent @fand can be averaged.

Finally, we present the dependence of the angle of ob-
liqueness ore in Fig. 10. Here we averaged the data of all
four different conductivities contained within a window cov-
ering ane range de=1.5x 10 2. The two fits, namely, the
straight-line fit in the mean-field region and the power-law fit
in the whole region, based on parameters in the last column
of Table |, are plotted. The fits suggest a critical angle of . . . . . .
obliqueness at onset a¥,=0.72 rad for the extrapolation 03 -025 -02 -0.15 -0.1 -0.05 0
from the mean-field fit and of};=0.69 rad for the power- e
law fit.

FIG. 11. The modulus of the wave vectay as a function ofe
Next we calculated the modulus of the mean wave vector . S ; .
and for different conductivitieso. Open circles: 0=5.2

ko= K%+ kyzO as a function ofe and for different conduc- y 15-9 -1 m-1. solid squareso=6.4<10"9 O~'m~L. Open
tivities . Unlike the angle of obliqueness, we see in Fig. 1lgjangles ¢=7.8x10°Q *m % Solid diamonds: o=9.5
thatk, depends on the conductivity, being somewhat larger 10-9 0~ m~1. The solid lines are straight-line fits to the data in
at lower conductivity. We found thdt, decreases with in- the mean-field region. The dashed curves are power-law fits to the
creasinge. data fore<0.
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0.4 5 TABLE lIl. Parameters obtained from fitting Eq15) to the
3 correlation-length amplitudes in the mean-field region.
10°
a(Q Im™Y 5.16 6.36 7.76 9.51
£.0(0) 0.258 0.288 0.299 0.302
£,0(0) 0.129 0.134 0.145 0.136
£4y0(0) 0.149 0.153 0.164 0.152
Cy -1.11 —-0.97 —-0.77 -0.79
Cy —2.48 —2.54 —1.59 —-1.83
Cxy —2.55 —2.65 —1.87 —2.24

data apparently assumed that the are e independent over
a wide € range.

Here we report our results for 152 which were obtained
from the fits of Eq.(8) to the two-dimensional structure fac-
tor discussed in the previous section. This fit gives the three
correlation-length component§, ,§,, and §,,. Figure 12
shows the three amplitudes for different conductivities. In
the mean-field region they decrease linearly and can be fitted
by straight lines:

&no(€) = &no(0)(1+Cpe). (15
-0'_3 -0_'25 -0'_2 -0_'1 5 .0'_1 -0_'05 0 In Table IIl the resulting parameters are listed. One sees that
e &n0 Increases slightly witho. The absolute values of the

coefficientsc,, are of order unity, as expected for a regular

FIG. 12. The amplitudes of the correlation lengths &4, (b) function of e

,and(c as functions of and for different conductivities-. ” . . .
éy;en c(ir)cl%sy?a=5 2¢10°°0 'm-*. Solid squares:c—6.4 In the critical region the data deviate from the straight

X109 Tm~. Open triangles:c=7.8x10"°Q *m~L. Solid lines, and thus from linear theory. There they are better de-

diamondsio=9.5x 10-°0 1 m~L. The solid lines are straight-line SCfibed by a power law:
fits of the data in the mean-field region. The dashed curves are
power-law fits to the data in the critical region. Eno(€)= Eni(— )~ =12, (16)
Fluctuations below onset were used before to study thdhe parameters obtained from fitting this function to the data
correlation-length components of EC in NLCs byrHer and  are given in Table IV. One sees thgh ,£,,, andé,y, do not
Rehberg[46,21. These authors investigated the materialsdepend noticeably onr, but that the exponents, decrease
MBBA [46] and Merck Phase \f21]. For MBBA in a  with increasing conductivities. This is somewhat surprising
normal-roll parameter range they found that their datagfor since exponents are usually universal; but we do not really
and¢, could be described well by E¢14) with &, 5andé,,  believe that the data are good enough to unambiguously
independent ot and somewhat smaller than theoretical val-identify a critical region in which the fit should be carried out
ues based on linear theof®5] (for normal rolls there is no and to determine the critical parameters reliably. They do,
&4y). The measurements for Phase V were more detailelowever, indicate that has a value less than its mean-field
[21], and particularly foré, deviations from linear theory value 1/2.

were detected near onset, although the interpretation of the
TABLE IV. Parameters obtained from fitting Eq16) to the

TABLE Il. Parameters obtained from fits of Eq4.2) and (13 correlation-length amplitudes in the critical region.
to the modulus, of the wave vector for different conductivities

10
10% QtmY 516 6.36 7.76 9.51 Average
11
S >16 6.36 r.re 951 & 0.407 0.398 0.374 0.382 0.39.04
bo 5.62 5.50 5.40 5.31 &y 0.223 0.220 0.171 0.161 0.19.04
b, -0.24 -0.29 -0.31 -0.32 Ean 0.302 0.283 0.302 0.286 0.29.06
b, 5.24 5.18 5.09 5.02 vy 035 039 043 044 —
bs 1.30 1.47 1.54 1.54 vy 034 037 046 032 —
b, 0.421 0.509 0.540 0.552 Vyy 028 032 032 034 —
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k TABLE V. Parameters obtained from fitting an equation like Eq.
=\ v (15) to the correlation-length amplitude€g, and &, in the mean-
ky \ field region.
< 100
; Tk (0O tm™Y 5.16 6.36 7.76 9.51
-
a £.0(0) 0.260 0.288 0.302 0.304
_ £00(0) 0.123 0.130 0.138 0.132
k, Ca -133 -118 -0.88 -0.91
Cp —1.84 —1.88 —1.22 —1.36
term vanishes. The transformation is illustrated in Fig. 13.
In polar coordinatesr( ¢) one now has

So
2r2cod(o—a)+ Er%sirf(p—a)+1

L(r,o—a)= 17

FIG. 13. lllustration of the coordinate transformation:k. The
rotation angle is given bw. The ellipse is a result of a cut through
the Lorentzian peak parallel to thé,(k,) plane at the height of

for the Lorentzian function. As seen in Fig. 1Bandb now
S(k) = S(kxo ,Ky0)/2.

denote the axes of the ellipse. Fotk,,k,)=5,/2 one has
A cut through the structure factofsee, e.g., Fig. jpar- ~ @= 1/ andb=1/§,. For&,, &,, anda one obtains
allel to the k) plane yields an elliptical area. However,

due to the cross term (ky— kyo) (k,—kyo) in the denomi- Eap=(UD[E+ E7EN(E— £+ &y (18)
nator of Eq.(8) the two axes of the eIIipse are not parallel to d

thek, andk, axes. In order to study the angle of inclination

a of the ellipse, we shifted the origin to the center of the 2o (£2—¢2)2

peak, yielding new coordinateﬁ)(,~ky). Then we carried out @y = arcta{% 22X YT 4 q. (19)
a rotation through an anglke so as to align the axes of the ’ Xy §Xy

coordinate e system with the axes of the ellipse, yielding co-

ordinates k, ,k,). This alignment is achieved when the cross The anglea, () aligns thek,(k,) axis with thea axis of
the ellipse(see Fig. 1R In the following we chosex= «; as

our rotation axis.

* !
04T %% i The Lorentzian function Eq(17) now contains three
i transformed parameters, namely, the correlation lengihs
Sosl i | and &, and the rotation angle. The correlation-length am-
o plitudes &,0=&,(— €)*? and &po= &,(— €)*2 are shown in
i o Fig. 14 as a function ok. As one would expect, we find

behavior similar to that of the amplitudégy, §,0, and &xyo-
In the mean-field regioi,, and &,, decrease linearly with
increasinge. In the critical region the data can be described
by a power law. Tables V and VI show the dependences of
the fitting parameters on the conductivity.

Figure 15 illustrates the dependence of the rotation angle
a on e ando. We note thawr and the angle of obliqueness
of the rolls(see Fig. 1Dare two unrelated quantities. Indeed,

TABLE VI. Parameters obtained from fitting an equation like
Eq. (16) to the correlation-length amplitudeg,, and &, in the
critical region.

-0.15

-0.2

-0.25

-0.3 -0.1 -005 0
€
10°0

FIG. 14. The amplitude of the transformed correlation lengths (O~ m™1) 5.16 6.36 7.76 9.51 Average
(a) &,0 and(b) &, as a function ok and for different conductivities
o. Open circles:c=5.2x10"°Q " *m™1. Solid squaresv=6.4 a1 0.423 0410 0.386 0.390 0.40+0.04
Xx107°Q"*m™!, Open triangles:.c=7.8x10"°Q "t m~1. Solid Ep1 0.199 0.186 0.154 0.146 0.17+0.04
diamonds:e=9.5x10"°Q "t m™1. The solid lines are straight-line vy 034 038 043 044
fits to the data in the mean-field region. The dashed curves are  y, 0.36 0.40 0.48 0.50

power-law fits to the data in the critical region.
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0.9

0.88

0.86

0.84

Eccentricity e

0.82

08r 11

-03 -025 -02 -015 -0.1 -0.05
€

0 ‘ L L ‘ L L
-03 -025 -02 -0.15 -0.1 -0.05
€

FIG. 15. The rotation angle as a function of and for different FIG. 16. The eccentricitg as a function ofe and for different
conductivities . Open circles:c=5.2x10"9 Q" 1m~1. Solid conductivities o. Open circles:0=5.2x10"? Q~"*m~*. Solid
squares: c=6.4x10°0 'm ! Open triangles: c=7.8 squares: c=6.4x 10°Q *ml. Open triangles: ¢=7.8
% 10*9 Qfl mfl. Solid diamonds:o=9.5x 1079 Q,]_ m*l. The X 10_9 Q_l m_l. Solid diamondsio=9.5% 10_9 Q_l m_l. The

solid lines are straight-line fits to the data in the mean-field region$0lid lines are straight-line fits to the data in the mean-field region.

o koo 98
o

a is much smaller thar® over the entires range. One sees IV. SUMMARY AND OUTLOOK
that @ decreases slightly with increasing. The rotation

. s = . We presented two different sets of measurements. The
angle decreases linearly with increasiagn the mean-field

first consisted of an experimental run at an intermediate con-

region andd also somewh_af[ clolser to honset. Eﬁ%ma ductivity where the primary bifurcation to electroconvection
s_eelmbs to edcreasehpremﬁnous y’I per aps(,j towar zehEo t‘?tis supercritical. The temporal behavior of thermal fluctua-
=0; but we do not have the resolution to determine the beg o pejow the onset but only in the critical region was

havior very clo_se to onset with certainty. We note also thaﬁnvestigated by taking and analyzing space-time images. The
the determination ol becomes more difficult at smal 5.6 coordinate was parallel to the director. Within our reso-
since the_ Lorentzian peak becomes more narrow. We fitted Rition the Hopf frequency was independent oaand had a
straight line value of 1.48 5. The correlation timer was determined
only semiquantitatively because data with adequate statistics
could not be obtained within the scope of this work. How-
ever, it appears that #/remains finite atte=0, contrary to
expectations based on LT.

The second set of measurements consisted of the 152 data
presented in Ref.24], where images of the fluctuations far
below and very close to onset were taken for four different
_ conductivities covering a wide range of over which the

e=\1-a%b’= \/1—§§/§§. (22 primary bifurcation to electroconvection is supercritical. In
Ref. [24], the focus was on the mean-square director-angle
Figure 16 gives the dependenceeddn € ando. We observe fluctuations, and it was demonstrated that there are devia-
that e increases with increasing in the mean-field region tions from LT as the onset is approached. Here we analyzed
where a straight line the components of the mean wave vector and the correlation
length. To do so we used a two-dimensional Lorentzian func-

e=ey(l+ege) (22) tion to fit the data, instead of fitting a one-dimensional

Lorentzian function to the azimuthally averaged structure

describes the datesee Table VIII for values o, ande;).  factors as was done befol22,23.

This means that the ellipse becomes more elliptic as we in- We showed that the ratig,o/ky of the wave vector com-
creasee in the mean-field region. However, as we get closePonents is a linear function af in the mean-field region. In
to the onset the value of drops, i.e., the ellipse becomes the critical region there are deviations from the straight line,
more circular although the eccentricity remains pronounced@nd a power law provides an excellent fit for all the data. The

a=d0(1+d16) (20)

to the data in the mean-field region for different conductivi-
ties and give the parameters in Table VII.

Another property to look at is the eccentricity of the el-
lipse as a function ot ando. It is defined as

TABLE VII. Parameters obtained by fitting E¢RO) to the data TABLE VIIl. Parameters obtained by fitting E¢R2) to the data
for the rotation anglex in the mean-field region. for the eccentricitye in the mean-field region.
10°¢ 1000
(Q tm™Y 5.16 6.36 7.76 9.51 QtmY 5.16 6.36 7.76 9.51
do (rad 0.219 0.178 0.192 0.156 ey (rad 0.878 0.890 0.888 0.899
d; —2.76 —3.66 -2.19 —3.02 e, 0.10 0.13 0.07 0.08
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angle of obliqueness of the rolls is given by  The center of the peak shifts from a larger to a smaller angle
=tan*1(ky0/kxo). Well below onset, neae=—0.3, it is as  Of obliqgueness and the wavelength of the pattern becomes
large as 52°. It decreases as the onset is approached, aldéger. More subtle is the fact that the tilt of the Fourier peak
close to onset is near 40°. We also found thais indepen- becomes smaller and the eccentricity of its cross section be-
dent of o. The modulusk, of the wave vector decreased comes larger in the mean-field region; but both drop in the
linearly with increasinge in the mean-field region, and de- critical zone.
creased more rapidly in the critical zone. The modulus de- Finally, we remark that much remains to be done in the
creased mildly with increasing. sFudy qf n.onIinear fluctuations in EC. From the theoretical
With increasinge the three amplitudegyo, &,0, and &,y viewpoint it would t_>e usefu! to obFaln guantitative data for a
of the correlation length decreased linearly in the mean-fiel@ystem with a stationary bifurcation. In that case the usual
region and more rapidly in the critical region. In the critical *énormalization-group methods, which assume the existence
region a power law provided an excellent fit. The amplitude<Cf @ potential for the deterministic system, would be more
of the correlation lengths vary only slightly with. readily applicable. In order to explorg the richness c_)f phe-
The cross section of the structure factor parallel to the’omena that occur in these systems, it would be desirable to
k.—k, plane has an elliptical shape. The miriotajon axis study systems with different symmetries. Obvious candidates
are oblique and normal rolls, that may belong to different

E(E) of the ellipse is rotated relative to tikg(k,) axis by an ; . .
anglea. We determined the correlation lengthisand &, in unlvelrs.a!|ty classgs. The crossover from one to the (_)ther, n
' b the vicinity of a Lifshitz point, would be particularly inter-

the direction of thea andb axes, as well as the angle As esting.

expected, the behavior &, and ¢, was qualitatively similar

to that of ¢, and §,. The anglea was near 17°, i.e., much

smal!er than. the angle of obhque_na%slt decreaseq _shghtly ACKNOWLEDGMENTS
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