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Trapping reaction with mobile traps

Vishal Mehra and Peter Grassberger

RAPID COMMUNICATIONS

John-von-Neumann Institute for Computing, ForschungszentriichJiD-52425 Jlich, Germany

(Received 8 November 2001; published 17 May 2002

We present the Monte Carlo results for the two-species trapping reactid®— B with diffusing A andB
on lattices in one, two, and three dimensions. We use an algorithm that permits one to simulate the survival
probabilities ofA particles down to< 10~ 2° with high accuracy. The results for the survival probability agree
much better with the exact asymptotic predictions of Bramson and Lebfiitzs. Rev. Lett61, 2397(1988 |
than with the heuristics of Kang and Redfér Phys. Al7, L451 (1984 ]. But there are very large deviations
from either, which show that even these simulations are far from asymptotia. This is supported by the rms
displacement oA particles, which clearly shows that the asymptotic regime has not been reached, at least for

d=2 andd=3.
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Even the simplest reaction diffusion systems with only Verifying Eq. (1) numerically has turned out to be about
two-body reactions and without particle production showas difficult as verifying the Donsker-Varadhan stretched ex-
very rich and not yet fully understood phenomena. One proponential. The first simulations @+ B— B with mobile B
totype is the absorption of diffusing particles on randomlywere done by Redner and Kafitf]. These agreed with their
located static sinks. This model, studied first by Smolu-own heuristic asymptoticBvhich differ from the exact Eq.
chowski nearly a hundred years add, shows an exponen- (1) by the absence of the logarithm fd=2]. Subsequent
tial decrease of the particle density in mean field theory, busimulations[11,12 were judged even by the authors as in-
the exact asymptotic behavior found by Donsker andconclusive. The main problem seems to be that there are
Varadhan[2] is a stretched exponential in any finite dimen- large finite time corrections to the asymptotic behavior. Thus

sion d. Another classic example, the recombinatidr- A
—A, was studied by Fellef3]. It leads tony,~t~Y?in d
=1, as compared to the mean field solutiog~t~* which

holds ford>2.

Particle annihilation with two mobile species and B,
either of the typeA+B—B or A+B—0, were studied by
Ovchinikov and Zeldovich4] and Toussaint and Wilczek
[5]. The motivation of Ref[5] stemmed from the fate of

one would like to simulate up to very long times. But with
the straightforward approaches used so far it is practically
impossible to estimate the survival probabilities smaller than

~10 8, even with the most powerful present day computers.

It is the purpose of this work to present simulations for
the reactionA+B— B, which go far beyond this. We shall
not give any results foA+B— 0 since our special numerical
methods cannot be applied to that case. More specifically, we

magnetic monopoles in the early universe, but applications teonsider regular latticea on which theB particles perform
condensed matter physics and chemical kinetics are of coursgedependent discrete time random walks: at each time step,
each particle hops with equal chance to one of its two-

more numerous.

If one starts out with equal densities fArand B, n,(0)

=ng(0), then the reactiolM+B—0

This is different from the cases,(0)<ng(0) and A+B

leads ton~t~%4 [5].

dimensional(2D) nearest neighbor#\ particles perform the
same kind of random walks until they hit upoBaarticle in
which case they are instantaneously absorbed. Initial condi-

—B. Notice that the latter is simply related to the limit tions are such that aBs are uncorrelated with homogeneous

na(0)—0 of the reactionA+B—0. If we denote by

concentratiore. SinceA particles do not interact with each

nA(t)|nA(0) the density in theA+B—0 reaction, the one in other, their concentration is irrelevant. In the actual simula-
the A+ B—B reaction is lim Oa_lnA(t)lan (- In both tions we shall use either one or twids in the initial con-
a— A

these cases,<<ng for late times, and one expects identical
asymptotics. This was indeed proven rigorously by Bramso

and Lebowitz[6,7] who obtained 8]

exp(—A\b),

d
na(t)~9 exp—A,t/Int), d
d

exp—Ag4t),

with unknown constanta. 4. In contrast to this, different
asymptotics had been predicted f&r+B—B and for A
+B—0 with ny(0)<ng(0) by Kang and Rednd®,10] by

heuristic arguments.
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figuration. Notice that in this model thB particles act as
catalyzers, and their distribution is Poissonian at any time, if
I?hey start out independently & 0.

Our algorithm is related to an algorithm used recently
[13] for the trapping(Donsker-Varadhanproblem. There we

1
2, (1)
3

v

were able to clarify the crossover from the mean field type to
the stretched exponential behavior. In the present case we
shall see that—despite going to much longer times than in
the earlier simulations—we still do not yet fully understand

the crossover to the Bramson-Lebowitz asymptotics.
The algorithm has several essential ingredients. The first

is that we use clonin¢‘enrichment”) of configurations with
surviving A particles and a biagl4] for the diffusion of A
such that less of them are absorbed. This bias is compensated

by suitably chosen weights, i.e., we always deal with non-
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FIG. 2. The full line represents the mean squared displacement

Ll of the A particle ind=1, forc=0.5. The broken line represents the
T T mean squared distance between tvparticles, when conditioned
06 | e 1 on the the survival of both.
f< simulations was rather poor in comparison with our final
g 03f ! algorithm.
8 Our final ingredient is that we do an exact summation
~ 04l ] over theB paths. This depends crucially on the fact that the
B distribution is Poissonian. The latter is still true for the
conditioned distributior{it would not be true in the reaction
03T | particle —— A+B—0, therefore our method cannot be used for A
' : ki Poisson distribution is uniquely characterized by its mean.
1 10 100 1000 10000 100000

(b) ¢ The evolution of this mean is described by a modified diffu-
sion equation. More precisely, we describe Bheéensity by a
FIG. 1. (@ Semilogarithmic plot of the survival probability in homogeneous backgrourdninus a density(i,t) of holes.
d=1 for c=0.5. The upper curve is for a singleparticle, while ~ The latter is at every time step set equattat the actualA
the lower one is the probability thaith particles of a pair ofA’s position, but otherwise evolves according to the simple dif-
survive, both of which had started at the same site)  fusion equationp(i,t+ 1)=(2d)’12<j,i>p(j 1. Its initial
—t7Yn PA(t) from the same data as in pangl), plotted on a  condition is p(i,0)=0. At each time step thé (which is
logarithmic horizontal scale. assumed to be at si§ has a chance efp(i,t)—c] to be
absorbed, i.e., the weight of the event in the conditioned
trivially weighted ensembles. On the other hand, the simula€NSeémble decreases by a factor[expp(i,t)]. The algorithm
tion is stopped as soon as one of fig is absorbed, or if the US€d in Ref[13] for the trapping problem is just a simplifi-
weight of the configuration is too small. Thus all our resultscation wherg we omit the diffusion of the holes. .
are based orconditional probability distributions condi- i tp]" ?urfsmlﬁlatlgnsd vr\]/ere dofngPoLr; t\./vorkit:lalmons,ltwnh a
tioned on the survival of alA’s. These features are imple- ° af0|| a ﬁw kug fre OUI;S or A tlm'ehtf res‘ﬂj sbwtere
mented by the pruning-cloning-Rosenbluth mettiB&ERM) careilly cnecked for smaf against straightiorward brute

. - I force simulations with the most simple algorithm. In addi-
[15] that is & general growth methddsing “sequential im- 45, “\we also made simulations with algorithms of interme-

portance sampling with resampling” i_n the sense of Ref. iate complexity and efficiency. Fat=1 and 1A particle
[16]) and has been very successful in a large number 0ger configuration, we made, e.g=54 000 configurations,
problems{13,17. _ _ out of which ca. 5000 independent ones survived up to the
Assume that we have a singe(the case fok Aparticles  mayimal timet=30000. In contrast, for brute force and
with k>1 is straightforwargithat has arrived at siteat time  Rosenbluth-Rosenbluthl4] methods we made runs that
t. The fact that we condition on those events wheris not  started altogether with=2x 10° A particles each. But all
absorbed means that there cannot Iead this site. Thus the these particles were gone after a few thousand time steps,
homogeneity of the unconditioned distribution is broken, andmaking these runs much less efficient. For higher dimensions
an effectivehole in the B distribution is introduced. For the statistics were comparable.
times>t this hole makes a random walk. If it meets a hole We first discuss the results fat=1. Here we can use
produced at a time-t, the two recombine. lattices so large that none of the holes ever reaches the
In principle, one could simulate these holes explicitly, i.e.,boundary, thus we have no finite size effects at all. In Fig.
one could simulate th&'’s in a background oB where aB ~ 1(a) we show the survival chancé®,(t) of a singleA par-
[sic] particle is removed each time it hits AnWe indeed did ticle and of a pair of particles that started at the same site.
perform such simulations. They agreed with the straightforfor the latterP,(t) is the probability thaboth particles of
ward simulations not using the PERM or any conditioningthe pair survive. Although these probabilities become as
and were more accurate, but the accuracy of both types afmall as 10, the statistical errors are much smaller than
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FIG. 3. The full line represents-t~in Py(t) for d=2 andc
=0.5; the broken line represents thet™lintin P,(t) from the ) ) .
same data. The horizontal scale is logarithmic, the vertical is lineaSquared distance between twaparticles that started off si-
multaneously at the same site. We see thRtincreases less

the thickness of the lines. The fact tHt for a pair is larger
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FIG. 5. Log-linear plot of—t~1P,(t) for d=3, ¢=0.5.

fast thanR, indicating an effective attraction mediated by the

that the square oP, for a single particle is easily under- B particles. If already oné\ particle has survived in some
stood. If already oné particle has survived in some region, region, there are less than averagparticles in this region,
there are less than averaBeparticles in this region, and the and the second particle will not only survive longer, but it
secondA particle has a bigger survival chance. Theoreticallywill also survive preferentially in a region close to the first
[6,7] we expectP(t)~exp(—consi/t), at least for a single one. But this appears to be a weak effect. The most economic

particle. In Fig. 1b) we thus showt ™ 2n PA(t) on a semi-

conclusion from Fig. 2 is that both curves converge to the

logarithmic scale. Error bars are here).001. Thus the de- same scaling behavioR?>~ (AR)?~t” with »=0.5 to 0.6.
cline for t>1000 is statistically highly significant for both But any determination of a critical index should be taken

curves. Unless we accept that there is an error in R&fg],

with great caution in view of Fig. 1, we should not take any

we have to conclude that at least this decline ofpbehavior seen for<1Q® as reflecting the asymptotic behav-
—t~Y2n PA(t) for a singleA particle is a finitet effect, and  ior.
that the true asymptotic behavior sets intat10*. We also

compared our data with the predictionln Pa(t)~t~ Y4 of

With increasingd, updating p(i,t) becomes more and

more time consuming. Thus we can simulate only for much

Ref. [9], with even worse agreement. Although that lattershorter times, if we want to avoid excessive CPU times or

prediction was foA+B—0, n,(0)<ng(0), wepointed out
already that both models should show the same asymptotic&ith c¢c=0.5 are shown

large finite size corrections. For=2, results fort ~1Iin P,(t)

in Fig. 3, together with

We thus conclude that the data are in rough agreement with t 2 IntIn P,(t). For large values of the data agree much

Refs. [6,7], but the very big deviations are surprisirig

better with Eq. (1) than with the alternative prediction

particular since they are not monotonand not understood. —In PA(t)~at—bt'? of Ref.[10]. The factor 1/Irt in Eq. (1)

The mean squared displaceméRg) of the (surviving A

seems to be correct asymptotically, although it makes agree-

particle is shown in Fig. 2. In this figure we also show thement worse for small. Anyhow, deviations from Eq) are
substantial, and even for the largasivhere the curve ap-
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pears to be horizontal in the figufand where, by the way,
PA(t)~10 %] it still shows a definite curvature.

The fact that the asymptotia could not have been reached
by these 2D data is most clearly seen froR%). It is shown

in Fig. 4, together with the analogous data fralw1 and
d=3. To make the point particularly clear we show there
(R3)/\/t against. If d=2 is the upper critical dimension for
A+B—B as suggested by E@l), then we should expect
(R3)~t up to logarithmic corrections il=2. We also
should expect that the data fak=2 should fall between
those ford=3 (where we expectR3)~t) andd=1 (where

(R3)~t” with v<<1). Figure 4 shows a completely different
behavior. On the one han¢R3) is very farfrom being~t,

on the other hand the data are not monotonic wlith
One might expect that the asymptotic behavior is ob-

FIG. 4. Log-log plot of mean squared displacements in one, two,

and three dimensions, divided Rjt.

served earlier for higher values of the concentratioiWe
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performed therefore also 2D simulations witk-0.7 andc
=1.0. As expectedP, and(R3) both decrease with an in-
crease inc, but the strange time dependence(ﬁﬁ) per-
sisted.

Finally, we show in Fig. 5 the survival probability it
=3, again forc=0.5. More precisely, we show In P(t)/t.
It depends quite strongly o but its curvature is consistent
with convergence to Eq1) without further surprises.

In conclusion, we have performed simulations of a trap
ping model in which both traps and trapped particles ar

mobile with equal mobilities. The simulations, undertaken
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sive than the previous simulations of this model, in the sense
of reaching much longer times and much lower survival
probabilities. This was possible due to an algorithm used
here. In spite of the vastly improved numerics we have not
been able to understand all details of the model. Some of our
results are indeed quite puzzling. On the other hand, our
methods can be possibly applied also to other models where
absorbers are free particles undisturbed by the particles that
they absorb. One class of such models are, e.g., gated
reaction-diffusion systems of the type+B—0 with sto-

eChastically changing reaction ratgss].

with the hope of understanding the precise crossover to the We thank Walter Nadler for discussions and a careful
exactly known asymptotic behavior, are much more extenreading of the manuscript.
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