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Trapping reaction with mobile traps
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~Received 8 November 2001; published 17 May 2002!

We present the Monte Carlo results for the two-species trapping reactionA1B→B with diffusing A andB
on lattices in one, two, and three dimensions. We use an algorithm that permits one to simulate the survival
probabilities ofA particles down to,10230 with high accuracy. The results for the survival probability agree
much better with the exact asymptotic predictions of Bramson and Lebowitz@Phys. Rev. Lett.61, 2397~1988!#
than with the heuristics of Kang and Redner@J. Phys. A17, L451 ~1984!#. But there are very large deviations
from either, which show that even these simulations are far from asymptotia. This is supported by the rms
displacement ofA particles, which clearly shows that the asymptotic regime has not been reached, at least for
d52 andd53.
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Even the simplest reaction diffusion systems with on
two-body reactions and without particle production sh
very rich and not yet fully understood phenomena. One p
totype is the absorption of diffusing particles on random
located static sinks. This model, studied first by Smo
chowski nearly a hundred years ago@1#, shows an exponen
tial decrease of the particle density in mean field theory,
the exact asymptotic behavior found by Donsker a
Varadhan@2# is a stretched exponential in any finite dime
sion d. Another classic example, the recombinationA1A
→A, was studied by Feller@3#. It leads tonA;t21/2 in d
51, as compared to the mean field solutionnA;t21 which
holds ford.2.

Particle annihilation with two mobile speciesA and B,
either of the typeA1B→B or A1B→0, were studied by
Ovchinikov and Zeldovich@4# and Toussaint and Wilcze
@5#. The motivation of Ref.@5# stemmed from the fate o
magnetic monopoles in the early universe, but application
condensed matter physics and chemical kinetics are of co
more numerous.

If one starts out with equal densities forA andB, nA(0)
5nB(0), then the reactionA1B→0 leads ton;t2d/4 @5#.
This is different from the casesnA(0),nB(0) and A1B
→B. Notice that the latter is simply related to the lim
nA(0)→0 of the reactionA1B→0. If we denote by
nA(t)unA(0) the density in theA1B→0 reaction, the one in

the A1B→B reaction is lim
a→0

a21nA(t)uanA(0) . In both

these casesnA!nB for late times, and one expects identic
asymptotics. This was indeed proven rigorously by Bram
and Lebowitz@6,7# who obtained@8#

nA~ t !;H exp~2l1At !, d51,

exp~2l2t/ ln t !, d52,

exp~2ldt !, d>3,

~1!

with unknown constantsld . In contrast to this, differen
asymptotics had been predicted forA1B→B and for A
1B→0 with nA(0),nB(0) by Kang and Redner@9,10# by
heuristic arguments.
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Verifying Eq. ~1! numerically has turned out to be abo
as difficult as verifying the Donsker-Varadhan stretched
ponential. The first simulations ofA1B→B with mobile B
were done by Redner and Kang@10#. These agreed with thei
own heuristic asymptotics@which differ from the exact Eq.
~1! by the absence of the logarithm ford52#. Subsequent
simulations@11,12# were judged even by the authors as i
conclusive. The main problem seems to be that there
large finite time corrections to the asymptotic behavior. Th
one would like to simulate up to very long times. But wi
the straightforward approaches used so far it is practic
impossible to estimate the survival probabilities smaller th
'1028, even with the most powerful present day compute

It is the purpose of this work to present simulations f
the reactionA1B→B, which go far beyond this. We sha
not give any results forA1B→0 since our special numerica
methods cannot be applied to that case. More specifically
consider regular latticesZd on which theB particles perform
independent discrete time random walks: at each time s
each particle hops with equal chance to one of its tw
dimensional~2D! nearest neighbors.A particles perform the
same kind of random walks until they hit upon aB particle in
which case they are instantaneously absorbed. Initial co
tions are such that allBs are uncorrelated with homogeneo
concentrationc. SinceA particles do not interact with eac
other, their concentration is irrelevant. In the actual simu
tions we shall use either one or twoA’s in the initial con-
figuration. Notice that in this model theB particles act as
catalyzers, and their distribution is Poissonian at any time
they start out independently att50.

Our algorithm is related to an algorithm used recen
@13# for the trapping~Donsker-Varadhan! problem. There we
were able to clarify the crossover from the mean field type
the stretched exponential behavior. In the present case
shall see that—despite going to much longer times than
the earlier simulations—we still do not yet fully understa
the crossover to the Bramson-Lebowitz asymptotics.

The algorithm has several essential ingredients. The
is that we use cloning~‘‘enrichment’’! of configurations with
surviving A particles and a bias@14# for the diffusion ofA
such that less of them are absorbed. This bias is compens
by suitably chosen weights, i.e., we always deal with no
©2002 The American Physical Society01-1
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trivially weighted ensembles. On the other hand, the simu
tion is stopped as soon as one of theA’s is absorbed, or if the
weight of the configuration is too small. Thus all our resu
are based onconditional probability distributions, condi-
tioned on the survival of allA’s. These features are imple
mented by the pruning-cloning-Rosenbluth method~PERM!
@15# that is a general growth method~using ‘‘sequential im-
portance sampling with resampling’’ in the sense of R
@16#! and has been very successful in a large numbe
problems@13,17#.

Assume that we have a singleA ~the case fork A particles
with k.1 is straightforward! that has arrived at sitei at time
t. The fact that we condition on those events whereA is not
absorbed means that there cannot be aB at this site. Thus the
homogeneity of the unconditioned distribution is broken, a
an effectivehole in the B distribution is introduced. For
times.t this hole makes a random walk. If it meets a ho
produced at a timeÞt, the two recombine.

In principle, one could simulate these holes explicitly, i.
one could simulate theA’s in a background ofB where aB
@sic# particle is removed each time it hits anA. We indeed did
perform such simulations. They agreed with the straight
ward simulations not using the PERM or any conditioni
and were more accurate, but the accuracy of both type

FIG. 1. ~a! Semilogarithmic plot of the survival probability in
d51 for c50.5. The upper curve is for a singleA particle, while
the lower one is the probability thatboth particles of a pair ofA’s
survive, both of which had started at the same site.~b!
2t21/2ln PA(t) from the same data as in panel~a!, plotted on a
logarithmic horizontal scale.
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simulations was rather poor in comparison with our fin
algorithm.

Our final ingredient is that we do an exact summati
over theB paths. This depends crucially on the fact that t
B distribution is Poissonian. The latter is still true for th
conditioned distribution~it would not be true in the reaction
A1B→0, therefore our method cannot be used for it!. A
Poisson distribution is uniquely characterized by its me
The evolution of this mean is described by a modified dif
sion equation. More precisely, we describe theB density by a
homogeneous backgroundc minus a densityr( i ,t) of holes.
The latter is at every time step set equal toc at the actualA
position, but otherwise evolves according to the simple d
fusion equationr( i ,t11)5(2d)21(^ j ,i &r( j ,t). Its initial
condition is r( i ,0)50. At each time step theA ~which is
assumed to be at sitei ) has a chance exp@r(i,t)2c# to be
absorbed, i.e., the weight of the event in the condition
ensemble decreases by a factor exp@c2r(i,t)#. The algorithm
used in Ref.@13# for the trapping problem is just a simplifi
cation where we omit the diffusion of the holes.

All our simulations were done on workstations, with
total of a few hundred hours of CPU time. All results we
carefully checked for smallt against straightforward brute
force simulations with the most simple algorithm. In add
tion, we also made simulations with algorithms of interm
diate complexity and efficiency. Ford51 and 1A particle
per configuration, we made, e.g.,'54 000 configurations,
out of which ca. 5000 independent ones survived up to
maximal time t530 000. In contrast, for brute force an
Rosenbluth-Rosenbluth@14# methods we made runs tha
started altogether with'23109 A particles each. But all
these particles were gone after a few thousand time st
making these runs much less efficient. For higher dimensi
the statistics were comparable.

We first discuss the results ford51. Here we can use
lattices so large that none of the holes ever reaches
boundary, thus we have no finite size effects at all. In F
1~a! we show the survival chancesPA(t) of a singleA par-
ticle and of a pair of particles that started at the same s
For the latter,PA(t) is the probability thatboth particles of
the pair survive. Although these probabilities become
small as 10235, the statistical errors are much smaller th

FIG. 2. The full line represents the mean squared displacem
of theA particle ind51, for c50.5. The broken line represents th
mean squared distance between twoA particles, when conditioned
on the the survival of both.
1-2
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the thickness of the lines. The fact thatPA for a pair is larger
that the square ofPA for a single particle is easily under
stood. If already oneA particle has survived in some regio
there are less than averageB particles in this region, and th
secondA particle has a bigger survival chance. Theoretica
@6,7# we expectPA(t);exp(2constAt), at least for a single
particle. In Fig. 1~b! we thus showt21/2ln PA(t) on a semi-
logarithmic scale. Error bars are here,0.001. Thus the de
cline for t.1000 is statistically highly significant for bot
curves. Unless we accept that there is an error in Refs.@6,7#,
we have to conclude that at least this decline
2t21/2ln PA(t) for a singleA particle is a finitet effect, and
that the true asymptotic behavior sets in att@104. We also
compared our data with the prediction2 ln PA(t);t21/4 of
Ref. @9#, with even worse agreement. Although that lat
prediction was forA1B→0, nA(0),nB(0), wepointed out
already that both models should show the same asympto
We thus conclude that the data are in rough agreement
Refs. @6,7#, but the very big deviations are surprising~in
particular since they are not monotonic! and not understood

The mean squared displacement^RA
2& of the ~surviving! A

particle is shown in Fig. 2. In this figure we also show t

FIG. 3. The full line represents2t21ln PA(t) for d52 and c
50.5; the broken line represents the2t21ln t ln PA(t) from the
same data. The horizontal scale is logarithmic, the vertical is lin

FIG. 4. Log-log plot of mean squared displacements in one, t
and three dimensions, divided byAt.
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squared distance between twoA particles that started off si
multaneously at the same site. We see thatDR increases less
fast thanR, indicating an effective attraction mediated by th
B particles. If already oneA particle has survived in som
region, there are less than averageB particles in this region,
and the secondA particle will not only survive longer, but it
will also survive preferentially in a region close to the fir
one. But this appears to be a weak effect. The most econo
conclusion from Fig. 2 is that both curves converge to
same scaling behavior,R2;(DR)2;tn with n50.5 to 0.6.
But any determination of a critical index should be tak
with great caution in view of Fig. 1, we should not take a
behavior seen fort,105 as reflecting the asymptotic beha
ior.

With increasingd, updating r( i ,t) becomes more and
more time consuming. Thus we can simulate only for mu
shorter times, if we want to avoid excessive CPU times
large finite size corrections. Ford52, results fort21ln PA(t)
with c50.5 are shown in Fig. 3, together wit
2t21 ln t ln PA(t). For large values oft the data agree much
better with Eq. ~1! than with the alternative prediction
2 ln PA(t);at2bt1/2 of Ref. @10#. The factor 1/lnt in Eq. ~1!
seems to be correct asymptotically, although it makes ag
ment worse for smallt. Anyhow, deviations from Eq.~1! are
substantial, and even for the largestt where the curve ap-
pears to be horizontal in the figure@and where, by the way
PA(t)'10298# it still shows a definite curvature.

The fact that the asymptotia could not have been reac
by these 2D data is most clearly seen from^RA

2&. It is shown
in Fig. 4, together with the analogous data fromd51 and
d53. To make the point particularly clear we show the
^RA

2&/At againstt. If d52 is the upper critical dimension fo
A1B→B as suggested by Eq.~1!, then we should expec
^RA

2&;t up to logarithmic corrections ind52. We also
should expect that the data ford52 should fall between
those ford53 ~where we expect̂RA

2&;t) andd51 ~where
^RA

2&;tn with n,1). Figure 4 shows a completely differen
behavior. On the one hand,^RA

2& is very far from being;t,
on the other hand the data are not monotonic withd.

One might expect that the asymptotic behavior is o
served earlier for higher values of the concentrationc. We

r.

,

FIG. 5. Log-linear plot of2t21PA(t) for d53, c50.5.
1-3
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performed therefore also 2D simulations withc50.7 andc
51.0. As expected,PA and ^RA

2& both decrease with an in
crease inc, but the strange time dependence of^RA

2& per-
sisted.

Finally, we show in Fig. 5 the survival probability ind
53, again forc50.5. More precisely, we show2 ln PA(t)/t.
It depends quite strongly ont, but its curvature is consisten
with convergence to Eq.~1! without further surprises.

In conclusion, we have performed simulations of a tra
ping model in which both traps and trapped particles
mobile with equal mobilities. The simulations, undertak
with the hope of understanding the precise crossover to
exactly known asymptotic behavior, are much more ext
th
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sive than the previous simulations of this model, in the se
of reaching much longer times and much lower surviv
probabilities. This was possible due to an algorithm us
here. In spite of the vastly improved numerics we have
been able to understand all details of the model. Some of
results are indeed quite puzzling. On the other hand,
methods can be possibly applied also to other models wh
absorbers are free particles undisturbed by the particles
they absorb. One class of such models are, e.g., g
reaction-diffusion systems of the typeA1B→0 with sto-
chastically changing reaction rates@18#.

We thank Walter Nadler for discussions and a care
reading of the manuscript.
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