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Current-sheet formation in incompressible electron magnetohydrodynamics
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The nonlinear dynamics of axisymmetric, as well as helical, frozen-in vortex structures is investigated by the
Hamiltonian method in the framework of ideal incompressible electron magnetohydrodynamics. For descrip-
tion of current-sheet formation from a smooth initial magnetic field, local and nonlocal nonlinear approxima-
tions are introduced and partially analyzed that are generalizations of the previously known exactly solvable
local model neglecting electron inertia.
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It is a well known fact that current sheets play exclusivelynetic field itself does not become infinite, but its curl tends to
important role in plasma dynamig¢see, e.g.f1—-4] and ref-  the infinity at some point of the axial cross section. Inclusion
erences therejnHowever, analytical study of current-sheets of dissipative terms into the equation stops the breaking, but
formation and their dissipative dynamics is a very difficult instead of multivalued profile, a shock forms, the length of
problem in the framework of usually used nonlingand  Which increases with time. The shock is a cross section of a
also nonlocal in the incompressible limigquations of mo- ~ current sheet. )
tion of plasmas. That concerns the usual magnetohydrody- The main purpose of present work is to extend the analy-
namics (MHD), the electron magnetohydrodynamics SIS qf such axisymmetric flows by con'S|de'rat|0n of addltlonal
(EMHD), as well as the multifluid models of plasmas. So, upnonllnear effects cau_sed by electron inertia. They either play
to this day we do not have a mathematically clear answer ofP!€ Of small corrections for long-scale flows or, when the
the question, whether the current density will become singuﬁgs;:okr ?)?/CgmggtﬂﬁgotmaCt?:rrl]sgp(?o?tr?/sgllggiltlz g:j ddglrﬁrsng:i;ﬂ ;’_e'
e e o s rou o e o X0 1 o i e cifercn n companson wih he sefsimia

: BMHD solutions discussed in RdfL2]. Also, the flows with

FOOI for obtaining quantitative result[SL—?]. Therefore, an other geometrical symmetry are considered below in the ap-
important role for theoretical understanding of Curre”t'Sheetf)roximation(1) when all the frozen-in magnetic lines have

dynamics can be played by local nonlinear approximationspejical shapes with a same spatial period alpdgection. In
that sometimes have exact solutions describing formation ahjs case contours corresponding to different values of the
singularities. An example of such relatively simple, approxi-axial component of the magnetic field rotate in a perpendicu-
mate differential equation for the magnetic fiel{r,t) is  |ar plane with different angular velocities, thus producing the
(see, e.g.[8] for derivation and explanation shock.
Incompressible two-fluid modeRefore the main consid-
c eration, it is useful to recall the place of EMHD among dif-
Bi=— g g curl(curlB/n) XB]. (1) ferent hydrodynamical plasma modé8. If there are only
two kinds of particles in the plasma—negatively charged

This equation describes the motion of magnetic structures i§lectrons with the mass and positively charged ions with
EMHD on length scales much larger than the inertial elecfh® massM, then the most general is the two-fluid model,
tron skin depth, while the main part of the energy is concenWhich contains MHD, EMHD, and Hall MHD as special
trated in the magnetic field, with the kinetic energy of the Cases. Let the equilibrium concentration of part|cle§ of egch
electron fluid motion being much smaller. The equatitn sprt be equal to. Ifzthe temperature of Fhe system is suffi-
has been extensively exploited, for instance, to study fastiently large,nT>B, then for slow vortical flows one can
penetration of magnetic field into plasmas due to the Hal€glect deviations of the concentrations from (the
effect[9,10], as well as rapid dissipation of magnetic fields qgasmeutrahty c_ondmo)m and believe th+e velocity fields
in laboratory and astrophysical conditiofsl]. The interest  divergence-free in homogeneous ca¥e y~)=0.
to this equation is explained, in particular, by the fact that Temporarily, we will not take into account dissipative pro-
axisymmetric configurations witB||le, have been found ex- CESSES. Thus, application of the canonical formalism be-
actly solvable(see[8—11]). In this geometry, the equation of cOmes possibl¢13—-15, which makes the analysis more
motion is reduced to the well known one-dimensioftD) compact. With appropriate choice for the length scales
Hopf equation, that should be solved independently for eacﬁ”d+:(MCZ_/47Tezn)l_/2] and for the mass scales-M),
value of the radial coordinate. The mechanism of singularityhe Lagrangian functional of the incompressible two-fluid
formation in these solutions is connected simply with breakInodel, in the absence of an external magnetic field, takes the

ing in a finite time of the magnetic field profile. The mag- form
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Here u=m/M is the only dimensionless parameter remain-are the canonical momenta by definition. In the Fourier rep-
ing in the system. For the electron-positron plagmyal, for ~ resentation they are given by the expressions
the hydrogen plasma~1/2000<1. Below we consider the

latter case. The first two terms in the expresgidngive the L . o+ Yk

kinetic energy of the ion and electron fluids, while the third Pk =L,V =[1+ (1/k9)]vy — 2’ (4)
term is the energy of the magnetic field created by the flows

of electrically charged fluids. The conditions of incompress- vt

ibility are assumed,\( - k) =0. - - = 2y — K

It is important that the variation of the action functional
S=[L,dt, which is necessary for constituting the equations ) ) .
of motion, should not be performed with respect to the variaBelow, we will need the reversal relations for the velocities
tions &v=(r,t), but with respect to the variationsx™(a,t)  through the momenta,
andéx(c,t), wherex™ (a,t) andx™(c,t) are incompressible
Lagrangian mappings describing the motion of points of the vi=
ion and electron fluids, labeled by the labelsand c. The X uk?+ 1+ p
corresponding mathematical technique is explained, for in-
stance, in Refs[16]. The equations of motion of the two- It is possible to reformulate the equatidi3$ as equations for
fluid incompressible system have the following structure: frozen-in vortices,

(W Dpitp (e
K uk+1+pu .

J 55,;
at (‘)\/i(r)

oL
=(1-VA~'V) vi(r)XCurlé\/—”
r

=(r)

where the operator in the parentheses on the rhs is the pre#here the canonical vorticity fields are defined as the curls of
jector onto the functional space of divergence-free 3D vectothe canonical moment&*(r,t)=curlp=(r,t), and also the
fields [13,16. The two vector fieldsoi(r)zéﬁﬂlé\/i(r) Hamiltonian functional of the system is calculated,

3 Q- (r)=curl ¢ rlﬂxﬂi(r) 7
) ¢ (F)=curl cu 507 (1) v

H,,{Q*,Q*}Ef{(p*-V*)+(p*~v*)}dr—Eﬂ

f dik | (uk?+2)|9Q7 12+ (K2+1)|Q |2+ 2(Q) - Q7))
- en? |

2k (uk?+1+ )

®

It is clear that in the problem under consideration theresmall and moderate wave number regids~1, corre-
are two separated dimensionless scales of inverse lengtsponds to the Hall MHD, and in the special lini€2"
ky~1 andk_~1/\, wherex=/u is the electron inertial +Q~|<|Q*|,|Q|, we have here the usual MHD. The re-
skin depth(normalized tod, ). Sincex?<1, we may write gion 1<k<~1/\, under the extra conditiohQ*|<|Q~|,
with very good accuracyH,{Q" Q }=H,{Q",Q7},  corresponds to the EMH[B]. For the flows with larger typi-
where cal wave numbersk>1/\, the magnetic effects become
relatively insignificant, and the syste®) is broken into
two weakly interacting subsystems, each of them being
approximately described by the ordinary Eulerian
hydrodynamics, sinces_ _(k)~1/A\%k?, G, _(k)~1/A\%k*
+2G,_(K)(Q - Q7] (9 <G,.(k),G__(Kk) in this region.

Axisymmetric large-scale EMHD flowket us now con-

3

r o1t +12 -2
H{Q,Q }—Ef W[G++(k)|ﬂk| +G_ (K[|

1 1 1 sider the subset of solutions, for which the ion canonical
Gii(k)= 2 G, (k)= ( @ ) vorticity is identically equal to zerd2 " =0, and the electron
vorticity , is concentrated in the range<k<1/\ of the
wave numbers, where the Green’s functiGn (k) is al-
G(k):(iJr 1 ) (10) most flat G__(k)~1. Practically this corresponds to the
k2  1+\2K2 condition 3< ~k< ~20. For EMHD model this is the long-

scale region, wher€~ is proportional to the magnetic field
Depending on the typical spatial scale of the vorticesjn the leading order. It should be emphasized that Wih
several dynamical regimes are possible in this system. The 0 the velocityv* of the ion component is not exactly zero,
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however, it is much smaller than the velocity of the elec- Where  H,{o", 0 }=(127)H Jo [eXr],0 [eXr]}.

tron component, as it becomes clear from consideration ofhus, each of the functione=(q,z,t) is transported by its

the Egs.(6) with p"=0. In the main approximation, the own, divergence-free ing;z) plane, two dimensional veloc-

Hamiltonian for the electron vorticity takes the very simpleity field, the stream function of which coinciding with the

form corresponding variational derivative of the Hamiltonian. The
same Poisson structure governs the ideal hydrodynamics in

1 _ Cartesian plang13].
{0, 7 )~ EJ Q7 |7dr, (1D) Using the expression for th& operator in §,z) coordi-

nates,

in accordance with the fact that the energy of the system is

concentrated mostly in the magnetic field. The corresponding A{f(q,2)[eXr]}=(2qfqq+4fq+ T, )[eXr], (19

equation of motion is local and essentially coincides with Eq.

(1), we easily obtain the asymptotic expansifor simplicity, we
write w instead ofw™ in the two following equations

Q. =curl[curl Q™ xXQ]. (12
One of the remarkable properties of the equatib®) is that H*{O:w}zj w[q+N%(2049%04+qd3) + - - - Jo dq dz
in the case of axisymmetric flows, when (20)
Q (rH)=w (q,z0)[eXr], (13 and the corresponding conservative equation of motion
where q=(x>+y?)/2, we have the exactly solvable Hopf 0t 200+ 2N — (20%w g+ Aqwqrt Qwys) g

equation for the functiomn ™ (q,z,t) [8],

o, t20 0w, =0. (14 +(8Qwqgt 4wyt wz T 2q2wqqq+qwzzq)wz] :(;);L)
The solution of the equatiofi4) att>0 is constructed from
the initial functionw, (g,z) by the shift of each level con-
tour w (g,z) =w alongz axis on the value &t, that makes
possible breaking of the profile after some time. Not long
before the moment of the singularity formation, the equatio
(12) becomes nonapplicable. For correction, it is sometime
sufficient to add into the rhs of the equati¢t2) the only
linear dissipative terme?n/M o) AQ ™, which takes into ac-
count a finite electrical conductivity [8]. In this case the

where the nonlinear dispersive terms are explicitly written in
the first order on\?. The dissipation can be taken into ac-
count as in the rhs of the E¢L5).

In the special case whan™ is only slowly dependent on
he radial coordinatey, but strongly depends on the axial
coordinatez, the expansion of5__(k) on the powers of
N2(KZ+KJ) is appropriate,

equation for the functiomw ™ (q,z,t) looks as follows: G__(k)~ 1 B )\2(k§+ kf,) o (22)
&n - 1+A2K2 (1+N2%K3)2 '
w{+2w7w;=m(2qw;q+ 4o, +0,,). (15

Then in the leading order the equation of motion dor(z,t)

o . . becomes nonlocal integral differential,
In order to justify the neglect of dispersive effects, the ¢

typical values of @~ should not be too largew™ < +o
~e?n/2\M o=~ 10e?n/M o-. With this condition the width of  w; (z,t)+ w, (z,t)\ f o (&he 17 dNdg=0. (23
the current sheet will remain several times larger than the -

dispersive length\. Otherwise, it is necessary to take into

account subsequent terms in the expansion of the GreenfOr long-scale profiles ob™ this equation is approximately
function G__ (k) on powers ofz2k? (we may neglect the reproduced by Eq.14), but in addition, it is able to describe

term 1k2 as previously, sincks1), changing of the steeping regime from explosiMe, | max
~(t,—t)"! to exponential|w; | na—eXpC(t—t,) after the
G__(k)~1—N2K*+(AN%k?)%+-- -, (16)  width of the shock becomes smaller thanThe exponential

growth of the maximum ofw, | takes place on the final
stage of shock evolutiofwithout dissipation since the inte-
gral operator in Eq(23) makes the transport velocity foy™
smooth enough even for a very narrow shock.

Let us consider the axisymmetric flows @s). It is use- Concluding remarksAnalogously, the helical flows can
ful to note that in the absence of dissipation, as follows frombe investigated, with
Egs.(7), the dynamics of the functions™(q,z,t) possesses
the remarkable structure, (Q7)*=Q(xcosKz+ysinKz,y cosKz—xsinKz,t), (24)

H,{0,Q }%EJQ (1+NA+--)Q7dr.  (17)

wf-l—(é?-[*/éwi)qwf—(ﬁ?-[*/5wi)zw§=0, (18 (Q7)'=—Ky(Q7)%  (Q7)Y=Kx(Q)? (25)
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that are space-periodic alorgdirection with the period.?
=2mx/K. The general solution of Eq12) for this case can

also be obtained, since the equation of motion for the func-

tion Q(u,v,t) is

Q.+ 2K2Q(vQ,—uQ,)=0. (26)
This equation follows from the Hamiltonian
1
HS{O,Q}:EJ Q[1+K2(u?+0v?)+---1Qdudv. (27

Each level contouf)(u,v)=W rotates with the individual
angular velocityd6/dt=—2K?W, that is the reason for
shock producing. Higher-order corrections to E26) can be

derived similarly to Eqs(19)—(21). However, in this case it

is not possible to include the dissipation into consideration in

the framework of single-function description by E¢84)—
(25), since magnetic diffusivity destroys helical shapes of th
magnetic lines.

If we would like to escape the restrictide>1, it would
be necessary to deal with the Hall MHD, the Hamiltonian of
which is

1 1
HHMHDIO+ Q1= Ef |Q~|2dr + if QT +0Q7)

X(—A"H(QT+ Q7 )dr. (29

For axisymmetric flows we have
HMHDy + - -2 1 + -
H, {o",07}=| (o )qdqdz!—z (0" +w7)
XG(w+w )dqdz (29)

where the operato® is defined as follows:
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(z—21)%+2(q+qy)

. 1
Gf(q,Z)Eﬂf (qql)”“F(

4(qqy)*?
X f(d1,21)dg,dz,
27 cosp de
F(A)= _ 30
(&) 0o JA—cose (30

The equations of motion can be written in the form

oy +(2ow” +Vy)w, —V,0, =0, (31
wf-l—‘l’qw;—\I’Zwar:O, (32
V=G0 +w). (33

Since the nonlocal operat@ possesses smoothing proper-

eties, analogously to the usual “flatt ~* operator, the stream

function ¥ is smooth enough even where the functiens

and o~ have infinite gradients. Therefore, the effect of the
nonlocality, generally speaking, cannot overcome the ten-
dency towards the breaking of the functian profile, at
least with moderate typical values¥f. We can suppose that
with the initial data concentrated in the regiém-1, the
breaking takes place as the general case in the Hall MHD
model. As concerns the transition to the limit of usual MHD,
on smallk<1, andw <¥,, 0"+ |<[o’|,]o7], in

this case the question about breaking remains subtle and
needs additional investigations.
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