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Noncollapsing solution belowr c for a randomly forced particle
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We show that a noncollapsing solution belowr c can be constructed for the dynamics of randomly forced
particle interacting with a dissipating boundary. The scaling analysis predicts a divergent collision rate at the
boundary for the noncollapsing solution. This prediction is tested numerically.
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Recently opposing viewpoints appeared in the literat
@1–3# regarding the localization properties of a on
dimensional particle subject to an uncorrelated random fo
interacting with a dissipating boundary. The equation
scribing the particle dynamics is

d2x

dt2
5h~ t ! ~1!

where h(t) is white Gaussian noise,̂h(t)h(t8)&52d(t
2t8). The dissipating boundary condition is set such that
particle approaching with velocity2u, (u.0), at the
boundaryx50 is reflected with velocityru, r ,1. The prob-
lem was explored further with various techniques@4–6#,
which have obtained the same critical value for the dissi
tion parameterr c and the persistence exponent. It is an u
resolved problem, the absence of the collapsing behavio
numerical simulations@3#.

In this paper, we propose a solution of this paradox.
show that forr ,r c one can construct a constant mass~non-
collapsing! solution starting from the collapsing one. In o
approach, we use the Fokker-Planck equation~FPE! descrip-
tion of the process~1!. The FPE associated with the Lang
vin equation~1! is

S ]

]t
2

]2

]u2
1u

]

]xD P~x,u,t !50 ~2!

with the dissipating boundary condition

P~0,2u!5r 2P~0,ru !, u.0, ~3!

and the initial conditionP(x,u,t50)5d(x2x0)d(u2u0).
In Ref. @5#, it was shown that the the general solution

this problem has the following integral form:

P~x,u;x0 ,u0 ;t !5P0~x,u;x0 ,u0 ;t !

1E
0

t

dt1E
0

`

du1u1P~x,u;0,ru1 ;t2t1!

3P0~0,2u1 ;x0 ,u0 ;t1!, ~4!
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whereP0(x,u;x0 ,u0 ;t) is the solution of the FPE~2! with
absorbing boundary atx50 @7#.

Burkhardt has shown in Ref.@4# that a collapsing solution
with an algebraic temporal decay can be found for the
~2!. The surviving probability Q(x0 ,u0 ,t)
5*dxdvP(x,u;x0 ,u0 ,t) behaves asymptotically as

Q~0,2u,t !'2 sinFp6 ~124f!G S u2

t D f

, u.0 ~5!

Q~0,u,t !'S u2

t D f

, u.0. ~6!

For the collapsing solution (f.0) we haveQ(0,0,t)50,
that is, the origin of the phase space (x50, u50) is an
absorbing point for the random particle. With this observ
tion the collapsing behavior can also be obtained num
cally. Using a discretization of Eq.~1! together with the ab-
sorbing prescription at the origin, the collapsing behavior
obtained with the persistence exponent in perfect agreem
with theoretical result of Ref.@4#, see Fig. 1. In numerica
simulation the particle was absorbed if its velocity after t
collision with the boundary was smaller thanADt, whereDt
is the time integration step. AsDt decreases the collapsin
behavior is preserved signaling the existence of the colla
ing behavior in the continuum limit.

FIG. 1. First return distribution forr 50.1,0.05,0 (r c'0.163).
The lines have the theoretical exponent found in Ref.@4#.
©2002 The American Physical Society02-1
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On the other hand, Eqs.~5!, ~6! accept the solutionf
50 at any value of the dissipation coefficientr—case in
which the collapse does not occur sinceQ is constant. We
make the second observation that Eq.~4! is not in contradic-
tion with a solution that has constant mass, that
*0

`dx*2`
` duP(x,u;x0 ,u0 ;t)51. Indeed if one integrates th

overx andu the right hand side of Eq.~4! is the conservation
law for the particle in case of the absorbing solution. T
reason that allows the existence of more than one solu
for this problem is that the dissipating conditionP(0,2u)
5r 2P(0,ru) does not specify uniquely the solution on th
boundaryx50, but is just a condition that the solution mu
obey on the boundaryx50. The continuity condition for the
solution asks thatP(0,u→0)→0 or `.

We can construct a noncollapsing solution starting fr
the collapsing one. Let us start from the FPE with a sou
term

S ]

]t
2

]2

]u2
1u

]

]xD P~x,u,t !5 f ~ t !d~x2e!d~u!, ~7!

wheree.0 and f (t) is at the moment an arbitrary functio
of time to be determined from the conserving mass con
tion. The solution of the above equation that satisfies
boundary condition~3! is

Gr~x,u;x0 ,u0 ;t !5Pr~x,u;x0 ,u0 ;t !

1E
0

t

dt1Pr~x,u;e,0;t2t1! f ~ t1!, ~8!

where Pr(x,u;x0 ,u0 ;t) is the collapsing solution of the
problem at givenr ,r c . After time Laplace transform, we
have

G~x,u;x0 ,u0 ;s!5Pr~x,u;x0 ,u0 ;s!1Pr~x,u;e,0;s! f ~s!.
~9!

We can choosef (s) such that the mass ofG is constant. We
see that the choice

f ~s!5

1

s
2E

0

`

dx1E
0

`

du1Pr~x1 ,u1 ;x0 ,u0 ;s!

E
0

`

dx1E
2`

`

du1Pr~x1 ,u1 ;e,0;s!

~10!

gives us the needed solution. For anye.0 the solution Eq.
~9! satisfies the boundary condition since we usePr , and
conserves the mass by construction. In the limite→0 it sat-
isfies also the initial conditiond(t)d(x2x0)d(u2u0). We
make the observation thatf (s)50 for r .r c as
Pr(x,u;x0 ,u0 ;t) has a constant mass. It remains to
shown that the limite→0 exists. For the caser 50 the
asymptotic expressions for Pr(x,u;x0 ,u0 ;s) and
*0

`*2`
` duPr(x,u;x0 ,u0 ;s) were obtained in Ref.@7# and

one can see explicitly that the above limit exists.
We can obtain the behavior of the collision rate at t

origin for smalle using the scaling properties of the solutio
of the FPE. Equation~2! gives
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P~x,u;x0 ,u0 ;s!5l2P~l3x,lu;l3x0 ,lu0 ;l22s!.
~11!

The collision rateRcoll is given by the following relations:

Rcoll~e;s!5E
2`

0

du uG~0,u;x0 ,u0 ;s!

5E
2`

0

du uPr~0,u;x0 ,u0 ;s!

1

E
2`

0

du uPr~0,u;e,0;s!

E
0

`

dxE
0

`

du Pr~x,u;e,0;s!

3F1

s
2E

0

`

dxE
0

`

du Pr~x,u;x0 ,u0 ;s!G .
Using the scaling property,@Eq. ~11!#, with l5e21/3 we

have for the term depending one:

J~e;s!

Q~e;s!
5

E
2`

0

du uPr~0,u;e,0;s!

E
0

`

dxE
0

`

du Pr~x,u;e,0;s!

5
J̃~e2/3s!

e2/3Q̃~e2/3s!

'e22f/3, e!1, ~12!

FIG. 2. ~a! Collision rate atx50 function of integration time
stepDt at various values of the restitution coefficientr. We see that
for r .r c'0.163 the collision rate is independent ofDt whereas
diverges like (Dt)2f for r ,r c . The lines plot the theoretical pre
diction with f50.25 (r 50),'0.087 (r 50.1),50 (r>r c). For
r 50.1, we considered also the subleading correction.~b! Probabil-
ity to find the particle in the interval (0,0.01) function ofDt. The
quantity is constant for bothr ,r c and r .r c . The graphs were
displaced vertically for clarity.
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where we have used thatJ̃(s)'12csf and Q̃(s)'s211f

for s!1.
Equation~12! shows that the conserving solution has

vergent collision rate at the origin. This implies that the c
rent densityuG(0,u;x0 ,y0 ;s) is nonintegrable, as was firs
noted in Ref.@8#.

The prediction of a divergent collision rate can
checked numerically. If we integrate the Langevin equat
with a finite time stepDt, then the particle is injected ate
'(Dt)3/2, wheree is its velocity that is very small. Conse
quently, the number of bounces at the origin must diverge
(Dt)2f asDt→0. Indeed Fig. 2 shows a perfect validatio
of this prediction. In the same figure we have plotted
probability that the particle stays betweenx50, x50.01. We
see that this this probability is independent of the integrat
step for each value of the restitution parameterr. This means
that there is no collapsing behavior. The particle is attrac
by the wall, performs an infinite number of collisions~in the
limit Dt→0) and with probability 1 is injected back into th
domainx.0.

Now we can see that the question ‘‘what the particle d
if we put it atx50, u50?’’ is indeterminate forr ,r c . The
general solution in this case is

P5qGr~x,u,x0 ,u0 ,t !1~12q!Pr~x,u,x0 ,u0 ,t !,

0<q<1, ~13!
s.
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and one has to specifyq for the answer.
In conclusion, we have shown that the collapsing beh

ior can be found numerically if one notice that the collapsi
solution has an absorbing point into the origin, hence it m
be enforced in the simulation.

We have constructed a noncollapsing solution for the c
r ,r c . This is possible since the absorbing boundary con
tion P(0,2u)5r 2P(0,ru) allows for two functions as
boundary condition. One goes to zero asu→0 and the other
one diverges tò asu→0.

In terms of Brownian paths, we propose the followin
picture: for r .r c the probability to touch the origin of the
phase space starting from any other point is zero, simila
simple diffusion in two or more dimensions, thus the collap
ing solution is forbidden. Whenr ,r c the diffusing particle
touches the origin with probability 1 and if the path is set
terminate there the collapse occur. If the path is not se
terminate the particle is sent back into the domainx.0 after
an infinite number of collision with the boundary. The weig
of the paths leaving the origin without touching the bounda
is zero in the continuum limit but they give a finite contr
bution because they are sampled an infinite number of tim
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