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Noncollapsing solution belowr . for a randomly forced particle
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We show that a noncollapsing solution belowcan be constructed for the dynamics of randomly forced
particle interacting with a dissipating boundary. The scaling analysis predicts a divergent collision rate at the
boundary for the noncollapsing solution. This prediction is tested numerically.
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Recently opposing viewpoints appeared in the literaturavhere Po(X,U;Xg,Uq;t) is the solution of the FPE2) with
[1-3] regarding the localization properties of a one-absorbing boundary at&=0 [7].
dimensional particle subject to an uncorrelated random force Burkhardt has shown in Rdi4] that a collapsing solution
interacting with a dissipating boundary. The equation dewith an algebraic temporal decay can be found for the Eq.
scribing the particle dynamics is (2). The surviving probability  Q(Xg,Uq,t)
= [dxdvP(x,u;Xq,Uq,t) behaves asymptotically as
dx
- 7(t) ()

u?\®
(T) , u>0 (5)

Q(0,—u,t)~2 sir{g(l—mﬁ)

where 7(t) is white Gaussian noise,7(t) 7(t"))=245(t
—t’). The dissipating boundary condition is set such that the u?\®

particle approaching with velocity—u, (u>0), at the QOuy~|+/| . u=0. (6)
boundaryx=0 is reflected with velocityu, r<1. The prob-

lem was explored further with various techniquigs-6], . . _
which have obtained the same critical value for the dissipa!:or the collapsing solution ¢>0) we haveQ(0,0£) =0,

tion parameter. and the persistence exponent. It is an un-that s, the origin of the phase space<(0, u=0) is an
P ¢ P P . .~ .absorbing point for the random particle. With this observa-
resolved problem, the absence of the collapsing behavior Bon the collapsing behavior can also be obtained numeri-

numerical simulation§3]. : . S : )
In this paper, we propose a solution of this paradox. Wecally. Using a discretization of Eq1) together with the ab

show that forr <. one can construct a constant méssn- sorbing prescription at the origin, the collapsing behavior is
. . C : . obtained with the persistence exponent in perfect agreement
collapsing solution starting from the collapsing one. In our

approach, we use the Fokker-Planck equatigPE) descrip- with theoretical result of Refl4], see Fig. 1. In numerical

tion of the proces€l). The FPE associated with the Lange- 5|m_ul_at|on_the particle was absorbed if |tsa/v_eIOC|ty after the
vin equation(1) is collision with the boundary was smaller thgrht, whereAt

is the time integration step. A&t decreases the collapsing
behavior is preserved signaling the existence of the collaps-
P(x,u,t)=0 2) ing behavior in the continuum limit.

a9 .
—— — u_
ot (9U2 X

with the dissipating boundary condition
P(0,—u)=r?P(0ru), u>0, ©)
and the initial conditiorP(x,u,t=0)= §(x—Xg) 6(u—ug).

In Ref.[5], it was shown that the the general solution of
this problem has the following integral form:

first arrivals

P(X,U;Xg,Uqg;t) =Pg(X,U;Xg,Uq;t)

t 0
+J dt1J duu;P(x,u;0ruq;t—t4)
0 0
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FIG. 1. First return distribution for =0.1,0.05,0 {,~0.163).
*Electronic address: anton@ifin.nipne.ro The lines have the theoretical exponent found in R&f.
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On the other hand, Eqg5), (6) accept the solutionp P(X,U;Xg,Ug;S) =AN2P(A3X,Au; A 3%, N Ug ;A ™ 2s).
=0 at any value of the dissipation coefficient—case in (11
which the collapse does not occur sinQeis constant. We o o ) )
make the second observation that E4).is not in contradic-  The collision rateR. is given by the following relations:
tion with a solution that has constant mass, that is, 0
Jodx[~ . duP(x,u;Xq,Up;t)=1. Indeed if one integrates the Rcoll(e;s):f du uG0U;Xg,Ug;S)
overx andu the right hand side of Ed4) is the conservation
law for the particle in case of the absorbing solution. The jo

reason that allows the existence of more than one solution =
for this problem is that the dissipating conditié{(0,— u)

=r2P(0,ru) does not specify uniquely the solution on the o
boundaryx=0, but is just a condition that the solution must f du uP.(0,u;€,0;8)
obey on the boundary=0. The continuity condition for the -

du uP.(0,u;Xg,Uq;S)

solution asks thaP(0,u—0)—0 or . * o
We can construct a noncollapsing solution starting from o dx o du Py (x,u;€,05)
the collapsing one. Let us start from the FPE with a source
term 1 * *
X ——f dxf du P,(X,U;Xg,Uq;S) |-
5 S 0 0
o + i P t)="1(t)d S (7)
at  gu? Uox 06,0 =F(1) o(x =€) o(u), Using the scaling propertyEq. (11)], with A=¢~ % we
have for the term depending an
wheree>0 andf(t) is at the moment an arbitrary function
of time to be determined from the conserving mass condi- 0 .
. . . " duuPR(0u;e€,0;s)
tion. The solution of the above equation that satisfies the J(e;s) - J(e?3s)
boundary condition(3) is es)  (» - = o= 273
Qleis) f dxf duP.(x,u;e0s) € Q(e™s)
G (X,U;Xg,Ug;t) = Pr(X,U;Xg,Ug;t)
t ~e 28 e<1, (12
+ | dt;P,(x,u;€,0;t—t1)f(ty), (8)
0 r=0 +
where P, (X,U;Xq,Uq;t) is the collapsing solution of the { ::8:; ;
problem at giverr <r.. After time Laplace transform, we a =09 O
have Reoll
G(X,U;Xg,Uo;8) = Pr(X,U;Xo,Ug;8) + Pr(X,U; €,0;8) (). -y
9 Ko
X
. 2
We can choosé(s) such that the mass @ is constant. We !
see that the choice g 8 g G j\"%"%%‘ﬁ"éé
1 © 0 \X\*X
——f dxlf du;Pr(X1,U1;X0,Up;S) “x
S 0 0 ™
f(s)= — - (10 R
f dxlf du;P(X1,U1;€,0;8) 2| b
0 — o;é B
v *
gives us the needed solution. For asy 0 the solution Eq. ffv_ T ELE: x o B X x ¥ 0
(9) satisfies the boundary condition since we #&e and By T X ¥y, % ?%§ x5 " 5 ¥
conserves the mass by construction. In the lienitO it sat- 107 10® 10° 10% 10® 102

isfies also the initial conditior5(t) 8(x—Xxg) S(u—ug). We At
make the observation thatf(s)=0 for r>r. as

P, (X,uU;Xg,Ug;t) has a constant mass. It remains to be
shown that the limite—0 exists. For the case=0 the ¢ r>r,~0.163 the collision rate is independent &f whereas

asymptotic  expressions for Pi(x,u;Xo,Uo;S) and  giverges like at)~¢ for r<r.. The lines plot the theoretical pre-
JoJZ.duP(X,u;Xo,Uq;s) were obtained in Ref[7] and  giction with ¢=0.25 (=0),~0.087 ¢=0.1),=0 (r=r.). For
one can see explicitly that the above limit exists. r=0.1, we considered also the subleading correctipnProbabil-

We can obtain the behavior of the collision rate at theity to find the particle in the interval (0,0.01) function aft. The
origin for smalle using the scaling properties of the solution quantity is constant for botn<r. andr>r.. The graphs were
of the FPE. Equatiofi2) gives displaced vertically for clarity.

FIG. 2. (8 Collision rate atx=0 function of integration time
stepAt at various values of the restitution coefficieniVe see that
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where we have used thﬁ(s)ml—cs‘ﬁ and Q(S)%S*Hd) and one has to specify for the answer. _
for s<1. In conclusion, we have shown that the collapsing behav-

Equation(12) shows that the conserving solution has di- ior can be found numerically if one notice that the collapsing
vergent collision rate at the origin. This implies that the cur-S0lution has an absorbing point into the origin, hence it must

: . . . be enforced in the simulation.
ren nsi i X ;S) Is nonintegrabl was fir . .
necJttec??n SRZ?[%](O’U’ 0:Y0;S) Is nonintegrable, as was first We have constructed a noncollapsing solution for the case

The prediction of a divergent collision rate can be! <Tc: This is possible since the absorbing boundary condi-

) X ) ““tion P(0,—u)=r?P(0ru) allows for two functions as
checked numerically. If we integrate the Langevin equat'orboundary condition. One goes to zerowas 0 and the other
with a finite time stepAt, then the particle is injected at X

~(AD)32 wh L locity that i I C one diverges tae asu—0.
~(A™, wheree is its velocity that is very small. Conse- In terms of Brownian paths, we propose the following

quently, the number of bounces at the origin must diverge a§jctyre: forr>r, the probability to touch the origin of the
(At)"? asAt—0. Indeed Fig. 2 shows a perfect validation phase space starting from any other point is zero, similar to
of this prediction. In the same figure we have plotied thesimple diffusion in two or more dimensions, thus the collaps-
probability that the particle stays betweer 0, x=0.01. We  ing solution is forbidden. When<r ., the diffusing particle
see that this this probability is independent of the integratioroyches the origin with probability 1 and if the path is set to
step for each value of the restitution parametéfhis means  terminate there the collapse occur. If the path is not set to
that there is no collapsing behavior. The particle is attractegerminate the particle is sent back into the domeir0 after
by the wall, performs an infinite number of collisiofia the  ap infinite number of collision with the boundary. The weight
limit At—0) and with probability 1 is injected back into the of the paths leaving the origin without touching the boundary
domainx>0. . _ is zero in the continuum limit but they give a finite contri-
Now we can see that the question “what the particle doegytion because they are sampled an infinite number of times.

if we put it atx=0, u=07?"is indeterminate for<r.. The i
general solution in this case is The author thanks Ted Burkhardt, Alan Bray, Michael
Swift, Stephen Cornell, H. B. Geyer, F. G. Scholtz, and A.
P=qG;(x,u,Xq,Uq,t)+(1—q)P,(X,u,Xq,Uq,t), van Biljion for criticism and useful discussions. The final
version of the paper was prepared at Department of Physics,
0=g=1, (13 Inha University, South Korea.
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