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Bound state properties of the ground states in the DT and T3 ions
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Recently developed multibox approal@aM. Frolov, Phys. Rev. B64, 036704(2001)] is used to construct
highly accurate, bound state wave functions for the ground states in the heavy adiabatic foasdT; . The
computed variational energies and bound state properties have significantly higher accuracy than results known
from earlier computations. Nevertheless, the computed and predicted nucleus-nucleus cusp and nucleus-
nucleusé function differ significantly even for the highly accurate wave functions used in this study.
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In this paper we report highly accurate results for thenucleus properties. This indicates clearly that currently ob-
ground states in the heavy adiabatic ions *D@nd T, . served deviations for the contact properties are not
These ions are of great interest in various applications thdtindamental and can be eliminated completely by develop-
are mainly related with the nucleét,t) fusion and@~ decay ing the next generation of more effective and better conver-
of tritium nuclei. Computation of the corresponding final 9€nt variational methods. o
state probabilities requires the knowledge of the initial bound Presently, we want to improve significantly the overall
state wave functions. Presently, to determine the bound stafi¢curacy of the variational wave functions used for bound

spectra in these systems we apply the exponential variationéFate calculations of the adiabatic ions. This means that such

expansion in the relative coordinates combined with our reVave functions must provide highly accurate results not only

X : . for the bound state energies, but also for other bound state
cently developed multibox approach for choosing the nonlin roperties in the heavy adiabatic ions Dand T, . In fact,

ear parameterl]. Not.e that th|§ approach dqes npt use anyﬁ is shown below that the main troubles for these ions are
of the Born-Oppenheimdor adiabati¢ approximationg2].

In general. all nonadiabatic methods are not ver successfl[rjﬁlated with the contact nuclear-nuclear properties, rather
9 T : Y SWe > than with the highly accurate energy determination. Note that
for performing highly accurate, bound state calculations in,

he h diabatic | has Dand T . | icul he considered DT and T, ions are the Coulomb three-
the heavy adiabatic lons, such as Dand 1, . In particular, body systems with unit charges. The nonrelativistic Hamil-

the observed convergence rate and numerical stability of thg, iz for an arbitrary Coulomb three-body system can be
computed results are significantly lower for heavy adiabatiGyyitten in the following form:

ions, than for light adiabatic ions, e.g., for thg land HD"
ions. A closely related problem is to explain the observed

huge differences between computed and expected nucleap = — V- ! v2- ! v2+ a2 | 991 ngl’
nuclear contact properti¢8] in the heavy adiabatic ions. For 2m, 2m, 2mg r's2 frsp a1
instance, it was found in Ref4] that the computed and (1)

actual values for the tritium-tritiund function in the T, ion

differ from each other by=33 orders of magnitude. Analo- where atomic unitsf{=1,e=1 andm,=1) are used. In this
gous deviations were also detected for the nuclear-nucle@quationq;,d,,qs are the particle charges, white; ,m,,m;
cusp and three-particlé function. In fact, for the heavy are their masses. In fact, in all formulas below the subscripts
adiabatic ions such deviations are maximal. Note that alll and 2 represent the two heavy nuclei, while the subscript 3
other bound state properties in the adiabatic three-body iongorresponds to the electrdfight particlg). Furthermore, in
can be determined to a high accuracy. Such properties irthis study only atomic units are used. In atomic units for the
clude energies, all electron-nuclear expectation values, anebnsidered adiabatic ions we hage=q,=+1, gz=e =
many nuclear-nuclear expectation values. But the presence of1, m3=m=1 and minfn;,my,)>my=1. Presently, for the
unexplained and very large differences between the comauclei of hydrogen isotopes the following massey

puted and actual nuclear-nuclear contact propef¢sle- =3670.48301h, andm,;=5496.92158, are used6].
valuates our approadiy] developed originally for the adia- Our main computational goal in this study is to determine
batic ions. (to a high accuragythe bound states of the corresponding

Unfortunately, at the present time we cannot explain whySchralinger equation i —E)W =0, whereH is the Hamil-
the exponential variational expansion produces such poor regenian from Eq.(1) andE(E<O0) is its eigenvalue. The de-
sults for the contact nuclear-nuclear properties in the adiatermined wave functions are used to perform highly accurate
batic systems. In fact, this question requires a further inveseomputations of various bound state properties. Presently, to
tigation. But, in this study we provide some arguments thatletermine the bound state energies and corresponding wave
can be useful for choosing the correct explanation. Indeed, functions we apply an improved version of the exponential
is shown below that by increasing the accuracy of trial wavevariational expansiofil]. The general form of such an ex-
functions one can drastically improve the observed agreepansion is discussed in R¢f]. Below, however, we restrict
ment between the computed and predicted contact nucleusurselves to the study of the grouSL =0) states in the
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DT* and T, ions. For these states the exponential varia{or each pagf the procedure. These parameters are used to
tional expansion can be written in the form find a proper balance between different parts of the trial

function[1].

Let us present the following simplified version of the pro-
cedure. The simplification means the use of the three-box
version and restriction to the four scaling parameters. This
means that only three six-dimensional box®s B, and 35

X exp(16u +1euy+1fius), (2)  are used in our present calculations. The choice of the non-
linear parameters in E@2) proceeds as follows. Létbe the
where uy,u,, and uz are the truly independent perimetric NUmber (or index of the basis function in Eq(2) (1<i
coordinates (8 u;< +). These three coordinates are sim- <N) andk=mod(,3)+1, where modi3) designates the
ply related to the three relativ@r interparticlé coordinates Modular division(i.e., an integer remainder after division of

N
1 .
V=5 (14 kP2) 2, Ciexpl— aiuy— Biuz— yiua)

rij:m_m: i by 3. Now, the 'parametersui Bi i 6i € . and f;
are chosen quasirandomly from the six intervals
. (A A2 [B17 BEY)LGY, G271, [DY. DL IEL E27),
Ui=2 (Nik T = i), and[F3™, R
ai=<<%i(i+l)\/§>>(A(2k)—A(1k))+A(lk), 3
wherer;;=r; andi#j#k=(1,2,3)[1]. In Eq. (2) the op-
erator P, is the permutation of the two identic&l and 2 1
particles in the symmetric systems, whare = 1, otherwise Bi= < <§i(i +1) \/§> > (BY9—B{)+B{Y, (4)
k=0 (e.g., for the DT ion). In fact, for the ground state
of the T, ion k=+1. Also, in Eq.(2) 1 is the imaginary 1
unit, C; are the linear (variationa) parameters, and 7i=<<§i(i+1)\/§>>(G(2k)—G(1k))+G(1k), (5)
a;,Bi,7vi,% .6, andf; are the & nonlinear parameters (
=1,... N) and N is the total number of basis functions 1
used in calculations. The simple conditioms>0,3,>0, and 5= < <—i (i+ 1)\/?> > (DY -DM)+DEP, (6)
vi>0 (for i=1,... N) must be obeyed to guarantee the 2
convergence of all integrals needed in computations. In ac-
tual computations the central part of the solution is an ei:<<li(i+1)\/ﬁ>>(E(2k)_E(lk))+E(lk), @)
optimal choice of these M nonlinear parameters 2
a;,Bi,vi, % ,e, andf; (i=1,... N) in the trial wave func- L
tions in Eq.(2). Recently, we proposetsee, e.g., Refl1] _ o K K K
and references thergia few different strategies for optimi- fi= < <§'(' + 1)\/f)’> > (F(z - F(l O+ F(l ), (8)

zation of these nonlinear parameters. In particular, in this
study, we apply our multibox strategy, which was developedvherek=1,2,3 and the symbd\ - - -)) designates the frac-
in Ref.[1] and effectively used for highly accurate calcula- tional part of a real number. As we mentioned above, the
tions in various three-body systems. boundaries of SiX mentioned intervals, ie.,
The basic ideology of the multibox approach is describedA{? A%, ... F¥ F¥ are the actual nonlinear parameters
in detail in Ref[1]. This work also contains a brief history of of the method. The total number of actual nonlinear param-
its invention. Presently, we do not want to repeat all argu-eters used in this stage of the procedure equals 366(2
ments used in Ref1] to explain numerous advantages of the X 3 for the considered three-box versjoin fact, such a
multibox approach. Note only, that this approach has beeohoice of thea;,B;,7i.5; .6/, andf, parameters in Eq2)
developed to perform high precision, variational, bound stateepresents the firstor main stage of the procedure. For
calculations for arbitrary three-body systems. In this ap-many Coulomb three-body adiabatic systems one pass of the
proach the nonlinear parameters;,f;,y;,d;,e;, and first stage already produces very accurate results.
fi (i=1,2,...N) in Eq. (2) are chosen quasirandomly = The second stage is essentially a scaling of the lattice
from a few (up to 10 different six-dimensional boxes points chosen in the first step. The scaling itself is performed
BBy, ... B Since these parameters as follows. The families of the parameters,3;,7;,d; ,€;,
[@,Bi,7i. 6,6, andf; (i=1,2,...N)] are not varied in andf; (which correspond to the sank® are multiplied by
the procedure, they are not real nonlinear parameters dhe positive facton, (k=1,2,3). Then, this parameta, is
the method. These parameters are usually called either tlaso varied. The total number of such additional parameters
lattice points, or quadrature points. In contrast withequals 3 (3<1). Also, one additional variational parameter
ai,Bi,vi,6 .6, and f; (i=1,2,...N), the geometrical is used to perform a scaling for all lattice points in Eg).
sizes and positions of the mentioned six-dimensional boxeBinally, this method produces a properly balanced wave
By,B,, ... Big are optimized, i.e., they are the actual non-function that represents the considered bound state very ac-
linear parameters of the method. Furthermore, there are alswrately. Note that the total number of actual nonlinear pa-
a few scaling parameters, which are optimized for each stepameters in this version of the procedure equals 40.
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TABLE I. The convergence of the total energies in atomic unitswave function that contains 200 exponential basis functions.

for the ground states in the;Tand DT' ions. This booster wave function have been determined in a
series of separate computations for the Hon (mp
N @ T, DT* =1836.15270M,). The corresponding variational energy
w0 —oswsoeonorrzi —ossosenciss (of L G0 oRr e e e wave
500 —0.59950691010840 0599130662 6135 function known for this ion. In fact, our present approach has
iggob :g'ggg 282 Zig iﬂ:ﬁ :g'ggg 128 gg; gggg b<_aen tested fully fo_r the H ion. The energy compL_Jted
b : : with  N=1800 basis wave functions in EQq(2) is
1600 —0.59950691011154  —0.5991306628550  _ (597 13906312340507 a.u., i.e., it is one of the best
o€ _059950691011154 —0.5991306628550  variational results knowr_l for this sy_ste(rsec_a, e.g., Ref.7)).
The bound state properties for thg kbn coincide very well
—0.599 506 909 86 —-0.5991306618 with the results obtained in Refg4,8,9]. Our results for the
light adiabatic ions will be published elsewhere. For the T
*The number of basis functions used in calculations. ion we used essentially the same approach. The variational
bFor this case the nonlinear parameters were not optimized. energies computed with thid=400-600, 1400, anti600,
‘The asymptotic valueN=2) of energy determined by using the and 600 basis functions can be found in Table I. The forty
formula E(N;) = E() + A/N/. nonlinear parameters of the present meth¢se above
%The best results determined in previous calculatighsd). have been varied for eadt The observed convergence for

o . the energie€ upon the numbe(N) of basis functions used

In fact, we can say lEhat SIX |n|Eerva|1(I@vh|crI1< COMeS™  [i.e., E(N)] is significantly faster than in the case, when
ponkd tokthe skamekk) [A{,Af )]&[5(1'1-5(2 L1616 )J- these nonlinear parameters are varied only for one value of
[D{,DIL[EX EX], and [F{Y,FS9] form one six- N, It can be illustrated by representing the dependd(@e)
dimensional box(or parallelotop B, . The first three such jna simple asymptotic forr(N) = E(«) + A/N”, where the
intervals must always be pOSitive, while the last three can b@ositive constanty can be used as a numerical indicator of
arbitrary. Note also that, the high efficiency of our presenithe convergence rate. From Table | one finds in this formula
strategy for choosing the lattice points in E) is based on  ,~11.0. However, if the nonlinear parameters are varied
the fact that in Eqs(3)—(8) any additional condition for the only for one value ofN, then the parametey decreases to

AY AL, FY9 points is not used. In particular, either ~7.5  Finally, the computed variational energy
AP<AY  or AP=AJ). The same is true for the —0.59950691011154 a.u. for the ground state of the T
BY,BY, ... F{,FY points. Furthermore, for ank the  jon is much more accurate than our previous valik(at
relative position of the interval A{¥ A7 with respect least fourteen decimal figures here are stable

to the intervals [AX"D A% and [AfD AN For the DT ion the procedure was essentially the same,
can be arbitrary. This is also true for the butin this case the short term booster wave function has not
[B(lk),B(zk)], o ,[F(l"),F(zk)] intervals. The results of calcu- been used. Nevertheless, the computed variational energies

lations for different systems indicate clearly that such a freefor the DT" ion also converge very fast when the number of
dom in choosing the lattice points is one of the main advanbasis functionsN grows. Our best variational energy
tages of our present approach. In fact, this allows the—0.5991306628550 a.u. for the ground state in the' DT
generation of extremely accurate variational wave functiondon is also most accurate computed value. Note, that already
for different systemssee results below for N=500 functions in Eq(2) the energy from Table | is

Our present procedure can be modified easily to the cas@ignificantly better than the appropriate energy from Ref.
when the original variational expanside.g., Eq.(2)] in-  [10]. The fact that Eq(2) can produce the lower bound state
cludes some clustefor boostey functions. Such functions energies than values determined in R&f)] for the DT ion
are often used in calculations to accelerate convergence dfas quite unexpected. Indeed, the numerical value of tritium
the whole method. For instance, if one booster function igwclear mass used in R¢f0] is larger than ours. Moreover,
used, then the indeixin Egs.(3)—(8) changes fronN,+1 to ~ as we mentioned above, the variational expansions in the
N. Here N, is the number of basis functions in the boosterrelative (or perimetrig coordinatege.g., Eq.(2)] work sig-
functions, whileN is the total number of basis functions nificantly better for light adiabatic ions, rather than for the
used. The cases when three-, four-, and many-cluster funconsidered DT and T, ions. On the contrary, the method
tions are included in calculations can be considered in analaised in Ref[10] was specifically designed for purely adia-
gous manner. In any case, our presently developed multiboatic systems. Note also, that due to the very restricted com-
approach produces a variationally optimal, orthogonalputer resources, in this study we could not apply the more
complement to the original cluster wave function. In othereffective four-, five-, and six-box versions of our present
words, by using our present procedure one can obtain theethod. However, as follows from Table I, our three-box
best(in the variational seng&orrection to the short-terfor ~ approach is quite effective even for the heavy adiabatic ions
cluste) wave function known from separate computations. DT" and T{ .

The variational energies obtained with the use of expo- It should be mentioned that such very fast convergence
nential expansion Eq2) can be found in Table I. To perform can be observed only for the bound state energies. Numerical
our present calculations for the; Tion we used the booster results for other bound state propertisse belowcomputed
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TABLE II. The expectation value§n atomic unit$ of some propertieéX) for the ground states in thesT
and DT adiabatic ions. Below, the subscript 3 designates the electron, 2 stands for the tritium nucleus, while
1 mean deuterium nucleus in the DTon and tritium nucleus in the JTion.

(X) ththe” d'tte” (X) tftte” d'tte”

(ry? 0.246 808 951 8  0.246 346 97 (r,!) 0.4949495419  0.494 269 271 7
(r32) 14356337933 143431247 (ry') 0.8469816811  0.846 195194 9
(rsf 1.433821 04  (rg}) 0.846 335 402 0
(ry 2.035386 0314 2.039939517 9 (r3) 41732144262  4.195 439 299
(ray 1.677 707 6793 1.680 255516 9 (r3)  3.485248 9021  3.497 361 208
) 1.680 0233412 (r) 3.496 476 880
(r3) 8.618 701 7195  8.698 47928 (r3) 17.927 967 28 18.179 373
(r3) 8.414 7520107  8.46281011 (r3) 22.885 378 11 23.070 722
(r3y) 8.459 83301  (r3, 23.060 545
((rarsp) %)  0.614 26577411 0.613216 778 (7,) 0.2553718042  0.254 827 444
((raro,)~Y 042087161515 0.420 100 102 (75;) 0.508 8193210  0.509 076 474
((ragfo)™ %) 0.420 161 323 (73y) 0.508 931 835
((rafafo) 1) 0.307 0610354  0.306 471673 (f)  0.068 25261156 0.068 208 938 1

(V31 Ta2) 1.398 641 689 1.399 199 476

(Vo1 Ta1) 2.086 607 213 2.098 161 733

<F12. F32> 2.097 277 404

(—3V? 4.389 953849 08  0.394 773 61 (V,.V,) 8.181998 028 9 7.297 674 5
(—3V?) 0.394 72755 (V,.V;)  0.597 909 669 0.597 797 598
(—3V? 0.597 909 669 26  0.597 337 079 qV,,. Vi) 0.596 876 562
(8(r2)) 0.4714<10° % 0.6151x10°'2  2(T) 1.119 01382022 1.119 826 132 49
(8(T 1)) 0.208 151 37 02078800 (V) —1.11901382022—1.11982613252
(8(r'3)) 0.207 980 0 7 1.8411x10° % 2.2286x10 12
(8(T'32) 0.7631x10° " 0.3114<10°" & (eV) —2.71019663559 —2.7011 8950980
vy —0.999827313 w3 % —0.9998181131 —0.9997276305
vap? —0.9998181131 vy 122.7 161.4

Va1 —0.999819631 —0.999736577 v, 2  2748.460 790 0 2200.879 985 4

aThe expected value determined by Ef0).

for differentN oscillate around some values, but they do notthe properties presented i

n Table Il only stable figures from

converge in a rigorous sense. In fact, in many cases the angalculations with the higheN are shown. For the two-
plitudes of such oscillations are relatively small and one camparticle cusps and functions only the best results are given
easily determine the final expectation values. However, thén Table II. The physical meaning for all of the expectation

worst situation can be found for those properties that includgalues in Table Il is quite

clear from the notations ugfeat

the nuclear-nucleaé function (i.e., nuclear-nuclear contact more details, see also, Rd#]). In fact, here we have to
properties. The corresponding numerical results are dis-make only a few following remarks. In all formulas given
cussed below. But it is quite clear that for adiabatic systemsg,aow and in Table Il the subscripts 1 and 2 mean positively

even very fast convergence for the energies does not indica@]arged heavy nucleinf, <
a high quality of the trial wave functions. In contrast with
this, the expectation value of the nuclear-nuclédunction
can indicate, in general, the overall numerical accuracy o
the wave function.

The numerical values for a humber of geometrical an
dynamical properties for the,Tand DT" ions (in atomic
units) can be found in Table Il. Table Il also contains the
corresponding variational energies determined by using dif-
ferent number$\ of basis functions in Eq¢(2). For most of

?nd 6321 Stand for the corr
6 functions, respectively.

Vij—
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m,), while the subscript 3 des-

ignates the electronnf;=1). The notationsds,, 831,521,

esponding two- and three-particle

The two-body cusps are deter-
Qmined in a traditional manndd1,12:
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where ;= 4(rj;) is the appropriates function and {j) combinations can be transformed to a system of independent
=(32), (31, and(21). The exact value of;; equals[11,12 tests. For instance, for the three relative vectagsr;, and

mim, r,; we have

VijZQqu'—mj+mj, (10

F32_ F3l+ Fz]_: 6 (15)
whereq; andq; are the charges and, andm; the masses of

Therefore, the three followi litig6,j,k)=(1,2,3)]:
the two ( and]) particles. erefore, the three following equalitigéi,j,k) = ( )]

The expectation values of the two interparticle cosine . .1
functions are determined traditionally: ik rjk=§(fi2k+r,-2k—ri2,-) (16)
FieT | . ,
71y =(COg X rjk)>:< ik “‘>7 (11)  hold for an arbitrary three-body system. For the appropriate
Fikl j expectation values one finds

where (,j,k)=(1,2,3). The quantity(f) is expressed in 1
terms of the relative coordinatesy,rs;,r2)) or perimetric (M i) = E((rfk>+<rj2k)—<ri2])). (17)
coordinates {;,u,,us) [where uj=3(rj+ry—ry), and

(i,j,k)=(1,2,3)] as follows: L L )
Analogously, sincg;+ p,+ p3=0, then we write

Uy Uz Uz

l32731 721

0-{ el .
W Pi-P;=5(Pc—P{—P}) (18

:.[ f J.|¢(U1,Uz,U3H2U1U2U3dU1dU2dU3-(12) and

The value(f) can be calculated directly or by applying . T 2 2

Their coincidence indicates that thesg, 73,,75; and (f) (Pi-pj)= §(<pk>_<pj>_<Pi ), (19
have been computed correctly. The equalities

respectively [(i,j,k)=(1,2,3)]. Moreover, since ﬁi
Tort Taot T3 =1+ & (13 > .
2t fszn st W =(—1)V,, then one finds

hold for arbitrary three-body system. For thg Symmetric

. - 1 1 1
ion we haver;,= 731. (V- V)= _< - —VE> +< - _Vi2> +< - —V,-2>, (20)
The virial factor» is determined as follows: 2 2 2

v

\2

_lga where ,j,k)=(1,2,3). Here, theV,-V; operator is under-
e

stood to act on its right. The expectation values form both
sides of this equality can be found in Table Il. Moreover,
where(T) and(V) are the expectation values of the kinetic for the symmetric 3 ion one easily finds thatV;-V,)
and potential energy, respectively. The deviation of the factor (- 1y2)~0 is always positive.
7 from zero indicates, in principle, the quality of the wave  Now, let us discuss the computational results for the
function used. Note, however, that this statement is not trugoynd state properties presented in Table Il. Consider first
in those cases when the virial factor is artificially im- the DT* jon. For this system the important point to make is
proved (for more details, see, e.g., discussion in Hé).  that, all electron-deuterium expectation values presented in
Table Il also contains the appropriate binding energiésat  Taple I coincide almost exactly with the corresponding
are given in eV (the conversion factor is l1a.u. electron-tritium values. In other words, the differences be-
=27.2113961 eV6]). These values represent the differ- tween these two groups of properties are relatively small.
ences between the total energieaind corresponding disso- Thus we arrive at the remarkable conclusion that the electron
ciation energies for the considered Bnd DT" ions. The  in the adiabatic DT ion cannot essentially distinguish be-
lowest-energy dissociation thresholds for these ions correween the two heavy nuclei tdand t). It can be shown that
sponds to the reactioriE, =T+t" andDT*=T+d", re-  this statement is also true for an arbitrary adiabatic ion that
spectively. HereT designates the neutral tritium atom, while contains two isotopic nuclei, i.e., two nuclei that have differ-
t* andd™ are the two positively charged nuclgiitium and  ent masses, but the same electric charges. On the other hand,
deuterium, respectively analogous results for the muonic molecular idsse, e.g.
The properties of the ;T ion presented in Table Il agree Ref.[13]) indicate clearly that the negatively charged muon
quite well with the less accurate results obtained in previoug.™ in such systems distinguishes quite well between the two
calculationg[4]. Analogous properties for the DTions has different (isotopid nuclei. Note, however, that the muonic
never been determined. So, it is very important to note thamolecular ionspdu,ptu, and di are not purely adiabatic
some expectation values in Table 1l can be expressed as tlsgstems. Furthermore, for the antiprotonicttip~ ion, the
linear combinations of other properties. Furthermore, suctobserved dp~ properties differ significantly from the cor-

: (14)
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responding tp~ properties[14]. Obviously, in this case all deed, in the last cad®, ,<R¢ and for computing the nuclear
three particle masses are comparable with each other. fusion probability one needs to know only the deuterium-
Second we consider the computational results for the cortritium & function and astrophysical factor for tlié.t) reac-
tact nuclear-nuclear properties. As we stressed above, thion. For the DT  ion we haveR, >R, and therefore, the
current accuracy which Ed2) can provide for the contact analogous expression for the nuclear fusion probability must
nuclear-nuclear properties in the adiabatic ions is very pooglso include an additional penetration facter {0 °).
and obviously not sufficient for many experimental and the-  Finally, one finds that théd,t) fusion probability for the
oretical problems. In general, the contact propeftyan be DT+ jon (as well as for the DT moleculds a very small
written in the form value (=10 2°-10%" s7! per DT moleculg at normal
N conditions. This means that the nuclear fusion in the'DT
(X)=(a(rij))F(Xi,p;j)), (21)  jons and DT molecule&t normal conditionscannot be con-
sidered for actual thermonuclear applications. Note, how-
whereF is an arbitrary, in principle, operator that depends onever, that our method developed in this study can be modi-
the dynamical variablesi( and 5j) of the considered sys- fied to evaluate the rate of bound-free transitions and
tem. Thes functions and cusps introduced above are the twdCompton scattering rate in the DTion and other similar
examples of quite simple contact operators. A large numbe®ne-electron adiabatic ions, e.fLD) **. In turn, this sim-
of more complicated contact operators arise, e.g., when thglifies significantly the evaluation of analogous values for
nonrelativistic wave functions are used to determine thehe highly compressedpf=150 gcm 3) mixtures of the
fourth- and higher-order relativistic correctiorigpon the  lithium-6, deuterium, tritium, and helium-4. In general, the
fine structure constant) in few-body systems. In this case, rates of bound-free and bound-bound transititaleng with
such contact operators are also essentially sinda&ir the bremsstrahlung rate and corresponding rates for inverse
As follows from Table Il the accuracy of our present cal- process@sare of paramount importance for So|ving of the
culations for the § ion is significantly higher than known corresponding burn-up equations, i.e., to predict the thermo-
from our earlier work4]. This conclusion follows from the nyclear ignition at actual conditiongor more details see,
comparison of corresponding virial factogs Based on these ¢ g., Refs[16,17).
virial factors, we can say that our present bound state ener- The npyclear-nuclear cusps presented in Table Il are sig-
gies are~10° times more accurate than energies determinegificantly less accurate than other bound state properties
in Ref. [4]. Note that our present nuclear-nucleafunction  om Taple I1. It should be mentioned, that the actual com-
computed for the T ion (see Table Il is also~10" times putational accuracy for the nuclear-nuclear cusps&fuhc-

more accurate than suchsefunction determined in Ref4].  tjons has never been determined in molecular calculations. In
This means a better agreement between the computed aﬂgct, since Ref.[12] it was assumed that all computed

expected values for the nuclear-nuclédunction. It follows - oo nuclear cusps for an arbitrary molecule are approxi-

e e et 1 Ul mately el t the expected values iven by More-

. . prop . . over, such an agreement can be improved, if the more accu-
eliminated in the future studies, e.g., by developing MOr€ ate wave functions are used. This also was never tested
effective and better convergent variational methods. ‘

Note that the deuterium-tritium nuclear-nuclesiunction numerically for adiabatic systems. Our present results indi-
in the DT* ion (as well as in the DT moleculiés of interest cate that all computed nuclear-nuclear cusps &ffuhctions

for applications, since its value can be used to evaluate thi& the DT" and T, ions have a very poor numerical accu-
nuclear fusion probability in various deuterium-tritium sys- facy. Also, the presently computed nuclear-nuclear cusp for
tems. In general, the expectation value of the nuclear-nucledhe T, ion (see Table Il has the same accuracy as in Ref.

& function determines the probability for the two nuclei to be[4]. In contrast with this, the electron-nucleus cusps and
very close to each other. The numerical value for such dunctions for an arbitrary adiabatic system can be determined
close nuclear-nuclear distané® depends significantly on quite accurately(see Table ). Note also, that for many
the considered system. For instance, in atomic and moleculaonadiabati¢or nonmolecularCoulomb three-body systems
systemRy~ @ay (i.e.,Rge~A), Wherea is the fine struc-  the cusp conditions have been tested to a very high accuracy
ture constantag is the Bohr radius, and is the Compton (see, e.g., Ref.1] and references thergin

wavelength €3.861592 64X 101! cm). For muonic sys- Thus in this study we considered the ground bound states
tems one findR, ,~ea,=A/m,~1.87<10 '3 cm. Thus in the heavy adiabatic ions;Tand DT'. The total energies

the deuterium-tritiums function in the DT ion determines  of these states have been determined to a high accuracy by
the total probability to find both nuclei at the distand®s,  using the recently developed multibox approath A large

~A. For the dix muonic molecular ion the deuterium- number of bound state properties has also been computed for
tritium & function gives such a probability for distances thatthese two ions. For the nonsymmetric DTon the presented

are approximately 200 times small&R{,~A/m,). In fact,  kinetic and geometrical properties have never been deter-
the nucleakd,t) fusion occurs when the distance between themined in earlier calculations. In contrast with the energies
deuterium and tritium nuclei is less th&&~5x10 * cm.  and other bound state properties, the problems related to the
This explains a principal difference in computation of the nuclear-nuclear contact properties remain unsolved. Pres-
nuclear fusion probabilities for the DTand dj ions. In-  ently, we cannot obtain such expectation values even ap-
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proximately. For instance, the current deviation between theontact nuclear-nuclear properties must be a central problem
computed and expected tritium-tritium delta function in thefor future studies of the Coulomb three-body adiabatic sys-
T, ion can be evaluated as10?®. For the DT" ion such a  t€ms.

deviation can also be evaluated a40?® In conclusion, it It is a pleasure to thank the Natural Sciences and Engi-
should be mentioned that the more accurate determination efeering Research Council of Canada for financial support.
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