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Three-body bound-state calculations by the Lagrange-mesh method: Selection of a
coordinate system
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~Received 19 December 2001; published 11 April 2002!

Four coordinate systems adapted to three-body problems, the relative, Jacobi, perimetric, and renormalized
Hylleraas coordinates, are compared in bound-state Lagrange-mesh calculations. The convergence of the en-
ergy with respect to the Lagrange basis size and the filling rate of the Hamiltonian matrix are analyzed. Three
kinds of potentials are considered: harmonic, Gaussian, and Coulomb-like potentials. When at most one
interaction potential presents a singularity at the origin, Jacobi coordinates represent the best choice for
three-body Lagrange-mesh calculations. When all three potentials contain 1/r singularities, Jacobi coordinates
provide only a limited accuracy, and perimetric coordinates take over. In all cases, with a good choice of
coordinates, the Lagrange-mesh method provides very good accuracies on the three-body ground-state energy
with small numbers of mesh points.

DOI: 10.1103/PhysRevE.65.046703 PACS number~s!: 02.70.Hm, 03.67.Lx, 03.65.Ge
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I. INTRODUCTION

Three-body bound states can be studied by different te
niques. Some of them, such as Faddeev equations or
method of hyperspherical coordinates@1,2#, are accurate bu
difficult to implement. Variational calculations are also mu
used. The variational methods require the evaluation
Hamiltonian matrix elements between trial wave functio
In particular the determination of the matrix elements of
interaction potentials may be difficult and time consumi
when the expressions of these potentials and/or trial fu
tions are complicated. From this point of view the Lagrang
mesh method is very interesting as it is simple to impleme
whatever the potentials, and provides accurate results.

The Lagrange-mesh method is an approximate variatio
calculation which resembles a mesh calculation@3–6#. Its
main advantages are its simplicity and accuracy. Its simp
ity comes from the use of a basis of Lagrange functions,
indefinitely differentiable and orthonormal functions whic
vanish at all points but one of an associated mesh, and o
Gauss quadrature corresponding to this mesh. In quan
mechanical problems, the potential matrix in the Lagran
basis becomes diagonal with the help of the Gauss appr
mation, and its diagonal terms are simply given by the
tential evaluated at mesh points.

The Lagrange-mesh method provides accurate results
a number of bound-state and scattering calculations
atomic and nuclear physics@4,7–12#. However, this astonish
ing and yet unexplained accuracy@13# may drop in the pres-
ence of singularities@14#. This problem can be solved by
regularization technique if all singularities occur at the sa
point @4,5#. Of course, this is not the case in three-body pro
lems. However, the singularities can sometimes be eli
nated by a good choice of coordinate system@12#.

Three-body systems can be studied with the help of
ferent coordinate systems. In the context of the Lagran
mesh method we can then wonder whether there exist
optimal choice of the coordinate system to analyze a th
body problem. We thus make a twofold comparison of so
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of them, based on~i! the convergence of the bound-sta
energy with the Lagrange basis size and~ii ! the filling rate of
the Hamiltonian matrix in this basis. The former may depe
on the expression of the interaction potentials between
three particles and, in particular, on the presence of sin
larities in these potentials. The latter does not depend a
on the potentials. Indeed, as pointed out above, in
Lagrange basis the potentials take part only on the diago
of the Hamiltonian matrix, thanks to the use of the Gau
approximation. So, in the Lagrange-mesh method, the n
ber of nonzero elements in the Hamiltonian matrix is co
pletely determined by the kinetic energy operator. Here
consider four coordinate systems which are the relative
ordinates with respect to one of the particles, the Jacobi
ordinates, the perimetric coordinates@15,16#, and some com-
bination of Hylleraas coordinates@17#, which we call
renormalized Hylleraas coordinates. The relative coordina
have already been partly associated to Lagrange mesh
study nuclear three-body systems@8,9#, and the perimetric
coordinates have recently been used in atomic and molec
three-body Lagrange-mesh calculations@12#.

The four coordinate systems and the corresponding th
body Hamiltonians are developped in Sec. II. The Lagran
mesh method and three-dimensional Lagrange bases ar
plained in detail in Sec. III. The comparison between the fo
coordinate systems in Lagrange-mesh calculations is m
with different potentials in Sec. IV. Conclusions are given
Sec. V.

II. THREE-BODY HAMILTONIAN AND COORDINATE
SYSTEMS

The Hamiltonian of a three-body system can be written

H5
p1

2

2m1
1

p2
2

2m2
1

p3
2

2m3
1V13~ ur12r3u!1V23~ ur22r3u!

1V12~ ur12r2u!, ~1!

wherer i is the coordinate of particlei, with massmi , andpi
©2002 The American Physical Society03-1
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M. HESSE PHYSICAL REVIEW E 65 046703
is the associated momentum. We assume here that the p
tials Vi j only depend on the distances between particles.

After the elimination of the center-of-mass motion, t
Hamiltonian is reduced to an internal HamiltonianH int de-
scribing the relative motion of the three particles. Th
HamiltonianH int is the sum of an internal kinetic energyTint
and of the potentialV

H int5Tint1V, ~2!

with

V5V13~ ur12r3u!1V23~ ur22r3u!1V12~ ur12r2u!. ~3!

In the center-of-mass frame, a three-body system has
degrees of freedom. They can be represented by three
ables describing the shape of the triangle defined by the t
particles, and by three Euler angles giving the orientation
this triangle in space. In order to simplify the problem, w
are here interested only inS states, which correspond to
zero total angular momentum. In this case the wave func
describing the three-body system is independent of E
angles, and only depends on the three internal coordina
To represent these internal variables, we consider four dif
ent sets of coordinates: the relative, Jacobi, perimetric,
renormalized Hylleraas coordinates.

A. Relative coordinates

The relative coordinates are simply defined by

r135r12r3 , ~4!

r235r22r3 , ~5!

when the third particle is chosen as reference. We take
internal coordinates the following variables:

r 135ur13u,

r 235ur23u, ~6!

x5
r13•r23

r 13r 23
.

They are formed by the two interparticle distancesr 13 and
r 23 defined on@0,̀ @ and by the cosinex of the angle be-
tween the two relative coordinatesr13 and r23, x varying in
the interval@21,1#. The volume element associated to the
variables is given by

dV5r 13
2 r 23

2 dr13dr23dx. ~7!

The matrix element of the internal kinetic energyTint be-
tween two functionsF(r 13,r 23,x) andG(r 13,r 23,x) can be
written as
04670
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^FuTintuG&5E
0

`E
0

`E
21

1

dr13dr23dxr13r 23F~r 13,r 23,x!

3F2
1

2m13
] r 13

2 2
1

2m23
] r 23

2 2S 1

2m13r 13
2

1
1

2m23r 23
2 D @~12x2!]x

222x]x#

2
1

m3
H x] r 13

] r 23
1@~12x2!]x2x#

3S 1

r 13
] r 23

1
1

r 23
] r 13D1

1

r 13r 23
@x1~3x221!]x

2x~12x2!]x
2#J G r 13r 23G~r 13,r 23,x!, ~8!

with \51. The term depending onm3 is called the mass
polarization term in atomic physics. The functionsF andG
are assumed to vanish whenr 13 or r 23 tends towards infinity.
In Eq. ~8! we have switched the factorr 13r 23, coming from
the volume element~7!, and the derivative operators, so w
can introduce this factor in the definition of the functionsF
andG. In relative coordinates, the potentialV becomes

V5V13~r 13!1V23~r 23!1V12~Ar 13
2 1r 23

2 22r 13r 23x!. ~9!

B. Jacobi coordinates

Jacobi coordinates are similar to relative coordinates,
are often used to study many-body problems. For a thr
body system, with the third particle as reference, they
given by

r5r22r1 ,

R5r32
1

m11m2
~m1r11m2r2!, ~10!

and depend on the masses of particles 1 and 2.
As for the relative coordinates, we choose to represent

three internal degrees of freedom, the two distancesr andR,
and the cosinex of the angle between the Jacobi coordina
r andR. The volume element is similar to Eq.~7!, i.e.,

dV5r 2R2drdRdx. ~11!

The matrix element of the internal kinetic energy in J
cobi coordinates is

^FuTintuG&5E
0

`E
0

`E
21

1

drdRdxrRF~r ,R,x!

3H2 1

2m12
] r

22
1

2m123
]R

22S 1

2m12r
2
1

1

2m123R
2D

3@~12x2!]x
222x]x#J rRG~r ,R,x!, ~12!
3-2
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wherem125m1m2 /(m11m2) and m1235m3(m11m2)/(m1
1m21m3) are reduced masses, and the interaction poten
becomes

V5V13SAR21
m2

2

~m11m2!2
r 21

2m2

m11m2
rRxD

1V23SAR21
m1

2

~m11m2!2
r 22

2m1

m11m2
rRxD

1V12~r !. ~13!

The simplification of the kinetic term with respect to th
relative coordinates~there is no more a mass polarizatio
term! goes together with a more complicated expression
the potential.

C. Perimetric coordinates

The perimetric coordinates@15,16# are defined as linea
combinations of interparticle distancesr i j

x5r 122r 231r 13,

y5r 121r 232r 13, ~14!

z52r 121r 231r 13.

All three take values on@0,̀ @ . The volume element assoc
ated to these coordinates is

dV5~x1y!~x1z!~y1z!dxdydz. ~15!

The matrix element of the internal kinetic energy betwe
two functionsF(x,y,z) and G(x,y,z), which tend to zero
whenx, y or z goes to infinity, can be written in the symme
ric form

^FuTintuG&5E
0

`E
0

`E
0

`

dxdydz

3(
m,n

~]mF !~x,y,z!Amn~x,y,z!~]mG!~x,y,z!,

~16!

wherem andn represent the perimetric coordinatesx, y, and
z. The coefficientsAxx andAxy can be written as

Axx52S x~y1z!~x1y1z!

m1
1

xz~z1x!

m2
1

xy~x1y!

m3
D ,

~17!

Axy5Ayx522
xy~x1y!

m3
. ~18!

The otherAmn coefficients are obtained fromAxx andAxy by
cyclic permutations of perimetric coordinatesx, y, andz and
simultaneously of massesm1 , m2, andm3. The potential is
expressed as
04670
ial
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V5V13S x1z

2 D1V23S y1z

2 D1V12S x1y

2 D . ~19!

D. Renormalized Hylleraas coordinates

The Hylleraas coordinates have been introduced to st
the helium atom@17#. As the perimetric coordinates, the
take the form of linear combinations of interparticle di
tances

s5r 131r 23,

t5r 132r 23, ~20!

u5r 12.

Thes variable is defined on@0,̀ @ , and the conditions on the
three interparticle distances give 0<u<s and 2u<t<u.
The definition domains of these three variables are then
terdependent. The renormalized Hylleraas coordinates ar
troduced in order to have three variables whose domain
variation are independent. They are given by

x5t/u,

y5u/s, ~21!

z5s.

These new coordinatesx, y, andz are defined on the interval
@21,1#, @0,1#, and @0,̀ @ , respectively. The associated vo
ume element can be written as

dV5y2z5~12x2y2!dxdydz. ~22!

Chuluunbaatar, Puzynin, and Vinitsky@18# have recently
used these coordinates to determine the ground-state ene
of several two-electron atomic systems. With these renorm
ized Hylleraas coordinates, the matrix element of the inter
kinetic energy between two functionsF(x,y,z) and
G(x,y,z) can be written in the symmetric form

^FuTintuG&5E
21

1 E
0

1E
0

`

dxdydz

3(
m,n

~]mF !~x,y,z!Bmn~x,y,z!~]nG!~x,y,z!,

~23!

wherem andn represent the renormalized Hylleraas coor
natesx, y, andz. The coefficientsBmn are given by

Bxx5z3~12x2!S ~12xy!2

2m1
1

~11xy!2

2m2
1

2y2

m3
D , ~24!

Byy5y2z3~12y2!S ~12xy!2

2m1
1

~11xy!2

2m2
1

2y2

m3
D ,

~25!
3-3
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Bzz5y2z5F S 1

2m1
1

1

2m2
D ~12x2y2!1

2~12y2!

m3
G ,

~26!

Bxy5Byx50, ~27!

Bxz5Bzx5yz4~12x2!S 12xy

2m1
2

11xy

2m2
D , ~28!

Byz5Bzy5y2z4~12y2!S x~12xy!

2m1
2

x~11xy!

2m2
2

2y

m3
D .

~29!

Expressed in these coordinates, the potential becomes

V5V13S z~11xy!

2 D1V23S z~12xy!

2 D1V12~yz!. ~30!

III. LAGRANGE-MESH METHOD

A one-dimensional Lagrange mesh is formed ofN mesh
pointsxi spread over the interval (a,b) and associated with
an orthonormal set ofN indefinitely derivable functions
F i

N(x) @3–5#. At mesh points, these functions satisfy t
Lagrange conditions

F i
N~xi 8!5l i

21/2d i i 8 , ~31!

i.e., the Lagrange functionsF i
N vanish at all mesh points bu

one. Thexi and l i are connected with a Gauss quadratu
formula

E
a

b

g~x!dx'(
i 51

N

l ig~xi !. ~32!

The Lagrange functions are used as basis functions
variational calculation. The potential matrix elements in t
basis are given by

Vi j 5E
a

b

F i
N~x!V~x!F j

N~x!dx'V~xi !d i j , ~33!

with the help of the Gauss approximation and Eq.~31!. The
potential matrix is then both simple to obtain and diagon

To study S states of three-body systems, we use thr
dimensional Lagrange functionsFi jk expressed in one of th
four coordinate systems described previously

Fi jk~c1 ,c2 ,c3!5Ni jk
21/2F 1i

N1~c1 /h1!F 2 j
N2~c2 /h2!F 3k

N3~c3 /h3!,
~34!

whereF pl
N (p51,2,3) is a one-dimensional Lagrange fun

tion, andc1 , c2, andc3 represent the three internal coord
nates, described by Lagrange meshes withN1 , N2, andN3
points respectively;h1 , h2, and h3 are scale factors which
can be introduced in the case of infinite intervals in order
adjust the position of the mesh points. The Lagrange fu
tions F 1i

N1 , F 2 j
N2 , andF 3k

N3 may be based on different kind
04670
e
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of mesh, i.e., corresponding to different intervals~see be-
low!. The Lagrange functionsFi jk satisfy the Lagrange con
ditions with respect to the three-dimensional mesh

Fi jk~h1x1i 8 ,h2x2 j 8 ,h3x3k8!

5Ni jk
21/2~l1il2 jl3k!

21/2d i i 8d j j 8dkk8 , ~35!

where xpi and lpi are, respectively, the mesh points a
weights associated to thecp coordinate. As for theF pl

N

Lagrange functions, thex1i , x2i , andx3i points do not cor-
respond necessarily to the same kind of Lagrange mesh. W
the normalization factorNi jk , the Lagrange basis function
Fi jk are orthonormal at the Gauss approximation with resp
to the associated volume element dV
5J(c1 ,c2 ,c3)dc1dc2dc3

E E E dc1dc2dc3J~c1 ,c2 ,c3!Fi jk~c1 ,c2 ,c3!

3Fi 8 j 8k8~c1 ,c2 ,c3!

'd i i 8d j j 8dkk8 . ~36!

With Eq. ~35!, this induces

Ni jk5h1h2h3J~c1i ,c2 j ,c3k!, ~37!

i.e., the normalization factor is equal to the JacobianJ evalu-
ated at the three-dimensional mesh points.

These three-dimensional Lagrange functionsFi jk are used
as a basis for a variational calculation to determine
ground-state energy of the three-body system. The trial w
function can be written as

C5(
i 51

N1

(
j 51

N2

(
k51

N3

Ci jkFi jk5(
I 51

NT

CIFI , ~38!

where theCi jk coefficients play the role of linear variationa
parameters, andI represent the three indexes (i jk ). The scale
factorsh1 , h2, andh3 in Eq. ~34! may be treated as nonlin
ear parameters, but usually the binding energy is not v
sensitive to the precise values of these factors. The t
number of basis functionsNT is equal to N1N2N3. The
Schrödinger equation takes finally the form of an eigenval
problem of sizeNT

(
I 851

NT

HII 8CI 85ECI , ~39!

where HII 8 is the Hamiltonian matrix element betwee
Lagrange basis functions. In the right-hand side of the eq
tion, we have used the orthonormality at the Gauss appr
mation of the Lagrange basis functions.

We can now analyze the form of the three-dimensio
Lagrange functions in each coordinate system describe
the previous section. The Lagrange meshes used are ch
by looking at the domains of definition of the variables. T
four coordinate sets considered here introduce only three
ferent domains. They are the semi-infinite interval@0,̀ @ , and
the two finite intervals@21,1# and @0,1#. To variables de-
3-4
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fined on @0,̀ @ we associate a Laguerre mesh, i.e.,
Lagrange mesh based on the Laguerre polynomials@12#. The
N mesh pointsr i are given by theN zeros of the Laguerre
polynomialLN(r ) of degreeN

LN~r i !50, ~40!

and the associated Gauss-Laguerre weights@19# are noted
l i

r . The corresponding Lagrange functions can be written

f i
N~r !5~21! i r i

1/2LN~r !

r 2r i
e2r /2. ~41!

The distribution of the mesh points over the@0,̀ @ interval is
controled by the scale factorh. For the variables defined o
the @21,1# and@0,1# intervals, we choose Lagrange mesh
based on Legendre and shifted Legendre polynomials res
tively. The Legendre mesh@3# is formed byN pointsxi cor-
responding to theN zeros of the Legendre polynomialPN(x)
of degreeN

PN~xi !50, ~42!

and the associated Gauss-Legendre weightsl i
x @19#. The

Lagrange-Legendre functions are given by

gi
N~x!5~21! i 1NA12xi

2

2

PN~x!

x2xi
. ~43!

The shifted Legendre mesh is obtained by shifting the L
endre mesh to the interval@0,1# @10#. TheN mesh pointsyi
are defined byyi5(11xi)/2, and the corresponding weigh
are l i

y5l i
x/2. The Lagrange functions for this mesh can

written as

qi
N~y!5~21! i 1NAyi~12yi !

PN~2y21!

y2yi
. ~44!

As the points of these two meshes are already distribute
the correct interval, no scale factor is required. We will no
exemplify the above expressions in the case of the four
ordinate systems of the previous section.

A. Relative coordinates

In the case of relative coordinates, the three variables
scribing the internal degrees of freedom are the two distan
r 13 and r 23, and the angular coordinatex. To the coordinate
r 13 is associated a Laguerre mesh ofN1 points r 1i and the
scale factorh1. The Laguerre mesh for ther 23 coordinate
includesN2 points r 2 j , and the scale factor ish2. The x
variable is described by a Legendre mesh ofNx pointsxk .

The three-dimensional Lagrange basis functions take t
the form

Fi jk~r 13,r 23,x!5~h1h2!21/2f̃ i
N1~r 13/h1! f̃ j

N2~r 23/h2!gk
Nx~x!.

~45!
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The f̃ i
N(r ) functions are the so-called regularized Lagran

functions @9,13#. They are obtained by multiplying the
Lagrange-Laguerre functionsf i

N(r ) ~41! by the factorr /r i

coming from the volume element~7!. Because of this choice
the normalization factorNi jk is simply equal toh1h2.

The expression of the matrix element of the internal
netic energy between two three-dimensional Lagrange b
functions~45! is given in the Appendix. It is clear from Eq
~A1! that the mass polarization term is the most import
source of nonzero elements in the matrix. The total num
N of nonzero elements in the Hamiltonian matrix is equal

N5N1N2Nx@~N11N2!~Nx21!1N1N22Nx11#.
~46!

The potential matrix elements are easily obtained at
Gauss approximation

^Fi jk uVuFi 8 j 8k8&'@V13~h1r 1i !1V23~h2r 2 j !

1V12~Ah1
2r 1i

2 1h2
2r 2 j

2 22h1h2r 1i r 2 j xk!#

3d i i 8d j j 8dkk8 , ~47!

and the associated matrix is purely diagonal.

B. Jacobi coordinates

As in the case of relative coordinates, we associate to
r and R coordinates two Laguerre meshes ofNr and NR
points (r i andRj ), with the scale factorshr andhR , respec-
tively. The Legendre mesh for thex coordinate containsNx
pointsxk .

The three-dimensional Lagrange functions can be writ
as

Fi jk~r ,R,x!5~hrhR!21/2f̃ i
Nr~r /hr ! f̃ j

NR~R/hR!gk
Nx~x!.

~48!

As before we use the regularized Lagrange-Laguerre fu
tions f̃ i

N(r ) with the regularization factor coming from th
volume element~11!. The normalization factorNi jk is similar
to the relative coordinate’s one, and is equal tohrhR .

The matrix elements of the internal kinetic energy b
tween basis functions~48! can be deduced from expressio
~A1! by changing the reduced masses. The total numberN of
nonzero elements in the Hamiltonian matrix is

N5NrNRNx~Nr1NR1Nx22!. ~49!

With the same basis size, the numberN for Jacobi coordi-
nates is much smaller than for relative coordinates beca
there is no mass polarization term in the kinetic energy
pression.

At the Gauss approximation, the potential matrix is dia
onal and its nonzero elements are given by
3-5
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^Fi jk uVuFi 8 j 8k8&'FV13SAhR
2Rj

21
m2

2

~m11m2!2
hr

2r i
21

2m2

m11m2
hrr ihRRjxkD

1V23SAhR
2Rj

21
m1

2

~m11m2!2
hr

2r i
22

2m1

m11m2
hrr ihRRjxkD 1V12~hrr i !Gd i i 8d j j 8dkk8 . ~50!
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As said before, the mathematical expression of the poten
is more complicated than in relative coordinates, but it is
a problem as we only need its evaluation at mesh points

C. Perimetric coordinates

The three Laguerre meshes associated to the perim
variablesx, y, andz containNx , Ny , andNz points, which
are notedxi , yj , andzk respectively. Their distribution on
@0,̀ @ is adjusted with the scale factorshx , hy , andhz .

The three-dimensional Lagrange functions are in this c

Fi jk~x,y,z!5Ni jk
21/2f i

Nx~x/hx! f j
Ny~y/hy! f k

Nz~z/hz!. ~51!

With Eq. ~15! the normalization factorNi jk is equal to

Ni jk5~hxxi1hyyj !~hxxi1hzzk!~hyyj1hzzk!. ~52!

The evaluation at the Gauss approximation of the ma
elements of the internal kinetic energy between t
Lagrange functions~51! is illustrated in the Appendix for one
term of the sum in Eq.~16!. A full expression can be found in
Ref. @12#. The total numberN of nonzero elements in th
Hamiltonian matrix is given by

N5NxNyNz@~Nx1Ny!~Nz21!1NxNy2Nz11#. ~53!

The potential matrix elements can be written as

^Fi jk uVuFi 8 j 8k8&'FV13S hxxi1hzzk

2 D1V23S hyyj1hzzk

2 D
1V12S hxxi1hyyj

2 D Gd i i 8d j j 8dkk8 . ~54!

D. Renormalized Hylleraas coordinates

As the three renormalized Hylleraas coordinates are
fined on different intervals, we use three different Lagran
meshes. To thez coordinate we associate a Laguerre mesh
Nz points zk , and the scale factorhz . The Legendre and
shifted Legendre meshes associated to thex andy variables
containNx andNy points, respectively, whose notation isxi
andyj .

The three-dimensional Lagrange functions take the
lowing form:

Fi jk~x,y,z!5Ni jk
21/2gi

Nx~x!qj
Ny~y! f k

Nz~z/hz!. ~55!

With Eq. ~22! the normalization factorNi jk is given by
04670
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Ni jk5hz
6yj

2zk
5~12xi

2yj
2!. ~56!

The matrix elements of the internal kinetic energy in th
Lagrange basis can be obtained at the Gauss approxim
just as in the case of perimetric coordinates, which is illu
trated in the Appendix. The choice of the symmetric expr
sion ~23! ensures the hermiticity of the Hamiltonian matr
when we evaluate it with the Gauss quadrature rule. The t
numberN of nonzero elements in the Hamiltonian matr
can be expressed as

N5NxNyNz
2~Nx1Ny21!. ~57!

The potential matrix elements are always simply given b

^Fi jk uVuFi 8 j 8k8&'FV13S hzzk~11xiyj !

2 D
1V23S hzzk~12xiyj !

2 D
1V12~hzyjzk!Gd i i 8d j j 8dkk8 , ~58!

at the Gauss approximation.

IV. APPLICATIONS

In the case of the Lagrange-mesh method we must s
the eigenvalue problem~39!. The determination of the
ground-state energy requires the search for the smalles
genvalue of the Hamiltonian matrix. This is done here
using the Davidson algorithm as developed by Stathopou
and Fisher@20#.

We consider three types of potentials: harmonic oscilla
Gaussian, and Coulomb-like potentials. For simplicity w
choose here the same expression for the three potentialVi j
( iÞ j 51,2,3) and unit masses for the three particles (mi
51). This induces the symmetry of the three-body syst
with respect to the exchange of the three particles.

In Tables I–III are indicated the errorse obtained on the
ground-state energy of the three-body problem with the f
coordinate systems for each type of potentials. These er
are defined by

e5E2Eref , ~59!

whereE is the energy value obtained by our Lagrange-me
calculations andEref is a reference value for the ground-sta
energy. The results in the three tables illustrate the con
3-6
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TABLE I. Errors e on the ground-state energy of a three-body system with harmonic potentials~60!,
obtained with the Lagrange-mesh method. The exact ground-state energy is equal to 3.NT is the Lagrange
basis size andN is the number of nonzero elements of the Hamiltonian matrix in the Lagrange basis.

Coordinates N1 N2 N3 h1 h2 h3 NT e N
Relative 7 7 4 0.2 0.2 196 131023 17 248

11 11 7 0.2 0.2 847 131026 209 209
14 14 10 0.2 0.2 1960 331028 860 440

Jacobi 5 5 1 0.4 0.4 25 2231023 225
10 10 1 0.2 0.2 100 2231026 1900
12 12 1 0.2 0.2 144 431029 3312

Perimetric 5 5 5 0.4 0.4 0.4 125 2231023 7625
9 9 9 0.4 0.4 0.4 729 2431026 158 193
12 12 12 0.4 0.4 0.4 1728 131028 686 016

Renormalized 8 8 8 0.3 512 2431023 61 440
Hylleraas 8 8 14 0.3 896 2831027 188 160

10 10 18 0.3 1800 2631029 615 600
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first
en-
gence of the ground-state energy with respect to
Lagrange-basis size. For each coordinate system three c
lations are done which correspond to the minimum Lagra
basis size required to obtain accuracies of about 1023, 1026,
and 1028, respectively.

The numbers of mesh pointsN1 , N2, andN3 correspond
to the numbersN1 , N2, andNx for relative coordinates,Nr ,
NR , andNx for Jacobi coordinates, andNx , Ny , andNz for
perimetric and renormalized Hylleraas coordinates. The s
factors associated to the meshes ofN1 , N2, and N3 points
are represented byh1 , h2, and h3, respectively. They are
roughly optimized to minimize the error on the energy. B
cause of the symmetry of the problem, we takeN15N2 and
h15h2 in the case of relative coordinatesNr5NR and hr
5hR in the case of Jacobi coordinates, andNx5Ny5Nz and
hx5hy5hz in the case of perimetric coordinates. The nu
ber NT represents the Lagrange basis size, which is equa
N1N2N3. The total numberN of nonzero elements of th
04670
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Hamiltonian matrix is indicated in the last column for ea
coordinate system.

The Lagrange-mesh method is an approximate variatio
calculation. The use of the Gauss approximation induces
errorse may be negative, and the results do not represen
upper bound to the exact energy value. So we cannot de
mine the best result by searching the minimum value. U
ally we estimate the accuracy of the results by increasing
basis size and by slightly varying the scale factors.

A. Harmonic potentials

In order to analyze the convergence of Lagrange-m
calculations according to the coordinate system used, we
consider harmonic potentials. The three interparticle pot
tials Vi j are defined as

Vi j ~r i j !5
r i j

2

6
. ~60!
nge
TABLE II. Errors e on the ground-state energy of a three-body system with Gaussian potentials~61!,
obtained with the Lagrange-mesh method. The reference energy is equal to20.704 924 422 104.NT is the
Lagrange basis size, andN is the number of nonzero elements of the Hamiltonian matrix in the Lagra
basis.

Coordinates N1 N2 N3 h1 h2 h3 NT e N
Relative 8 8 6 0.2 0.2 384 331023 53 376

12 12 14 0.2 0.2 2016 2231026 893 088
20 20 22 0.2 0.2 9600 2231028 10 727 200

Jacobi 6 6 4 0.2 0.2 144 431023 2016
12 12 8 0.2 0.2 1152 431026 34 560
16 16 12 0.2 0.2 3072 431028 129 024

Perimetric 4 4 4 0.5 0.5 0.5 64 131023 2368
8 8 8 0.4 0.4 0.4 512 2431026 86 528
12 12 12 0.4 0.4 0.4 1728 131028 686 016

Renormalized 6 8 10 0.3 480 2131023 62 400
Hylleraas 10 12 16 0.3 1920 2131026 645 120

10 12 20 0.3 2400 2431028 1008 000
3-7
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TABLE III. Errors e on the ground-state energy of a three-body system with Coulomb-like poten
~62!, obtained with the Lagrange-mesh method. The reference energy for this stateE
521.071 779 372 992.NT is the Lagrange basis size andN is the number of nonzero elements of th
Hamiltonian matrix in the Lagrange basis.

Coordinates N1 N2 N3 h1 h2 h3 NT e N
Relative 14 14 14 0.4 0.4 2744 2331023 1 500 968

20 20 20 0.2 0.2 8000 731024 9 128 000
26 26 26 0.2 0.2 17 576 631024 34 290 776

Jacobi 14 14 14 0.8 0.8 2744 2331023 109 760
20 20 20 0.8 0.8 8000 231024 464 000
26 26 26 1.0 1.0 17 576 2131024 1 335 776

Perimetric 3 3 3 0.9 0.9 0.9 27 931027 513
6 6 6 0.8 0.8 0.8 216 531029 19 656

Renormalized 2 4 6 0.7 48 2231023 1440
Hylleraas 4 6 8 0.7 192 2431026 13 824

6 8 10 0.7 480 2131028 62 400
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With these potentials, the ground-state energy of the th
body system can be determined exactly, and is equal t
Indeed the searched energyE is the one associated to th
internal Hamiltonian of the system, and can be deduced
the total energyEtot of the three-body system minus the e
ergyEc.m. of the center of mass. The total energyEtot is equal
to 9

2 . As the center of mass is also characterized by an
monic potential, its ground-state energyEc.m. is given by 3

2 .
We then useEref53.

The results of Table I illustrate fairly well the very goo
precision of the Lagrange-mesh method as, for the four
ordinate systems considered here, we obtain errors on
three-body ground-state energy better than 1026 with only
about 1000 Lagrange basis functions. The fastest con
gence with respect to the basis size is obtained with Ja
coordinates. This comes from the very little number of Le
endre mesh pointsNx (Nx51) required. WithNr and NR
fixed, an increase ofNx does not improve the energy valu
This is peculiar to the choice of harmonic potentials. Inde
in spite of the dependence of theVi j potentials on thex
coordinate, the sum~50! of the three potentials is indepen
dent of x. Furthermore, the ground-state wave functio
which can be written as the product of Gaussian functions
independent of thex variable. This induces that a Legend
mesh containing one point~and thus one Lagrange function!
is enough to represent this coordinate. The number of n
zero elements of the Hamiltonian matrix is also strongly
duced with respect to the other coordinate systems, o
partly thanks to the choiceNx51.

The use of relative coordinates requires bigger Lagra
bases. Here also the harmonic potential is a particular c
which is not characteristic of the use of relative coordina
on Lagrange meshes. Indeed, even if, unlike the case o
cobi coordinates, the potential depends on thex angular vari-
able, its dependence is purely linear for the harmonic po
tial. This induces that the integral overx in potential matrix
elements is exactly evaluated with theNx points Gauss-
Legendre quadrature rule. Indeed, theNx points Gauss-
Legendre approximation is exact when the integrand i
04670
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polynomial of order at most 2Nx21, which is the case for
the harmonic potential as the polynomial degree
Lagrange-Legendre functions~43! is Nx21. This property
accelerates the convergence of calculations with respec
the x dependence of the wave function. The numberNx of
mesh points must be chosen bigger than one because, u
the case of Jacobi coordinates, the ground-state wave f
tion of the three-body system depends on thex variable when
it is expressed in relative coordinates. Regarding the num
N of nonzero elements in the Hamiltonian matrix, it
clearly much larger with relative coordinates, because of
mass polarization term.

In the perimetric coordinates case, unlike the three oth
coordinates systems, the three particles are treated symm
cally, which induces a similar convergence with respect
the three numbers of Laguerre mesh pointsNx , Ny , andNz ,
when the masses of the three bodies are equal. When
basis size is fixed, the accuracy on the energy is better
for relative and renormalized Hylleraas coordinates. The
ing of the Hamiltonian matrix is comparable to relative a
renormalized Hylleraas coordinates for low accuracy, bu
reduced with respect to relative coordinates when
searched accuracy increases.

In the case of renormalized Hylleraas coordinates,
convergence with respect to the basis sizeNT is slower than
for the other three coordinate systems, whenNT is smaller
than 1000. For example, an error of order 1023 on the energy
requires about 500 Lagrange basis functions, while for
three other coordinate systems the same accuracy is alr
reached with less than 200 Lagrange functions. WithNT
51800, the accuracy on the energy is similar to that of re
tive and perimetric coordinates with about the same ba
size, and the filling rateN is about the same as for perimetr
coordinates. Renormalized Hylleraas coordinates requir
numberNz of mesh points larger than the numbersNx and
Ny . This property is also valid for the other coordinate sy
tems: numbers of mesh points associated to variables de
on the@0,̀ @ interval generally have to be chosen larger th
those corresponding to finite intervals.
3-8
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B. Gaussian potentials

As the harmonic potentials~60! represent a special cas
for Jacobi and relative coordinates, we now consider Ga
ian potentials in order to define the general characteristic
these two coordinate systems in Lagrange-mesh calculat
The Gaussian potentials are chosen as

Vi j 522e20.5r i j
2
. ~61!

Unlike for harmonic potentials, the ground-state energy
the three-body system with the potentials~61! cannot be de-
termined analytically. However Lagrange-mesh calculatio
with large basis sizes~typically about 10 000 Lagrange func
tions in perimetric coordinates! provide the estimateEref
520.704 924 422 104, which we use as reference value

In Table II we present the errors~59! on the ground-state
energy of the three-body system obtained by Lagrange-m
calculations with the four coordinate systems. If we are o
interested in the convergence of the energy with respec
the Lagrange basis size, we note that perimetric coordin
are the optimal choice, as they provide the best accuracy
a fixed basis size. For example, with only 1728 Lagran
basis functions, the accuracy is about 1028. The same order
of accuracy requires about 2400 functions with renormali
Hylleraas coordinates and about 3000 functions with Jac
coordinates. With relative coordinates, the convergence
the energy is much slower than in the harmonic potent
case. Indeed an accuracy of 231028 requires about 9600
Lagrange basis functions, and in particular more Lagran
mesh points for thex angular coordinate. The example
Gaussian potentials is more representative of basis size
quired in Lagrange-mesh calculations with relative coor
nates than the harmonic one.

If we take into account the filling of the Hamiltonian ma
trix, Jacobi coordinates become the best choice, becaus
number of nonzero elements of the matrix is much smalle
this case than with the other three coordinate systems. P
metric coordinates are the second choice, with about
times more nonzero elements in the matrix for the same
curacy, even if the basis size is smaller. As relative coo
nates require the largest bases, their filling rate is also
largest for a chosen accuracy. So this coordinate sys
seems to be the less efficient one to study three-body p
lems with the Lagrange-mesh method, when the forces
purely central.

C. Coulomb-like potentials

Until now we have considered only regular potentials, i
without singular points. This characteristic of the potenti
is very important in Lagrange-mesh calculations. Indeed
the presence of singularities in the potentials the accurac
the Lagrange-mesh method may drop drastically@14#. In or-
der to analyze this problem for three-body systems, we c
sider the example of three attractive Coulomb-like potent

Vi j 521/r i j . ~62!

This example does not correspond to a realistic problem
there exists no physical three-body system in which the th
04670
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Coulomb interactions are attractive. Nevertheless this
ample is suitable to study the problem of singularities in
potentials. It has also the advantage that the three part
can be treated symmetrically. The reference value of
ground-state energy of the three-body system is determ
by Lagrange-mesh calculations with about 14 000 functio
in perimetric coordinates, and is equal toEref
521.071 779 372 992. The results for this energy obtain
with the four coordinate systems and Lagrange meshes
given in Table III.

As said before, a regularization technique has been de
oped which can solve the problem of singularities when th
occur at the same point@4#. This is obvously not the case i
three-body problems as shown by potentials~62!. In the case
of relative coordinates, we deduce from Eqs.~7! and~9! that
singularities at the origin in theV13 and V23 potentials are
automatically regularized by ther 13

2 r 23
2 factor from the vol-

ume element. However, the singularity in theV12 potential is
not regularized by this factor. Furthermore, it cannot be re
larized easily with relative coordinates. Lagrange-mesh c
culations with relative coordinates as presented here pro
good results only if the potentialV12 is perfectly regular, i.e.,
without singularity. This is illustrated by the results obtain
with the potentials~62! in Table III. The error on the energy
value stays higher than 1024, even if we use more than
15 000 Lagrange basis functions. This limitation of accura
is entirely due to the singularity at the origin in theV12
potential, as shown by the previous examples.

The case of Jacobi coordinates is even more unfavor
because ther 2R2 factor from the volume element~11! only
allows the regularization of singularities in theV12 potential.
Indeed, ther 13 and r 23 distances take a relatively compl
cated form when expressed in Jacobi coordinates~13!, and
singularities at the origin in theV13 andV23 potentials cannot
be regularized easily. The use of Jacobi coordinates
Lagrange-mesh calculations then requires strictly regularV13
andV23 potentials. In the example presented in Table III, w
obtain results similar to those of relative coordinates, i.e.,
error on the ground-state energy is higher than 1024, even
when the Lagrange basis size is increased beyond 15
functions. In the case of Jacobi coordinates, the loss of
curacy is due to singularities in bothV13 andV23 potentials.

On the other hand the renormalized Hylleraas and p
metric coordinate systems are perfectly adapted to 1/r singu-
larities in potentials. Indeed, in these two cases the volu
element~22! or ~15! regularizes automatically this kind o
singularity at the origin in the three potentials~30! or ~19!. In
the case of Coulomb-like potentials~62!, the convergence o
the energy is as good as for regular potentials. The erro
the ground-state energy is already approximately 1028 with
less than 500 Lagrange functions, both for renormalized H
leraas and perimetric coordinates. These two coordinate
tems are then well adapted to study three-body atomic
molecular systems, where the particles interact via the C
lomb force@12#.

V. CONCLUSIONS

The Lagrange-mesh method is very efficient to study
ground-state of three-body quantum mechanical problem
3-9
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is very simple as the potential matrix is purely diagonal a
easily evaluated, and its accuracy is comparable to that
variational calculation. We have made a comparison of f
coordinate systems in order to determine if there is an o
mal choice for a three-body treatment by the Lagrange-m
method. As the accuracy of the method may depend on
expressions of the interaction potentials, and more part
larly on the presence of singularities, we chose differ
types of potentials.

The analysis of the convergence of the bound-state en
with the Lagrange basis size and of the filling of the Ham
tonian matrix allows us to classify the four coordinate s
tems for Lagrange-mesh calculations. One advantage o
method is that the filling rate is independent of the poten
expression, because the potential matrix is diagonal in
Lagrange basis, thanks to the use of the Gauss approx
tion.

The results obtained for three kinds of potentials show
that Jacobi coordinates represent the optimal choice
three-body Lagrange-mesh calculations, if and only if two
the three interparticle interactions are nonsingular. Inde
the number of nonzero matrix elements is much smalle
this case than with the other three coordinate systems,
Jacobi coordinates provide a very good accuracy on the
ergy with a fixed basis size unless more than one interac
potential present a singularity at the origin. The proble
comes from the fact that only the singularity at the origin
one potential can be eliminated by the regularization te
nique of Ref.@4# when we use Jacobi coordinates. If on
one potential has no singularity, the accuracy obtained w
Jacobi coordinates is limited, and the relative coordinate s
tem can take over. The Lagrange basis sizes required f
fixed accuracy, and the corresponding numbers of nonz
s,

r
-
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matrix elements are in this case much bigger. When the th
potentials present some singularity at the origin, both Jac
and relative coordinates are ruled out. In the case ofr
singularities, perimetric coordinates become ideal
Lagrange-mesh calculations because all 1/r singularities are
automatically regularized by the corresponding volume e
ment. This property is also true for renormalized Hyllera
coordinates, but perimetric ones provide better accuracie
fixed basis size, the filling of the Hamiltonian matrix bein
of the same magnitude in these two coordinate systems.

The results presented in this work only concernS-state
calculations of three-body problems. The case of bou
states corresponding to a nonzero total orbital momen
requires a complementary study. In particular this case in
duces a singularity in the Hamiltonian via the centrifug
term. As the method provides good results for three-bo
bound states, it would be interesting to extend it to the ana
sis of resonances. This could be done, for example, by u
the complex-scaling method@21,22#.
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APPENDIX

The matrix elements of the internal kinetic energy b
tween two Lagrange functions~45! in relative coordinates
can be written as
^Fi jk uTintuFi 8 j 8k8&'
1

2m13h1
2 ~l i

r 1!1/2f̃
i 8

N18~r 1i !d j j 8dkk81
1

2m23h2
2 ~l j

r 2!1/2f̃
j 8

N28~r 2 j !d i i 8dkk81d i i 8d j j 8S 1

2m13h1
2r 1i

2
1

1

2m23h2
2r 2 j

2 D
3~lk

x!1/2@2xkgk8

Nx8~xk!2~12xk
2!g

k8

Nx9~xk!#2
1

m3h1h2
H ~lk

x!1/2~12xk
2!g

k8

Nx8~xk!~12dkk8!

3S p
j j 8

N2

r 1i
d i i 81

p
ii 8

N1

r 2 j
d j j 8D 1xkdkk8pii 8

N1 p
j j 8

N21
d i i 8d j j 8
r 1i r 2 j

@xkdkk81~lk
x!1/2~3xk

221!g
k8

Nx8~xk!

2~lk
x!1/2xk~12xk

2!g
k8

Nx9~xk!#J , ~A1!
s,
for
ng
e-
tion,
at the Gauss approximation, wherel i
r andlk

x are the weights
of the Gauss-Laguerre and Gauss-Legendre quadrature
spectively. The prime notations for the functionsf̃ i

N(r ) and
gk

N(x) correspond to the derivatives with respect to the va
ablesr andx, respectively. Thepii 8

N terms represent the ma
trix elements of the one-body operatord/dr. The Gauss-
re-

i-

Laguerre approximation is not only inexact for these term
but it also gives rise to a nonantisymmetric expression
pii 8

N , which induces the nonHermiticity of the correspondi
Hamiltonian matrix. To solve this problem, we antisymm
trized the expression obtained at the Gauss approxima
which gives
3-10
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pii 8
N

5
1

2
@~l i

r !1/2f̃ i 8
N8~r i !2~l i 8

r
!1/2f̃ i

N8~r i 8!#. ~A2!

Expression~A1! depends on the first and second derivativ
of the Lagrange-Laguerre and Lagrange-Legendre funct
@Eqs. ~41! and ~43!# evaluated at the corresponding me
points. The first derivative of the regularized Lagrang
Laguerre functionsf̃ i

N(r ) evaluated at mesh points are give
by

f̃ i
N8~r i !5

~l i
r !21/2

2r i
~A3!

and

f̃ i
N8~r i 8!5~21! i 1 i 8

~l i 8
r

!21/2

r i 82r i

Ar i 8
r i

, ~A4!

for iÞ i 8. Their second derivative at mesh points can
found in Ref. @9#. The first and second derivative of th
Lagrange-Legendre functionsgk

N(x) can be written as

gk
N8~xk!5~lk

x!21/2
xk

12xk
2

, ~A5!

gk
N9~xk!5~lk

x!21/2
~N21N16!xk

22N22N12

3~12xk
2!2

, ~A6!

and

gk
N8~xk8!5~21!k1k8

~lk8
x

!21/2

xk82xk
A12xk

2

12xk8
2 , ~A7!

gk
N9~xk8!52~21!k1k8~lk8

x
!21/2

2xk8
2

2xkxk821

~12xk8
2

!~xk82xk!
2

3A12xk
2

12xk8
2 , ~A8!

for kÞk8.
In the case of perimetric and renormalized Hylleraas

ordinates, we have to evaluate integrals of the follow
form:

Imn5E E E dxdydz@]mF~x,y,z!#Dmn~x,y,z!

3@]nG~x,y,z!#, ~A9!

wherem andn represent one of thex, y, andz coordinates,
and theDmn coefficients are theAmn @Eq. ~18!# or Bmn @Eq.
m

04670
s
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e

-
g

~29!# coefficients in perimetric and renormalized Hyllera
coordinates, respectively. When the functionsF and G are
three-dimensional Lagrange functions~34!, the use of the
Gauss approximation and of the Lagrange conditions~35!
provides simple expressions for theImn integrals. For ex-
ample, theIxx andIxy integrals can be written as

Ixx5E E E dxdydz@]xFi jk~x,y,z!#Dxx~x,y,z!

3@]xFi 8 j 8k8~x,y,z!#

'd j j 8dkk8~Ni jkNi 8 j 8k8!
21/2

hyhz

hx

3 (
m51

Nx

lm
x Dxx~hxxm ,hyyj ,hzzk!F 1i

Nx8~xm!F
1i 8

Nx8~xm!,

~A10!

Ixy5E E E dxdydz@]xFi jk~x,y,z!#Dxx~x,y,z!

3@]yFi 8 j 8k8~x,y,z!#b f

'dkk8~Ni jkNi 8 j 8k8!
21/2hz3Dxy~hxxi 8 ,hyyj ,hzzk!

3~l i 8
x

!1/2F 1i
Nx8~xi 8!~l j

y!1/2F
2 j 8

Ny8~yj !, ~A11!

wherexi , yj , andzk are the mesh points associated to thex,
y, andz coordinates, andl i

x , l j
y , andlk

z are the correspond
ing weights. In the case of renormalized Hylleraas coor
nates, the scale factorshx andhy have to be replaced by 1 in
Eqs. ~A10! and ~A11!. The expressions ofImn only require
the determination of the first derivative of the on
dimensional Lagrange functionsF l i

N evaluated at the assoc
ated mesh points. The expressions of these derivatives fo
Lagrange-Legendre functionsgk are given above@Eqs.~A5!
and ~A7!#. The case of the Lagrange-Laguerre functionsf i
@Eq. ~41!# is developed in Ref.@12#. The first derivative of
the shifted Lagrange-Legendre functionsqi

N @Eq. ~44!# evalu-
ated at mesh points is

qi
N8~yi !5~l i

y!21/2
2yi21

2yi~12yi !
~A12!

and

qi
N8~yi 8!5~21! i 1 i 8

~l i 8
y

!21/2

yi 82yi

A yi~12yi !

yi 8~12yi 8!
, ~A13!

for i 8Þ i .
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