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Three-body bound-state calculations by the Lagrange-mesh method: Selection of a
coordinate system
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Four coordinate systems adapted to three-body problems, the relative, Jacobi, perimetric, and renormalized
Hylleraas coordinates, are compared in bound-state Lagrange-mesh calculations. The convergence of the en-
ergy with respect to the Lagrange basis size and the filling rate of the Hamiltonian matrix are analyzed. Three
kinds of potentials are considered: harmonic, Gaussian, and Coulomb-like potentials. When at most one
interaction potential presents a singularity at the origin, Jacobi coordinates represent the best choice for
three-body Lagrange-mesh calculations. When all three potentials contaimdularities, Jacobi coordinates
provide only a limited accuracy, and perimetric coordinates take over. In all cases, with a good choice of
coordinates, the Lagrange-mesh method provides very good accuracies on the three-body ground-state energy
with small numbers of mesh points.
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I. INTRODUCTION of them, based ori) the convergence of the bound-state
energy with the Lagrange basis size dingthe filling rate of

Three-body bound states can be studied by different tecthe Hamiltonian matrix in this basis. The former may depend
niques. Some of them, such as Faddeev equations or tif# the expression of the interaction potentials between the
method of hyperspherical coordinafds?], are accurate but three particles and, in particular, on the presence of singu-
difficult to implement. Variational calculations are also much/arities in these potentials. The latter does not depend at all
used. The variational methods require the evaluation ofn the potentials. Indeed, as pointed out above, in the
Hamiltonian matrix elements between trial wave functions.-@grange basis the potentials take part only on the diagonal
In particular the determination of the matrix elements of the®f the Hamiltonian matrix, thanks to the use of the Gauss
interaction potentials may be difficult and time consumingapprox'mat'on' So, in the _Lagrange-mesh methoo_l, t_he num-
ber of nonzero elements in the Hamiltonian matrix is com-

when the expressions of these potentials and/or trial func—Ietel determined bv the kinetic enerav operator. Here we
tions are complicated. From this point of view the Lagrange—p y y gy op :

mesh method is verv interesting as it is simole to im Iementconsider four coordinate systems which are the relative co-
Y ga P P ordinates with respect to one of the particles, the Jacobi co-
whatever the potentials, and provides accurate results.

. ) o rdinates, the perimetric coordinald$,16, and some com-
The Lagrange-mesh method is an approximate varlatlonag P ¢ §

X : ination of Hylleraas coordinate§l?7], which we call
calculation which resembles a mesh calculai8r6l. Its  yonormalized Hylleraas coordinates. The relative coordinates

main advantages are its simplicity and accuracy. Its simplichaye already been partly associated to Lagrange meshes to
ity comes from the use of a basis of Lagrange functions, i.e.gt,dy nuclear three-body systerf&9], and the perimetric
|ndef|n|te|y differentiable and orthonormal functions which Coordinates have recently been used in atomic and m0|ecu|ar
vanish at all points but one of an associated mesh, and of th@iree-body Lagrange-mesh calculatidag].
Gauss quadrature corresponding to this mesh. In quantum The four coordinate systems and the corresponding three-
mechanical problems, the potential matrix in the Lagrangehody Hamiltonians are developped in Sec. Il. The Lagrange-
basis becomes diagonal with the help of the Gauss approximesh method and three-dimensional Lagrange bases are ex-
mation, and its diagonal terms are simply given by the poplained in detail in Sec. Ill. The comparison between the four
tential evaluated at mesh points. coordinate systems in Lagrange-mesh calculations is made
The Lagrange-mesh method provides accurate results favith different potentials in Sec. IV. Conclusions are given in
a number of bound-state and scattering calculations irsec. V.
atomic and nuclear physi¢4,7—13. However, this astonish-
ing and yet unexplained accura8] may drop in the pres- | 1REE-BODY HAMILTONIAN AND COORDINATE
ence of singularitie$14]. This problem can be solved by a SYSTEMS
regularization technique if all singularities occur at the same
point[4,5]. Of course, this is not the case in three-body prob- The Hamiltonian of a three-body system can be written as
lems. However, the singularities can sometimes be elimi-
nated by a good choice of coordinate sys{dra]. p:  p5  pi
Three-body systems can be studied with the help of dif- H= 5+ 5+ 5 +Vaa(|ri=rsf) + Vasl[ro—r3])
ferent coordinate systems. In the context of the Lagrange-
mesh method we can then wonder whether there exists an +Vi|ri—ra)), 1)
optimal choice of the coordinate system to analyze a three-
body problem. We thus make a twofold comparison of somevherer; is the coordinate of particle with massm;, andp
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is the associated momentum. We assume here that the poten- w fo (1
tials V;; only depend on the distances between particles.  (F|Tin/G)= fo fo J_ldr13dr23dxr13r23l:(r131r231x)
After the elimination of the center-of-mass motion, the

Hamiltonian is reduced to an internal Hamiltonigk,, de- 1 1 1
scribing the relative motion of the three particles. This X| = 5 (9313— 5 0323— >
HamiltonianH,, is the sum of an internal kinetic energdy, H13 K23 213013
and of the potentiaV/
+ [(1—x2) 35— 2xdy]
Hint= TinetV, 2 2454 53
. 1 2
with “m Xdp, et [(1=X7) 3 —x]
V=Vg(|ri—rs)) + Vas([ro—ra)) + Vaul[ri—ra).  (3) 1 1 5
X|—0d +—0d |+ [X+(3x—1)dy
lg 2 Ty 13 Tiglog

In the center-of-mass frame, a three-body system has six

degrees of freedom. They can be represented by three vari- .

ables describing the shape of the triangle defined by the three =X(1=X) 3] |13l 23G(r 13, 23,%), 8
particles, and by three Euler angles giving the orientation of

this triangle in space. In order to simplify the problem, we it 2 =1 The term depending om; is called the mass

are here interested only i8 states, _Which correspond to & nolarization term in atomic physics. The functiofisand G
zero total angular momentum. In this case the wave functiof g 455umed to vanish whep or r ,; tends towards infinity.
describing the three-body system is independent of Eulef, Eq. (8) we have switched the factorf 3, coming from

angles, and only depends on the three internal coordinate§,1e volume element?), and the derivative operators, so we

To represent these internal variables, we consider four differ(—:an introduce this factor in the definition of the functidis

ent sets of coordinates: the relative, Jacobi, perimetric, angnd G. In relative coordinates, the potentidlbecomes
renormalized Hylleraas coordinates. '

V=ViF 19) + Va1 29) + Vi Vgt 155 21 13 53x) . (9)
A. Relative coordinates

The relative coordinates are simply defined by B. Jacobi coordinates
ey @ Jacobi coordinates are similar to relative coordinates, and
B s are often used to study many-body problems. For a three-
body system, with the third particle as reference, they are

ro3=ry,—r3, (5  given by

when the third particle is chosen as reference. We take as F=r2=r,

internal coordinates the following variables:

R=r3— m1+m2(m1r1+ Mol 2), (10

r13=|ryg,

and depend on the masses of particles 1 and 2.
ros=|rog, (6) As for the relative coordinates, we choose to represent the

three internal degrees of freedom, the two distamcasd R,

— and the cosina of the angle between the Jacobi coordinates
— r13_r23 r andR. The volume element is similar to EG), i.e.,
13' 23
dV=r2R?drdRdx (1D

They are formed by the two interparticle distancgg and
ro5 defined on[0°[ and by the cosine of the angle be-
tween the two relative coordinates; andr,z, X varying in
the intervall — 1,1]. The volume element associated to these

The matrix element of the internal kinetic energy in Ja-
cobi coordinates is

© o 1
variables is given by <F|Tim|G)=f f f drdRdxrRRr,R,x)
0Jo J-1
dV=r2r2dr,drodx. 7) 1 1 1 1
X{— 97— 95— +
2p1p 2123 2u? 2um109R?

The matrix element of the internal kinetic enefgy; be-
tween two functiong=(r43,r»3,X) andG(rq3,r»3,X) can be

written as X[(1—x?)92—2xdy] { FRG(r,R,X), (12
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where wi,=mym,/(My+my) and wqzs=ma(my+my)/(my

+m,+m;3) are reduced masses, and the interaction potential

becomes

2m,

V=V
13 m;+m,

o]
N

13

2
\/R2+ L
(Mg +my)?
2my

2
\/R2+ M r2— r
(mp+my)?2  Mptm

+Vi(r).

+ V23

The simplification of the kinetic term with respect to the
relative coordinategthere is no more a mass polarization
term) goes together with a more complicated expression for

the potential.

C. Perimetric coordinates

The perimetric coordinatelsl 5,16 are defined as linear
combinations of interparticle distances

X=T1o—Tp3t T3,
Y=Tr1oFT23— 13, (14

= _r12+r23+r13.

All three take values ohO,[. The volume element associ-
ated to these coordinates is

dV=(x+y)(x+2)(y+z)dxdydz (15

The matrix element of the internal kinetic energy between

two functionsF(x,y,z) and G(x,y,z), which tend to zero

whenx, y or z goes to infinity, can be written in the symmet-

ric form

<F|Tim|G):f ffdxdydz
0 0 JO

X2 (3,F)(%Y,2)A,,(X,Y,2)(3,G)(X,Y,2),
7

(16)

whereu andv represent the perimetric coordinatey, and
z The coefficientsA,, andA,, can be written as

) X(y+2)(x+y+2) N Xz(z+X) N XYy(X+Yy)

Ao my my ms ’
17
XY(X+y)
Axy: Ayx: - 2m—3 . (18)

The otherA ,, coefficients are obtained from,, andA,, by

cyclic permutations of perimetric coordinatesy, andz and

simultaneously of masses,;, m,, andms. The potential is
expressed as

PHYSICAL REVIEW E 65 046703

+z X+

V=V X+2z
— V13 2 2

D. Renormalized Hylleraas coordinates

The Hylleraas coordinates have been introduced to study
the helium atom[17]. As the perimetric coordinates, they
take the form of linear combinations of interparticle dis-
tances

S=Tr131T23,

t=ri3—"rys, (20)

U=I’12.

The s variable is defined 0f0,»[, and the conditions on the
three interparticle distances givesu<s and —u<t=u.

The definition domains of these three variables are then in-
terdependent. The renormalized Hylleraas coordinates are in-
troduced in order to have three variables whose domains of
variation are independent. They are given by

x=t/u,

y=ul/s, (21

Z=S.

These new coordinatesy, andz are defined on the intervals
[—1,1], [0,1], and[0.[, respectively. The associated vol-
ume element can be written as
dV=y?z°(1—x?y?)dxdydz (22)
Chuluunbaatar, Puzynin, and Vinitskyl8] have recently

used these coordinates to determine the ground-state energies
of several two-electron atomic systems. With these renormal-
ized Hylleraas coordinates, the matrix element of the internal
kinetic energy between two function$-(x,y,z) and
G(x,Y,2) can be written in the symmetric form

1 1 (o
<F|Tim|G)=f f f dxdydz
-1J0 JO

X2, (3,F)(%,Y,2)B,,,(x,Y,2)(3,G)(X,Y,2),
8%
(23)

whereu and v represent the renormalized Hylleraas coordi-
natesx, y, andz The coefficient8,, are given by

2 2
+L>
m

2
(1+xy) oy
3

1— 2
(1—xy) N
2m,

2m;

Bxx= 23( 1- XZ) (

(1-xy)? (1+xy)? 2y?
— 2531 _\2 =7

(29
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B, y22S| | et | (1= 5Py 4 2 )
zz 2m;  2m, m; |
(26)
Bxy: Byx: 0, (27
1-xy 1+xy
sz:Bzx:yz4(1_X2) 2m, - 2m, |’ (28)

X(1—=xy) x(1+xy) 2y
2m;,  2m, msy)

By:=Bzy= y224(1_ y2)<
(29
Expressed in these coordinates, the potential becomes

z(1+xy) (z(l—xy)
it by ———22

2

=Vi3 > +Vidy2z). (30)

IIl. LAGRANGE-MESH METHOD

A one-dimensional Lagrange mesh is formed\bfmesh

PHYSICAL REVIEW E 65 046703

of mesh, i.e., corresponding to different intervédee be-
low). The Lagrange functionB;;, satisfy the Lagrange con-
ditions with respect to the three-dimensional mesh

Fij(h1Xgir ,hoXg)r s hgXayr)
:Ni}kllz()\li)\Zj)\3k)7l/25ii’5jj’5kk’ , (39

where x,; and \,; are, respectively, the mesh points and
weights associated to the, coordinate. As for theF El
Lagrange functions, they;, X,;, andxs; points do not cor-
respond necessarily to the same kind of Lagrange mesh. With
the normalization factoN;;., the Lagrange basis functions
Fijx are orthonormal at the Gauss approximation with respect
to the associated volume element dV
:J(Cl,C2,C3)dC1dC2dC3

f JJdCldCZdC3J(Cl,C2,C3)Fijk(C1,C2,C3)

XFi’j’k’(ClIC21C3)

%ﬁii’ﬁjj"skk’ . (36)

pointsx; spread over the intervah(b) and associated with jith Eq. (35), this induces

an orthonormal set oN indefinitely derivable functions
FN(x) [3-5]. At mesh points, these functions satisfy the

Lagrange conditions

FNxi=n Y25, (32

Nijk=h1hsh3d(cyi,Coj,Ca10), (37)

i.e., the normalization factor is equal to the Jacoki@valu-
ated at the three-dimensional mesh points.
These three-dimensional Lagrange functiéig are used

i.e., the Lagrange functiong) vanish at all mesh points but as a basis for a variational calculation to determine the
one. Thex; and\; are connected with a Gauss quadratureground-state energy of the three-body system. The trial wave

formula

b N
fa g(x)dx~i§1 Nig(X). (32)

function can be written as

Nt

N; Nz Nz
‘I’ZE 2 > CiijiijE CFy, (39
=1 )=1k=1 I=1

The Lagrange functions are used as basis functions in Where theCy; coefficients play the role of linear variational
variational calculation. The potential matrix elements in thisParameters, andrepresent the three indexd$k(). The scale

basis are given by
b
Vii:fa FROOVO)F)dx=V(x) 8, (33

with the help of the Gauss approximation and E{). The

potential matrix is then both simple to obtain and diagonal.
To study S states of three-body systems, we use three-
dimensional Lagrange functiors;, expressed in one of the

four coordinate systems described previously

Fiji(C1,C2,C3) = Nipd PF1(C1 /hy) FoA(Colhp) Fyd(cslhy),
(34)

where]—',’jI (p=1,2,3) is a one-dimensional Lagrange func-

factorshq, h,, andhs in Eq. (34) may be treated as nonlin-
ear parameters, but usually the binding energy is not very
sensitive to the precise values of these factors. The total
number of basis function®Nt is equal toN;N,Nj;. The
Schralinger equation takes finally the form of an eigenvalue
problem of sizeNt

Nt

> Hy.Cp=ECy, (39

1'=1

where H,,» is the Hamiltonian matrix element between
Lagrange basis functions. In the right-hand side of the equa-
tion, we have used the orthonormality at the Gauss approxi-
mation of the Lagrange basis functions.

We can now analyze the form of the three-dimensional

tion, andcy, ¢,, andcs represent the three internal coordi- Lagrange functions in each coordinate system described in
nates, described by Lagrange meshes Wth N,, andN;  the previous section. The Lagrange meshes used are chosen
points respectivelyh,, h,, andh; are scale factors which by looking at the domains of definition of the variables. The
can be introduced in the case of infinite intervals in order tdfour coordinate sets considered here introduce only three dif-
adjust the position of the mesh points. The Lagrange funcferent domains. They are the semi-infinite intef@pe[, and

tions ]-'?il, ]—'2']?, and]-"s\'k3 may be based on different kinds the two finite intervald —1,1] and[0,1]. To variables de-
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fined on [0~[ we associate a Laguerre mesh, i.e., aThefN(r) functions are the so-called regularized Lagrange
Lagrange mesh based on the Laguerre polynorfidls The  functions [9,13. They are obtained by multiplying the

N mesh points; are given by theN zeros of the Laguerre Lagrange-Laguerre function§'(r) (41) by the factorr/r;

polynomialL(r) of degreeN coming from the volume elemefif). Because of this choice
the normalization factoN;;, is simply equal tch;h,.
Ln(ri)=0, (40) The expression of the matrix element of the internal ki-

netic energy between two three-dimensional Lagrange basis
and the associated Gauss-Laguerre weidh®§ are noted functions(45) is given in the Appendix. It is clear from Eq.
\{ . The corresponding Lagrange functions can be written aga1) that the mass polarization term is the most important
source of nonzero elements in the matrix. The total number
N of nonzero elements in the Hamiltonian matrix is equal to
fi'\'(r)=(—1)iri1’2—l;'i(:) e "2 (41) |

1

The distribution of the mesh points over tf&e<[ interval is N=N2N2 NG (N2 +N2) (N 2)+ NaNp = Ny 1. (46)
controled by the scale factdr For the variables defined on
the[ —1,1] and[0,1] intervals, we choose Lagrange meshe
based on Legendre and shifted Legendre polynomials resp
tively. The Legendre med8] is formed byN pointsx; cor-
responding to th& zeros of the Legendre polynomiBj(x)

SThe potential matrix elements are easily obtained at the
€Gauss approximation

of degreeN (FijkIVIFi i) =[Vig(hqr 1)) +Vog(hor o)
Pn(x) =0, (42 +Vy(hir §|+h2r2J 2h1hor i1 %) ]

and the associated Gauss-Legendre weigtit{19]. The

Lagrange-Legendre functions are given by and the associated matrix is purely diagonal.

. [1—x2 Py (X
gl (x)=(—1)"*N TI XN(X) ) (43 B. Jacobi coordinates
=X

As in the case of relative coordinates, we associate to the

The shifted Legendre mesh is obtained by shifting the Legf and R coordinates two Laguerre meshes Nf and Ng
endre mesh to the intervg0,1] [10]. The N mesh point;  Points (; andR;), with the scale factor, andhg, respec-
are defined by, = (1+Xx;)/2, and the corresponding weights tively. The Legendre mesh for thecoordinate containsl,

are \Y=\)/2. The Lagrange functions for this mesh can bePoINtsXy.
written as The three-dimensional Lagrange functions can be written

as

. Py(2y—1 ~
al(y)=(—=1"Myi(1-y) % (44) Fis(r,R%) = (hehe) Y& (r/n )T IR(RINR) g, X(X).
! (48)

As the points of these two meshes are already distributed in _
the correct interval, no scale factor is required. We will nowAs before we use the regularized Lagrange-Laguerre func-
exemplify the above expressions in the case of the four cotions T}'(r) with the regularization factor coming from the

ordinate systems of the previous section. volume elementll). The normalization factaN;;, is similar
to the relative coordinate’s one, and is equahtbg.
A. Relative coordinates The matrix elements of the internal kinetic energy be-

tween basis function&48) can be deduced from expression
&A1) by changing the reduced masses. The total nunvbef

scribing the internal degrees of freedom are the two d'Stancer?onzero elements in the Hamiltonian matrix is

riz andr,z, and the angular coordinate To the coordinate
ri3 is associated a Laguerre meshNf pointsr,; and the

scale factorh;. The Laguerre mesh for the,; coordinate N=N;NgN, (N, +Ng+N,—2). (49
includesN, pointsr,;, and the scale factor iB,. The x
variable is described by a Legendre mesiNgfpoints x, . With the same basis size, the numbérfor Jacobi coordi-

The three-dimensional Lagrange basis functions take thefates is much smaller than for relative coordinates because

the form there is no mass polarization term in the kinetic energy ex-
2N N N pression.
Fijk(r1a,r23,%) = (h;hy) ~ Y%, H(r1a/ha)f;%(r23/hp) g, (X). At the Gauss approximation, the potential matrix is diag-

(45) onal and its nonzero elements are given by
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2
ms 2m,
Fi|VIFi ) =~| V \/h2R2+ hZr2+ h,r;hgR;x
<I]k|||]k> 13! R™Yj (m1+m2)2r| m1+m2r|RJk
2
+V, \/h2R2+ ™ e 2™y rheRXy | + Vi ht) | 8080 i (50)
3 R™Yj (m1+m2)2 rti m1+m2 rti j rti i ' 9jj
|
As said before, the mathematical expression of the potential Nijk=hgy122§(1—xi2yjz)- (56)

is more complicated than in relative coordinates, but it is not
a problem as we only need its evaluation at mesh points.  The matrix elements of the internal kinetic energy in this
Lagrange basis can be obtained at the Gauss approximation
C. Perimetric coordinates just as in the case of perimetric coordinates, which is illus-
. trated in the Appendix. The choice of the symmetric expres-
Gon (23) ensures the hermiticity of the Hamiltonian matrix
when we evaluate it with the Gauss quadrature rule. The total

acr)e nqtedgi., Yj ,(jaqdhzkhrespefti\;ely. Theri]r distr:jbrl;ltion O humber A of nonzero elements in the Hamiltonian matrix
[0[ is adjusted with the scale factong, hy, andh,. can be expressed as

The three-dimensional Lagrange functions are in this case

variablesx, y, andz containN,, N,, andN, points, which

= Z(Ny+N,—1).
Fi(x,y,2) = NG M 0dh ) £ (y/hy) e(zin,) . (51) NZNMNZ NNy =) 57

] o . The potential matrix elements are always simply given by
With Eqg. (15) the normalization factoN; is equal to

h,z (1+Xy})

Nijk = (heXi +hyy ) (heXi +h,zi) (hyyj +h,zy). (52) (Figl VIFirjrie) = Vig —————

The evaluation at the Gauss approximation of the matrix h,z(1-xy;)
elements of the internal kinetic energy between two +V23(f)

Lagrange functiong51) is illustrated in the Appendix for one
term of the sum in Eq.16). A full expression can be found in
Ref. [12]. The total number\ of nonzero elements in the +Vihyy;zy)
Hamiltonian matrix is given by

6ii’5jj’5kk’ , (58)

at the Gauss approximation.
N=N,NyN,[(Nx+Ny)(N,—1)+ NN, —N,+1]. (53

The potential matrix elements can be written as IV APPLICATIONS

In the case of the Lagrange-mesh method we must solve

FelVIF o) ~| v hyXi +h,z, Y hyy;+hzzy the eigenvalue problen{39). The determination of the
kI k! 13 2 2 2 ground-state energy requires the search for the smallest ei-
hoseth genvalue of the Hamiltonian matrix. This is done here by
Xi Yj using the Davidson algorithm as developed by Stathopoulos
Vi = I2 : ]”5“'5”'5“(' G4 ond Si’:ishel[zo]. ’ P P

We consider three types of potentials: harmonic oscillator,
Gaussian, and Coulomb-like potentials. For simplicity we
_ _ choose here the same expression for the three poteNtials
As the three renormalized Hylleraas coordinates are degj+j=1,2,3) and unit masses for the three particles (
fined on different intervals, we use three different Lagrange=1). This induces the symmetry of the three-body system
meshes. To the coordinate we associate a Laguerre mesh ofyith respect to the exchange of the three particles.

N, points z,, and the scale facton,. The Legendre and |n Tables I-IIl are indicated the erroesobtained on the
shifted Legendre meshes associated toxtla@dy variables  ground-state energy of the three-body problem with the four
containN, andN, points, respectively, whose notationXs  coordinate systems for each type of potentials. These errors

andy; . are defined by
The three-dimensional Lagrange functions take the fol-

lowing form: €e=E—E, (59

D. Renormalized Hylleraas coordinates

Fik(X,y,2)= Nﬁkllzgil\lx(x)q;\‘y(y)f'.:Z(Z/hz)- (55  whereE is the energy value obtained by our Lagrange-mesh
calculations andt, is a reference value for the ground-state
With Eq. (22) the normalization factoN; is given by energy. The results in the three tables illustrate the conver-
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TABLE |. Errors € on the ground-state energy of a three-body system with harmonic pote(@is
obtained with the Lagrange-mesh method. The exact ground-state energy is equiites 3he Lagrange
basis size andV is the number of nonzero elements of the Hamiltonian matrix in the Lagrange basis.

Coordinates N, N, Nj h, h, hs N+ € N
Relative 7 7 4 0.2 0.2 196 %4103 17 248
11 11 7 0.2 0.2 847 %106 209 209
14 14 10 0.2 0.2 1960 8108 860 440
Jacobi 5 5 1 0.4 0.4 25 —2x10°3 225
10 10 1 0.2 0.2 100 -2x10°° 1900
12 12 1 0.2 0.2 144 #%107° 3312
Perimetric 5 5 5 0.4 0.4 0.4 125 -2x10°° 7625
9 9 9 0.4 0.4 0.4 729 —4x10°° 158193
12 12 12 0.4 0.4 0.4 1728 %108 686016
Renormalized 8 8 8 0.3 512 —-4x10°°% 61440
Hylleraas 8 8 14 0.3 896 —8x1077 188160
10 10 18 0.3 1800 -6x107° 615600

gence of the ground-state energy with respect to thélamiltonian matrix is indicated in the last column for each
Lagrange-basis size. For each coordinate system three caloteordinate system.

lations are done which correspond to the minimum Lagrange The Lagrange-mesh method is an approximate variational
basis size required to obtain accuracies of abouf1Q0 ¢,  calculation. The use of the Gauss approximation induces that

and 108, respectively. errorse may be negative, and the results do not represent an
The numbers of mesh point;, N,, andN5 correspond ~ upper bound to the exact energy value. So we cannot deter-
to the numberN,, N,, andN, for relative coordinatesy, , mine the best result by searching the minimum value. Usu-

Ngr, andN, for Jacobi coordinates, arid,, Ny, andN, for ally we estimate the accuracy of the results by increasing the
perimetric and renormalized Hylleraas coordinates. The scal@asis size and by slightly varying the scale factors.

factors associated to the meshesNaf, N,, and N3 points , ,

are represented bli;, h,, and hs, respectively. They are A. Harmonic potentials

roughly optimized to minimize the error on the energy. Be- In order to analyze the convergence of Lagrange-mesh
cause of the symmetry of the problem, we t&ke=N, and  calculations according to the coordinate system used, we first
h;=h, in the case of relative coordinat®s =Ng and h, consider harmonic potentials. The three interparticle poten-
=hg in the case of Jacobi coordinates, atig=N,=N, and tials V;; are defined as
hy=hy=h, in the case of perimetric coordinates. The num-

ber Nt represents the Lagrange basis size, which is equal to r

2
—
N;N,N3. The total number\V of nonzero elements of the Vij(rij) = 6

(60)

TABLE II. Errors € on the ground-state energy of a three-body system with Gaussian poté¢@fials
obtained with the Lagrange-mesh method. The reference energy is equél. 104 924 422 104N+ is the
Lagrange basis size, and is the number of nonzero elements of the Hamiltonian matrix in the Lagrange

basis.
Coordinates N, N, Nj h, h, hs Nt € N
Relative 8 8 6 0.2 0.2 384 8102 53376
12 12 14 0.2 0.2 2016 —2x1076 893 088
20 20 22 0.2 0.2 9600 —2x1078 10727 200
Jacobi 6 6 4 0.2 0.2 144 1073 2016
12 12 8 0.2 0.2 1152 410°° 34560
16 16 12 0.2 0.2 3072 4108 129024
Perimetric 4 4 4 05 05 05 64 X103 2368
8 8 8 04 04 04 512 —4x10°°6 86528
12 12 12 0.4 0.4 0.4 1728 X108 686 016
Renormalized 6 8 10 0.3 480 —1x10°3 62 400
Hylleraas 10 12 16 0.3 1920 —-1x1076 645120
10 12 20 0.3 2400 —-4x10°8 1008 000
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TABLE lIl. Errors € on the ground-state energy of a three-body system with Coulomb-like potentials
(62), obtained with the Lagrange-mesh method. The reference energy for this statE is
=—1.071779372992N+ is the Lagrange basis size and is the number of nonzero elements of the
Hamiltonian matrix in the Lagrange basis.

Coordinates N, N, Nj h, h, hs Nt € N
Relative 14 14 14 0.4 0.4 2744 —-3x1073 1500968
20 20 20 0.2 0.2 8000 %104 9128000
26 26 26 0.2 0.2 17576 6104 34290776
Jacobi 14 14 14 0.8 0.8 2744 —3x1073 109 760
20 20 20 0.8 0.8 8000 21074 464 000
26 26 26 1.0 1.0 17576 —-1x10* 1335776
Perimetric 3 3 3 0.9 0.9 0.9 27 >010°7 513
6 6 6 0.8 0.8 0.8 216 §10°° 19656
Renormalized 2 4 6 0.7 48  —2x10°8 1440
Hylleraas 4 6 8 0.7 192 —4x10°6 13824
6 8 10 0.7 480 —1x10°% 62400

With these potentials, the ground-state energy of the thregeolynomial of order at mostI?,— 1, which is the case for
body system can be determined exactly, and is equal to 3he harmonic potential as the polynomial degree of
Indeed the searched energyis the one associated to the Lagrange-Legendre functiong3) is N,—1. This property
internal Hamiltonian of the system, and can be deduced aaccelerates the convergence of calculations with respect to
the total energyE,,; of the three-body system minus the en- the x dependence of the wave function. The numbgrof
ergy E. , of the center of mass. The total enefly; is equal  mesh points must be chosen bigger than one because, unlike
to 2. As the center of mass is also characterized by an hathe case of Jacobi coordinates, the ground-state wave func-
monic potential, its ground-state enery,, is given by3.  tion of the three-body system depends onxhariable when
We then useE = 3. it is expressed in relative coordinates. Regarding the number
The results of Table | illustrate fairly well the very good N of nonzero elements in the Hamiltonian matrix, it is
precision of the Lagrange-mesh method as, for the four coelearly much larger with relative coordinates, because of the
ordinate systems considered here, we obtain errors on thBass polarization term.
three-body ground-state energy better than 1@ith only In the perimetric coordinates case, unlike the three others
about 1000 Lagrange basis functions. The fastest convegoordinates systems, the three particles are treated symmetri-
gence with respect to the basis size is obtained with Jacolsially, which induces a similar convergence with respect to
coordinates. This comes from the very little number of Leg-the three numbers of Laguerre mesh poMgs N, , andN,,
endre mesh pointdl, (N,=1) required. WithN, and Ng ~ when the masses of the three bodies are equal. When the
fixed, an increase dfl, does not improve the energy value. basis size is fixed, the accuracy on the energy is better than
This is peculiar to the choice of harmonic potentials. Indeedfor relative and renormalized Hylleraas coordinates. The fill-
in spite of the dependence of thg; potentials on thex  ing of the Hamiltonian matrix is comparable to relative and
coordinate, the suns0) of the three potentials is indepen- renormalized Hylleraas coordinates for low accuracy, but is
dent of x. Furthermore, the ground-state wave function,reduced with respect to relative coordinates when the
which can be written as the product of Gaussian functions, isearched accuracy increases.
independent of the variable. This induces that a Legendre  In the case of renormalized Hylleraas coordinates, the
mesh containing one poirtand thus one Lagrange functjon convergence with respect to the basis sizeis slower than
is enough to represent this coordinate. The number of norfor the other three coordinate systems, wiepis smaller
zero elements of the Hamiltonian matrix is also strongly rethan 1000. For example, an error of order $@n the energy
duced with respect to the other coordinate systems, onlgequires about 500 Lagrange basis functions, while for the
partly thanks to the choicH,=1. three other coordinate systems the same accuracy is already
The use of relative coordinates requires bigger Lagrangeeached with less than 200 Lagrange functions. With
bases. Here also the harmonic potential is a particular case 1800, the accuracy on the energy is similar to that of rela-
which is not characteristic of the use of relative coordinategive and perimetric coordinates with about the same basis
on Lagrange meshes. Indeed, even if, unlike the case of Jaize, and the filling ratdV is about the same as for perimetric
cobi coordinates, the potential depends onxtla@gular vari-  coordinates. Renormalized Hylleraas coordinates require a
able, its dependence is purely linear for the harmonic potenaumberN, of mesh points larger than the numb&tg and
tial. This induces that the integral overin potential matrix ~ N,. This property is also valid for the other coordinate sys-
elements is exactly evaluated with ti, points Gauss- tems: numbers of mesh points associated to variables defined
Legendre quadrature rule. Indeed, thg points Gauss- on the[0,[ interval generally have to be chosen larger than
Legendre approximation is exact when the integrand is @hose corresponding to finite intervals.
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B. Gaussian potentials Coulomb interactions are attractive. Nevertheless this ex-
ample is suitable to study the problem of singularities in the
&otentials. It has also the advantage that the three particles
an be treated symmetrically. The reference value of the

round-state energy of the three-body system is determined
y Lagrange-mesh calculations with about 14 000 functions
in perimetric coordinates, and is equal tdE
=—1.071779372992. The results for this energy obtained
with the four coordinate systems and Lagrange meshes are
1given in Table 111

Unlike for harmonic potentials, the ground-state energy o . . ,
; . As said before, a regularization technique has been devel-
the three-body system with the potentiéds) cannot be de- oped which can solve the problem of singularities when they

termined analytically. However Lagrange-mesh calculations

. o ) occur at the same poilpd]. This is obvously not the case in
with large basis size@ypically about 10 000 Lagrange func- three-body problemps a.ﬁ:]shown by potent(él’&‘) In the case
tions in perimetric coordinatg¢sprovide the estimateE '

— —0.704924 422 104, which we use as reference value. of relative coordinates, we deduce from E¢B.and(9) that

In Table 1l we present the errof§9) on the ground-state singularities at the origin in th¥/ys Zand Va3 potentials are
; utomatically regularized by the 3, factor from the vol-
energy of the three-body system obtained by Lagrange-mes%me element. However, the singularity in te, potential is
calculations with the four coordinate systems. If we are onl))J t requlariz 'd by thi f, tor Fgrth rr%/ h if?zpnn tber
interested in the convergence of the energy with respect t ot regularized by this tactor. Furthermore, it cannot be regu-

the Lagrange basis size, we note that perimetric coordinat é“z?d ea5|_ly with _relatlve c_oordlnates. Lagrange-mesh C‘?‘l'
(*rulatlons with relative coordinates as presented here provide

are the optimal choice, as they provide the best accuracy fo ood results only if the potential,, is perfectly regular, i.e
fix is size. For example, with only 1728 Lagrange’ . X : - B 12
a fixed basis size. For example, with only 8 Lagrang without singularity. This is illustrated by the results obtained

basis functions, the accuracy is about $0The same order . . ;
of accuracy requires about 2400 functions with renormalizeéf\”th the potenpals{62) in Table 1il. The error on the energy
alue stays higher than 106, even if we use more than

Hylleraas coordinates and about 3000 functions with Jacob ) ' R
coordinates. With relative coordinates, the convergence q 500(.) Lagrange basis fl.mCt'on.S' This I|m|ta_t|(_)n .Of accuracy
the energy is much slower than in the harmonic potentialéS entirely due to the singularity at the origin in thé,

case. Indeed an accuracy ok20 8 requires about 9600 pOt_?Qt'al’ as s?gwn gy the g_r evt|ou§ examples. f bl
Lagrange basis functions, and in particular more Lagrange- € case of Jacobl coordinales IS even more unfavorable

- : because the?R? factor from the volume elemeritl) onl
mesh points for thex angular coordinate. The example of o . o Yy
gl_lows the regularization of singularities in thg, potential.

Gaussian potentials is more representative of basis sizes r deed. th d di K lativel i
quired in Lagrange-mesh calculations with relative coordi-Ndeed, ther;s andry, |stan(;es ta eare ayvey compil-
nates than the harmonic one cated form when expressed in Jacobi coordin&t&s, and

' singularities at the origin in the,; andV 3 potentials cannot

If we take into account the filling of the Hamiltonian ma- ) . ; : .
trix, Jacobi coordinates become the best choice, because th§ regularized easily. The use of Jacobi coordinates in

number of nonzero elements of the matrix is much smaller if-29range-mesh calculations then requires strictly regéiar

this case than with the other three coordinate systems. Pe@1dV2s potentials. In the example presented in Table [II, we
metric coordinates are the second choice, with about teﬁbtam results similar to those of relative coordinates, i.e., the
times more nonzero elements in the matrix for the same a€/T0 0n the ground-state energy is higher thanGven
curacy, even if the basis size is smaller. As relative coordiWhen the Lagrange basis size is increased beyond 15000
nates require the largest bases, their filling rate is also thiInctions. In the case of Jacobi coordinates, the loss of ac-
largest for a chosen accuracy. So this coordinate systefHracy is due to singularities in botfy; andVs; potentials.
seems to be the less efficient one to study three-body prob- On the other hand the renormalized Hylleraas and peri-

lems with the Lagrange-mesh method, when the forces ar@€tric coordinate systems are perfectly adaptedrteibgu-
purely central. larities in potentials. Indeed, in these two cases the volume

element(22) or (15) regularizes automatically this kind of

singularity at the origin in the three potentiaB9) or (19). In

the case of Coulomb-like potentials2), the convergence of
Until now we have considered only regular potentials, i.e.the energy is as good as for regular potentials. The error on

without singular points. This characteristic of the potentialsthe ground-state energy is already approximately®1@ith

is very important in Lagrange-mesh calculations. Indeed iness than 500 Lagrange functions, both for renormalized Hyl-

the presence of singularities in the potentials the accuracy Qéraas and perimetric coordinates. These two coordinate sys-

the Lagrange-mesh method may drop drasticdl#j. In or-  tems are then well adapted to study three-body atomic and

der to analyze this problem for three-body systems, we conmolecular systems, where the particles interact via the Cou-
sider the example of three attractive Coulomb-like potential§omb force[12].

ian potentials in order to define the general characteristics
these two coordinate systems in Lagrange-mesh calculationg
The Gaussian potentials are chosen as

Vi = — 26705, (61)

C. Coulomb-like potentials

Vij=—1rj;. (62 V. CONCLUSIONS

This example does not correspond to a realistic problem, as The Lagrange-mesh method is very efficient to study the
there exists no physical three-body system in which the threground-state of three-body quantum mechanical problems. It
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is very simple as the potential matrix is purely diagonal andmatrix elements are in this case much bigger. When the three
easily evaluated, and its accuracy is comparable to that of potentials present some singularity at the origin, both Jacobi
variational calculation. We have made a comparison of fouand relative coordinates are ruled out. In the case of 1/
coordinate systems in order to determine if there is an optisingularities, perimetric coordinates become ideal for
mal choice for a three-body treatment by the Lagrange-mesbagrange-mesh calculations because allsihgularities are
method. As the accuracy of the method may depend on thautomatically regularized by the corresponding volume ele-
expressions of the interaction potentials, and more particument. This property is also true for renormalized Hylleraas
larly on the presence of singularities, we chose differentoordinates, but perimetric ones provide better accuracies at
types of potentials. fixed basis size, the filling of the Hamiltonian matrix being
The analysis of the convergence of the bound-state energyf the same magnitude in these two coordinate systems.
with the Lagrange basis size and of the filling of the Hamil- The results presented in this work only conc&state
tonian matrix allows us to classify the four coordinate sys-calculations of three-body problems. The case of bound
tems for Lagrange-mesh calculations. One advantage of thetates corresponding to a nonzero total orbital momentum
method is that the filling rate is independent of the potentiakequires a complementary study. In particular this case intro-
expression, because the potential matrix is diagonal in thduces a singularity in the Hamiltonian via the centrifugal
Lagrange basis, thanks to the use of the Gauss approximgerm. As the method provides good results for three-body
tion. bound states, it would be interesting to extend it to the analy-
The results obtained for three kinds of potentials show usis of resonances. This could be done, for example, by using
that Jacobi coordinates represent the optimal choice fothe complex-scaling methd@1,22.
three-body Lagrange-mesh calculations, if and only if two of
the three interparticle interaptions are npnsingular. Indee_d, ACKNOWLEDGMENTS
the number of nonzero matrix elements is much smaller in
this case than with the other three coordinate systems, and This text presents research results of the Belgian program
Jacobi coordinates provide a very good accuracy on the eri?4/18 on interuniversity attraction poles initiated by the
ergy with a fixed basis size unless more than one interactioBelgian-state Federal Services for Scientific, Technical and
potential present a singularity at the origin. The problemCultural Affairs. | acknowledge the FRIA and the IISN for
comes from the fact that only the singularity at the origin infinancial support.
one potential can be eliminated by the regularization tech-
nique of Ref.[4] when we use Jacobi coordinates. If only APPENDIX
one potential has no singularity, the accuracy obtained with
Jacobi coordinates is limited, and the relative coordinate sys- The matrix elements of the internal kinetic energy be-
tem can take over. The Lagrange basis sizes required for tawveen two Lagrange function@l5) in relative coordinates
fixed accuracy, and the corresponding numbers of nonzercan be written as

1 1

1
Ny Foy 1/Z¢N2/
(Fijl Tind Firjricr)y = (NHYE Y (r1) 850 S + (N T2 (0 ) i Oier + Biir 60 +
2/-‘13h§ ' ' 2#23% J ! 2#13hir§i 2,u23h§r§j

X (NOYA2x,8, ¢ (%) — (1=x2) g, (x40 ]

Ny
mahahy | (V0L %08,7 (060 (1~ B

N Ny
X(_(Sii/‘i‘Lb‘“/

T Oii10ii
i Ny Nz i’ “jj X\ 1/20 a2 Ny

ji +Xk5kk’piil p“/+ [Xkb‘kk’—’_()\k) (3Xk_1)ger (Xk)
I I'2] I1il2j

— (N V(L xi)gf%”(xkn] , (A1)

at the Gauss approximation, whexeand\j are the weights Laguerre approximation is not only inexact for these terms,
of the Gauss-Laguerre and Gauss-Legendre quadratures, it it also gives rise to a nonantisymmetric expression for
spectively. The prime notations for the functio"ﬁ\é(r) and pi’\i', , which induces the nonHermiticity of the corresponding
gr(x) correspond to the derivatives with respect to the vari-Hamiltonian matrix. To solve this problem, we antisymme-
ablesr andx, respectively. Thepi“i', terms represent the ma- trized the expression obtained at the Gauss approximation,
trix elements of the one-body operatdfdr. The Gauss- Wwhich gives
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, (29)] coefficients in perimetric and renormalized Hylleraas
Pl = [(?\ )1/?N (r)—)Y Y (rin]. (A2)  coordinates, respectively. When the functidhsand G are
three-dimensional Lagrange functiof®4), the use of the
Expression/Al) depends on the first and second derivativesGauss approximation and of the Lagrange conditi3t
of the Lagrange-Laguerre and Lagrange-Legendre functiongrovides simple expressions for tifg, integrals. For ex-
[Egs. (41) and (43)] evaluated at the corresponding meshample, theZ,, andZ,, integrals can be written as
points. The first derivative of the regularized Lagrange-

. ~N . .
It_);\guerre function$'(r) evaluated at mesh points are given Ixx:J J' j AXAydE0,F (%, 2) D Y. 2)

. (N) 12 X[3xFirjrer(X,Y,2)]
fi (ry)= A3
=~ TR kk! k 'I'!k!
and ji ijktNi7j h,
ry—1/2 o
7-”’(r- ):(_1)i+i’()\i') /i (Ad) szl MDyx(hyXm, h Wi Zzk)j’-‘lI xm)fN (Xm),
i i’ ’ =
ri—r, ri
b (A10)
for i#i'. Their second derivative at mesh points can be
found in Ref.[9]. The first and second derivative of the
Lagrange-Legendre functiomg'(x) can be written as Ixy:f f J dxdydZ dyFijk(X,y,2) IDy(X,Y,2)
, X X[aFiring(X,y,z)]bf
gE (Xk)=()\ﬁ)7llz—k2, (AS) [ yhi’j k( y )]
1_Xk %5kk'(NijkNi’j'k’)7l/2h Xny(hXXi' vhyyj thZk)
g g9 = eI NTONC NN XD VF L (i) O 2 F (), (AL1)

wherex; , y;, andz, are the mesh points associated toxhe
and y, andz coordinates, and, \!, and\ are the correspond-
ing weights. In the case of renormalized Hylleraas coordi-
N/ KK (7\);2,)_1/2 1—xﬁ nates, the scale factong andh, have to be replaced by 1 in
Ok (Xe)=(—1) o x 12 (A7) Egs.(A10) and (A11). The expressions df,,, only require
k' Tk K’ the determination of the first derivative of the one-
dimensional Lagrange functiorj?é,'f evaluated at the associ-

2x2,— XX — 1

N”(Xk,) =2(—1)k* k’()\ir)fllz K’ ated mesh points. The expressions of these derivatives for the
(1—XE,)(xk, —X)? Lagrange-Legendre functiong are given abov@Egs. (A5)
and (A7)]. The case of the Lagrange-Laguerre functidps
1—x§ [Eq. (41)] is developed in Refl12]. The first derivative of
X 12 (A8)  the shifted Lagrange-Legendre functiarf$[Eq. (44)] evalu-
k’ ated at mesh points is
for k#k'.
In the case of perimetric and renormalized Hylleraas co- o (y) = (\)) 12 2yi—1 (A12)
ordinates, we have to evaluate integrals of the following b 2yi(1—vy;)
form:

and

=f J Jdxdydia#F(X,yaZ)]DW(X,yaZ)

, LoD fyia—yy)
N (yi)=(-1) 1 [ (A1)
[0,6xy.2)], (A9) o=y Yir=Yi ¥ Yir(l=yir)

where . and v represent one of thg, y, andz coordinates,
and theD ,, coefficients are thé,, [Eq. (18)] or B,,, [Eq.  for i’ #i.
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