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Latent heat calculation of the three-dimensionalqÄ3, 4, and 5 Potts models
by the tensor product variational approach
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Three-dimensional~3D! q-state Potts models~q53, 4, and 5! are studied by the tensor product variational
approach, which is a recently developed variational method for 3D classical lattice models. The variational
state is given by a 2D product of local factors, and is improved by way of self-consistent calculations assisted
by the corner transfer matrix renormalization group. It should be noted that noa priori condition is imposed for
the local factor. Transition temperatures and latent heats are calculated from the observations of thermody-
namic functions in both ordered and disordered phases.
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I. INTRODUCTION

The density matrix renormalization group~DMRG!,
which was invented by White in 1992@1,2#, has been applied
to a wide class of one-dimensional~1D! quantum systems
including quantum spin ladders@3#. DMRG is also efficient
for obtaining thermodynamic functions of 2D classical sy
tems@3,4#. Now a technical interest in DMRG is to extend i
applicability to higher dimensional systems@5–7#.

It is worth looking at the variational background
DMRG in order to obtain a rough image of DMRG in high
dimension. In 1995 Ostlund and Rommer showed t
DMRG assumes so called ‘‘the matrix product wave fun
tion,’’ and that a very small numbers of parameters are s
ficient to obtain a good variational energy@8#. It is a small
surprise that such a construction of variational state has b
known for long years in the field of statistical mechanics
2D classical lattice models. In 1945 Kramers and Wann
introduced a very simple matrix product as a variational s
for the transfer matrix of the 2D Ising model@9#. Later, the
idea of constructing variational state from local elements w
extended by Kikuchi@10# ~the cluster approximation!, Baxter
@11,12#, and Villani @13# ~the correlation length equality ap
proach!. All these approaches calculate the lower bounds
the free energies of a 2D system. They use a variational s
that corresponds to an effective 1D statistical system w
several adjustable parameters.

Simply increasing the space dimension by one, we
extend such variational formula to three dimensions. T
simplest example is the Kramers-Wannier approximation
plied to the 3D Ising model by Okunishi and Nishino@14#,
where the 2D Ising model under the external magnetic fi
is treated as variational state, which has only two adjusta
parameters. The calculated spontaneous magnetization
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transition temperature are more precise than those obta
from a former attempt to extend DMRG to 3D classical sy
tems @15#. A major problem in the Kramers-Wannier ap
proximation is that one cannot always find out a good fu
tional form of variational state intuitively, especially fo
models other than the 3D Ising model. In order to overco
this problem, a numerical self-consistent approach has b
introduced, which we call the tensor product variational a
proach~TPVA! in the following @16,17#. In TPVA the varia-
tional state is determined automatically, with no reference
a priori information on systems. In this paper we briefl
review the variational principle and the numerical algorith
of TPVA, and discuss the applicability of this method v
trial calculations forq53, 4, 5 Potts models.

In Sec. II we introduce main features of the algorith
from the variational point of view. We focus on the se
consistent improvement of the variational state. A spec
way how to apply the variational method to the Potts mo
is presented in Sec. III. We also provide the way how
calculate the internal energy and the magnetization. The
merical results are presented in Sec. IV. In Sec. V we c
clude the main results.

II. VARIATIONAL APPROACH IN TWO DIMENSIONS

For a tutorial purpose we first explain the way how
apply TPVA to the square lattice Potts model.~Later in the
following section we treat the cubic lattice.!

Let us consider an infinitely long stripe of the width 2N
on the square lattice, which is nothing but the 2N-leg ladder,
and consider theq-state Potts model in this finite width re
gion. Figure 1 shows the transfer matrixT @s̄us# of this
system when 2N56, where

@s#5~s1 ,s2 ,...,s2N! and @s̄#5~ s̄1 ,s̄2 ,...,s̄2N!
~1!

represent adjacent rows ofq-state spin variables. Here w
interpret the Potts model as a special case of so called
©2002 The American Physical Society02-1
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interaction round a face’’~IRF! model @18#, and construct
T @s̄us# as a product of plaquette Boltzmann weights

T @s̄us#5 )
i 51

2N21

WB~ s̄ i s̄ i 11us is i 11!5 )
i 51

2N21

WB
~ i !$s̄us%,

~2!

where we have written the nearest neighbor spin p
(s is i 11) and (s̄ i s̄ i 11), respectively, as$s% and$s̄% for the
book keeping purpose. Following this index rule, the lo
Boltzmann weight is written as follows:

WB
~ i !$s̄us%5WB~ s̄ i s̄ i 11us is i 11!

5expF2
J

2kBT
~ds is i 11

1ds̄ i s̄ i 11

1ds i s̄ i
1ds i 11s̄ i 11

!G , ~3!

where we consider the ferromagnetic case (J,0) throughout
this paper.

The variational lower bound for the partition function p
row is the maximum of the Rayleigh ratio

l5

(
@s̄#,@s#

F@s̄#T @s̄us#C@s#

(
@s̄#,@s#

F@s̄#C@s#
[

^FuT uC&

^FuC&
, ~4!

whereF@s̄# andF@s# are arbitrary variational states. Sinc
the transfer matrixT in Eq. ~2! is symmetric, we assum
F@s#5C@s# in the following.

TPVA consists of local approximations@16,17# that re-
strict the form of the variational stateC@s# into a uniform
product of local factors

C@s#5 )
i 51

2N21

V~ i !$s%5 )
i 51

2N21

V~s is i 11!, ~5!

where there are onlyq2 variational parameters. Figure

FIG. 1. The transfer matrixT @s̄us# in Eq. ~2!. This is the case
where 2N56 and, therefore, there are five Boltzmann weightsWB

( i )

from i 51 to i 55.

FIG. 2. Graphical expression of the variational stateC@s# in
Eq. ~5!.
04670
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graphically representsC@s# when 2N56. A profit of writing
the variational state in the product form is that the norm
the variational state also has the local product structure

^CuC&5(
@s#

)
i 51

2N21

@V~ i !$s%#25(
@s#

)
i 51

2N21

@V~s is i 11!#2,

~6!

which is nothing but a partition function of a 1D lattic
model whose local Boltzmann weight is@V(s is i 11)#2. In
the same manner, the numerator of Eq.~4! is written as

^CuT uC&5 (
@s̄#@s#

)
i 51

2N21

V~ i !$s̄%WB
~ i !$s̄us%V~ i !$s%, ~7!

which is also a partition function of an effective two-le
ladder. As we have graphically represented the variatio
stateC@s# in Fig. 2, let us also express^CuT uC& graphically
in Fig. 3.

With the use of the variational state thus defined,
variational problem in Eq.~4! is the same as those used b
Villani @13,19#. Our aim is to obtain the best local facto
V$s% numerically. There are several ways to maximizelvar
in Eq. ~4!, under the condition that the lattice size 2N is
sufficiently large@16,17#. Keeping the extension to three d
mensions in our mind, what we consider here is to take
variations oflvar with respect to each local factor

dlvar

dC
[(

i

dlvar

dV~ i ! . ~8!

When the system size 2N is large enough, it is sufficient to
consider the variation with respect to the local change

V~N!→V~N!1dV~N! ~9!

at the center of the spin row, since we have treated the
form variational state and since the boundary effect is ne
gible. After a short calculation from the~local! extremal con-
dition @16,17#

dl

dV~N! 50, ~10!

we obtain an eigenvalue problem

FIG. 3. Graphical expression of^CuT uC& in Eq. ~7!. We have
used black circles for the spins whose configuration sum is tak
2-2
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(
$s%

B~N!$s̄us%

A~N!$s̄%
V~N!$s%5lV~N!$s̄% ~11!

for the local factorV(N). The new factorA(N)$s̄% is con-
structed as

A~N!$s̄%5A$s̄Ns̄N11%

5 (
s̄1 ...s̄N21s̄N12 ...s̄2N

)
iÞN

~V~ i !$s̄%!2, ~12!

whose graphical representation is shown in Fig. 4. The
trix B(N) is defined in the same manner

B~N!$s̄us%5WB
~N!$s̄us% (

@s̄#@s#

iÞN,N11

)
iÞN

V~ i !$s̄%

3WB
~ i !$s̄us%V~ i !$s%, ~13!

where the spin configuration sum is taken over all bla
circles in Fig. 5.

Since bothA(N) and B(N) are constructed from the loca
factor V, the eigenvalue relation Eq.~11! should be solved
self-consistently. Thus Eq.~11! is a kind of the self-
consistent equation. A realistic outline how to solve the s
consistent equation is as follows.

~1! Start the calculation by setting~arbitrary! q2 numbers
of initial values for the local factorV(s,s8).

~2! CalculateA(N) andB(N) from Eqs.~12! and ~13!, re-
spectively, for sufficient large system size 2N.

~3! SubstituteA(N), B(N), andV(N) to the left hand side of
Eq. ~11!. Obtain the right hand side by

V8$s̄%5(
$s%

B~N!$s̄us%

A~N!$s̄%
V~N!$s% ~14!

FIG. 4. The factorA(N) in Eq. ~12! is constructed by joining two
C@s#’s and taking spin configuration sum over all spins@s# ~the
black circles! except for the two central ones$s̄%5(s̄N ,s̄N11) ~the
white circles!.
04670
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and normalize it

V9$s%5
V8$s%

A (
$s8%

~V8$s8%!2
. ~15!

~4! Create a linear combinationVnew5V1«V9 where« is
a small parameter of the order of 0.1, and regard it as
improved local factor. After normalizingVnew go to the sec-
ond step and repeat the calculation tillV reaches its~local!
fixed point.

The small parameter« is introduced in order to stabilize
the convergence of the iterative calculation. For statisti
models that exhibit a phase transition, the self-consis
equation has several stable solutions near the transition
perature. They correspond to the disordered state and to
ordered state. In such a case, one can ‘‘target’’ a des
phase just by imposing a very small symmetry-breaking fi
or by setting the initial local factorV(s,s8) appropriately.

The main advantage of the above algorithm is that na
priori ansatz is necessary for setting up the variational
rameters.

III. EXTENSION TO THREE DIMENSIONS

It is easy to generalize both the variational relation@Eq.
~4!# and the construction of the variational state in the pro
uct form @Eq. ~5!# to 3D models. We can increase the spa
dimension by replacing the row-spin@s# in Eq. ~1! to a
‘‘layer spin’’

FIG. 5. Graphical representation ofB(N) in Eq. ~13!.
@s#5S s1 1 ¯ s1 N s1 N11 ¯ s1 2N

] � ] ] � ]

sN 1 ¯ sN N sN N11 ¯ sN 2N

sN11 1 ¯ sN11 N sN11 N11 ¯ sN11 2N

] � ] ] � ]

s2N 1 ¯ s2N N s2N N11 ¯ s2N 2N

D . ~16!
2-3
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Now the system we are considering is an infinitely large
object of size 2N32N3`. As before, we assume that th
system size 2N is sufficiently large to investigate the bul
limit. The 3D generalization of the row-to-row transfer m
trix in Eq. ~2! is a layer-to-layer transfer matrix. For the 3
q-state Potts model, the layer-to-layer transfer matrix
given by

T @s̄us#5 )
i 51

~2N21!

)
j 51

~2N21!

WB
~ i j !$s̄us%, ~17!

where the IRF-type local Boltzmann weight is written as

WB
~ i j !$s̄us%5WBH s̄ i j s̄ i 8 j s̄ i 8 j 8 s̄ i j 8

s i j s i 8 j s i 8 j 8 s i j 8
J

5expF 2J

4kBT
~ds i j s i 8 j

1ds i 8 js i 8 j 8
1ds i 8 j 8s i j 8

1ds i j 8s i j
1ds̄ i j s̄ i 8 j

1ds̄ i 8 j s̄ i 8 j 8
1ds̄ i 8 j 8s̄ i j 8

1ds̄ i j 8s̄ i j
1ds i j s̄ i j

1ds i 8 j s̄ i 8 j
1ds i 8 j 8s̄ i 8 j 8

1ds i j 8s̄ i j 8
!G . ~18!

We have used the notationi 85 i 11 and j 85 j 11, and have
represented the plaquette spins as$s%. ~See Fig. 6.!

The 2D generalization of the variational state in Eq.~5!
can be obtained in the same manner,

C@s#5 )
i 51

~2N21!

)
j 51

~2N21!

V~ i j !$s%

5 )
i 51

~2N21!

)
j 51

~2N21!

V~s i j s i 8 j s i 8 j 8 s i j 8!. ~19!

There areq4 variational parameters in the local factorV( i j ).
We assume that the factorV( i j ) is positionally independen
and the variational state is uniform. The local factor at
center of the system isV(NN).

The way how to optimize the local factorV( i j ), so that it
maximizes the Rayleigh ratiolvar in Eq. ~4!, is, in principle,
the same as that for 2D systems. The denominator

FIG. 6. The IRF-type local Boltzmann weightWB
( i j )$s̄us% of

the q-state Potts models and the variational factorsV( i j )$s̄% and
V( i j )$s%. The q-state variabless50,1,...,q21 are located at the
edges of the cube. We use the notation$s̄% and $s% for the upper
and the lower horizontal plaquettes.
04670
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^CuC&5(
@s#

)
i 51

~2N21!

)
j 51

~2N21!

~V~ i j !$s%!2 ~20!

is nothing but a partition function of a 2D lattice mod
whose local Boltzmann weight is equal to (V( i j ))2, and the
numerator̂ CuT uC& is that of a two-layer 2D lattice mode

(
@s̄#@s#

)
i 51

~2N21!

)
j 51

~2N21!

V~ i j !$s̄%WB
~ i j !$s̄us%V~ i j !$s%. ~21!

Since the numerator and the denominator are the parti
functions of effective 2D lattice models one can calcula
both of them using the corner transfer matrix renormalizat
group~CTMRG!, which is a variant of DMRG applied to 2D
lattice models@20#. As a byproduct of CTMRG, the facto
A(NN)$s% and the matrixB(NN)$s̄us% can be calculated@21#.
Also, the variational free energy per site^F& can be obtained
from CTMRG. ~Numerical details are reported i
Refs.@14,16,17#.!

After we obtain the optimized variational facto
V(NN)$s%, the internal energyE and the magnetizationM can
be calculated fromA(NN)$s% and B(NN)$s̄us% that are cre-
ated from the optimized variational factorV(NN). The inter-
nal energyE per site is equivalent to

E52Jd~sNN ,sN11N!2Jd~sNN ,sNN11!2Jd~sNN ,s̄NN!
~22!

and its statistical average is obtained as follows:

^E&5

(
@s̄#@s#

EV$s̄%B$s̄us%V$s%

(
$s%

V$s%A$s%V$s%

, ~23!

where we have dropped the superscript~NN! from V, A, and
B just for simplicity. The magnetization̂M& of the q-state
Potts model can be calculated from the spin expecta
value

^d~s,0!&5

(
$s̄%$s%

d~sNN,0!V$s̄%B$s̄us%V$s%

(
$s%

V$s%A$s%V$s%

~24!

together with the definition of the order parameter

^M &5
q^d~s,0!&21

q21
. ~25!

IV. NUMERICAL RESULTS

We calculate the latent heat of the 3Dq53, 4, and 5 Potts
models, using the internal energy expectation values^E& for
both ordered and disordered phases. Hereafter we sekB
5mB51 and only treat the ferromagnetic caseJ521. The
convergence control parameter in the self-consistent calc
tion is chosen as«50.1. When we obtain the variationa
state for the ordered phase, we impose a small symme
breaking field~;magnetic field! to the system during firs
2-4
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FIG. 7. The free energy per sitêF& of the q53 Potts model
with respect to the inverse temperatureK51/T.

FIG. 8. The free energy per site^F& of theq54 Potts model.

FIG. 9. The free energy per site^F& of theq55 Potts model.
04670
FIG. 10. The energy per sitêE& with respect toK for the q
53 Potts model.

FIG. 11. The energy per sitêE& with respect toK when
q54.

FIG. 12. The energy per sitêE& with respect toK whenq55.
2-5
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several iterations, and after that we switch it off. For t
CTMRG calculations, we kept block spin statesm up to the
value of 20 @22#; which is sufficiently large to obtain the
thermodynamic functions shown below. All thermodynam
functions converged after 500 iterations at the most eve
the close vicinity of the transition point.

First we determined the transition temperature from
calculated free energy per site^F& with respect to the inverse
temperatureK[1/T. Since theq53 – 5 Potts models exhibi
the first-order phase transitions, in a close vicinity of t
transition pointKt there are two minima in the free energyF;
one corresponds to the disordered phase and the other t
ordered one. It is possible to detect both of them by way
solving the self-consistent equation starting from differe
initial conditions for local factors.~When the barrier betwee
the minima is low, one of the two phases is often accident
chosen by numerical round-off errors.! Figures 7–9, respec
tively, show the calculated free energy per site^F& for q
53, 4, and 5 cases. The black squares and the white cir
represent̂F& for disordered and ordered phases, respect

FIG. 13. The magnetization̂M& with respect to the inverse tem
peratureK for q53.

FIG. 14. The magnetization̂M& with respect toK for q54.
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the transition pointKt . The free energy curves were draw
by the least-square fitting of plotted data to polynomials. T
results are,Kt

@q53#50.5496 forq53, Kt
@q54#50.6283 forq

54, andKt
@q55#50.672 forq55. For the caseq53 the most

reliable Monte Carlo~MC! result ~as far as we know! is
Kt

MC50.55056560.000010@23#, and thusKt
@q53# calculated

by TPVA is only 0.18% lower thanKt
MC .

In Figs. 10–12, we have plotted the internal energies
site ^E& as functions ofK[1/T. The latent heat is the energ
difference

Q5E12E2 ~26!

between the ordered and disordered phases. As before
have applied the least-square fittings to interpolate~or ex-
trapolate! the calculated data towardsE1 andE2 at the de-
termined transition pointKt

@q53,4,5# . These energiesE1 and
E2, respectively, are denoted by the cross symbols inside
squares and the circles in Figs. 10–12. The results
Q@q53#50.228,Q@q54#50.619, andQ@q55#50.693. For the
caseq53, Q@q53# is 41% larger than a Monte Carlo resu
QMC

@q53#50.1616060.00047@23#.
We finally show the calculated spontaneo

FIG. 15. The magnetization̂M& with respect toK for q55.

TABLE I. The numerically obtained transition pointsKt and the
latent heatsQ by TPVA for the 3D ferromagneticq53, 4, and 5
state Potts models. The values of them-state block spins are given
in the second column.

q m Kt Q

3 20 0.5496 0.228
4 20 0.6283 0.619
5 5 0.672 0.693
2-6
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LATENT HEAT CALCULATION OF THE THREE- . . . PHYSICAL REVIEW E 65 046702
magnetization̂M& in Figs. 13–15. All numerical results thu
obtained are summarized in Table I.

V. CONCLUSIONS

Recently proposed self-consistent method for 3D class
systems, the TPVA, has been applied toq53, 4, and 5 state
Potts models on the simple cubic lattice. Thermodynam
functions such as the free energy, the internal energy, and
spontaneous magnetizations are calculated. The nume
algorithm for solving the self-consistent equation is stable
any temperature, if the convergence control parameter« is
chosen to be equal or smaller than 0.1.
in
X

2,
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