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Latent heat calculation of the three-dimensionalg=3, 4, and 5 Potts models
by the tensor product variational approach

A. Gendiaf
Institute of Electrical Engineering, Slovak Academy of Sciencébrd¥skacesta 9, SK-842 39 Bratislava, Slovakia
and Department of Physics, Faculty of Science, Kobe University, 657-8501, Japan

T. Nishino
Department of Physics, Faculty of Science, Kobe University, 657-8501, Japan
(Received 23 February 2001; revised manuscript received 22 January 2002; published 10 April 2002

Three-dimensional3D) g-state Potts model@ =3, 4, and % are studied by the tensor product variational
approach, which is a recently developed variational method for 3D classical lattice models. The variational
state is given by a 2D product of local factors, and is improved by way of self-consistent calculations assisted
by the corner transfer matrix renormalization group. It should be noted thepriori condition is imposed for
the local factor. Transition temperatures and latent heats are calculated from the observations of thermody-
namic functions in both ordered and disordered phases.
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[. INTRODUCTION transition temperature are more precise than those obtained
from a former attempt to extend DMRG to 3D classical sys-
The density matrix renormalization groufDMRG), tem; [15]. A. major problem in the Kra}mers—Wannier ap-
which was invented by White in 1992,2], has been applied proximation is that one cannot always find out a good func-
to a wide class of one-dimensionélD) quantum systems tional form of variational state intuitively, especially for
including quantum spin laddef8]. DMRG is also efficient ~models other than the 3D Ising model. In order to overcome
for obtaining thermodynamic functions of 2D classical sys-this problem, a numerical self-consistent approach has been
tems[3,4]. Now a technical interest in DMRG is to extend its Introduced, which we call the tensor product variational ap-
applicability to higher dimensional systerf&-7]. proach(TPVA) in the following[16,17]. In TPVA the varia-
It is worth looking at the variational background in tional state is determined automatically, with no reference to
DMRG in order to obtain a rough image of DMRG in higher a priori information on systems. In this paper we briefly
dimension. In 1995 Ostlund and Rommer showed tha{eVieW the variational principle and the numerical algorithm

DMRG assumes so called “the matrix product wave func-Of TPVA, and discuss the applicability of this method via

tion,” and that a very small numbers of parameters are sufJ-[rial calculations forg=3, 4, 5 Potts models.
' y P In Sec. Il we introduce main features of the algorithm

ficient to obtain a good variational enerfg]. It is a small from the variational point of view. We focus on the self-

surprise that such a construction of variational state has begp) . <istent improvement of the variational state. A specific
known for long years in the field of statistical mechanics Ofway how to apply the variational method to the Potts model
2D classical lattice models. In 1945 Kramers and Wanniefs presented in Sec. Ill. We also provide the way how to
introduced a very simple matrix product as a variational statgajculate the internal energy and the magnetization. The nu-

for the transfer matrix of the 2D Ising modg]. Later, the  merical results are presented in Sec. IV. In Sec. V we con-
idea of constructing variational state from local elements wag|ude the main results.

extended by Kikuchj10] (the cluster approximationBaxter
[11,17], and Villani[13] (the correlation length equality ap-
proach. All these approaches calculate the lower bounds of
the free energies of a 2D system. They use a variational state For a tutorial purpose we first explain the way how to
that corresponds to an effective 1D statistical system withapply TPVA to the square lattice Potts modglater in the
several adjustable parameters. following section we treat the cubic lattige.

Simply increasing the space dimension by one, we can Let us consider an infinitely long stripe of the widtiN2
extend such variational formula to three dimensions. Then the square lattice, which is nothing but thié-f2g ladder,
simplest example is the Kramers-Wannier approximation apand consider the-state Potts model in this finite width re-
plied to the 3D Ising model by Okunishi and Nishifp4],  gion. Figure 1 shows the transfer matri[ o|o] of this
where the 2D Ising model under the external magnetic fieldystem when R=6, where
is treated as variational state, which has only two adjustable
parameters. The calculated spontaneous magnetization and[g]=(04,05,...,05y) and [o]=(01,02,...,0\)

II. VARIATIONAL APPROACH IN TWO DIMENSIONS

(1)
*Electronic address: gendiar@savba.sk represent adjacent rows ofstate spin variables. Here we
TElectronic address: nishino@phys.sci.kobe-u.ac.jp interpret the Potts model as a special case of so called “the
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FIG. 1. The transfer matrif| o|o] in Eq. (2). This is the case

where N=6 and, therefore, there are five Boltzmann weingBQ G,
fromi=1 toi=5.

Gs
Gs

FIG. 3. Graphical expression ¢f|7|¥) in Eq. (7). We have
interaction round a face(IRF) model [18], and construct used black circles for the spins whose configuration sum is taken.

as a product of plaquette Boltzmann weights
Tlolo] P Pad g graphically represent¥[ o] when 2N= 6. A profit of writing

2N-1 2N-1 the variational state in the product form is that the norm of
T[olo]= H Wg(oioi,1|loi0i1)= H Wg){El o}, the variational state also has the local product structure
i1 i1
(2 2N-1 2N-1
— (i) 2_ O 2
where we have written the nearest neighbor spin pairs (¥[¥) % .1;[1 (Ve [(E,] iljl [Vigioi )]
(oi0i;1) and (o0 441), respectively, ags} and{c} for the (6)
book keeping purpose. Following this index rule, the local
Boltzmann weight is written as follows: which is nothing but a partition function of a 1D lattice
. model whose local Boltzmann weight & (ojo;.1)]%. In
wg>{5|a}=w5(aa+l|oi Oi11) the same manner, the numerator of E4).is written as
J 2N-1
=80 = ST O T Oy w|Tv)=> Tl viawiialelvi{e}, (7)
[o][o] =1
t 800t 0oy 1,0 | (3 which is also a partition function of an effective two-leg

ladder. As we have graphically represented the variational
where we consider the ferromagnetic case 0) throughout ~ State¥[o] in Fig. 2, let us also expres¥|7T|¥) graphically

this paper. in Fig. 3. o _
The variational lower bound for the partition function per ~ With the use of the variational state thus defined, the
row is the maximum of the Rayleigh ratio variational problem in Eq(4) is the same as those used by
Villani [13,19. Our aim is to obtain the best local factor
S ®[o]To]o]¥[o] V{o} numerically. There are several ways to maximizg,
[o1.[o] (®|7]V¥) in Eq. (4), under the condition that the lattice sizé s
= S ®[o|V[o] = (®]w) (4) sufficiently large[16,17). Keeping the extension to three di-
[o].[o] mensions in our mind, what we consider here is to take the

variations of\,,, with respect to each local factor
where®[ o] and®[o] are arbitrary variational states. Since

the transfer matrixZ in Eg. (2) is symmetric, we assume ON\var ONvar

®[o]=V[c] in the following. 5% =2 Sy 8
TPVA consists of local approximationd6,17 that re-

strict the form of the variational stat¥[o] into a uniform

product of local factors

When the system sizeNis large enough, it is sufficient to
consider the variation with respect to the local change
2N-1 2N-1 (N) (N) (N)
i +
viol= [ VO{o}=II Voo, VIV oV ©

at the center of the spin row, since we have treated the uni-
where there are only? variational parameters. Figure 2 form variational state and since the boundary effect is negli-
gible. After a short calculation from théocal) extremal con-

5 Py 5 Y 5 e n 0O 5 dition [16,17]
\ \ \/ V \ N
G, G, O3 Oy G5 G¢ SV = 0, (10
FIG. 2. Graphical expression of the variational stdtgr] in
Eq. (5). we obtain an eigenvalue problem
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FIG. 4. The factoA™ in Eq. (12) is constructed by joining two = - --

Y[o]'s and taking spin configuration sum over all spirg (the , V V N
black circle$ except for the two central onés} = (o ,on+1) (the - ~
white circles. ON-2 ON-1 On On+1 Oz On+3
FIG. 5. Graphical representation BfY) in Eq. (13).
> BV gy oz
— = o}= o
o AN} and normalize it

for the local factorV(M). The new factorAM{a} is con-
structed as

V//{ } V,{U} (15)
(N) — — — o= ——F/———.
Ao} =A{onon+1} S (V'{d'})
. {o'}
=2 Ilvoes a2
L ON-10N 202N PN (4) Create a linear combination,.,= V+eV” wheree is

a2 small parameter of the order of 0.1, and regard it as an
improved local factor. After normaliziny ., go to the sec-
ond step and repeat the calculation Yillreaches itlocal)

whose graphical representation is shown in Fig. 4. The m
trix BN) is defined in the same manner

i#N,N+1 _ fixed point.
BN{Glo}=W{"{alo} > [] vi{o} The small parametet is introduced in order to stabilize
lollo] 1#N the convergence of the iterative calculation. For statistical
XVV(Bi){EIU'}V(i){O'}, (13) models that exhibit a phase transition, the self-consistent

equation has several stable solutions near the transition tem-
where the spin configuration sum is taken over all blackPerature. They correspond to the disordered state and to each
circles in Fig. 5. ordered state. In such a case, one can “target” a desired
Since bothA™ and B™ are constructed from the local Phase just by imposing a very small symmetry-breaking field
factor V, the eigenvalue relation Eq11) should be solved Or by setting the initial local factov'(o,o") appropriately.

self-consistently. Thus Eq(11) is a kind of the self-  The main advantage of the above algorithm is tha@no
consistent equation. A realistic outline how to solve the self-Priori ansatz is necessary for setting up the variational pa-
consistent equation is as follows. rameters.

(1) Start the calculation by settingrbitrary) g numbers
of initial values for the local facto¥(o,o’).

(2) CalculateA™ andB™ from Egs.(12) and(13), re-
spectively, for sufficient large system sizél2

(3) SubstituteA®™, B™ andV™ to the left hand side of It is easy to generalize both the variational relatj&u.

[II. EXTENSION TO THREE DIMENSIONS

Eg. (11). Obtain the right hand side by (4)] and the construction of the variational state in the prod-
B30l uct form[Eg. (5)] to 3D models. We can increase the space
, g0 dimension by replacing the row-spiwr] in Eq. (1) to a
=S — Y1 y rep g p q
011 01N 01 N+1 01 2N
[o]= ON 1 77 ON N ON N+1 "7 ON 2N . (16)
ON+11 77 ON+1 N ON+1 N+1 77 ON+1 2N
O2n1 "7 O2NN O2N N+1 " O2N 2N
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FIG. 6. The IRF-type local Boltzmann weigh¥§"{c|o} of
the g-state Potts models and the variational factef$){o} and

Vi{g}. The g-state variablesr=0,1,...q—1 are located at the
edges of the cube. We use the notat{er} and{o} for the upper

and the lower horizontal plaquettes.
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(2N-1) (2N—1)

(rppy=2 11 11 v@eh? @0

[o]
is nothing but a partition function of a 2D lattice model
whose local Boltzmann weight is equal t9{()?, and the
numeratoW|7 | W) is that of a two-layer 2D lattice model

(2N-1) (2N—-1)

> I I v @wg{elelviiol. (21
[o][e] =1 j=1

Since the numerator and the denominator are the partition

functions of effective 2D lattice models one can calculate

both of them using the corner transfer matrix renormalization

group(CTMRG), which is a variant of DMRG applied to 2D

Now the system we are considering is an infinitely large 3Djattice models[20]. As a byproduct of CTMRG, the factor
object of size NX2NXx. As before, we assume that the ANNI 1 and the matrisB™N{o|o} can be calculatef21].

system size R is sufficiently large to investigate the bulk aisq the variational free energy per sifé) can be obtained
limit. The 3D generalization of the row-to-row transfer ma- s  CTMRG. (Numerical details are reported in

trix in Eq. (2) is a layer-to-layer transfer matrix. For the 3D Refs [14,16,17.)

g-state Potts model, the layer-to-layer transfer matrix iS After we obtain

given by

(2N—1) (2N—1)

T[olo]= 1]1 JHl Wy {ala}, (17)

where the IRF-type local Boltzmann weight is written as

V\ﬁén{ag}ZWB[Eij Tirj iy T

O'ij O'i/j O'i/j/ O'ij/

—-J
ZGXI{W(%”@]JF I R N

+ 8y gt O 7, O

ooy T Oaa T 00 7 T Oy
+ 05,0, % 00,0t 0000 Oy
+ 80y, } (18
We have used the notatioh=i+1 andj’=j+1, and have

represented the plaquette spins{as (See Fig. 6.
The 2D generalization of the variational state in [5).
can be obtained in the same manner,

(2N—1) (2N—1)
V[o]= Hl Jl;[l ViD{g}
(2N—1) (2N—-1)
= H H V(O'” O'i/]' (Ti/j/ O'ij/). (19)
i=1 j=1

There areg” variational parameters in the local factgf').

We assume that the factd)) is positionally independent

the optimized variational factor
V(NNI 51 the internal energf and the magnetizatiol can
be calculated fromA(NN{ s} and BNV |} that are cre-
ated from the optimized variational factofNV). The inter-
nal energyE per site is equivalent to

E= _35(UNN1UN+1N)_J5(UNNaUNN+1)_35(UNN-E|El£g)

and its statistical average is obtained as follows:

%ﬂ EV{o}B{o]o}V{o}
(E)= : (23
% V{gtA{o}V{o}

where we have dropped the supersctih) from V, A, and

B just for simplicity. The magnetizatio@M) of the g-state
Potts model can be calculated from the spin expectation
value

> Son0)V{a}B{alo}V{o}
(5(0.0))= {o}{o} 20

{20} ViotA{o}V{a}

together with the definition of the order parameter

q(8(0,0) -1

(M)= =70 9

IV. NUMERICAL RESULTS

We calculate the latent heat of the 8> 3, 4, and 5 Potts
models, using the internal energy expectation valigsor
both ordered and disordered phases. Hereafter wekset

and the variational state is uniform. The local factor at the= ;=1 and only treat the ferromagnetic cake — 1. The

center of the system g(\N,

The way how to optimize the local factd'), so that it

maximizes the Rayleigh ratip, 4 in Eq. (4), is, in principle,
the same as that for 2D systems. The denominator

convergence control parameter in the self-consistent calcula-
tion is chosen ag=0.1. When we obtain the variational
state for the ordered phase, we impose a small symmetry-
breaking field(~magnetic fielgl to the system during first
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FIG. 7. The free energy per sit&) of the q=3 Potts model
with respect to the inverse temperatite 1/T.
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FIG. 13. The magnetizatiofM) with respect to the inverse tem- FIG. 15. The magnetizatiofM) with respect toK for q=5.
peratureK for q=3.

several iterations, and after that we switch it off. For thelY:where the point of intersection of these two curves results
CTMRG calculations, we kept block spin statesup to the  the transition poinK,. The free energy curves were drawn
value of 20[22]; which is sufficiently large to obtain the by the least-square fitting of plotted data to polynomials. The
thermodynamic functions shown below. All thermodynamicresults areKl9=31=0.5496 forq=3, K|9=%'=0.6283 forq
functions converged after 500 iterations at the most even ir-4, andk|9~5!=0.672 forq=5. For the casgq= 3 the most

the close vicinity of the transition point. reliable Monte Carlo(MC) result (as far as we knois
First we determined the transition temperature from the«Mc_ 5 550565- 0.000010[23], and thusk[9=3] calculated
calculated free energy per si€) with respect to the inverse b)t/ TPVA is only 0.18% lower thaikMC ‘
_ ‘ L s e . N
temperatur& =1/T. Since theq=3-5 Potts models exhibit In Figs. 10—-12, we have plotted the internal energies per

the first-order phase transitions, in a close vicinity of the . . - )
transition point; there are two minima in the free energy site(E) as functions oK=1/T. The latent heat is the energy

one corresponds to the disordered phase and the other to tﬂgference

ordered one. It is possible to detect both of them by way of

solving the self-consistent equation starting from different P

initial conditions for local factorsWhen the barrier between Q=E"-E (26)

the minima is low, one of the two phases is often accidentally

chosen by numerical round-off errorg&igures 7—9, respec-

tively, show the calculated free energy per s for g between the ordered and disordered phases. As before, we

=3, 4, and 5 cases. The black squares and the white circlé®ve applied the least-square fittings to interpol@te ex-

representF) for disordered and ordered phases, respectivetrapolate the calculated data towards™ andE~ at the de-
termined transition poink!9=3#% These energieE ™ and

0.05 ' - - E ", respectively, are denoted by the cross symbols inside the
squares and the circles in Figs. 10-12. The results are
0.008—=—=uuu—8—=& 1 Ql9=31=0.228,Ql941=0.619, andQ!9=51=0.693. For the

caseq=3, Q9731 is 41% larger than a Monte Carlo result

|
|
—0.05 & | 1 Ql95%1=0.16160+ 0.00047[23].
= [ We finally show the calculated spontaneous
2 -0.10 | 1
5, |
*T‘ _045 1 : | TABLE I. The numerically obtained transition poirks and the
% | latent heatQ by TPVA for the 3D ferromagnetij=3, 4, and 5
|

state Potts models. The values of thestate block spins are given

-0.20 é\o\; X
in the second column.

|
-0.25 | I ]
| K, q m K Q
1 1 I 1
_0'38.626 0.627 0.628 0.629 0.630 3 20 0.5496 0.228
K k0] 4 20 0.6283 0.619
5 5 0.672 0.693

FIG. 14. The magnetizatiofM) with respect taK for q=4.
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magnetizatiotM) in Figs. 13—15. All numerical results thus ACKNOWLEDGMENTS
obtained are summarized in Table I.
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