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Optically realizable localized wave solutions of the homogeneous scalar wave equation
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One of the most frequently discussed problems in construction of localized (Ve solutions of the
homogeneous scalar wave equation has been their energy content—the LW’s generally have infinite energy
content and special methods have to be used to obtain physically realizable wave fields. So far the problem has
mainly been addressed as a pure mathematical one and the proposed LW'’s can hardly be implemented in
optics. In this paper we propose an approach for constructing physically realizable LW'’s that have a transparent
interpretation in terms of optical setups. It will be shown that such LW’s can be derived as finite aperture
approximations of fundamental LW'’s, the focus wave modes.
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I. INTRODUCTION wherep=X?+y?, o=z—ct, r=z+ct, anda,, B are pa-

rameters, the finite energy flow LW’s have been constructed
The free-space propagation of electromagnetic waves the superpositions of the FWM's of the foff7]
fields is generally known as one of the most thoroughly in-
vestigated processes in optics. However, in recent years re- .
newed research interest in this field has arisen, as a novel ) — .
class of ultrawideband transient solutions of homogeneous Poudp.2tA) Jo dBF(A Vewm(p.2tiar.f). (2)
wave equation— so called localized wavésN)—have

been introduced and investigated extensi\ebe, e.g., Refs. .
[1-16], and references thergin 8e. e.g It has been showf6,7], that by means of a careful choice of

The reason for the interest is the peculiar propagation of'® Weighting functiorF(B) and the parametea,, the su-
those wave fields—the spatial amplitude distribution of LW'sP€"POSitions2) can be constructed so that the resulting wave
can be designed to consist of a micrometer diameter centr4€!d has both finite energy density and finite total energy.
peak on a sparse, low intensity background. From the viewt owever, no interpretation in terms of optical setups has
point of diffraction theory, the transversal and longitudinal °€€n given for those wave fields so far.
spread of such a pulse should be very substantial. However, AlSO, several studies have introduced finite energy flow
in the theoretical limit the amplitude distribution of many LW'S by applying a finite-time dynamic aperture on an infi-
LW's does not spread at all as it travels in free spgge]. Mt energy LW pulsésee, e.g., Ref$7-10], and references

Obviously, the optical implementation of such wave fieldstnerein. But again, such an idea is difficult to realize in
could be very attractive for the applications where the lateraPPtical domain since its physical realization would require an
andor) transversal diffractional spread of the wave fields is a€'ectrically short and thin, center-fed, linear dipole antenna
major limitation of the system performande.g., optical ~POSSessinga matrix of_lndependent elements each excited by
communication, metrology, monitoring, imaging, and femto-& SPecific broadband time-dependent S'dﬁ@‘[
second spectroscopyHowever, the mathematical descrip- [N this paper we construct a class of LW's, thia} have
tion of those ultrawideband, nontrivial wave fields havefinite energy flow and2) are realizable by means of a prac-
proved to be intricate and despite all the theoretical workic@l optical setup. After giving some introductory notes in
done so far, there are still several topics that need to bg€C- !l we use well-known properties of monochromatic

clarified before the optical implementation could be successE’eS,S’al beams to derive a mathematical expression for the
ful. LW’'s and propose an optical setup for their generation. In

One of the most important and widely discussed argu-SeCS_' 11 ar_1d \Y a_numerical example and some experimental
ments that has cast serious doubts on the feasibility of Lw§onsiderations will be presented.
is the fact that the total energy content as well as the energy
flow ~of the fundamental LWs—focus wave modes | rouRIER REPRESENTATION OF FUNDAMENTAL
(FWM)—is infinite and thus they cannot be generated in a LW's —FWM'’s
real optical setugsee Refs[6—8], and references thergin
The problem has been overcome mainly by constructing In Fourier representation an axisymmetric scalar wave
various finite energy flow approximations to the FWM'’s. For field in free space can be described as a superposition of
example, the problem has been addressed as a pure mathenochromatic Bessel beams as
ematical one: given the analytical expression of FWM’s,

Vewnl(pz,t:31,8) \If(p,z,t)=27TJ dkaJWdasineA(k,a)Jo
0 0

1 2 _
~ dm(atio) ex‘{_ atio| BT D X (kp sing)exgik(zcoso—ct)], (3
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whereA(k, 6) is the cylindrically symmetric Whittaker-type
angular spectrum of plane wavesy(kp sind) denotes
zeroth-order Bessel function of the first kind, and k
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(10%rad cm™)

=w/c are the cone angle and carrier wave number of the 41 .- T
Bessel beam, respectively. It can be demonstret&l that et B _ &,
the instantaneous intensity distribution of such a superposi- = ] (10° rad cmi)
tion propagates without any spread, if only the on-axis group RN o
velocity of the monochromatic Bessel beams, -

=(dk,/dw) 1, wherek,=k cosé, is constant over the spec-
tral range of the wave field. The corresponding angular spec-

trum can be expressed by means of Digafunction as

_ k(107 rad cm™)
Ak, 0)=A(k) 8(6— Orwm(K))- 4

The essential part of this expression is the functigfyu(k)
determining the support of the angular spectrum of the plane 4 k,
wave constituents of the pulse, i.e., the volume of nonzero >

angular spectrum of plane waveskrspace. To provide the 0.5 1 (10" rad cm’™)
nonspreading propagation, the function has to have the form
y(k—2p)
Orym(K) = arcco%T , ) (b)
where constany determines the group velocity of the wave kx‘(IOZrad cm’™)

field asvy=c/y and parameter 2 has an interpretation as

being the wave number of the plane wave component of the ]

angular spectrum that propagates perpendicularly &xis 41 /

[see Fig. 1a) for some examples of the supports of angular Iiz
1y

l (10°rad cm™)

spectrum for different parameters and B]. The function 0.5 7

A(K) in Eq. (4) is the frequency spectrum of the wave field,
its exact form defines the spatial shape of the wave field.
The angular spectrum of plane wavéd with Eq. (5)

gives the general solutiof8) the following form:

©

FIG. 1. Supports of angular spectra of plane waves of various
LW's: (a) Fundamental LW's(FWM) of different group velocity
vg=c (y=1 and =04 rad/cm?) [see Egs.(4) and (5)], for
dashed linevg<<c (y=1.00001 ands=1 rad/cm't), for dotted
line vy>c (y=0.999994 ands=0.4 rad/cnt); (b) A typical
support of angular spectrum of plane waves of finite energy flow
(6) LW's, derived in this paper¢=1, 3=0.4 rad/cm?); (c) Atypical
support of angular spectrum of plane waves of the finite energy flow
or LW's derived as superposition of FWM’'s vyE1,
B~0.4 rad/cm?).

Vewm(p,z,t)=2mexd —i2yBz] f;dkk2

X sin Grwm(K) TA(K)
X Jo(kp sinOrym(k))exdik(yz—ct)],

Vewml(p.z,) =ex ~i2ypz] fo dkACk) such a behavior. Generally, the spatial amplitude distribution

of the FWM's is not propagation invariant, as can be seen
from the term exp—i2yBz] in Eq. (7).
) The more conventional definition for the FWM’s in Eq.
(1) can be shown to be a special case of the defini(idn
[17]. Also, it has been showl7] that in all practical cases
the representatio(v) does not include any backward propa-
gating plane wave components.

X Jo(kp sinOgym(k))exdik(yz—ct)],

where we have denoted
A(k)=27k?A(K)sin[ Oeywm(k)]. (8)

In what follows the Eq(7) is referred to as a definition of
FWM's. The referenced approa¢t7] implies, that the in-
stantaneous intensity distribution of all the wave fields, ex-
pressible as Eq(7), propagate without any longitudinal or ~ As was already mentioned, one of the main reasons for
transversal spread, the support of angular spectrum of plaretroducing various LW’s has been the need for finite energy
waves (5) being the necessary and sufficient condition forflow, i.e., physically realizable approximation to FWM’s.

Ill. APRACTICAL APPROACH TO OPTICALLY
REALIZABLE LW’s

046622-2



OPTICALLY REALIZABLE LOCALIZED WAV E . .. PHYSICAL REVIEW E 65 046622

The following discussion is also set up as a derivation of
such an approximation. However, being a straightforward ap-
plication of fundamental principles of Fourier optics, our ap-
proach can also be easily implemented by means of a realis,, S = _ P
tic optical setup.
Let us start by mentioning a fundamental property of
FWM's, not given sufficient attention in this context so far:
as can be seen from the Edqg) and (7), a FWM can be <
represented as a specific superposition of monochromatic. €S L
Bessel beams

ki

FIG. 2. On the propagation length and angular spectrum of
) — ; lane waves of apertured Bessel beams. In the simplest case the
Va(p,2,6:K) = Jokp sin Oewm(k) Zpertured, finite enpergy flow approximations to Bessel Eeams can be
X exp{ik[z cosOrywm(k) —ct]} 9 generated by means of a circular ${tS) of diameterD and a lens
(L) of focal lengthf. The propagation lengthof the near-axis part
of different cone angle® and carrier wave numbels the  of such a beanithe striped region on the figurés determined as
parameters being connected by the relatidh [see Fig. R/tané whereRis the radius of the lens ar=arctanD/2f) is the
1(a)]. Of course, considering monochromatic components ofone angle of the Bessel beam. In the front focal plane of the lens
wideband wave fields instead of the entire superposition is the Weyl-type angular spectrum of plane waves of an apertured
common method to simplify the study of complex wave Bessel beam is sketched.
fields. In our case, however, the advantage is even more
substantial—as far as the frequency spectA(tk) in Eq. (7) Thus, the substitution of infinite-aperture Bessel beams in
is square integrable, the infinite energy flow of the FWM's in EQ. (7) by their apertured counterparts should generate a fi-
Eq. (7) is a direct consequence of the infinite energy contenfite energy flow wave field, the spatial amplitude distribution
of its monochromatic components—Bessel bea@)s[2],  Of which is a good approximation of the FWW) in some
i.e., the representation does not eliminate the main subject dihite volume, determined by the simple geometrical con-
our discussion. Instead, it suggests a straightforward idea faitruction, shown in Fig. 2.
an approach to finite energy flow approximations to FWM: To derive the mathematical expression for such a wave
one has to find a finite energy flow approximation to mono-field, we have to calculate the angular spectrum of plane
chromatic Bessel beams, substitute the result intaBcand ~ waves of an apertured Bessel beang . This can be done
verify that the resulting superposition still represents a wavéy calculating the two-dimensional Fourier transform of the
field that propagates as a LW. transversal amplitude distributiarfp)Jo(xop) of the wave
The properties and optical generation of monochromatidield, t(p) being the complex-amplitude transmission func-
Bessel beams have been investigated in great detail duririgpn of the aperture angr=ksin @ being thek,, plane pro-
the last decaddsee, e.g., Refs[2,18,19, and references jection of the wave vector. Given the Weyl-type angular
therein. One of their properties, verified both theoretically spectrum of plane waves of the infinite-aperture Bessel beam
and experimentally, is particularly useful in our discussion.
Namely, it has been shown, that applying finite aperture to a As(x)=A8(x— X0), (10)
Bessel beam provides us with a finite energy flow wave field,
that is a very good approximation of the infinite-aperture, here is a constant, the Fourier transform can be found to
Bessel beam§9) in a certain finite depth, near axis volume yield
[2,18,19. Also, it has been shown experimentally, that the
spatial amplitude distributions of the polychromatic superpo- ~
sitions of those apertured Bessel beams approximate Verya, o(x)=

T(x)* 6(x—xo)

closely the spatial amplitude distributions of the superposi- (27)?

tions of “nonapertured” Bessel beams in this volufrgd— -

22]. Such a behavior can be easily explained in terms of _ XoA [ 2 2 —
angular spectrum representation of scalar wave fields. In this “2mzlo deT(VX*+ X~ 2xX0C0% @~ 90)).
picture a monochromatic Bessel beam is a cylindrically sym-

metric superposition of plane waves that propagate at &hgle (11)

relative toz axis[2]. As the apertured plane waves approxi- ) ] ] )

mate the amplitude distribution of their infinite aperture Where T(x) is the two-dimensional Fourier transform of
counterparts very closely in their central pagsee Fig. 2, the transmission function and * denotes the convolution
one can also observe a very good approximation to th&peration (see also Ref. [23]). The argument
infinite-aperture Bessel beam in this near-axis voluisee \/X2+X§—2X)(OCOS(<p—<p0) has an interpretation as being
Ref.[19] for more detailed descriptionif the cone angle of the distance between the poinjg, ¢) and (yq,¢0), ¢ being

a Bessel beam is small, as is always the case in paraxi#fie polar angle ok, plane. As for all convenient apertures,
optical systems, the apertured Bessel beam would behave # functionT(x) is well localized around zero, the major
its infinite-aperture counterpai®) for several meters of contribution to the integralll) obviously comes from small
propagatior 2]. values ofe and one can write in good approximation
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A
Ane0) = 5= TOx=xo). (12

The interpretation of the expressidh2) is straightforward:
the finite aperture gives the support of angular spectrum of a
monochromatic Bessel beam a finite “widtkSee Fig. 2 for
an illustrative example Exact form of the support is deter-
mined by the complex-amplitude transmission function,
however, the well-known set of fundamental Fourier trans-
form pairs gives a good idea of what the support of angular
spectrum looks like, without any calculations.

Obviously the finite aperture has a similar effect on the
angular spectrum support of a FWM—tléefunction in Eq.
(4) is substituted by a weighting function and the angular
spectrum of plane waves of apertured FWM’s can be written
as

xewm(K)A(K) Z’Td

A k,x)=
Arwm(K; x) (2m)? 0

XT(X*+ xpwm(K) 2= 2xxpwm(k) cose)

KAk
= XA e xewn(), (13

where ypwm(K) =Kk sin 6gym(K) or

27
Aprwm(K, x) =A(K) 0 de

XT(x?+ xewm(K)2—2xxrwm(K) cose),
(14

where we have denoted

XFWM(k)’A(k)

A(k)= oy

(15

Consequently, the Weyl-type plane wave expansion of the
wave field behind the aperture can be written as

24 mm
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z=0m z=1m

FIG. 3. The results of a numerical evaluation of propagation of

apertured FWM in Eq(23). (a) A gray-scale plot of the spatial
amplitude distribution of the apertured FWM in tixa plane at

\IIAFWM(Przat):ZWJ dkf dxxAaewm(K, x) distancez=0 m andz=1 m; (b) Instantaneous intensity distri-
0 0 bution of the wave field in thez plane in those positions.

An example of an apertured FWI7) is depicted in Fig.

2
. X
XJo(PX)eXF{ 'k( z\1- (F) —ct 3. One can see, that the wave field still has the characteristic
narrow central peak. In fact, the spatial amplitude distribu-
(16)  tions of apertured and nonapertured FWM's do not differ
noticably in the near-axis volume except for the finite propa-
Alternatively, the transformatiog =k sin 6 gives the expres-  gation length of apertured FWMisve present some numeri-
sion (16) the following form: cal results on their propagation in the following secliorhe
support of the angular spectrum of plane way®$ of the

o0 27
WAFWM(p,Z,t)ZZWf dksz désiné cosé
0 0

derived wave field is depicted in Fig.(d—as compared
with the supports of angular spectrum of a nonapertured

FWM'’s [see Fig. 1a)] the former has a finite “thickness.”

The wave field(16) is derived by applying a finite aper-

) ture to a FWM(7). However such a method does not offer a
xexflik(zcosf—ct)]. (17)  means of optical generation of those wave figlds se—we
still assume a FWM as the initial wave field on the aperture.
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To get an optically realizable approach we once more use the
properties of apertured Bessel beams, or more specifically,
the angular spectrum description of their optical generation
(see Fig. 2 Namely, as the apertured FWM's are superposi-
tions of apertured Bessel beams and the latter can be formed
from apertured plane wavd®r spherical waves one can
generate the entire spectrum of the monochromatic compo-
nents by illuminating a Bessel beam generdsoticon, cir-
cular diffraction grating by a polychromatic, apertured plane
wave. Still, the optical implementation is far from trivial, as
the setup has to be constructed in such a way, that the central
cone angles of the apertured Bessel beam components de-
pend on their wave number a&yw(k) (5). However, the
experimental implementation of such cone angle dispersion
has been addressed in our recent publicafbr] where it
has been shown, that the wavelength dispersions of cone
angle, generated by various Bessel beam generators, can be
combined to yield a very good approximation to the angular
spectrum of a FWM in an ultrawide bandwidttorrespond-
ing to a 4-fs pulsg Thus, there are no fundamental difficul-
ties in optical generation of the apertured FWM'’s. Some of
the experimental difficulties are mentioned in Sec. V below. (b)
To summarize the preceding discussion, we propose the
wave f.leld(]'?) as a clas_s of finite energy flow LW's. The setup consists of a circular ski8C) of diameterD, a lens(L) of
wave field h"?‘s the f.OI.IOV\.”ng propertleés_) The energy f"?"_V focal lengthf, and of a circular grisniCG) (see texk, (b) On sign
of the wave field is finite if only the applied aperture is finite; ., entions in Eq(18).
(i) In the limit, as the aperture is extended to infinity, the
function T in Eq. (17) converges tas function and the wave  quency spectrun(k) is rectangular and has a bandwidth of
field (17) transforms into the FWM7); (i) Despite the fi- 5 4 45 pulse (400 nm—800 nrfee Fig. &) for the spatial

nite aperture approximation made, the wave field can be conympjitude distribution and Fig.(h) for the support of angu-
structed so that its spatial amplitude distribution still has thg, spectrum of such a wave figld

characteristic micrometer Qiameter peak and can propagate The optical setup, that generates the angular dispersion of
several meters before the final spréaee the following sec- 4 angles of the apertured FWM is depicted in Fig) 4
tion for the numerical results(iv) The wave fields can be [17] The optical scheme consists of a circular slit, a lérs
generated by means of conventional optical setups. and a circular diffraction grating on the surface of an axicon,

,il\lso, we can outline the main differenc,e between thegg_called circular grism. The circular slit is illuminated with
LW's, proposed in this papg¢Eq. (17)] and LW's, discussed 5 wigeband plane wave pulswith a specific phase distor-

in literature so fafEq. (2)]. The comparison of their supports o if necessaryand the lens forms a polychromatic super-
of angular spectrum of plane waves in Figeb)land X¢)  position of apertured Bessel bearss-called Bessel-X pulse
(respectively shows, that the transversal “width” ik, [1521)). The task of the circular grism is to introduce the
plane of angular spectrum of plane waves of our LW's is agyy\-specific angular dispersion into the support of the an-
constant—such a result is a consequence of applying apegyar spectrum of the wave field. It can be sho], that

ture with a wavelength-independent complex-amplitudeiiven the cone angle of the apertured Bessel beams behind
transmission function. On the other hand, the transversgje lensé,=arctanD/2f) [D is the diameter of the circular

width is not constant for the superpositions of FWM's in EQ. it and f is the focal length of the lens, see Figad the

(2) and the preceding discussion gives the property &ayelength-dependent cone angle of the Bessel beam com-
straightforward interpretation: the corresponding aperture onents of the resulting wave field can be expressed as
has a wavelength-dependent complex-amplitude transmis-

sion function. In the context of our discussion, where the 2

main goal is optical realizability, such an approach should be GG(k):arcsir*m +n(k)

regarded as an impractical one. There is simply no need for

implementation of such an aperture. r{ r(
X sin — a+ arcsi

FIG. 4. Optical generation of apertured FWM'&) Optical

} , (18

1
WSIH( 0o+ @)

IV. NUMERICAL RESULTS . . . .
whered is the grating constani is the axicon angle, and
As an example we present numerical results for an apemn(k) is the refractive index of the axicon materfalgn con-
tured FWM with the following parameters: we choosg  ventions are chosen so that the angiesf,, 0(k) are
=c (y=1) for the group velocity, the constan8  positive in Fig. 4b)]. The functionfs(k) can be optimized
=40 rad/m?! [Ogywm(k)=0.22° for 600 nrj the fre- so the relatiomg(k) = Owm(K) is satisfied for a set of three
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wavelengths(400 nm, 600 nm, 800 nmyielding for the tion, the comparison of Figs.(@ and 3b) shows that the

parameters),, «, d the following values: instantaneous spatial intensity distribution for such a setup
. propagates upotl m without any spread.
6p=9.4683<10"" rad, The wave field(23) could also be calculated by means of

Fresnel diffraction integrals. In this case the wave field be-

— — 2
a=1.3866<10" rad, hind the circular grism should be expressed as

d=3.7509<10 4 m. (19
c (= _ R
By applying this result on the E¢14) one finds, that the Y arwm(p,2,t) = mfo dkA(k)exdikct] J;) dpp
angular spectrum of the wave field behind the composite
optical elementsee Fig. 4 can be described by the equation, X Jo(kp sin6g(k))

27
A K, x)=A(k d
arwm(K; x) (k) o ¢ %,

(29)

kpp’) F{ (p/2+pz)
exp ik

z 2z
XT(x*+ xe(k)?—2xxc(K)cose),

(20) (see Ref[17] for related discussion However we will not
resolve this(quite complex expression, as the Fresnel inte-
where xg(K) =k sin 6(K)]. For the sake of simplicity let us grals of this type have already been investigated extensively
choose the aperture to be circular with radfusThe Fourier by means of the method of stationary phdsee, for ex-
transform of the transmission function in this case can bexmple, Refs[17,18,24). It has been shown, that the integra-
found to be tion over the radial distance yields a monochromatic
R Bessel beam of the cone angleu(k), the propagation
J1(Ry) (21)  distance of which can be estimated by the construction, de-
picted in Fig. 2. Thus, the integré®4) in this approximation
yields a superposition of Bessel beams similar to the integral
er%presentation of FWM in Ed7).

2
T(x)=

and the corresponding angular spectrum of plane wavi

reads
_A xa(KR [27 V. EXPERIMENTAL CONSIDERATIONS
Aarwm(K, x) =A(k) 2 f de
Though there is really no fundamental problem with the
J1(RVX?+ xa(K)Z—2x xs(K)cose) realization of the proposed setup, one has to tackle several
> 5 . technical obstacles. First of all, to generate a highly localized
VX + xa(K)? = 2xxc(k)cose pulse, as the one depicted in Fig. 3, one has to drive the setup

(220 with a 4 fspulse and the optical wave fields with such a
bandwidth are highly susceptible to phase distortions, intro-
Thus, the spatial amplitude distribution of the correspondingiuced by dispersive media. Even though a FWM propagates

apertured FWM can be described [see Eq.(16)] without any lateral and longitudinal spread irrespective of
the exact form of itggenerally complexfrequency spectrum
P Zt)=2 f dkf dyvA K, A(k) to get a transform-limited central peak, the relative
arwn(p.2,) =2 0 0 XxXPapwn(K:X) phases between the Bessel beam constituents of the FWM

5 must vanish. Hence, one has to apply conjugated phase dis-
% Jo(px)exn ik| z /1_ X ot tortion to the input pulse to compensate for various phase

. k distortions in the setup. Also, the dispersive properties of the

29 air have to be taken into account.
The second difficulty worth mentioning here is the rela-

whereA,rwi(k, x) is described by Eq22). tive compllexity of_ producing t_he introduced _ (_thical

The results of a numerical evaluation of Eg3) for 2 cm ~ élement—circular grism. Namely, it may be surprising but
aperture R=1 cm) under the assumption of a real fre- the fabrlcatlt_)n and pollshlng of a high-quality, concave coni-
quency spectrum(k) are depicted in Fig. 3. In Fig.(8) the cal s_urface is still a comphca’;ed task. Also, _the blazgd dif-
wave field is in its initial position =0, t=0), in Fig. 3b) fractlon_gr_atmg has to be fabrlcat(_ed on_the circular grism so
the wave field has propagated to positoal m. First of @S t0 eliminate the higher order diffraction.
all, one can see, that the apertured, i.e., optically realizable
FWM’s preserve the most significant property of the FWM’s
(7)—the narrow central peak of the spatial amplitude distri-
bution. In fact, the FWM and corresponding apertured FWM In this paper we gave a physically transparent approach to
(23) have practically identical spatial amplitude distributions construction of realizable, finite energy flow LW solutions of
in the near-axis volume, depicted in Fig. 2. As for propaga-the scalar homogeneous wave equation. By means of well-

VI. CONCLUSIONS
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known properties of apertured Bessel beams we demorgenerates LW’s with very narrow beam waist that propagate
strated that an optically realizable, finite energy flow set ofover reasonable distances.

LW’s can be obtained by applying finite aperture to funda-
mental LW's—FWM'’s. We derived a convenient integral
representation for those wave fields and proposed a conven-
tional optical setup for their optical generation. The pre- This research was supported by the Estonian Science
sented numerical simulations show, that the optical setupoundation Grant No. 3866.
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