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Self-interaction near dielectrics
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We compute the force acting on a free, static electric charge outside a uniform dielectric sphere. We view
this force as a self-interaction force, and compute it by applying the Lorentz force directly to the charge’s
electric field at its location. We regularize the divergent bare force using two different methods: A direct
application of the Quinn-Wald comparison axiom and mode-sum regularization.
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[. INTRODUCTION wherer _ (r-) is the smallergreatey of ther values of the
source’s locatiomg and the evaluation point. THself) force

Electric charges that are placed in an inhomogeneous pomcting on the charge is then given by flaeerage of the two
derable medium undergo self-interaction. The simplest casene-sidedl gradients of the potential. Specifically,
is that of a static electric charge in an inhomogeneous dielec-
tric. The self interaction of the charge results in a self-force
(in other contexts this self-force is also known as a radiation
reaction forcg, which acts to accelerate the charge. In the
static problem, then, one can ask the following question:
What is the external, possibly nonelectric, force that needs to
be exerted on the charge to keep it static when a nonuniforrlf
dielectric is present?

In this paper we study this question for a very simple p
case. Specifically, we find the self force on a pointlike elec- f = 2
tric chargee outside a uniform dielectric spher@By an in- " o
homogeneous dielectric we here mean the discontinuity of
the dielectric constant at the surface of the sphdree ori- ) ) o o
gin of the force on the charge in this case is simple: Thevhich clearly divergegThe derivation of the last equation is
charge polarizes the dielectric at orderThe induced elec- given below In this illustration of the problem, of course, it
tric field then backreacts on the original charge, and thidS clear that the regularized, physical self-force vanishes: The
interaction then is at ordes?. In fact, one can compute the force obviously cannot depend on where we choose to put
force on the charge following this simple physical picture. the origin of our coordinate systerfAlso, we have ample
However, one can employ a different picture, in which theoPservational evidence that static isolated charges remain
force on the charge is construed as a self-force. The chargdatic) .
interacts with its own field, and the latter is distorted by the There is a long history of works on the self-ford&or
presence of the dielectric sphere. In this picture the force i§eviews see, e.g[2].) Recently, the analogous problem of
computedocally, using only the fields at the location of the calculation of self-forces in curved spacetinfasso for the
charge. The local approach has many merits. Specifically, thgravitational case where the self-interaction pushes a body
computation of the near field is much simpler, and one doe¥ith finite mass off a geodesidhas gained much interest
not have to compute additional quantities such as the far fielt3:4}- In this paper we shall make use of some of the tech-
or the sphere’s polarizatioiiThe fields at great distances of Niques, which have been developed for self-interaction in
course contribute to the force on the charge, but for the locgfurved spacetime, for the problem of interdtterestingly,
approach only through boundary conditiona.similar ap-  there is a close link between electromagnetism in static
proach was used in RefL] to compute the radiated power of gravitational fields and electromagnetism in matter. As is
synchrotron radiation using only the near field. The difficulty Well known [5], Maxwell's equations in vacuum in static.
in the local approach arises from the well known fact that thefurved spacetime can be written as Maxwell's equations in
field of a point charge diverges when the evaluation point fofflat spacetime with an effective nonuniform dielectri§pe-
the field coincides with the field's source. In fact, this hap-Cifically, we shall make use of the Quinn-Wald comparison
pens already for a static charge in emfpd flay spacetime. @xiom [6] and mode-sum regularizatid#] in order to ex-

Let the chargee be located on the axis in spherical coor- tract the physical, finite piece of the self-force.

dinates. Decomposing the scalar potenfiainto Legendre The organization of this Paper Is as fO.HOWS' In Sec. Il we
: ) solve for the scalar potential, and obtain the modes of the
polynomials, one finds that

bare force. This is, in fact, a standard exercise in electromag-

1 . )
f=—Se(VO + V)|,

| ™
N

2r

onN

© L/ netism(7]. Then, in Sec. Il we regularize the self-force us-
O(r,9)=e, %P/(cosﬁ), ing two different approaches, and in Sec. IV we discuss the
7=0ry properties of our result.
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II. DERIVATION OF THE BARE FORCE

Consider a static electric chargen vacuum at radius,
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lim e(R—0)d,¢"(R—0)= lim e(R+0)d,¢’ (R+ o)

0" o—0"

outside an insulated sphere of radmsf uniform_dielectric (which comes from the continuity of the normal component
constante=1+ ¢, whereey>0. Notice, thate is not the ot the displacement field at the surface of discontinyiand
permittivity of free space, but rathep=4my., wherey, is
the electric susceptibility. We place the chaggen thez axis
without loss of generality. This configuration is plotted in i / / _ e

. S . +o)— - —(2/+1)—
Fig. 1. Maxwell's equation in matter is m [6: ¢ (ro+ o) =9r¢" (ro=0)]=—(2/+1) 5

V- -D=4mp

o—0" 0

(1)  [which comes from integration of E@3) acrossr=r,, and
using the continuity of¢” ande there(the only discontinuity

whereD= €E is the displacement field is the electric field,  of ¢ is atr=R)].
andp is the density of free charges.
We assume that the distribution of the dielectric is spheri-

cally symmetric(although nonuniform Specifically, we take

The radial functionsp” then satisfy

/ .
e=¢(r). (Despite the uniformity of the sphere, the dielectric AT r<R (region )
constant throughout space dependsroiit suffers a step- ¢ (r)= B,r’+C,r“"1 R<r<ry (region Il
function dis_continuity_at the surface of the sphgiae. the D,r /-1 r>r, (region II),
usual spherical coordinates Ed) becomes (4)
2 g€ 4 where the coefficient&,,B,,C,, andD , are found from
PP+ —+ —) 3P+ ————0dy(sinddyP)=——=p the boundary conditions. We find that
r e r2sing e(r)
2 |
) ) A 2/+1 e 5
where CD_ is the scalar potenual_. We next decompose = 2/t 1+ /eq /L’ %)
Eqg. (2) into Legendre polynomials. That isp(r,d) 0
=3,¢/(r)P,(cosd) and p(r,9)=(eldm)[5(r—rq)/
rg]E/(2/+ 1)P(cosd). The radial equation then becomes e
B/Z—gﬂ. (6)
2 o€ A(/+1)
G+ PR T = o ¢’
/ R2/+l
_ C,=—— , ee (7)
o(r—r / ; z 711 S€o»
(2 +1)e ( 02)_ 3 2/+1+/ € ry*
€(ro)rp
The boundary conditions for this equation are tlt is D —er/l1- a E 2/+1E )
continuous everywher@vhich includes regularity at the ori- 4 0 2/4+1+/€y\ 1y o
gin and at infinity, but,¢” is discontinuous at=R and at
r=ro. Specifically, these latter two conditions are that such that the scalar potenti® is given by
|
i 2/+1 5 5 R
S0 2/ 1+ et s(cosd)
b= 9

Here,

(I) VEICE

e

0

(Dvac_ E

/=0

re

|r—r02|

e}/‘, 71 P, (cos¥)
g >

/ R2/+ 1 eGO

>R.
2/+1+ /¢ rg+l r/HP/(COS«C}) r

is the potential in the absence of a dielectric sphere.
The bare forcé®®®is found byf*e= —eV®, evaluated
at the location of the charge atry and9=0. From sym-
(10 metry, it is clear that any force is radial. We compute, then,
the radial component of the force only. Differentiating Eq.
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111 and of a similar particle in &globallyyempty spacetime are
e identical.(It is only the far-away properties of spacetime—as
represented by different dielectric constants—which are dif-
ferent for the two spacetimgsAnother remark is that we do
not need to average here over directions, as the forces in our
case are direction independent. Consider now(Bgfor the
potential. Outside the dielectric sphere the potenbaton-
tains the vacuum potentiab,,. and a correctiom®. We

next used, .. to construct the field'éw. Applying the com-
parison axiom, we find that the self-force is given by

el

. o /(/+1) R)Z/“ €0€? 13
T A5 1+ Senlra T2
FIG. 1. An electric charge at a distance from the center of /=0 2/ 1+ €0l To o
a sphere of radiuR. The sphere has a dielectric constant 1
+ €g, and outside the sphere the dielectric constant is unity. Region 2 R)\3 3+¢€ 5+2¢ (R 2 60e2
I is for r<R, region Il for R<r<r, and region Il forr>ry,. == 3+—60 G 2F1 3,2+€0, 2+e G rg )
(9) and using Eq(10), we find that (14)
* ,F4, being the hypergeometric function. This result can be
foare= > f/ expressed in terms of the incomplegefunction[8] as
/=0

e? /(/+1)
z_r(z)_m

2 ( R>60/(2+60)

(= 3+ ¢ €0€°
’ (11) r__2+60 E B

S BR2/rS(2+—6()'

/=0

R| 2 "1 eye?
2
o

Fo r

(15

where fr'/=—(e/2)lim 6" (ro+0)+d,¢" (ro—o)].
o—0 . . . i
Clearly, Eq.(11) diverges. This comes as no surprise, as WeEquatlon(14) [or Eq.(15] is our main result. We were un

have already mentioned that this divergence occurs alrea ple to find this result in the literaturén view of the vast-
y 9 i %ess of the literature on classical electromagnetism, our
for a charge in empty space. In the following section we shal

. or S search in the literature is naturally incomplete.
extract the physical, finite part of this infinite bare force. Before we analyze the properties of this result, let us de-

rive it using a second method. Specifically, we use mode-
IIl. REGULARIZATION OF THE BARE FORCE sum regularization(Note, that mode-sum regularization is
In order to regularize the bare for¢gl), we make direct based on the Quinn—Wa]d result for the self-force in curvc_ed
use of the Quinn-Wald comparison axiom, for which p|au_sp'acet|me, the latter being a consequence of the comparison
sible arguments were given. The comparison axiom states tH&I0m. In that sense, these two methods are not entirely in-
following (see[6] for more details Consider two points, P dépendent. Here, however, we make direct use of the com-
and P, each lying on timelike world lines in possibly differ- parison axiom, V.Vh'Ch Is necessary but not sufﬁmgnt n o_rder
' ) ) i ~ to derive the Quinn-Wald resultMode-sum regularization is
ent spacetimes that contain Maxwell fieldg,Fand F,,  described in Refd4]. In mode-sum regularization one finds
sourced by particles of charge e on the world lines. If they,q regularization functionsh’, and d,,. The regularized
four-accelerations of the world lines at P and lave the  self-force is given by
same magnitude, and if we identify the neighborhoods of P
and P via the exponential map such that the four-velocities ~ b p
and four-accelerations are identified via Riemann normal co- f.= 2 (f,7=h7)—d,, (16)
ordinates, then the difference between the electromagnetic /=0

forces i, anq f, Is given by_ the limit x-~0 of the Il_orentz whered,, is a finite valued function antl’, has the general
force associated with the difference of the two fields avers #

A “'form h! =a,(/+ 1) +b,+c,(/+31)~L. One only needs the
aged over a sphere at geodesic distance x from the world IIn?ocal prroperr(ties 2o)f spracetri(me i2n) order to de{ermine these
atP, ie.,

functions. As locally the charge is in empty spddeis re-
_F o—_n = » moved from the dielectric spheret is clear that the regu-
bt )l(lino S(F = Funl” (12 larization functionshft andd, would be the same as in a
globally empty spacetime. Indeed, it is easy to find the limit

Here, we identify the “tilde” spacetime as that of a glo- as/—« of the modes of the bare force. The modes of the
bally empty spacetime. Obviously,,=0. We emphasize radial compenent of the bare for¢kl) approacte?/ (2r}) as
that this axiom assumes a nearly trivial form for the case o# —. As h, must have the same asymptotic struct(as
interest: The local neighborhood of the particle in question”— ) asf/ , this implies thah! =e?/(2r2), identically the
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-20.2 A - FIG. 2. The self-force on a
. . . . . free charge outside a dielectric
_20'30 05 15 > o5 3 sphere. The chargeis taken to be
|Og10$0 that of an electron, and the radius

of the sphere i&R=1 cm. Upper
panel (A): The self-force as a
function of ¢, for ro=2 cm.
Lower panelB): The self-force as
a function ofry (in centimetery
for eq=10.7.
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same as irfglobally)empty spacetime, in agreement with the which vanishes linearly withe; as e;—0. For any finite
previous reasoning. We similarly expect the functinto  value ofe, the force is smaller in magnitude than in the case
vanish, as it does in a globally empty flat spacetime. Weof a conducting spherél 7). This behavior is shown in Fig.
justify this expectationa posteriori by demonstrating that 2(a), which plots the self-force as a function ef for fixed
this leads to the same expression as we received by using trrlg_ It can be seen that ag—o, the full expression ap-
comparison axiom. It then follows that the regularized Self‘proaches the saturation value of the conducting sphere.

force is given byf, == [f{ "**-e?/(2rf)], which agrees At very large distancesr{>R), the self-force becomes
with Eq. (13).
IV. PROPERTIES OF THE RESULT (= 2 R)36092 Loy (19
r— P T 0o /s
We found that the self-force on the chargés given by Steollo ré

Eqg. (14). This is an attractive force, as indeed is expected.

(The chargee polarizes the sphere such that there is an exwhich drops off 33’65- This behavior can be seen from Fig.
cess of oppositely charged induced charge on the sphergb), which displays the self-force as a function of for
closer to the free charge. Hence the polarization charge acted e,. We can check the validity of this limit by deriving
to attract the free chargeWe can check our result in the Eq. (19) using the alternative picture. Wheg>R, we can
limiting case of infinite dielectricep— o, which corresponds  treat the field of the chargeto the leading order in 14 as a

to the case of an uncharged, insulated, conducting sphere. bnstant over the sphere. Let us take for simplicity the

that limit our result becomes chargee=sgn(e)|e| to be on the positive axis. The electric
2

R\3 R\ 2|2 22-R? [R® field due to the free charge I'so=_—s.gn(e)|e|r522, and the
fr——2 - oF43,1;2; P B e i et ey polarization of the sphere then is just a constant inside the
0 0/ Ifg (ro—RH)7 1o sphere, and is given bP=[3/(47)][ €o/(3+ €o) ]Eo. The

(17) dipole momenfp can be obtained by a volume integral over

which is indeed the known result for an uncharged, insulated?- One finds then thap=[€o/(3+ Eg)]Ron- The electric
conducting spherg]. The opposite extreme case is the limit field E at ryz is found by E=[3z(p-z)—p]/r§, or E

as ey—0. Linearizing our result ireg, we find that = —2pr53sgn(e)2, where p=|p|=€yR%,2|e|/(3+ €).
Jm [ R\¥? R\2]-32 The force on the charge is simply f=eE=—2pr;°le|z,
fr=— 7(7) l—(r—) } which is equal to the leading order term of E@9).
0 0 Whenr , approacheR the self-force grows rapidly, and in
rg+ R?) e,€? the limit diverges. This is indeed expected: in this limit one
1,3’2( o3| 5 T O(ed), (18)  has a point charge near a semiinfinite dielectric. The solution
ro— R/ 1o for the force is a classic image problédi, which obviously
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diverges in the coincidence limit of the charge and its imageln the gravitational field of the Earth, with gravitational ac-
This divergence happens already in the case of the conduateleration of 980 cm/sécthe self-force equals the weight
ing sphere, as is evident from E@.7). In fact, we find that of the electron whemy=13.2 cm.
the self force diverges whenever the free charge is locally at
a region with nonzero gradient of the dielectric constant. ACKNOWLEDGMENTS
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