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Self-interaction near dielectrics
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~Received 4 December 2001; published 10 April 2002!

We compute the force acting on a free, static electric charge outside a uniform dielectric sphere. We view
this force as a self-interaction force, and compute it by applying the Lorentz force directly to the charge’s
electric field at its location. We regularize the divergent bare force using two different methods: A direct
application of the Quinn-Wald comparison axiom and mode-sum regularization.
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I. INTRODUCTION

Electric charges that are placed in an inhomogeneous
derable medium undergo self-interaction. The simplest c
is that of a static electric charge in an inhomogeneous die
tric. The self interaction of the charge results in a self-fo
~in other contexts this self-force is also known as a radiat
reaction force!, which acts to accelerate the charge. In t
static problem, then, one can ask the following questi
What is the external, possibly nonelectric, force that need
be exerted on the charge to keep it static when a nonunif
dielectric is present?

In this paper we study this question for a very simp
case. Specifically, we find the self force on a pointlike el
tric chargee outside a uniform dielectric sphere.~By an in-
homogeneous dielectric we here mean the discontinuity
the dielectric constant at the surface of the sphere.! The ori-
gin of the force on the charge in this case is simple: T
charge polarizes the dielectric at ordere. The induced elec-
tric field then backreacts on the original charge, and t
interaction then is at ordere2. In fact, one can compute th
force on the charge following this simple physical pictu
However, one can employ a different picture, in which t
force on the charge is construed as a self-force. The ch
interacts with its own field, and the latter is distorted by t
presence of the dielectric sphere. In this picture the forc
computedlocally, using only the fields at the location of th
charge. The local approach has many merits. Specifically
computation of the near field is much simpler, and one d
not have to compute additional quantities such as the far fi
or the sphere’s polarization.~The fields at great distances o
course contribute to the force on the charge, but for the lo
approach only through boundary conditions.! A similar ap-
proach was used in Ref.@1# to compute the radiated power o
synchrotron radiation using only the near field. The difficu
in the local approach arises from the well known fact that
field of a point charge diverges when the evaluation point
the field coincides with the field’s source. In fact, this ha
pens already for a static charge in empty~and flat! spacetime.
Let the chargee be located on theẑ axis in spherical coor-
dinates. Decomposing the scalar potentialF into Legendre
polynomials, one finds that

F~r ,q!5e(
l 50

` r ,
l

r .
l 11

Pl ~cosq!,
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wherer , (r .) is the smaller~greater! of the r values of the
source’s locationr 0 and the evaluation point. The~self! force
acting on the charge is then given by the~average of the two
one-sided! gradients of the potential. Specifically,

f52
1

2
e~“F11“F2!ur5r 0ẑ ,

or

f r5 (
l 50

`
e2

2r 0
2

,

which clearly diverges.~The derivation of the last equation i
given below.! In this illustration of the problem, of course,
is clear that the regularized, physical self-force vanishes:
force obviously cannot depend on where we choose to
the origin of our coordinate system.~Also, we have ample
observational evidence that static isolated charges rem
static.!

There is a long history of works on the self-force.~For
reviews see, e.g.,@2#.! Recently, the analogous problem o
calculation of self-forces in curved spacetimes~also for the
gravitational case where the self-interaction pushes a b
with finite mass off a geodesic! has gained much interes
@3,4#. In this paper we shall make use of some of the te
niques, which have been developed for self-interaction
curved spacetime, for the problem of interest.~Interestingly,
there is a close link between electromagnetism in st
gravitational fields and electromagnetism in matter. As
well known @5#, Maxwell’s equations in vacuum in stati
curved spacetime can be written as Maxwell’s equations
flat spacetime with an effective nonuniform dielectric.! Spe-
cifically, we shall make use of the Quinn-Wald comparis
axiom @6# and mode-sum regularization@4# in order to ex-
tract the physical, finite piece of the self-force.

The organization of this paper is as follows. In Sec. II w
solve for the scalar potential, and obtain the modes of
bare force. This is, in fact, a standard exercise in electrom
netism@7#. Then, in Sec. III we regularize the self-force u
ing two different approaches, and in Sec. IV we discuss
properties of our result.
©2002 The American Physical Society18-1
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II. DERIVATION OF THE BARE FORCE

Consider a static electric chargee in vacuum at radiusr 0,
outside an insulated sphere of radiusR of uniform dielectric
constante511e0, wheree0.0. Notice, thate0 is not the
permittivity of free space, but rathere054pxe , wherexe is
the electric susceptibility. We place the chargee on theẑ axis
without loss of generality. This configuration is plotted
Fig. 1. Maxwell’s equation in matter is

“•D54pr ~1!

whereD5eE is the displacement field,E is the electric field,
andr is the density of free charges.

We assume that the distribution of the dielectric is sph
cally symmetric~although nonuniform!. Specifically, we take
e5e(r ). ~Despite the uniformity of the sphere, the dielect
constant throughout space depends onr: it suffers a step-
function discontinuity at the surface of the sphere.! In the
usual spherical coordinates Eq.~1! becomes

] r
2F1S 2

r
1

] re

e D ] rF1
1

r 2sinq
]q~sinq]qF!52

4p

e~r !
r

~2!

where F is the scalar potential. We next decompo
Eq. ~2! into Legendre polynomials. That is,F(r ,q)
5( l f l (r )Pl (cosq) and r(r ,q)5(e/4p)@d(r 2r 0)/
r 0

2#( l (2l 11)Pl (cosq). The radial equation then become

] r
2f l 1S 2

r
1

] re

e D ] rf
l 2

l ~ l 11!

r 2
f l

52~2l 11!e
d~r 2r 0!

e~r 0!r 0
2

. ~3!

The boundary conditions for this equation are thatf l is
continuous everywhere~which includes regularity at the ori
gin and at infinity!, but ] rf

l is discontinuous atr 5R and at
r 5r 0. Specifically, these latter two conditions are that
04661
i-

lim
s→01

e~R2s!] rf
l ~R2s!5 lim

s→01

e~R1s!] rf
l ~R1s!

~which comes from the continuity of the normal compone
of the displacement field at the surface of discontinuity!, and

lim
s→01

@] rf
l ~r 01s!2] rf

l ~r 02s!#52~2l 11!
e

r 0
2

@which comes from integration of Eq.~3! acrossr 5r 0, and
using the continuity off l ande there~the only discontinuity
of e is at r 5R)#.

The radial functionsf l then satisfy

f l ~r !5H Al r l r ,R ~region I!

Bl r l 1Cl r 2l 21 R,r ,r 0 ~region II!

D l r 2l 21 r .r 0 ~region II!,
~4!

where the coefficientsAl ,Bl ,Cl , andD l are found from
the boundary conditions. We find that

Al 5
2l 11

2l 111l e0

e

r 0
l 11

, ~5!

Bl 5
e

r 0
l 11

, ~6!

Cl 52
l

2l 111l e0

R2l 11

r 0
l 11

ee0 , ~7!

D l 5er0
l F12

l

2l 111l e0
S R

r 0
D 2l 11

e0G , ~8!

such that the scalar potentialF is given by
F55 e(
l 50

`
2l 11

2l 111l e0

r l

r 0
l 11

Pl ~cosq! r ,R

Fvac2 (
l 50

`
l

2l 111l e0

R2l 11

r 0
l 11

ee0

r l 11
Pl ~cosq! r .R.

~9!
en,
q.
Here,

Fvac[
e

ur2r 0ẑu
5e(

l

r ,
l

r .
l 11

Pl ~cosq! ~10!
is the potential in the absence of a dielectric sphere.
The bare forcefbare is found byfbare52e“F, evaluated

at the location of the charge atr 5r 0 andq50. From sym-
metry, it is clear that any force is radial. We compute, th
the radial component of the force only. Differentiating E
8-2
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~9! and using Eq.~10!, we find that

f r
bare5 (

l 50

`

f r
l

5 (
l 50

` F e2

2r 0
2

2
l ~ l 11!

2l 111l e0
S R

r 0
D 2l 11 e0e2

r 0
2 G , ~11!

where f r
l 52(e/2)lim

s→01@] rf
l (r 01s)1] rf

l (r 02s)#.
Clearly, Eq.~11! diverges. This comes as no surprise, as
have already mentioned that this divergence occurs alre
for a charge in empty space. In the following section we sh
extract the physical, finite part of this infinite bare force.

III. REGULARIZATION OF THE BARE FORCE

In order to regularize the bare force~11!, we make direct
use of the Quinn-Wald comparison axiom, for which pla
sible arguments were given. The comparison axiom states
following ~see@6# for more details!: Consider two points, P

and P̃, each lying on timelike world lines in possibly diffe

ent spacetimes that contain Maxwell fields Fmn and F̃mn

sourced by particles of charge e on the world lines. If t

four-accelerations of the world lines at P and P˜ have the
same magnitude, and if we identify the neighborhoods o

and P̃ via the exponential map such that the four-velocit
and four-accelerations are identified via Riemann normal
ordinates, then the difference between the electromagn

forces fm and f̃m is given by the limit x→0 of the Lorentz
force associated with the difference of the two fields av
aged over a sphere at geodesic distance x from the world
at P, i.e.,

f m2 f̃ m5 lim
x→0

e^Fmn2F̃mn&xu
n. ~12!

Here, we identify the ‘‘tilde’’ spacetime as that of a glo
bally empty spacetime. Obviously,f̃ m50. We emphasize
that this axiom assumes a nearly trivial form for the case
interest: The local neighborhood of the particle in quest

FIG. 1. An electric chargee at a distancer 0 from the center of
a sphere of radiusR. The sphere has a dielectric constante51
1e0, and outside the sphere the dielectric constant is unity. Re
I is for r ,R, region II for R,r ,r 0, and region III forr .r 0.
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and of a similar particle in a~globally!empty spacetime are
identical.~It is only the far-away properties of spacetime—
represented by different dielectric constants—which are
ferent for the two spacetimes.! Another remark is that we do
not need to average here over directions, as the forces in
case are direction independent. Consider now Eq.~9! for the
potential. Outside the dielectric sphere the potentialF con-
tains the vacuum potentialFvac and a correctionDF. We
next useFvac to construct the fieldsF̃mn . Applying the com-
parison axiom, we find that the self-force is given by

f r52 (
l 50

`
l ~ l 11!

2l 111l e0
S R

r 0
D 2l 11 e0e2

r 0
2

~13!

52
2

31e0
S R

r 0
D 3

2F1F3,
31e0

21e0
;
512e0

21e0
;S R

r 0
D 2Ge0e2

r 0
2

,

~14!

2F1 being the hypergeometric function. This result can
expressed in terms of the incompleteb function @8# as

f r52
2

21e0
S R

r 0
D e0 /(21e0)

BR2/r
0
2S 31e0

21e0
,22D e0e2

r 0
2

.

~15!

Equation~14! @or Eq. ~15!# is our main result. We were un
able to find this result in the literature.~In view of the vast-
ness of the literature on classical electromagnetism,
search in the literature is naturally incomplete.!

Before we analyze the properties of this result, let us
rive it using a second method. Specifically, we use mo
sum regularization.~Note, that mode-sum regularization
based on the Quinn-Wald result for the self-force in curv
spacetime, the latter being a consequence of the compa
axiom. In that sense, these two methods are not entirely
dependent. Here, however, we make direct use of the c
parison axiom, which is necessary but not sufficient in or
to derive the Quinn-Wald result.! Mode-sum regularization is
described in Refs.@4#. In mode-sum regularization one find
two regularization functions,hm

l and dm . The regularized
self-force is given by

f m5 (
l 50

`

~ f m
l bare2hm

l !2dm , ~16!

wheredm is a finite valued function andhm
l has the genera

form hr
l 5ar(l 1 1

2 )1br1cr(l 1 1
2 )21. One only needs the

local properties of spacetime in order to determine the
functions. As locally the charge is in empty space~it is re-
moved from the dielectric sphere!, it is clear that the regu-
larization functionshm

l and dm would be the same as in
globally empty spacetime. Indeed, it is easy to find the lim
as l →` of the modes of the bare force. The modes of t
radial component of the bare force~11! approache2/(2r 0

2) as
l →`. As hm

l must have the same asymptotic structure~as
l →`) as f m

l , this implies thathr
l 5e2/(2r 0

2), identically the

n
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FIG. 2. The self-force on a
free charge outside a dielectri
sphere. The chargee is taken to be
that of an electron, and the radiu
of the sphere isR51 cm. Upper
panel ~A!: The self-force as a
function of e0, for r 052 cm.
Lower panel~B!: The self-force as
a function of r 0 ~in centimeters!,
for e0510.7.
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same as in~globally!empty spacetime, in agreement with th
previous reasoning. We similarly expect the functiondr to
vanish, as it does in a globally empty flat spacetime.
justify this expectationa posteriori by demonstrating tha
this leads to the same expression as we received by usin
comparison axiom. It then follows that the regularized se
force is given byf r5( l @ f r

l bare2e2/(2r 0
2)#, which agrees

with Eq. ~13!.

IV. PROPERTIES OF THE RESULT

We found that the self-force on the chargee is given by
Eq. ~14!. This is an attractive force, as indeed is expect
~The chargee polarizes the sphere such that there is an
cess of oppositely charged induced charge on the sp
closer to the free charge. Hence the polarization charge
to attract the free charge.! We can check our result in th
limiting case of infinite dielectric,e0→`, which corresponds
to the case of an uncharged, insulated, conducting spher
that limit our result becomes

f r→22S R

r 0
D 3

2F1F3,1;2;S R

r 0
D 2Ge2

r 0
2

52
2r 0

22R2

~r 0
22R2!2 S R

r 0
D 3

e2,

~17!

which is indeed the known result for an uncharged, insula
conducting sphere@9#. The opposite extreme case is the lim
ase0→0. Linearizing our result ine0, we find that

f r52
Ap

2 S R

r 0
D 3/2F12S R

r 0
D 2G23/2

3P1/2
23/2S r 0

21R2

r 0
22R2D e0e2

r 0
2

1O~e0
2!, ~18!
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which vanishes linearly withe0 as e0→0. For any finite
value ofe0 the force is smaller in magnitude than in the ca
of a conducting sphere~17!. This behavior is shown in Fig
2~a!, which plots the self-force as a function ofe0 for fixed
r 0. It can be seen that ase0→`, the full expression ap-
proaches the saturation value of the conducting sphere.

At very large distances (r 0@R), the self-force becomes

f r52
2

31e0
S R

r 0
D 3e0e2

r 0
2

1O~r 0
27!, ~19!

which drops off asr 0
25. This behavior can be seen from Fi

2~b!, which displays the self-force as a function ofr 0 for
fixed e0. We can check the validity of this limit by deriving
Eq. ~19! using the alternative picture. Whenr 0@R, we can
treat the field of the chargee to the leading order in 1/r 0 as a
constant over the sphere. Let us take for simplicity t
chargee5sgn(e)ueu to be on the positiveẑ axis. The electric
field due to the free charge isE052sgn(e)ueur 0

22ẑ, and the
polarization of the sphere then is just a constant inside
sphere, and is given byP5@3/(4p)#@e0 /(31e0)#E0. The
dipole momentp can be obtained by a volume integral ov
P. One finds then thatp5@e0 /(31e0)#R3E0. The electric
field E at r 0ẑ is found by E5@3ẑ(p• ẑ)2p#/r 0

3, or E
522pr0

23sgn(e) ẑ, where p[upu5e0R3r 0
22ueu/(31e0).

The force on the chargee is simply f5eE522pr0
23ueuẑ,

which is equal to the leading order term of Eq.~19!.
Whenr 0 approachesR the self-force grows rapidly, and in

the limit diverges. This is indeed expected: in this limit o
has a point charge near a semiinfinite dielectric. The solu
for the force is a classic image problem@9#, which obviously
8-4
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diverges in the coincidence limit of the charge and its ima
This divergence happens already in the case of the cond
ing sphere, as is evident from Eq.~17!. In fact, we find that
the self force diverges whenever the free charge is locall
a region with nonzero gradient of the dielectric constant.

We note that the magnitude of this self-force is not e
tremely small for realistic parameters. Take the chargee to
be that of an electron of massme , and the dielectric spher
to be made of Silicon, for whiche0510.7 at room tempera
ture and pressure, and take the sphere to be of radius 1
04661
.
ct-

at

-

m.

In the gravitational field of the Earth, with gravitational a
celeration of 980 cm/sec2, the self-force equals the weigh
of the electron whenr 0513.2 cm.
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