
7545

7545

PHYSICAL REVIEW E, VOLUME 65, 046613
Continuum approach to discreteness

P. G. Kevrekidis
Theoretical Division and Center for Nonlinear Studies, MS B258, Los Alamos National Laboratory, Los Alamos, New Mexico 8

and Department of Mathematics and Statistics, University of Massachusetts, Lederle Graduate Research Tower,
Amherst, Massachusetts 01003-4515

I. G. Kevrekidis
Department of Chemical Engineering, Princeton University, 6 Olden Street, Princeton, New Jersey 08544

A. R. Bishop
Theoretical Division and Center for Nonlinear Studies, MS B258, Los Alamos National Laboratory, Los Alamos, New Mexico 8

E. S. Titi
Department of Mathematics and Department of Mechanical and Aerospace Engineering, University of California,

Irvine, California 92697-3875
~Received 4 November 2001; published 4 April 2002!

We study analytically and numerically continuum models derived on the basis of Pade´ approximations and
their effectiveness in modeling spatially discrete systems. We not only analyze features of the temporal dy-
namics that can be captured through these continuum approaches~e.g., shape oscillations, radiation effects, and
trapping! but also point out ones that cannot be captured~such as Peierls-Nabarro barriers and Bloch oscilla-
tions!. We analyze the role of such methods in providing an effective ‘‘homogenization’’ of spatially discrete,
as well as of heterogeneous continuum equations. Finally, we develop numerical methods for solving such
equations and use them to establish the range of validity of these continuum approximations, as well as to
compare them with other semicontinuum approximations.
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I. INTRODUCTION

In the past two decades, the role of discreteness in m
fying the behavior of solutions of continuum nonlinear pa
tial differential equations has been increasingly apprecia
Given that many of the physical contexts in which such m
els and their nonlinear dynamics are relevant, are inhere
discrete in nature, understanding the role of discreteness
comes vital. Such physical contexts are quite diverse, ra
ing from the calcium burst waves in living cells@1# to the
propagation of action potentials through the tissue of
cardiac cells@2# and from chains of chemical reactions@3# to
applications in superconductivity and Josephson juncti
@4#, nonlinear optics and fiber arrays@5#, complex electronic
materials@6# or the local denaturation of the DNA doub
strand@7#.

The realization of the important effects of discretene
~and, in particular, strong discreteness! emerged in the 1980
with the pioneering works@8–11# among others. This led to
a large number of analytical and numerical studies~see, for
instance, the review papers@12–16# and the reference
therein! of discreteness effects and of the notion of the
called anticontinuum limit@17,18# ~in which the lattice spac-
ing h→`) as well as of the coherent structure solutions a
their properties close to that limit. In a number of rece
developments@16#, a host of analytical~such as the Evan
function @19–22#, singular perturbation theory@20,23,24#,
asymptotics beyond all orders@25#, Hamiltonian dispersive
normal forms @26,27#, homogenization methods@28#, and
nonlinear stability analysis@29#!, and numerical~such as bi-
1063-651X/2002/65~4!/046613~13!/$20.00 65 0466
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furcation theory methods@30–32#, iterative nonlinear eigen-
value methods@33# and numerical Evans and/or linear alg
bra methods@19#! techniques have been used to analyze
existence, stability, dynamics, and asymptotics of coher
structures in discrete problems.

In most of the above works the importance of treating
discrete problem directly has been recognized and emp
sized, as discreteness has been found to trigger so-called
diation effects’’~see, e.g.,@8,9,26,29#!, which cause decelera
tion of the coherent structure in the lattice and eventua
trapping and pinning@10,26,34# of the waves on a lattice site

On the other hand, one may ask as to what extent c
tinuum systems can capture such phenomenology. Ano
motivation for wishing to create continuum systems th
mimic discrete effects is that continuum ordinary and par
differential equations are more easily amenable to anal
and, possibly, to the identification of potentially exact so
tions. In fact, in the mathematical literature, there is a we
known technique for converting heterogeneous equati
~i.e., continuum partial differential equations whose coe
cients depend explicitly on space! to homogeneous ones wit
appropriately modified coefficients. This technique is cal
homogenization@35#. In a sense, discrete equations are
special kind of heterogeneous equations~this analogy has
been analyzed in@36#! in which infinite weight (d function
weight! coefficients have been used on the sites of the latt
Hence, developing such a continuum system mirroring
discrete properties would effectively constitute a form of h
mogenization analysis.

In view of the above motivations, Rosenau, in a series
©2002 The American Physical Society13-1
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papers in the mid 1980s@37,38#, developed a technique fo
providing continuum approaches to discreteness. In th
works, he was able to give a systematic methodology
carrying out this program in one and also in higher spa
dimensions. He was also able to extract from the deri
continuum equations useful information, such as dispers
relations, conservation laws, and even exact solutions
some special cases.

To the best of our knowledge such techniques, e
though quite useful for analytical considerations~they are
still used for extracting conclusions on discrete systems;
e.g., @39# for a recent example!, have not been used ver
widely numerically, perhaps in part due to the presence
mixed ~spatial and temporal! derivatives in the continuum
equations that renders them relatively cumbersome to us
computational purposes.

In this paper, our goal is to revisit such methods from
different perspective~that of Pade´ approximants@40,41#! and
to propose a natural way to generalize them, as well a
implement them in numerical computations. After present
the method, we analyze a number of features of the disc
system dynamics that should be expected to be capture
this methodology, as well as some that~by construction! can-
not. We also make the relevant connections to the work
Rosenau. We then turn to numerical computations and s
how well the method can approximate the dynamics of
genuinely discrete system for the prototypical cases stu
in many of the references given above, the so-called Fren
Kontorova model@42# ~also known as the discrete sin
Gordon equation@8#!; the simplest experimental realizatio
of the latter is an array of coupled torsion pendula under
effect of gravity@43#.

The paper is organized as follows. In Sec. II, we give
derivation of the model from a different perspective than
one given by Rosenau. In Sec. III, we make the connecti
with the previous work, give generalizations of the mod
and present some of the advantages and disadvantag
such an approach. In parallel to the presentations of Se
and III, the numerical methods that will be used to solve
continuum problem are presented. In Sec. IV these meth
are implemented in studying the discrete sine-Gordon eq
tion and the results are compared with the original discr
problem. Finally, in Sec. V, we summarize and conclude.

II. CONTINUUM MODEL

The general setting of equations that will be studied h
is given by the form

un,$t,tt%5D2un1F~un!, ~1!

where n indexes the lattice sites. In these equations$t,tt%
signifies that either one or two temporal derivatives can
present. The former case corresponds to one-component~dis-
crete! reaction-diffusion equations, while the latter corr
sponds to discrete nonlinear Klein-Gordon equations. W
we keep these classes of nonlinear equations in mind, it
be immediately obvious that similar considerations will
generalizable to any system bearing the discrete Lapla
D2un5(un111un2122un)/h2 (h is the lattice spacing!. In
04661
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fact, it will be shown how first derivatives can also be re
resented in the same approach. This, in fact, will be one
the advantages of the Pade´ approach.F(un) is the substrate
nonlinearity term, which stems from a potentialf (un) such
that f 8(u)52F(u).

Our starting point in this analysis will be the followin
identity ~Taylor expansion! for analytic functions~see e.g.,
@44#!:

u~x1m!5exp~m]x!u~x!. ~2!

For such functions one can then express spatial discrete
as follows:

un111un2122un[@exp~h]x!1exp~2h]x!22#u~x!

[4 sinhS ]x

2 Du~x,t !. ~3!

Now expanding exp(6h]x) @41#, we have

exp~6h]x!215
1

2
h2S 11

h2

12
]x

21••• D ]x
2

6hS 11
1

6
h2]x

21••• D ]x . ~4!

Then, regrouping the terms in the manner of Pade´ @40,41#
one obtains

exp~6h]x!21'
1

2

h2]x
2

12
h2

12
]x

2

6
h]x

S 12
h2

12
]x

2D 2 . ~5!

We now use the pseudodifferential operator approxim
tion of Eq. ~5! to convert the differential difference equatio
of Eq. ~1! into a partial differential equation~PDE! as fol-
lows:

u$t,tt%'
]x

2

12
h2

12
]x

2

u1F~u!. ~6!

Notice, in passing, that here we have used the sum of
two expressions~with the different signs! of Eq. ~5!, in ap-
proximating the second difference~discrete Laplacian!
through Eq.~3!. However, note that the difference of th
expressions with the different signs would give an appro
mation to the first difference. Hence, the Pade´ method pre-
sented herein can also be implemented in the case of PD
with first-order spatial differences. We will revisit first-orde
differences is Sec. III, while calculating the potential ener
of the system.

One can treat the PDE of Eq.~6! in two different ways. If
we act on both sides of Eq.~6! with the operator (12a]x

2),
wherea5h2/12, we obtain

u$t,tt%2auxx$t,tt%5uxx1~12a]x
2!F~u!. ~7!
3-2
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CONTINUUM APPROACH TO DISCRETENESS PHYSICAL REVIEW E65 046613
The general form of the resulting equation is, essentially,
same as the one obtained by Rosenau@37,38#, with some
differences that will be clarified in the following section. Th
most general form can be rewritten as

u$t,tt%2auxx$t,tt%5uxx1F~u!1G~u! ~8!

with G(u)52a@F9(u)ux
21F8(u)uxx#. This is the resulting

regularization equation stemming from the process to
leading-order approximation~to be revised in the following
section!.

In fact, following @37#, when the nonlinear termF(u) is
bounded~this is the case, for instance, for the sine-Gord
model, but not necessarily for other nonlinear Klein-Gord
models; a counterexample would be thef4 model!, the term
G(u) in Eq. ~8! can be omitted without significant effect o
the dynamics of the system. The term that is critical for
incorporation of the discreteness effects, as argued
@37,38#, is the second~mixed-derivatives! term of the left-
hand side of Eq.~8!.

On the other hand, as mentioned in the Introducti
terms with higher derivatives, and even more so when th
are mixed, can present a significant challenge in numer
investigations. We bypass such obstacles by considering
‘‘parent’’ Eq. ~6! rather than the ‘‘daughter’’ Eqs.~7! and~8!.
In particular, a crucial observation for the numerical metho
developed and implemented herein is that the plane w
exp(ikx) is an eigenfunctionto all ordersof the operator]x

2 ;
hence it is also an eigenfunction of all of its rational form
Therefore, using the Fourier decomposition of the fieldu(x),

u~x!5(
k

exp~ ikx!û~k! ~9!

~the hat will be used to denote Fourier transform!, with the
appropriate wave numbers determined by the boundary
ditions used in the numerical implementation, we can
press the pseudodifferential operator of Eq.~6! as

]x
2

12
h2

12
]x

2

u~x,t !5(
k

2
k2

11ak2
û~k,t !. ~10!

Hence, to solve Eq.~6!, we use the following algorithm a
each time step of the simulation:~1! Fourier transform the
field; ~2! form the term in the sum of Eq.~10! in Fourier
space;~3! Fourier transform the latter field back into re
space; and~4! time step the simulation by one integratio
step.

The last step can be performed with the integrator of on
preference. For the computations presented herein, re
have been obtained with fourth-order explicit Runge-Ku
~RK! integrators and have also been validated with eigh
order RK methods~see Ref.@45#!.

It should be noted that this approach towards solv
equations of the form of Eq.~6! was certainly known to
Rosenau@46#, even though, to the best of our knowledge,
was not numerically implemented in the solution of nonl
ear partial differential equations of that form.
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III. ANALYTICAL CONSIDERATIONS AND EXTENSIONS

In this section, we provide the connection of the model
previous work, give straightforward generalizations of it a
their numerical implementation, and discuss the advanta
and shortcomings of such a continuum approach.

In particular, connecting the discussion of the preced
section to the work of Rosenau@37,38#, we observe that he
was mostly interested in models of the form

un,tt5
T~un11!1T~un21!22T~un!

h2
, ~11!

where T(u) in addition to its harmonic@i.e., linear in the
setting of Eq.~11!# part could also have a nonlinear part@38#.
The continuum limit for such equations isutt5]x

2T(u).
However, Rosenau also partially studied models with an
site substrate nonlinearity@such as the Frenkel-Konotorov
~FK! model# in Sec. III of @37#.

In the former case@Eq. ~11!#, linearizing about a uniform
steady state, and considering plane wave solutions of
form exp(ivt2ikx) to derive the dispersion relation, one o
tains

v25
k2

11ak2
. ~12!

Hence, the continuous spectrum will extend over the inter
l[6 ivP6 i @0,A1/a), of the imaginary axis of the spectra
plane.

In the case of Eq.~6!, where either first or second deriva
tives and a substrate nonlinearity are considered, when
earizing about a uniform steady stateu5u0(5const), the
following dispersion relation is obtained:

$ iv,2v2%52
k2

11ak2
1F8~u0!. ~13!

We assume here~as is the case for the stable uniform stea
states of the models of interest!, that F8(u0)<0. Then the
continuous spectrum will extend over the intervall
P(F8(u0)21/a,F8(u0)# for the dissipative~parabolic! first-
order in time PDE, while it will consist of the intervalsl
P6 i @A2F8(u0),A2F8(u0)11/a) in the Hamiltonian case
of the second-order~in time! PDE.

An important observation that holds true for both Eq
~12! and ~13! is that the continuous spectrum has an up
bound, as does the continuous spectrum for the proper
crete problem. This was underlined as a significant asse
the regularization method used in@37,38# with respect to
other continuum approaches to discreteness. What was
emphasized, however,~and to which point we will return in
our effort to improve on this model!, was that the upper
bound of the dispersion relation isA2F8(u0)11/a, instead
of A2F8(u0)11/(3a), an upper bound about twice as hig
~actuallyA3 times!, in the case ofF8(u0)50. An additional
argument in favor of the Eqs.~6!–~8! presented in@37,38#,
was that, contrary to what is the case for other continu
3-3
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KEVREKIDIS, KEVREKIDIS, BISHOP, AND TITI PHYSICAL REVIEW E65 046613
approaches to discreteness~see below!, the number of
boundary conditions needed to solve these equations wi
the same as the ones needed for the original discrete e
tion.

The most popular among the alternative methods tha
fact, need additional boundary conditions has been es
tially the Taylor expansion of the discrete Laplacian. In p
ticular, the general form of this Taylor expansion reads

D2un5(
j 51

`
2h2 j 22

~2 j !!
u(2 j )5uxx1auxxxx1O~h4!. ~14!

In all of the cases in which the Taylor expansion has b
implemented, only the leading-order fourth derivative te
has been used. As pointed out by Rosenau, this term ne
sitates additional boundary conditions. However, it is n
without reason that in all of the cases in which this equat
has been discussed, it has been used either in a mod
setting ~through an appropriate transformation as was d
in @47# and later in@48,49#!, or it has been used to obtai
static solutions and their stability@23,50#. The reason is
straightforwardly found in the dispersion relation for th
equation obtained by substituting the above expansion in
~1!,

2v252k21ak41F8~u0!. ~15!

Hence, for large wave numbers, the equation suffers an
traviolet catastrophe,’’ as excitation of these wave numb
will destabilize the system. We will also demonstrate t
effect numerically in the following section.

The important question that arises next~also in view of
the failure of the leading-order approximation to capture
upper bound of the continuous spectrum! is whether the con-
tinuum approximation can be improved. To accomplish th
one can consider, for instance, matching the Taylor exp
sion to higher order by a fraction of the form

]x
2

12
h2

12
]x

21
h4

b
]x

4

']x
2F11

h2

12
]x

22
h4

b
]x

41
h4

122
]x

41O~h6!G .

~16!

Selection ofb in such a way that21/b11/12252/6! will
make the expansion accurate toO(h6), however, this is not
an appropriate expansion for our purposes, as the large w
number (k) limit of the left-hand side of Eq.~16! is obvi-
ously incorrect. We should thus be interested in a form t
has a well-defined large wave number limit. A natural ge
eralization that has such a limit is given by the continu
fraction method. For instance, consider

]x
2

12
A]x

2

12
B]x

2

12C]x
2

. ~17!
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This expression for largek has a well-defined limit@being
equal to2(11B/C)/A# and so will every expression tha
contains 2m11 fractions between 2m12 expressions tha
have a~second! derivative~and hence give, inm11 pairs, a
well-defined largek limit !. Notice that this is a natural gen
eralization of the Rosenau result~the case ofm51). Notice
also, perhaps most importantly, that the computational c
of the algorithm given in the preceding section isnot affected
by the generalization presented here. In particular, the
pression that has to be calculated instead of the one in
~10! is rather@for the continued fraction of Eq.~17!#

(
k

2k2

11
Ak2

11
Bk2

11Ck2

û~k,t !, ~18!

which is an algebraic expression of the same computatio
cost as in the case of Eq.~10!. Notice that in reaching the
conclusion of Eq.~18!, the eigenfuction nature~to all alge-
braic orders! of exp(ikx) for the operator]x

2 has been crucial.
In order to use Eq.~17! in practice~i.e., for computational

purposes!, we convert the three fractions into one of the for

2
k2~12ah2k2!

12ah2k22bh2k21gh4k4
, ~19!

where a simple~algebraic! reduction ofA,B,C to a,b,g has
been used. We then use Taylor expansion of the denomin
to convert the expression of Eq.~19! into one resembling Eq
~14!. By matching up toO(h6) to the exact Taylor expan
sion, we obtain three algebraic equations fora,b, andg. In
this way, we obtain a set of solutions fora,b, andg. We use
here the seta520.007 912,b521/12, andg50.002 056.
It is clear that this process can be carried out to higher or
without additional conceptual complications, even thou
the algebraic manipulations will become more cumberso
However, the process is straightforward and can, in princip
be standardized. An additional benefit@to the matching of the
Taylor expansion up to correction terms ofO(h8)# that
should be highlighted here is the valuea/(gh2)53.848/h2

of the upper bound forv2, which is much closer to the
theoretical upper bound of 4/h2 than the prediction 12/h2 of
the leading-order approximation presented in the preced
section. Of course all these estimates forv2 are in the case
F8(u0)50. The latter has to be subtracted from the upp
bound if it is nonzero; however, it is clear that in either ca
the higher-order approximation captures much better
value for the upper bound. It should be noted that somew
similar considerations in the framework of regularizati
methods appeared in@51#.

Continuing our analytical study of the properties of mo
els such as the ones of Eqs.~6!–~8! and their generalizations
we study the so-called Peierls-Nabarro barrier. In the pr
ence of genuine discreteness, it is well known@8,25,26,30#
that the symmetry of translational invariance is broken. T
nonequivalence of lattice configurations together with the
3-4
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CONTINUUM APPROACH TO DISCRETENESS PHYSICAL REVIEW E65 046613
teger shift invariance of the lattice problem give rise to
periodic @9,34,52# potential energy barrier which, using
term coined from the theory of dislocations in solids@53#, is
called the Peierls-Nabarro~PN! barrier. In fact, the exponen
tial increase of the height of this barrier@25,22# for strong
discreteness is the principal reason for trapping and pinn
of coherent structures in these ‘‘strongly’’ discrete settin
An important observation for the continuum-type mode
such as the ones considered here, is that this barrier is
present. The most trivial way to observe this is to note t
any of the continuum expressions used above contains
rivatives, and hence is, by construction, translationally
variant. An alternative, less heuristic way to reach the sa
conclusion is by means of conservation laws as presente
@37#. Considering, e.g., Eq.~7! and integrating by parts ove
the spatial variablex, it can be found that*utdx5I 1 is an
integral of the motion, which in this case is the linear m
mentum. The conservation law is directly associated, via
ether’s theorem@54#, with a zero eigenfrequency~a Gold-
stone mode!, which in turn means that the PN barrier
absent as the translational symmetry~associated with linea
momentum! is preserved. The associated frequency wo
have to be nonzero in order for a PN barrier to exist. Fina
apart from these indirect proofs, there is a direct demons
tion of the absence of the PN barrier, which we give h
since we believe it is instructive.

The PN barrier appears if one uses the discrete or even
continuum solution in the discrete potential energy@55,56#
parametrized by the position of the centerx0 of the solution.
One then finds, to the leading-order approximation throu
the Poisson summation formula@9,55,56,36#, a periodic bar-
rier in x0 with an exponentially small~in the lattice spacing
h) prefactor. The exponentially small width of the barrier h
been justified on various occasions@22,25,30,36# so we will
not dwell on it here.

In our case of continuum models approximating the d
crete case, if we use the continuum Pade´ approximation to
the first-order difference as mentioned in Sec. II, we obta

V@u#5E dxF S ]x

12a]x
2

uD 2

1 f ~u!G ; ~20!

we recall thatf 852F and that the first term in Eq.~20! has
been obtained by taking the difference between the plus
minus sign identities in Eq.~5!. Notice that for simplicity of
exposition, we have implicitly used the centered differen
approximation to the first derivative for the discrete proble
but from our symmetry arguments given above, it is cle
that the result we will obtain will be true independently
the selected discretization. We now observe that the t
*dx f(u) can always sustain a change of variablesx→x
2x0 without creating a PN term~i.e., a term dependent o
x0). That leaves the first term for which we use the Four

transformu(x,t)5*exp(ikx)û(k,t), to obtain
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12a]x
2

uD 2

5E dxF E dk exp~ ikx!
ik

~11ak2!2
û~k!G 2

.

~21!

One can now use the residue theorem for the integral o
wave numbers. The poles are atk56k056 i /Aa. The gen-
eral formula states that

E dk
ĝ~k!

~k2k0!m
5

ĝ(m)~k0!

~m21!!
. ~22!

We thus obtain

E dkexp~ ikx!
ik

a2~k22k0
2!2

û~k!

5
1

a2

d

dk S ikû~k!exp~ ikx!

~k2k0!2 D U
k52k0

1
1

a2

d

dk S ikû~k! exp~ ikx!

~k1k0!2 D U
k5k0

. ~23!

However, notice that if we perform the differentiation an
the evaluation of the derivative terms atk56k0 and we then
proceed to make a change of variablesx→x2x0, the only
type of terms containingx ~andx0) that will appear will be
of the form exp@ik0(x1x0)#,exp@2ik0(x1x0)#, and the squares
of such terms stemming from the square in Eq.~21!. But all
of these terms are rapidly oscillating and their integrat
over x will yield a vanishing result. Hence, there will be n
PN barrier term as was clear also from the previous
proaches. We believe that this demonstration is instructiv
showing how first derivative terms and energy estimates
be evaluated in the general class of models conside
herein.

A number of observations on the advantages and dis
vantages of this class of continuum methods in approxim
ing discreteness are in order.

A. Advantages

~i! These methods can capture the bounded nature o
continuous spectrum much better than previous ones~and, in
fact, almost exactly upon the suitable generalizations con
ered herein!. Also, the number of boundary condition
needed for well posedness is the same as that of the orig
discrete problem.

~ii ! These methods embody the possibility for radiati
losses. As is, in part, observed in the rather crude~since it
involves traveling wave solutions, as the author points o!
analysis of@39#, for similar equations to the ones present
here, the kink profile will steepen in these continuum mo
els. This adjustment of the kink shape is in agreement w
3-5
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the observations of the original discrete problem. Furth
more, as we will emphasize in the Sec. IV, even though
translational modes do not bifurcate~translational invariance
is preserved!, edge ~shape! mode bifurcations can anddo
occur. These internal modes bifurcating from the edge of
continuous spectrum generate a potential energy barrier
oscillation in which~wobbling of the coherent structure! can
provide radiation emission mechanisms similar to the o
presented in@26#. Hence, not only the shape adjustment b
also the oscillation due to the edge mode can remove en
from the coherent structure and irreversibly transform it in
small amplitude phonon excitations.

~iii ! In view of comment~2!, such equations as the one
considered above can exhibit pinning, if the kinetic energy
drastically reduced by radiative mechanisms, such as the
considered above.

~iv! Finally, PDE’s of this form constitute a kind of ‘‘ho
mogenization’’ of the discrete equations, preserving a sign
cant amount of phenomenology present in the discrete
tem itself. An additional advantage is that this can also
useful in obtaining homogenized versions of heterogene
continuum equations. This can be justified as follows: if
consider a heterogeneous equation of the form

u$t,tt%5uxx1F~u!1Vext~x;h!u, ~24!

whereV(x;h) is an appropriate heterogeneous function@e.g.,
Vext(x;h)5sin2(2px/h)#, then as has been indicated recen
@57#, a tight binding ansatz~or a Wannier function approach!

u~x,t !5( cn~ t !f~x2xn! ~25!

can be used to convert~upon appropriate integrations ove
f) Eq. ~24! into a discrete equation forcn of the form

cn,$t,tt%5D2cn1ecn1LF~cn!, ~26!

where e;*f2(x2xn)Vext(x;h)1f(x2xn)fxx(x2xn)dx,
andL;* f „f(x2xn)…dx, in accordance with the derivatio
of @57#. Then, since for the discrete equation a continu
‘‘homogenization-type’’ PDE can be derived as presen
above, combining the heterogeneous to discrete and the
crete to~homogeneous! continuum steps, we can obtain su
a ‘‘homogenized’’ PDE also starting from a heterogeneo
continuum PDE.

B. Disadvantages

~i! There is no PN barrier in this model, as we show
above. This will significantly affect the phenomenology
the case of strong discreteness. The exponential increa
the PN barrier@8,25,26,22# is crucial in pinning coheren
structures for strong discreteness. Even though the radia
phenomenology and the potential for internal mode re
nances is present in the continuum model, we should ex
to find trapping at considerably higher values of the latt
spacing than in the case of the original discrete model
fact, this is what the numerical experiments will demonstr
in the following section.
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~ii ! An additional feature of the phenomenology of th
discrete problem’s dispersion relation that was not discus
in @37,38# is its periodic structure. The dispersion relatio
obtained in the continuum models presented herein as we
in @37,38# may have a saturation upper bound frequency
does not contain the periodic structure of multiple Brillou
zones that is present in the discrete system. Hence, as lon
our interest is limited to the first Brillouin zone, the dispe
sion relation obtained matches very well that of the discr
problem. But, if a feature is to be studied that necessitates
presence of multiple Brillouin zones, this would be absen
the continuum approaches studied here. A feature of this t
which is missed by the present approach, is, for instance,
phenomenon of Bloch oscillations of the discrete problem
the presence of an external linear potential. Such oscillati
were observed theoretically for nonlinear models of the ty
presented here in@58,59#. In most of their experimental re
alizations ~such as, semiconductor superlattices@60,61#!,
these oscillations appear in linear systems. However, t
were recently observed in experiments with optical lattic
for Bose-Einstein condensates@62# and were confirmed theo
retically in the same context in@57#. Notice, in particular, in
the collective coordinate analysis of@57# @Eq. ~6! of @57##,
the presence of a sinusoidal term that is responsible for
oscillations and which arises from the spatial periodicity
the discrete lattice. The absence of such periodicity, a
mirrored in equations of the type of Eq.~13!, does not permit
the presence of such phenomena in the context of contin
equations.

IV. NUMERICAL RESULTS

We now turn to numerical investigations of Eqs.~6!–~8!
and the variants of Eqs.~16!,~19!, comparing the results with
the direct results of the discrete problem of Eq.~1!.

We solve the array of coupled ordinary differential equ
tions of Eq.~1! directly by fourth order RK methods, while
for the remaining equations, selecting the appropriate w
numbers for the implementation of free boundary conditio
we solve them through the algorithm given in Sec. II. T
model for which the simulations are carried out is the d
crete sine-Gordon equation. Hence the substrate nonli
term is of the formF(u)52sin(u). We will be interested in
the dynamics of kinklike heteroclinic orbits in this model.
the continuum limit (h→0), the orbits have an explicit func
tional form

u~x,t !54arctan$exp@g~x2x02vt !#%, ~27!

where x0 is the initial position of the kink and a Lorent
boostx→g(x2vt), with g5A1/(12v2) has been used to
give the kink any initial subsonic speedv.

Figure 1 shows the results forh50.5. One concept tha
we use extensively to compare the discrete and continu
results is that of the projection of the continuum results o
the discrete lattice. This is done through the projection
erator Pnu(x,t)5dx,nhu(x,t). The way in which this is
implemented in practice is that the lattice of spacingh1
which is used for the discretization of the continuum pro
3-6
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FIG. 1. The case ofh50.5. The top left subplot shows the time evolution of the normuuun2Pnu(x,t)uu2, where the projection of the
continuum problem to the discrete one through the operatorPn is explained in the text. The dash-dotted line shows the result of the Ros
approach, and the dotted one the generalized method of Sec. III. Notice a 20–25 % improved agreement in the latter case. Th
subplot shows the position of the kink for the initial condition, i.e., without a change in speed~solid line!, the Rosenau approach~dash-dotted
line!, the generalized approach~dotted line!, and the discrete problem~dashed line!. Note the very good agreement between the discrete
continuum models~the latter three practically coincide!. Finally the bottom center subplot shows the correspondingly evaluated kink sp
as functions of time. The line symbols remain the same in representing different approaches~dashed→ discrete; dash-dotted→ Rosenau
approach; dotted→ generalized approach!. Notice once again that the results of the different approaches basically coincide. The
symbols have been used for the rest of the figures.
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lem ~hence, the conditionh1!h has to be satisfied!, is cho-
sen with an integer ratio ofh/h1; typically a ratio of'10–20
is used in the simulations. Hence,Pnu(x,t) shows the con-
tinuum profile everyh/h1 sites. This is a field of the sam
number of sitesNh as the discrete field and can be direc
compared with the result of the discrete system. In particu
a measure that we use in probing the accuracy of the c
tinuum schemes is theL2 norm uuun2Pnu(x,t)uu2 of the dif-
ference between these two fields. In Fig. 1, forh50.5, we
can observe~in the top left panel! that the norm of the dif-
ference for the entire field never exceeds 0.04 in the Rose
approach@as we will term Eqs.~6!–~8!# or '0.03 in the
improved approach of Eq.~19! for the duration of the simu-
lation. Thus, the behavior of the field is captured quite ac
rately in both approaches even though in the latter there
04661
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gain in the accuracy of the order of 20–25 %. This will be
general observation in all of our numerical simulations: t
generalized approach always yields results that are close
the discrete behavior by'5 –25 % ~depending on the value
of h). In the top right panel, as another indicator of t
accuracy of the results, the position of the kink is appro
mated by the interpolation method of@34#

xk5hFn81
p2Pn8@u~x,t !#

Pn811u~x,t !2Pn8u~x,t !
G , ~28!

where n8 is the site such thatPn811u(x,t).p, while
Pn8u(x,t),p ~i.e., n8 andn811 are the ‘‘sites’’ of the pro-
jection lattice nearest to the center of the kink!. One can see
3-7
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KEVREKIDIS, KEVREKIDIS, BISHOP, AND TITI PHYSICAL REVIEW E65 046613
on the top right panel of Fig. 1, that the continuum metho
of Eq. ~6!–~8! and of Eq.~19! are in excellent agreemen
with the position of the exact discrete kink and only sligh
deviate from the position that the speed would dictate~solid
line! if it traveled with the initial velocity (v050.2). Hence,
the methods capture very accurately the ‘‘adjustment’’ of
kink’s shape and speed to the discrete setting. Finally in
bottom left panel of Fig. 1, from the subsequent positions
the kink ~and the time intervals between them!, the speed of
the kink is evaluated. The oscillation observed in all the d
ferent approachesis the Peierls-Nabarro oscillation, namel
the oscillation of the kink center as it travels between latt
sites. There is, however, a significant difference between
continuum approaches and the discrete result. In the orig
discrete case, the presence of the PN barrier is real, whi
the case of the continuum model, it is an artifact of study
Pnu(x,t) rather than the continuum field. In particular, as w
will also mention below, an alternative method to calcula
xk but for the continuum field is to consider Eq.~28!, with
h→h1 and withPn8u(x,t)→u(x5n8h1 ,t) over the fine lat-
tice of spacingh1 ~which represents the continuum in o
case!. If we were to probe this ‘‘continuum’’xk and its speed
vk , as we will see below, such~PN! oscillations would be
absent.

Figure 2 shows the case ofh50.9. This is already con
siderable discreteness since it is well known that forh>1,
discreteness effects will become dominant, see, e.g.,@8,26#.
The top left panel once again shows the norm differe
described above. It can be seen that even though it grow
time, up tot530, it is '0.131 in the Rosenau approach a
'0.111 in the generalized approach of Eq.~19!. The reason
for the increase in the norm can be traced in the top right
middle row left panel of Fig. 2, which shows the positions
the initial condition kink~solid line!, the Rosenau approac
~dash dotted!, the generalized approach~dotted!, and the dis-
crete model~dashed!, as well as the corresponding spee
What is happening is that gradually the discrete kink is l
ging behind the kinks of the continuum approaches, open
a gap between the spatial profiles of the two kinks, as we
see below. This gap is responsible for the norm increas
the difference of the fields. Viewing the left panel of th
bottom row, it becomes evident why the discrete kink la
behind. One can verify that the barrier observed is the
barrier. A rough estimate of subsequent maxima att1
511.875 andt2516.575 and an estimate of the periodT
5t22t1 multiplied by the approximate speed ofvk'0.192
gives a spatial scale ofh50.9024, which clearly matches th
lattice spacing. However, as has been argued previously,
barrier is present for the discrete system, while it is an a
fact of the projection operator in the continuum case, wh
it is absent. However, the presence of this barrier, as has
analyzed in@8,26# entails a resonance mechanism. The
called translational frequencyv t52pvk /h associated with
the barrier, and its harmonics resonate with the exten
wave phonon modes, as has been detailed in@8,26#. These
resonances drain away the kink’s kinetic energy convertin
to phonons. Since in the case of continuum models
mechanism is absent, the decay of kinetic energy~seen in the
dashed line of the bottom row left subplot! is not observed in
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the dash-dotted and dotted lines corresponding to the c
tinuum models. Also in the same plot of kink speed as
function of the time, the ‘‘continuum’’ kink’s speed define
above is given by the thick dots. This continuum speedvc is
analyzed in the right subplot of the top row of Fig. 2. It
calculated in both cases for the continuum model of Eq.~19!,
but with two different fine lattice spacings (h15h/10 corre-
sponds to the dashed line, whileh15h/20 corresponds to the
solid line!. In the former case, the average speed is v
slightly lower ^vc&'0.1923, while in the latter it iŝ vc&
'0.1926. It can be clearly discerned in the figure as well
in the inset that two oscillations are superposed. Since th
for the continuum model, neither of the two is the discre
model PN oscillation of frequencyv t . The fast oscillation
has a period ofT'0.467, very close toh1 /vk when h1
5h/10, while it is approximately half of that ('0.234) when
h15h/20. Hence, this is the fast oscillation due to the ve
weak PN barrier of thefine lattice.

The slow oscillations, as is clear from the inset, are of
same frequency in both cases. This frequency can be fo
to be ve'0.95. This is a frequency for whichve,vb51,
wherevb is the frequency of the bottom edge of the contin
ous spectrum. Hence, it pertains to the shape oscillation
the kink due to the edge mode that has bifurcated from
band edge of the continuous spectrum@23,20–22#. Finally, in
the middle and bottom row right subplots of Fig. 2, as a fin
diagnostic, the field’s spatial profile is shown at an early tim
(t524) and at a later time (t548). The dashed line onc
again represents the discrete result, the dash-dotted line
Rosenau approach, and the dotted line the generalized
tinuum approach. In the first case~middle row!, the con-
tinuum and discrete kinks are found to almost coincide.
fact the coincidence of the front fields~the field’s detail as it
approaches the front steady stateu052p) is rather remark-
able, while the back field~approach to the steady stateu0
50) is captured less accurately and ‘‘radiation’’ of the d
crete field is more intense than in the continuum case. T
last observation can be understood as follows. The kink
tially emits radiation both in the front and in the back, tryin
to adjust its shape and speed in the discrete setting.
feature is present both in the discrete and continuum si
tions. However, as time evolves and the kink moves, in
discrete situation it encounters the constraint of having
traverse the PN barriers, and in doing so sheds radia
through losing a fraction of its kinetic energy~the mecha-
nism mentioned above!, while in the latter continuum case
this mechanism is absent and only smaller amounts of ra
tion are generated through the resonance of the edge m
oscillations. Hence, gradually the discrete kink lags beh
the continuum ones~bottom right subplot!, which explains
the increase of the norm of the difference between the
fields observed in the top left subplot of Fig. 2. The sa
argument accounts for the continuing accuracy of captur
the front field, as opposed to the increasing inaccuracy in
capturing of the back field: as more PN barriers are traver
more back field phonon radiation is generated.

For comparison in this case (h50.9), we also performed
simulations with the continuum approach of Eq.~14!, which
bears the potential for the ‘‘ultraviolet catastrophe’’ me
3-8
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CONTINUUM APPROACH TO DISCRETENESS PHYSICAL REVIEW E65 046613
FIG. 2. The right subplots are the same as in Fig. 1, but forh50.9. In the bottom left subplot a thick dotted line has been added to s
the continuum speed of the generalized approach~rather than the one projected on the discrete lattice throughPn). See also the explanatio
in the text. In this case, we observe that even though the generalized approach is still better than the Rosenau approach, both move
the discrete kink. The reason is, as explained in the text, the presence of the PN barrier in the discrete case, which induces kine
depleting resonances that in turn decrease the kink speed. This is clearly observed in the bottom row left subplot. On the con
continuum models, as is shown, for instance, in the top right subplot showing the time evolution of the ‘‘continuum’’ speed~defined in the
text!, have no real PN barrier and hence their kinetic energy is not affected by that mechanism; hence, the continuum speed
constant. The continuum speed is shown in the middle right subplot for the generalized model in the cases ofh15h/10 ~dashed line! and
h15h/20 ~solid line!. The clearly discernible superposition of two oscillations in the figure comes from the PN barrier of the fine scah1;
the fast oscillation! and the shape mode oscillation ofve'0.95,vb ~the slow oscillation!. Finally the middle and bottom right panels sho
two snapshots of profiles of the field~the discrete field and the discrete projection of the continuum field!. The line symbols are the same a
in Fig. 1. The middle right panel is fort524 while the bottom right is fort548. Notice that in either case, the radiation field in front of t
kink is very accurately captured, while in the back of the kink it is increasingly less accurately captured. For the explanation
phenomenon, as well as of the gradual lagging behind of the discrete kink, see Sec. IV.
046613-9
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KEVREKIDIS, KEVREKIDIS, BISHOP, AND TITI PHYSICAL REVIEW E65 046613
tioned in Sec. III. Figure 3 shows the results for this ca
The top left panel is fort50.03 and the solid line of the
discrete simulation is coincident with the dashed line of
continuum simulation. However, fort50.12, the instability
has been generated and its evolution is clearly exponen
as expected by Eq.~15!, and can be observed in the semilo
bottom subplot of Fig. 3 showing the norm difference b
tween the discrete and~projected! continuum field.

In Fig. 4, the same indicators are shown as in Fig. 1,
for h51.3. In this case, the discrete kink becomes trap
while the continuum ones, as can be clearly observed in
top right subplot of the kink position, continue to propaga
with an approximately constant speed. The lattice spacing
which the trapping occurs is the same as the one obtaine
@8#, however, the important observation is that this critic
value ofh for the continuum models isnot the same as in the
discrete case. This is understandable in view of the abse
of the PN barrier mechanism, which as we saw above
chiefly responsible, when it becomes important~i.e., for h
.1), for the disparity between the continuum and the d
crete behavior.

As was explained above, the continuum models do
accurately capture the lattice spacing at which trapping
curs. However, a natural question is whether continu
models possess the trapping property in their own right
whether it is a genuine property of discreteness. On the
hand, bifurcations of traveling waves to standing waves h
been observed in continuum systems@63#, while, on the
other hand, the leading-order power law@of O(h2)# correc-
tion to the speed of continuum systems when they beco
discrete@64# is expected to be captured by the continuu

FIG. 3. The case ofh50.9, evaluated with the variant mode
with the fourth spatial derivative~which bears the potential for th
‘‘ultraviolet catastrophe’’!. The top left subplot shows the con
tinuum ~dashed line! and the discrete~solid line! field at t50.03,
while the top right subplot is att50.12. One can observe clearly i
the bottom subplot of the norm difference the exponential deve
ment of the instability present in the system, which leads to co
pletely different behaviors between the discrete and the contin
models.
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approximation, as are other such~power law! effects @23#.
Furthermore, even if the PN barrier is absent, there is
shape mode oscillation, which can also resonate with
continuous spectrum and transfer some of the internal en

-
-
m

FIG. 4. Same as in Fig. 1 but forh51.3. Notice that in this case
the discrete kink will eventually be trapped while the continuu
ones will continue propagating at an~approximately! constant av-
erage speed.
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CONTINUUM APPROACH TO DISCRETENESS PHYSICAL REVIEW E65 046613
of the kink to phonons, thus facilitating~especially forh
.1) the trapping process. The numerical observations of
‘‘continuum’’ speed~defined above! confirm the contribution
of all the above factors in providing a mechanism for sto
ping in the continuum models. The continuum speed is
duced ~for low h) by a factor proportional toh2 ~in the
numerical experiment the exponent is'2.1) with respect to
the initial continuum speed, in agreement with@64#. As h is
increased~beyond 1!, higher-order effects become significa
and the reduction rate of the average speed is increa
while the shape oscillation frequency also contributes m
significantly to the radiation effects, as the adjustm
needed for the shape of the kink is larger and hence the s
oscillation amplitude~and, hence, energy! is initially larger.
In the latter case, through the coupling of the edge m
frequency harmonics to the phonon oscillations, a lar
fraction of the kink’s initial energy can become irreversib
delocalized@26#.

As Fig. 5 demonstrates, the result of these mechanism
the decrease of the kink speed and its eventual stoppin
h'1.9 in the case of the generalized continuum model
proach, while the same phenomenon occurs forh'2.2 in the
case of the Rosenau approach.

It is interesting to note here that even though the c
tinuum models with the Pade´ approximants are meant a
dynamical evolution equations that share some of the
tures of the genuine discrete ones, one can also use the
study steady state solutions and examine the validity of se
continuum approximations to such~static! solutions for the
discrete problem. We give here a particular example of
sort. In particular, for weakly discrete models, a method w
developed in@65# for finding explicit static continuum ap
proximations to the solution of the discrete problem. In t
case of the sine-Gordon equation such predictions are

FIG. 5. This plot shows the continuum speeds of the continu
~generalized! model’s kink as a function of time for different value
of h. The solid line corresponds toh50.5, the dashed toh50.9, the
dash dotted toh51.1, the dotted toh51.3, the triangles toh
51.5, the plus symbols toh51.6, the diamonds toh51.7, while
the ~lowermost! branch of circles corresponds toh51.8. For h
51.9, propagation of the continuum kink will fail.
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compassed in Eqs.~4.4!–~4.6! of @65#. It will, thus, be true
according to these predictions that the approximate st
kink solution of the discrete sine-Gordon equation reads

un5w~nh!2
sin@w~nh!#

12b
, ~29!

w~x!522arctan@b sinh21~bx!#,x<0, ~30!

w~x!52p2w~2x!,x>0, ~31!

whereb5A12h2/12. We compare this solution to the stat
solution of the continuum limit

ucont54 arctan@exp~x!#. ~32!

We also compare the latter with the exact discrete static
lution and with the continuum static kink solution of Eq.~1!
when the discrete Laplacian is approximated by the P´
approximation of Eq.~17!. The comparison is shown in Fig
6 for h50.5. The solid line shows the difference between
exact discrete solution and the continuum solution forh

FIG. 6. This plot shows the difference between the continu
prediction for the static kink in the sine-Gordon modelucont of Eq.
~32! and three predictions taking discreteness into account foh
50.5. In particular, the solid line shows the difference between
exact discrete solution anducont ; the dash-dotted line~in very good
agreement with the first one! is showing the difference between th
Padéapproximation to discreteness of Eq.~17! anducont . Finally,
the dashed line shows the difference between the weakly disc
analytical prediction of@65# and ucont . The latter is also in good
qualitative ~but less good quantitative! agreement with the exac
discrete model. The spatial profiles of these differences are sh
in the figure. For a quantitative measure of the agreement see
text.
3-11
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KEVREKIDIS, KEVREKIDIS, BISHOP, AND TITI PHYSICAL REVIEW E65 046613
50.5. The norm squared of the difference between the tw
uuud2ucontuu2

257.64831024. The dash-dotted line is the re
sult of the Pade´ approximation and can be observed to
almost exactly the same as the genuinely discrete resul
fact theuuuPade82ucontuu2

257.28731024, also very close to
the exact discrete result. Moreover, the functional dep
dence of these differences is almost identical. If the appro
mate analytical solution of@65# is compared toucont , it can
be seen to capture the correct functional variation and
sonably well the quantitative details@even though the correc
to O(h6) Padéapproximation is more accurate#. In this case
uuuwd2ucontuu2

255.41031024 ~the subscript stands fo
weakly discrete!.

V. CONCLUSIONS AND FUTURE CHALLENGES

From the above results we conclude our observation
the following points.

~i! Continuum models can retain significant aspects of
phenomenology of their discrete origins. Such aspects
clude the dispersion relation~in the first Brillouin zone!, the
presence of internal modes, the same number of boun
conditions, the radiative resonances, and the slowing d
and eventual pinning of the solutions.

~ii ! On account of incorporating the above phenome
these continua are expected generically to capture the p
erties of discrete models forh up to O(1); more generally
for h up to the point where the PN barrier effects will b
come appreciable. The PN barrier is perhaps the most
nificant property that continua do not share, and its expon
tial nature, which is significantly contributing to the pinnin
of discrete coherent structures, leads us to expect that
discrete and continuum equations willnot generically have
their solutions trapped at the sameh. However, as we have
S

e-

d
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emphasized, other features are also lost. The lack of per
icity in the dispersion relation, for instance, does not allo
study of features, such as Bloch oscillations, for which su
a periodicity is crucial.

~iii ! The generalized approach presented herein provid
more accurate representation of the discrete case, and w
out considerable additional effort, higher-order schem
which are accurate to higher power law orders, can be de
oped through the systematic process presented. Howeve
these are all power law types of~translationally invariant!
corrections, the beyond all orders@25# exponential nature of
the PN barrier cannot be captured. A systematic continu
way to include such exponential effects would clearly
desirable, even though it would probably have to contain
explicit spatial dependence in the continuum equation~which
would break the translational symmetry!.

We believe that in view of the above results, an increa
understanding of the continuum approaches to discrete
has resulted and the range of validity of continuum appro
mations, their benefits as well as their shortcomings, h
been in large part clarified. The pursuit of alternative co
tinuum models~more amenable to mathematical analys!
that could potentially capture more closely the phenomen
ogy of discreteness still remains a challenging task.
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