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We study analytically and numerically continuum models derived on the basis ofdpadeximations and
their effectiveness in modeling spatially discrete systems. We not only analyze features of the temporal dy-
namics that can be captured through these continuum appro@eshape oscillations, radiation effects, and
trapping but also point out ones that cannot be captuseth as Peierls-Nabarro barriers and Bloch oscilla-
tions). We analyze the role of such methods in providing an effective “homogenization” of spatially discrete,
as well as of heterogeneous continuum equations. Finally, we develop numerical methods for solving such
equations and use them to establish the range of validity of these continuum approximations, as well as to
compare them with other semicontinuum approximations.
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I. INTRODUCTION furcation theory methodg30-32, iterative nonlinear eigen-
value method$33] and numerical Evans and/or linear alge-

In the past two decades, the role of discreteness in modbra method$19]) techniques have been used to analyze the
fying the behavior of solutions of continuum nonlinear par-existence, stability, dynamics, and asymptotics of coherent
tial differential equations has been increasingly appreciatedstructures in discrete problems.
Given that many of the physical contexts in which such mod- In most of the above works the importance of treating the
els and their nonlinear dynamics are relevant, are inherentlgliscrete problem directly has been recognized and empha-
discrete in nature, understanding the role of discreteness bsized, as discreteness has been found to trigger so-called “ra-
comes vital. Such physical contexts are quite diverse, rangdiation effects”(see, e.9/[8,9,26,29), which cause decelera-
ing from the calcium burst waves in living cell§] to the tion of the coherent structure in the lattice and eventually
propagation of action potentials through the tissue of thdrapping and pinnin§10,26,34 of the waves on a lattice site.
cardiac cell§2] and from chains of chemical reactiof8 to On the other hand, one may ask as to what extent con-
applications in superconductivity and Josephson junctioninuum systems can capture such phenomenology. Another
[4], nonlinear optics and fiber arraj/s], complex electronic motivation for wishing to create continuum systems that
materials[6] or the local denaturation of the DNA double mimic discrete effects is that continuum ordinary and partial
strand[7]. differential equations are more easily amenable to analysis

The realization of the important effects of discretenessand, possibly, to the identification of potentially exact solu-
(and, in particular, strong discretengsmerged in the 1980s tions. In fact, in the mathematical literature, there is a well-
with the pioneering work§8—11] among others. This led to known technique for converting heterogeneous equations
a large number of analytical and numerical studese, for (i.e., continuum partial differential equations whose coeffi-
instance, the review papeld2-16 and the references cients depend explicitly on spagd® homogeneous ones with
therein of discreteness effects and of the notion of the so-appropriately modified coefficients. This technique is called
called anticontinuum limif17,1§ (in which the lattice spac- homogenization35]. In a sense, discrete equations are a
ing h— ) as well as of the coherent structure solutions andspecial kind of heterogeneous equatidtisis analogy has
their properties close to that limit. In a number of recentbeen analyzed ih36]) in which infinite weight ¢ function
developmentg$16], a host of analytica(such as the Evans weigh) coefficients have been used on the sites of the lattice.
function [19-29, singular perturbation theor}20,23,24, Hence, developing such a continuum system mirroring the
asymptotics beyond all ordef&5], Hamiltonian dispersive discrete properties would effectively constitute a form of ho-
normal forms[26,27, homogenization method®8], and  mogenization analysis.
nonlinear stability analysig29]), and numericalsuch as bi- In view of the above motivations, Rosenau, in a series of
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papers in the mid 198087,38, developed a technique for fact, it will be shown how first derivatives can also be rep-
providing continuum approaches to discreteness. In thesesented in the same approach. This, in fact, will be one of
works, he was able to give a systematic methodology fothe advantages of the PadpproachF(u,) is the substrate
carrying out this program in one and also in higher spatiahonlinearity term, which stems from a potentigl,) such
dimensions. He was also able to extract from the derivedhat f’'(u)=—F(u).

continuum equations useful information, such as dispersion Our starting point in this analysis will be the following
relations, conservation laws, and even exact solutions iidentity (Taylor expansionfor analytic functions(see e.g.,

some special cases. [44]):
To the best of our knowledge such techniques, even
though quite useful for analytical consideratiofisey are u(x+m)=expmd,)u(x). 2

still used for extracting conclusions on discrete systems; see
e.g.,[39] for a recent exampe have not been used very For such functions one can then express spatial discreteness
widely numerically, perhaps in part due to the presence o@s follows:
mixed (spatial and temporalderivatives in the continuum
equations that renders them relatively cumbersome to use for Un+171 Un—1—2Upy=[exp(hdy) +exp(—hd,) —2]u(X)
computational purposes. P

In this paper, our goal is to revisit such methods from a =4 sinr(—x) ucx,t). 3)
different perspectivéthat of Padepproximant$40,41]) and 2
to propose a natural way to generalize them, as well as to
implement them in numerical computations. After presenting
the method, we analyze a number of features of the discrete
system dynamics that should be expected to be_ captured by exg =ha,) — 1= Ehz
this methodology, as well as some tlilay constructioncan- 2
not. We also make the relevant connections to the work of
Rosenau. We then turn to numerical computations and study +h
how well the method can approximate the dynamics of the
genuinely discrete system for the prototypical cases studied _ ) .
in many of the references given above, the so-called Frenkel- Then, regrouping the terms in the manner of Patfk41]
Kontorova model[42] (also known as the discrete sine- One obtains
Gordon equatio8]); the simplest experimental realization

Now expanding expthd,) [41], we have

2

h
1+1—2(9§+~-)(9§

- 4

1
1+ ghei+ ..

of the latter is an array of coupled torsion pendula under the . 1 h2J3 . ha,
effect of gravity[43]. exp(thdy) —1~5—> - 2 (5)
The paper is organized as follows. In Sec. II, we give the 1- 129 (1— 1—2,9X)

derivation of the model from a different perspective than the
one given by Rosenau. In Sec. Ill, we make the connections
with the previous work, give generalizations of the model,tio of Eqg. (5) to convert the differential difference equation

and present some of the advantages and disadvantages Eq. (1) into a partial differential equatiofPDE) as fol-
such an approach. In parallel to the presentations of Sec. q @) P q DB

and lll, the numerical methods that will be used to solve the ’

We now use the pseudodifferential operator approxima-

continuum problem are presented. In Sec. IV these methods 2
are implemented in studying the discrete sine-Gordon equa- ~ x +F (6)
. . L . Ust ity h2 u+F(u).
tion and the results are compared with the original discrete 12
problem. Finally, in Sec. V, we summarize and conclude. 127%
Il. CONTINUUM MODEL Notice, in passing, that here we have used the sum of the

) ] ] ) two expressiongwith the different signsof Eq. (5), in ap-
. The general setting of equations that will be studied her%roximating the second differencédiscrete Laplacian
is given by the form through Eq.(3). However, note that the difference of the
_ expressions with the different signs would give an approxi-
Un 1,1y = A2Un+ F(Un), (D mation to the first difference. Hence, the Padethod pre-
wheren indexes the lattice sites. In these equatigst} sented herein can also be implemented in the case of PDE'’s

signifies that either one or two temporal derivatives can bé(v_ith first-oro_ler spatial diff_erences. We will revisit fi_rst-order
present. The former case corresponds to one-compédient differences is Sec. lll, while calculating the potential energy
cretd reaction-diffusion equations, while the latter corre- Of the system. _ .

sponds to discrete nonlinear Klein-Gordon equations. While Oneé can treat the PDE of E() in two different ways. If
we keep these classes of nonlinear equations in mind, it wilve act on both sides of E@6) with the operator (+ad),

be immediately obvious that similar considerations will bewherea=h?/12, we obtain

generalizable to any system bearing the discrete Laplacian 5
Aoup=(Uns1+U,_1—2u,)/h? (his the lattice spacing In Ut 1y — Uty = Uxx T (L —ad5) F(U). (7)
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The general form of the resulting equation is, essentially, thell. ANALYTICAL CONSIDERATIONS AND EXTENSIONS
same as the one obtained by Rosehdr,3§, with some
differences that will be clarified in the following section. The
most general form can be rewritten as

In this section, we provide the connection of the model to
previous work, give straightforward generalizations of it and
their numerical implementation, and discuss the advantages

Upt 1ty — @Usggt.tty = Uxx+ F(U) + G(U) (8)  and shortcomings of such a continuum approach. _

In particular, connecting the discussion of the preceding
with G(u)= —a[F”(u)u§+ F’(u)u,,]. This is the resulting Section to the work of Rosend37,38, we observe that he
regularization equation stemming from the process to th&vas mostly interested in models of the form
leading-order approximatiotto be revised in the following
section. _ T(Upy) +T(Up—1) —2T(Uy)

In fact, following [37], when the nonlinear terr(u) is Un, = h2 '
bounded(this is the case, for instance, for the sine-Gordon
model, but not necessarily for other nonlinear Klein-Gordonyhere T(u) in addition to its harmonidi.e., linear in the
models; a counterexample would be #&mode), the term  setting of Eq(11)] part could also have a nonlinear pE88].
G(u) in Eq. (8) can be omitted without significant effect on The continuum limit for such equations is,=d2T(u).
the dynamics of the system. The term that is critical for thegwever, Rosenau also partially studied models with an on-
incorporation of the discreteness effects, as argued igjte substrate nonlinearifisuch as the Frenkel-Konotorova
[37.38, is the secondmixed-derivatives term of the left-  (Fk) mode] in Sec. Il of[37].
hand side of Eq(8). _ _ _ In the former cas¢Eq. (11)], linearizing about a uniform

On the other hand, as mentioned in the Introductiongteady state, and considering plane wave solutions of the

terms with higher derivatives, and even more so when thesgym expfwt—ikx) to derive the dispersion relation, one ob-
are mixed, can present a significant challenge in numericghjg

investigations. We bypass such obstacles by considering the

11

“parent” Eq. (6) rather than the “daughter” Eq$7) and(8). K2
In particular, a crucial observation for the numerical methods w’= 5 (12)
developed and implemented herein is that the plane wave 1+ak

exp(kx) is an eigenfunctioro all ordersof the operatow?; , . .
hence it is also an eigenfunction of all of its rational forms. He€Nnce, the continuous spectrum will extend over the interval

Therefore, using the Fourier decomposition of the fig(x), )\IE *iwe *i[0,y1/a), of the imaginary axis of the spectral
plane.
A In the case of Eq(6), where either first or second deriva-
U(X)=; exp(ikx)u(k) (9 tives and a substrate nonlinearity are considered, when lin-
earizing about a uniform steady state= uyg(=const), the

(the hat will be used to denote Fourier transfarmith the  following dispersion relation is obtained:
appropriate wave numbers determined by the boundary con-
ditions used in the numerical implementation, we can ex-
press the pseudodifferential operator of E&). as

2

{iw,— w2 =— +F’(u). (13

1+ak?

&i k2 . We assume her@s is the case for the stable uniform steady
Tu(x’t):; B 1+ak2u(k,t). (100 states of the models of intergsthat F’(up)<0. Then the
1- 1—205 continuous spectrum will extend over the interval
e (F'(ug) —1/a,F'(up)] for the dissipativeparabolig first-
Hence, to solve Eq6), we use the following algorithm at  Order in time PDE, while it will consist of the intervals
each time step of the simulatiofl) Fourier transform the € *i[V—F’(Uo),V—F'(Ug)+1/a) in the Hamiltonian case
field; (2) form the term in the sum of Eq10) in Fourier ~ Of the second-ordelin time) PDE.
space;(3) Fourier transform the latter field back into real ~An important observation that holds true for both Egs.
space; and4) time step the simulation by one integration (12 and(13) is that the continuous spectrum has an upper
step. bound, as does the continuous spectrum for the proper dis-
The last Step can be performed with the integrator of 0ne’§rete prOblem. This was underlined as a Significant asset of
preference. For the computations presented herein, resuff@e regularization method used [87,38 with respect to
have been obtained with fourth-order explicit Runge-Kuttaother continuum approaches to discreteness. What was not
(RK) integrators and have also been validated with eighthemphasized, howevefand to which point we will return in
order RK methodssee Ref[45)). our effort to improve on this modglwas that the upper
It should be noted that this approach towards solvingoound of the dispersion relation is—F’(up) + 1/a, instead
equations of the form of Eq(6) was certainly known to of y—F’(ug)+1/(3a), an upper bound about twice as high
Rosenay46], even though, to the best of our knowledge, it (actually \/3 times, in the case of ' (uy)=0. An additional
was not numerically implemented in the solution of nonlin-argument in favor of the Eq$6)—(8) presented irj37,39,
ear partial differential equations of that form. was that, contrary to what is the case for other continuum
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approaches to discretenegsee belowy, the number of This expression for larg& has a well-defined limifbeing
boundary conditions needed to solve these equations will bequal to—(1+B/C)/A] and so will every expression that
the same as the ones needed for the original discrete equesntains 2n+1 fractions between r2+2 expressions that
tion. have a(secondl derivative(and hence give, im+1 pairs, a
The most popular among the alternative methods that, invell-defined largek limit). Notice that this is a natural gen-
fact, need additional boundary conditions has been esseeralization of the Rosenau resiilhe case om=1). Notice
tially the Taylor expansion of the discrete Laplacian. In par-also, perhaps most importantly, that the computational cost
ticular, the general form of this Taylor expansion reads of the algorithm given in the preceding sectiomat affected
by the generalization presented here. In particular, the ex-
“ oRh2i-2 pression that has to be calculated instead of the one in Eq.

Azunzgl 2 U = Uyt augut OCh?). (14 (10) is rather[for the continued fraction of Eq17)]

2

In all of the cases in which the Taylor expansion has been > (k,t), (18)
implemented, only the leading-order fourth derivative term K AK?

has been used. As pointed out by Rosenau, this term neces- 1+ B2

sitates additional boundary conditions. However, it is not 1+

without reason that in all of the cases in which this equation 1+ CKk?

has been discussed, it has been used either in a modified

setting (through an appropriate transformation as was donévhich is an algebraic expression of the same computational
in [47] and later in[48,49), or it has been used to obtain cost as in the case of E¢L0). Notice that in reaching the
static solutions and their stabilit}23,50. The reason is conclusion of Eq(18), the eigenfuction naturé@o all alge-
straightforwardly found in the dispersion relation for the braic ordergof exp(kx) for the operatoﬁ)z( has been crucial.
equation obtained by substituting the above expansion in Eq. In order to use Eq.17) in practice(i.e., for computational
(1), purposep we convert the three fractions into one of the form

_w2:_k2+ak4+|:f(uo)_ (15) kz(l—ahzkz)
1— ah?k?— gh?k2+ yh*k*’

(19
Hence, for large wave numbers, the equation suffers an “ul-

traviolet catastrophe,” as excitation of these wave numbers . . .
will destabilize the system. We will also demonstrate thisWhere a simpldalgebraig reduction ofA,B,C 10 a, 8,y has

effect numerically in the following section. been used. We then use Taylor expansion of the denominator

The important question that arises néatso in view of to convert the expression of E4.9) into one resembling Eq.

; 6
the failure of the leading-order approximation to capture the(%4)‘ By matching up toO(h") to the exact Taylor expan-

upper bound of the continuous spectiuswhether the con- tSI;c_)n, we obtalgtthree al?elfaral:: te_quatflons cfQBd, anV?/y. In
tinuum approximation can be improved. To accomplish thattS Way, We obtain a set of solutions fay3, andy. We use

one can consider, for instance, matching the Taylor exparii€'® the set=—0.007912,5=-1/12, andy=0.002 056.
sion to higher order by a fraction of the form t is clear that this process can be carried out to higher order

without additional conceptual complications, even though
the algebraic manipulations will become more cumbersome.

2 2 4 4
Ix ~ 21— g2 Ay 94+ 0(h®) However, the process is straightforward and can, in principle,
h* , h* , ¥ 127 b ™% g2~ be standardized. An additional ben¢fi the matching of the
1= 32%+ 3 % Taylor expansion up to correction terms @f(h®)] that

(16)  should be highlighted here is the valué(yh?)=3.848h?
of the upper bound fow?, which is much closer to the
Selection ofb in such a way that- 1/b+1/12=2/6! will theoretical upper bound of # than the prediction 187 of
make the expansion accurate@g§h®), however, this is not the leading-order approximation presented in the preceding
an appropriate expansion for our purposes, as the large wagection. Of course all these estimates égr are in the case
number k) limit of the left-hand side of Eq(16) is obvi- F'(ug)=0. The latter has to be subtracted from the upper
ously incorrect. We should thus be interested in a form thabound if it is nonzero; however, it is clear that in either case,
has a well-defined large wave number limit. A natural gen-the higher-order approximation captures much better the
eralization that has such a limit is given by the continuedvalue for the upper bound. It should be noted that somewhat

fraction method. For instance, consider similar considerations in the framework of regularization
methods appeared [®1].
(95 Continuing our analytical study of the properties of mod-
> (170 els such as the ones of E46)—(8) and their generalizations,
1— Ady we study the so-called Peierls-Nabarro barrier. In the pres-
53)2( ence of genuine discreteness, it is well knoj@y225,26,30
— 5 that the symmetry of translational invariance is broken. The
1-Co; nonequivalence of lattice configurations together with the in-
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periodic [9,34,53 potential energy barrier which, using a

term coined from the theory of dislocations in sol[&S)], is

called the Peierls-Nabar(@®N) barrier. In fact, the exponen-

tial increase of the height of this barrig25,22 for strong :f dx f dk exp(ikx) ————U(k)

discreteness is the principal reason for trapping and pinning (1+ak?)?

of coherent structures in these “strongly” discrete settings. (21)

An important observation for the continuum-type models,

such as the ones considered here, is that this barrier is n@ne can now use the residue theorem for the integral over

present. The most trivial way to observe this is to note thatvave numbers. The poles arekat = ko= +i/\/a. The gen-

any of the continuum expressions used above contains deral formula states that

rivatives, and hence is, by construction, translationally in- R R

variant. An alternative, less heuristic way to reach the same g(k) 9™ (ko)

conclusion is by means of conservation laws as presented in f dk(k—ko)m - (m—1)!" (22)

[37]. Considering, e.g., Eq7) and integrating by parts over

the spatial variable, it can be found thafu,dx=1, is an  We thus obtain

integral of the motion, which in this case is the linear mo-

mentum. The conservation law is directly associated, via No- ) -

ether’s theoreni54], with a zero eigenfrequencia Gold- f dkexp(ikx) mu(k)

stone modg which in turn means that the PN barrier is 0

absent as the translational symmetagsociated with linear 1 d [ikG(k)expikx)

momentum is preserved. The associated frequency would == &(—2>

have to be nonzero in order for a PN barrier to exist. Finally, a (k=ko)

apart from these indirect proofs, there is a direct demonstra- .

tion of the absence of the PN barrier, which we give here N 1 d [iku(k) exp(ikx)

since we believe it is instructive. a2 dk (k+kg)?
The PN barrier appears if one uses the discrete or even the

contmuum solution in th'e' discrete potential eneE@ﬁ,SGﬂ However, notice that if we perform the differentiation and
parametrized by the position of the centgrof the solution. o e\ ajuation of the derivative termskat + ko and we then

One then finds, to the leading-order approximation througfbroceed to make a change of variables x—x,, the only

the Poisson summation formul&,55,56,38, a periodic bar-  ne of terms containing (andx,) that will appear will be

rier in Xo with an exponentially smallin the lattice spacing ¢ the form expikg(x+x0)],ext —iko(X+X;)], and the squares

h) prefactor. The exponentially small width of the barrier hasgf sych terms stemming from the square in E2{). But all

been justified on various occasiof2,25,30,3$so we will  of these terms are rapidly oscillating and their integration

not dwell on it here. overx will yield a vanishing result. Hence, there will be no
In our case of continuum models approximating the dis-PN barrier term as was clear also from the previous ap-

crete case, if we use the continuum Pagigroximation to  proaches. We believe that this demonstration is instructive in

the first-order difference as mentioned in Sec. Il, we obtainshowing how first derivative terms and energy estimates can

be evaluated in the general class of models considered

teger shift invariance of the lattice problem give rise to a f ( 9 )2
X
u

1-ad?

ik

k=—kg

(23

k=kq

herein.
Jy 2 A number of observations on the advantages and disad-
V[u]zj dx Sul +f(u) (s (200  vantages of this class of continuum methods in approximat-
1-ad; ing discreteness are in order.

] ) A. Advantages
we recall thatf’ = — F and that the first term in Eq20) has

been obtained by taking the difference between the plus and (1) These methods can capture the bounded nature of the
minus sign identities in Eq(5). Notice that for simplicity of ~ cOntinuous spectrum much better than previous ¢aed, in

exposition, we have implicitly used the centered differencefaCt’ almost exactly upon the suitable generalizations consid-

approximation to the first derivative for the discrete problem,ﬁ;ee%egefroerw\]lv eAI]IS%setZﬁeQ:riTs]k)tﬁre s;mbeoggdtﬁz oicmcejltcl)?in?nal

but from our symmetry arguments given above, it is clear. P 9
. R . discrete problem.

that the result we will obtain will be true independently of (i) These methods embody the possibility for radiative

the selected discretization. We now observe that the termys

dxf | . h f iables ses. As is, in part, observed in the rather cr(glace it
Jdxf(u) can always sustain a change of variablesx  j, o|ves traveling wave solutions, as the author points out

—Xo Without creating a PN ternli.e., a term dependent on gna\ysis 0f(39], for similar equations to the ones presented
Xo). That leaves the first term for which we use the Fouriethere the kink profile will steepen in these continuum mod-

transformu(x,t) = [ expikx)u(k;t), to obtain els. This adjustment of the kink shape is in agreement with
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the observations of the original discrete problem. Further- (ii) An additional feature of the phenomenology of the
more, as we will emphasize in the Sec. IV, even though thaliscrete problem’s dispersion relation that was not discussed
translational modes do not bifurcateanslational invariance in [37,3§ is its periodic structure. The dispersion relation
is preservel] edge(shap¢ mode bifurcations can ando  obtained in the continuum models presented herein as well as
occur. These internal modes bifurcating from the edge of thén [37,38 may have a saturation upper bound frequency but
continuous spectrum generate a potential energy barrier, trdoes not contain the periodic structure of multiple Brillouin
oscillation in which(wobbling of the coherent structyrean  zones that is present in the discrete system. Hence, as long as
provide radiation emission mechanisms similar to the onesur interest is limited to the first Brillouin zone, the disper-
presented if26]. Hence, not only the shape adjustment butsion relation obtained matches very well that of the discrete
also the oscillation due to the edge mode can remove energyoblem. But, if a feature is to be studied that necessitates the
from the coherent structure and irreversibly transform it intopresence of multiple Brillouin zones, this would be absent in
small amplitude phonon excitations. the continuum approaches studied here. A feature of this type
(iif) In view of comment(2), such equations as the ones which is missed by the present approach, is, for instance, the
considered above can exhibit pinning, if the kinetic energy igphenomenon of Bloch oscillations of the discrete problem in
drastically reduced by radiative mechanisms, such as the oriee presence of an external linear potential. Such oscillations
considered above. were observed theoretically for nonlinear models of the type
(iv) Finally, PDE’s of this form constitute a kind of “ho- presented here if68,59. In most of their experimental re-
mogenization” of the discrete equations, preserving a signifializations (such as, semiconductor superlatticeg,61)),
cant amount of phenomenology present in the discrete syshese oscillations appear in linear systems. However, they
tem itself. An additional advantage is that this can also bevere recently observed in experiments with optical lattices
useful in obtaining homogenized versions of heterogeneou®r Bose-Einstein condensatg&?] and were confirmed theo-
continuum equations. This can be justified as follows: if weretically in the same context {57]. Notice, in particular, in

consider a heterogeneous equation of the form the collective coordinate analysis (B7] [Eg. (6) of [57]],
the presence of a sinusoidal term that is responsible for the
Uttty = Uxx+ F(U) +Vexd( X h)U, (24 oscillations and which arises from the spatial periodicity of

s ) the discrete lattice. The absence of such periodicity, as is
whereV(x;h) is an appropriate heterogeneous funcfiey.,  mirrored in equations of the type of EQ.3), does not permit

Vexd(;h) = sinf(2mx/h)], then as has been indicated recently e presence of such phenomena in the context of continuum
[57], a tight binding ansateor a Wannier function approagh  eqyations.

ux,t)=> () d(X—X,) (25) IV. NUMERICAL RESULTS

We now turn to numerical investigations of Eq6)—(8)
can be used to conveftipon appropriate integrations over and the variants of Eq$16),(19), comparing the results with

¢) EqQ. (24) into a discrete equation fap, of the form the direct results of the discrete problem of Ef).
We solve the array of coupled ordinary differential equa-
n gy = Dot €+ AF (), (26)  tions of Eq.(1) directly by fourth order RK methods, while

for the remaining equations, selecting the appropriate wave
where €~ [ $?(X—Xn) Vexd(X;h) + ¢(X—Xp) dyx(X—Xn)dX,  numbers for the implementation of free boundary conditions,
and A~ [f(é(Xx—X,))dX, in accordance with the derivation we solve them through the algorithm given in Sec. Il. The
of [57]. Then, since for the discrete equation a continuummodel for which the simulations are carried out is the dis-
“homogenization-type” PDE can be derived as presentectrete sine-Gordon equation. Hence the substrate nonlinear
above, combining the heterogeneous to discrete and the digerm is of the formF (u) = —sin(u). We will be interested in
crete to(homogeneoyscontinuum steps, we can obtain such the dynamics of kinklike heteroclinic orbits in this model. In
a “homogenized” PDE also starting from a heterogeneoushe continuum limit b— 0), the orbits have an explicit func-
continuum PDE. tional form

B. Disadvantages u(x,t) =4arctagexg y(x—xo—vt)]}, (27)

(i) There is no PN barrier in this model, as we showed
above. This will significantly affect the phenomenology in where X, is the initial position of the kink and a Lorentz
the case of strong discreteness. The exponential increase lodostx— y(x—uvt), with y= J1/(1—v?) has been used to
the PN barrier[8,25,26,22 is crucial in pinning coherent give the kink any initial subsonic speed
structures for strong discreteness. Even though the radiation Figure 1 shows the results fér=0.5. One concept that
phenomenology and the potential for internal mode resowe use extensively to compare the discrete and continuum
nances is present in the continuum model, we should expecésults is that of the projection of the continuum results onto
to find trapping at considerably higher values of the latticethe discrete lattice. This is done through the projection op-
spacing than in the case of the original discrete model. Irerator P u(x,t) =&, ,nu(x,t). The way in which this is
fact, this is what the numerical experiments will demonstratémplemented in practice is that the lattice of spacimg
in the following section. which is used for the discretization of the continuum prob-
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FIG. 1. The case ofi=0.5. The top left subplot shows the time evolution of the ndjum— P,u(x,t)||,, where the projection of the
continuum problem to the discrete one through the opeRtas explained in the text. The dash-dotted line shows the result of the Rosenau
approach, and the dotted one the generalized method of Sec. Ill. Notice a 20—25 % improved agreement in the latter case. The top right
subplot shows the position of the kink for the initial condition, i.e., without a change in $pekd line), the Rosenau approaétiash-dotted
line), the generalized approactotted ling, and the discrete problefdashed ling Note the very good agreement between the discrete and
continuum modelsthe latter three practically coincigerinally the bottom center subplot shows the correspondingly evaluated kink speeds
as functions of time. The line symbols remain the same in representing different appr@@astesd— discrete; dash-dottee> Rosenau
approach; dotted— generalized approaghNotice once again that the results of the different approaches basically coincide. The same
symbols have been used for the rest of the figures.

lem (hence, the conditioh;<h has to be satisfigdis cho-  gain in the accuracy of the order of 20—25 %. This will be a
sen with an integer ratio df/h,; typically a ratio of~10-20  general observation in all of our numerical simulations: the
is used in the simulations. Hende,u(x,t) shows the con- generalized approach always yields results that are closer to
tinuum profile everyh/h; sites. This is a field of the same the discrete behavior by 5—-25 % (depending on the value
number of sitedNh as the discrete field and can be directly of h). In the top right panel, as another indicator of the
compared with the result of the discrete system. In particulaaccuracy of the results, the position of the kink is approxi-
a measure that we use in probing the accuracy of the cormated by the interpolation method [§4]

tinuum schemes is the? norm||u,— P,u(x,t)||, of the dif-
ference between these two fields. In Fig. 1, for 0.5, we 7—P, [u(x,t)]
can observdin the top left panglthat the norm of the dif- X=h|n’"+ n ’ ,
ference for the entire field never exceeds 0.04 in the Rosenau Py U(X,t) =P u(x,t)
approach[as we will term Eqgs.(6)—(8)] or ~0.03 in the

improved approach of Eq19) for the duration of the simu- where n’ is the site such that, . ju(x,t)>, while
lation. Thus, the behavior of the field is captured quite accuP,u(x,t)< (i.e.,n’ andn’+1 are the “sites” of the pro-
rately in both approaches even though in the latter there is gection lattice nearest to the center of the Kinkne can see

(28)
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on the top right panel of Fig. 1, that the continuum methodghe dash-dotted and dotted lines corresponding to the con-
of Eq. (6)—(8) and of Eq.(19) are in excellent agreement tinuum models. Also in the same plot of kink speed as a
with the position of the exact discrete kink and only slightly function of the time, the “continuum” kink’s speed defined
deviate from the position that the speed would dictatdid  above is given by the thick dots. This continuum spegis
line) if it traveled with the initial velocity {,=0.2). Hence, analyzed in the right subplot of the top row of Fig. 2. It is
the methods capture very accurately the “adjustment” of thecalculated in both cases for the continuum model of (£§),
kink’s shape and speed to the discrete setting. Finally in théut with two different fine lattice spacing&{=h/10 corre-
bottom left panel of Fig. 1, from the subsequent positions osponds to the dashed line, whitg=h/20 corresponds to the
the kink (and the time intervals between thgrthe speed of solid ling). In the former case, the average speed is very
the kink is evaluated. The oscillation observed in all the dif-slightly lower (v )~0.1923, while in the latter it iSv,)
ferent approacheis the Peierls-Nabarro oscillation, namely, ~0.1926. It can be clearly discerned in the figure as well as
the oscillation of the kink center as it travels between latticein the inset that two oscillations are superposed. Since this is
sites. There is, however, a significant difference between thfor the continuum model, neither of the two is the discrete
continuum approaches and the discrete result. In the originahodel PN oscillation of frequency;. The fast oscillation
discrete case, the presence of the PN barrier is real, while ihas a period ofT~0.467, very close tdh, /v, when h;
the case of the continuum model, it is an artifact of studying=h/10, while it is approximately half of that¢0.234) when
P,u(x,t) rather than the continuum field. In particular, as weh, =h/20. Hence, this is the fast oscillation due to the very
will also mention below, an alternative method to calculateweak PN barrier of thdine lattice.
X, but for the continuum field is to consider E@®8), with The slow oscillations, as is clear from the inset, are of the
h—h, and withP,u(x,t) —u(x=n"hy,t) over the fine lat- same frequency in both cases. This frequency can be found
tice of spacingh; (which represents the continuum in our to be w,~0.95. This is a frequency for which,<w,=1,
casg. If we were to probe this “continuum¥, and its speed wherew,, is the frequency of the bottom edge of the continu-
vk, as we will see below, suctPN) oscillations would be ous spectrum. Hence, it pertains to the shape oscillation of
absent. the kink due to the edge mode that has bifurcated from the
Figure 2 shows the case b=0.9. This is already con- band edge of the continuous spectrit,20—22. Finally, in
siderable discreteness since it is well known thatierl,  the middle and bottom row right subplots of Fig. 2, as a final
discreteness effects will become dominant, see, EBBg26]. diagnostic, the field’s spatial profile is shown at an early time
The top left panel once again shows the norm differencgt=24) and at a later timet &48). The dashed line once
described above. It can be seen that even though it grows igain represents the discrete result, the dash-dotted line the
time, up tot=30, it is ~0.131 in the Rosenau approach andRosenau approach, and the dotted line the generalized con-
~0.111 in the generalized approach of EtQ). The reason tinuum approach. In the first cageniddle row), the con-
for the increase in the norm can be traced in the top right antinuum and discrete kinks are found to almost coincide. In
middle row left panel of Fig. 2, which shows the positions of fact the coincidence of the front fieldthe field’s detail as it
the initial condition kink(solid line), the Rosenau approach approaches the front steady statg=2) is rather remark-
(dash dottey) the generalized approactiotted, and the dis- able, while the back fieldapproach to the steady statg
crete model(dashed, as well as the corresponding speeds.=0) is captured less accurately and “radiation” of the dis-
What is happening is that gradually the discrete kink is lag-crete field is more intense than in the continuum case. This
ging behind the kinks of the continuum approaches, openingast observation can be understood as follows. The kink ini-
a gap between the spatial profiles of the two kinks, as we wiltially emits radiation both in the front and in the back, trying
see below. This gap is responsible for the norm increase ab adjust its shape and speed in the discrete setting. This
the difference of the fields. Viewing the left panel of the feature is present both in the discrete and continuum situa-
bottom row, it becomes evident why the discrete kink lagstions. However, as time evolves and the kink moves, in the
behind. One can verify that the barrier observed is the PNliscrete situation it encounters the constraint of having to
barrier. A rough estimate of subsequent maximatat traverse the PN barriers, and in doing so sheds radiation
=11.875 andt,=16.575 and an estimate of the peridd through losing a fraction of its kinetic energthe mecha-
=t,—t, multiplied by the approximate speed 0f~0.192 nism mentioned aboyewhile in the latter continuum case,
gives a spatial scale ¢f=0.9024, which clearly matches the this mechanism is absent and only smaller amounts of radia-
lattice spacing. However, as has been argued previously, thton are generated through the resonance of the edge mode
barrier is present for the discrete system, while it is an arti-oscillations. Hence, gradually the discrete kink lags behind
fact of the projection operator in the continuum case, wherg¢he continuum onegbottom right subplgt which explains
it is absent. However, the presence of this barrier, as has bedime increase of the norm of the difference between the two
analyzed in[8,26] entails a resonance mechanism. The sofields observed in the top left subplot of Fig. 2. The same
called translational frequency,=2mv,/h associated with argument accounts for the continuing accuracy of capturing
the barrier, and its harmonics resonate with the extendethe front field, as opposed to the increasing inaccuracy in the
wave phonon modes, as has been detaileBja6]. These capturing of the back field: as more PN barriers are traversed
resonances drain away the kink’s kinetic energy converting imore back field phonon radiation is generated.
to phonons. Since in the case of continuum models this For comparison in this casé€0.9), we also performed
mechanism is absent, the decay of kinetic enésggn in the  simulations with the continuum approach of E#4), which
dashed line of the bottom row left subplag not observed in  bears the potential for the “ultraviolet catastrophe” men-
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FIG. 2. The right subplots are the same as in Fig. 1, buhfe0.9. In the bottom left subplot a thick dotted line has been added to show
the continuum speed of the generalized apprdeatier than the one projected on the discrete lattice thréyghSee also the explanation
in the text. In this case, we observe that even though the generalized approach is still better than the Rosenau approach, both move faster thar
the discrete kink. The reason is, as explained in the text, the presence of the PN barrier in the discrete case, which induces kinetic energy
depleting resonances that in turn decrease the kink speed. This is clearly observed in the bottom row left subplot. On the contrary, the
continuum models, as is shown, for instance, in the top right subplot showing the time evolution of the “continuum{dgfeeztl in the
text), have no real PN barrier and hence their kinetic energy is not affected by that mechanism; hence, the continuum speed is almost
constant. The continuum speed is shown in the middle right subplot for the generalized model in the basels/td (dashed lingand
h,;=h/20 (solid line). The clearly discernible superposition of two oscillations in the figure comes from the PN barrier of the finehgrale (
the fast oscillatiopand the shape mode oscillation ®f~0.95< w}, (the slow oscillation Finally the middle and bottom right panels show
two snapshots of profiles of the fie{the discrete field and the discrete projection of the continuum)fi€he line symbols are the same as
in Fig. 1. The middle right panel is fdar=24 while the bottom right is for=48. Notice that in either case, the radiation field in front of the
kink is very accurately captured, while in the back of the kink it is increasingly less accurately captured. For the explanation of this
phenomenon, as well as of the gradual lagging behind of the discrete kink, see Sec. IV.
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FIG. 3. The case oh=0.9, evaluated with the variant model
with the fourth spatial derivativéwhich bears the potential for the
“ultraviolet catastrophej. The top left subplot shows the con-
tinuum (dashed ling and the discretésolid line) field att=0.03, 7
while the top right subplot is at=0.12. One can observe clearly in
the bottom subplot of the norm difference the exponential develop-
ment of the instability present in the system, which leads to com- €
pletely different behaviors between the discrete and the continuunm <
models.

60

tioned in Sec. lll. Figure 3 shows the results for this case.
The top left panel is fot=0.03 and the solid line of the
discrete simulation is coincident with the dashed line of the
continuum simulation. However, fdr=0.12, the instability 50 s . . . . . . . .
has been generated and its evolution is clearly exponential ° 1
as expected by Eq15), and can be observed in the semilog
bottom subplot of Fig. 3 showing the norm difference be- °* T ' ' ' ' ' ' '
tween the discrete anghrojected continuum field. ] T Y cob i
In Fig. 4, the same indicators are shown as in Fig. 1, but
for h=1.3. In this case, the discrete kink becomes trapped ozp\A.«
while the continuum ones, as can be clearly observed in the i’» v§\¥;,‘ T
top right subplot of the kink position, continue to propagate **[3 & ;7"

55

025
h

~ET
172N
Y} <

with an approximately constant speed. The lattice spacing for 4, * ' FY | | A /\
which the trapping occurs is the same as the one obtained b* ' P P i i
[8], however, the important observation is that this critical s J / 1

i

)
value ofh for the continuum models isotthe same as in the ‘\
discrete case. This is understandable in view of the absenc |
of the PN barrier mechanism, which as we saw above is ool '
chiefly responsible, when it becomes importéint., for h '
>1), for the disparity between the continuum and the dis- [ L ' v
crete behavior. s . . . N .

-0,
As was explained above, the continuum models do not ° ™ » % 4 & & 0 & % 10
accurately capture the lattice spacing at which trapping oc-

curs. However, a naturall question 'S.Whether Con'tlnuunlhe discrete kink will eventually be trapped while the continuum
models POSSESS the_ trapping properf[y in their own right, OBnes will continue propagating at dapproximately constant av-
whether it is a genuine property of discreteness. On the ONgrage speed.

hand, bifurcations of traveling waves to standing waves have

been observed in continuum systefi&3], while, on the approximation, as are other su¢power law effects[23].
other hand, the leading-order power l&f O(h?)] correc-  Furthermore, even if the PN barrier is absent, there is the
tion to the speed of continuum systems when they becomshape mode oscillation, which can also resonate with the
discrete[64] is expected to be captured by the continuumcontinuous spectrum and transfer some of the internal energy

FIG. 4. Same as in Fig. 1 but for=1.3. Notice that in this case
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compassed in Eqs4.4—(4.6) of [65]. It will, thus, be true
according to these predictions that the approximate static
kink solution of the discrete sine-Gordon equation reads

simw(nh)]
Un:W(nh) - T, (29)
w(x)= —2arctafib sinhi }(bx)],x<0, (30
w(X)=27—w(—x),x=0, (3

TS T e Em e m 5 v & 5 e whereb=\1—h?/12. We compare this solution to the static
t solution of the continuum limit

FIG. 5. This plot shows the continuum speeds of the continuum
(generalizefimodel’s kink as a function of time for different values
of h. The solid line corresponds to=0.5, the dashed th=0.9, the
dash dotted toh=1.1, the dotted toh=1.3, the triangles tch
=1.5, the plus symbols th=1.6, the diamonds th=1.7, while
the (lowermos} branch of circles corresponds to=1.8. Forh
=1.9, propagation of the continuum kink will fail.

Ucont= 4 arctafexp(x)]. (32

We also compare the latter with the exact discrete static so-
lution and with the continuum static kink solution of E@)
when the discrete Laplacian is approximated by the Pade
approximation of Eq(17). The comparison is shown in Fig.

of the kink to_ phonons, thus facilitat_ingaspecially_ forh 6 forh=0.5. The solid line shows the difference between the
>1) the trapping process. The numerical observations of thsxact discrete solution and the continuum solution ffor
“continuum” speed(defined aboveconfirm the contribution

of all the above factors in providing a mechanism for stop- ¢
ping in the continuum models. The continuum speed is re-

duced (for low h) by a factor proportional tch? (in the 0015
numerical experiment the exponents2.1) with respect to
the initial continuum speed, in agreement wjig#]. As h is 0.0t

increasedbeyond 1}, higher-order effects become significant
and the reduction rate of the average speed is increase(
while the shape oscillation frequency also contributes more §
significantly to the radiation effects, as the adjustment?
needed for the shape of the kink is larger and hence the shag
oscillation amplitudgland, hence, energys initially larger.
In the latter case, through the coupling of the edge mode
frequency harmonics to the phonon oscillations, a larger
fraction of the kink’s initial energy can become irreversibly s
delocalized 26].

As Fig. 5 demonstrates, the result of these mechanisms i -o02
the decrease of the kink speed and its eventual stopping &
h~1.9 in the case of the generalized continuum model ap-

proach, while the same phenomenon occur$fe.2 in the ) _ _
FIG. 6. This plot shows the difference between the continuum

case of the Rosenau approach. - o i
It is interesting to n‘c))?e here that even though the Con_|ored|ct|on for the static kink in the sine-Gordon modg},,; of Eq.

tinuum models with the Pédapproximants are meant as (32 and three predictions taking discreteness into accounhfor

d ical luti fi that sh f the f =0.5. In particular, the solid line shows the difference between the
ynamical evolution equations that share some of the €53, , .t giscrete solution ang,; the dash-dotted linén very good

tures of the genuine discrete ones, one can also use them i cement with the first ohés showing the difference between the
study steady state solutions and examine the validity of S€Mpadeapproximation to discreteness of H47) andu,gy,. Finally,

continuum approximations to sudbtatig solutions for the  he gashed line shows the difference between the weakly discrete
discrete problem. We give here a particular example of thignalytical prediction of65] and u.,n. The latter is also in good
sort. In particular, for weakly discrete models, a method waguaiitative (but less good quantitatiyeagreement with the exact
developed in[65] for finding explicit static continuum ap- discrete model. The spatial profiles of these differences are shown
proximations to the solution of the discrete problem. In thein the figure. For a quantitative measure of the agreement see also
case of the sine-Gordon equation such predictions are efext.

0.005[

—0.005

—-0.01
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=0.5. The norm squared of the difference between the two iemphasized, other features are also lost. The lack of period-
||ug— Ucond |5=7.648< 10~ *. The dash-dotted line is the re- icity in the dispersion relation, for instance, does not allow
sult of the Padeapproximation and can be observed to bestudy of features, such as Bloch oscillations, for which such
almost exactly the same as the genuinely discrete result. I periodicity is crucial.

fact the||Upage — ucom||§: 7.287x 10 4, also very close to (iii ) The generalized approach presented herein provides a
the exact discrete result. Moreover, the functional depenmore accurate representation of the discrete case, and with-
dence of these differences is almost identical. If the approxiout considerable additional effort, higher-order schemes,
mate analytical solution di65] is compared taigop,, it can which are accurate to higher power law orders, can be devel-
be seen to capture the correct functional variation and reg2Ped through the systematic process presented. However, as
sonably well the quantitative detaflsven though the correct these are all power law types dfranslationally invariant

to O(h®) Padeapproximation is more accurdtén this case ~ corrections, the beyond all ordelr85] exponential nature of
||Upd— Ucond|2=5.410< 10" % (the subscript stands for the PN barrier cannot be captured. A systematic continuum

way to include such exponential effects would clearly be
desirable, even though it would probably have to contain an
explicit spatial dependence in the continuum equatvamich
would break the translational symmetry

From the above results we conclude our observations in We believe that in view of the above results, an increased
the following points. understanding of the continuum approaches to discreteness

(i) Continuum models can retain significant aspects of thédias resulted and the range of validity of continuum approxi-
phenomenology of their discrete origins. Such aspects inmations, their benefits as well as their shortcomings, have
clude the dispersion relatiaiin the first Brillouin zong, the  been in large part clarified. The pursuit of alternative con-
presence of internal modes, the same number of boundatinuum models(more amenable to mathematical analysis
conditions, the radiative resonances, and the slowing dowthat could potentially capture more closely the phenomenol-

weakly discretg

V. CONCLUSIONS AND FUTURE CHALLENGES

and eventual pinning of the solutions. ogy of discreteness still remains a challenging task.
(i) On account of incorporating the above phenomena,
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