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Local optical density of states in finite crystals of plane scatterers
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Spontaneous emission rates in a dielectric structure are position dependent and proportional to the local
optical density of states. The latter can be calculated when the Green function is known. In our scalar
formalism, we model dielectric slabs as infinitely thin planes and useTtmatrix formalism of multiple-
scattering theory to find an exact analytical expression for the Green function of a dielectric mirror of arbitrary
number of unit cellN. All the propagating and guided modes of the structure are found. There are didmost
guided modes and their dispersion relations are studied. The guided modes appear around frequencies corre-
sponding to the first stop band in normal direction. Local densities of propagating and guided modes are
presented, also for frequencies where the layered structure acts as an omnidirectional mirror.
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[. INTRODUCTION spatial direction only. Our focus will be on the local mode
densities in and around the structure. We look for a model
Photonic crystals with a complete photonic band gap havéhat is simple enough to allow for analytical solutions yet
a frequency interval in the optical regime in which the totalrealistic enough as to give insight.
density of states is zefd]. In order to have such materials = Before introducing our model, we briefly discuss some of
in which spontaneous emission in all directions would bethe relevant work on layered photonic crystals. Optical prop-
completely suppressed, much effort is made nowadays terties of dielectric slab structures have been studied inten-
fabricate photonic crystals with periodic spatial variation ofsively [12,13], both theoretically and experimentally in pure
the refractive index in three dimensiofs3]. The refractive  and applied optickl4,15. An optically excited atom inside a
index contrast must be high, the volume fraction of the high-slab structure can spontaneously emit its photon into a radia-
index material should be smdlt], the crystals preferably tive or a guided mode and both types of decay channels
should have many unit cells in all three directions, and lightcontribute to the total spontaneous emission fa&j. Lay-
absorption should be absdi. In the optical domain, these ered dielectric structures that recently enjoyed some interest
combined requirements prove to be tough, and many reare the so-called “omnidirectional mirrord"17]. With the
search groups are working on it. future photonic band-gap crystals they share the property of
In inhomogeneous materials such as photonic crystalgmnidirectional reflection of light in a well-defined fre-
spontaneous emission rates, in general, are position depegquency interval. Unlike inside a photonic band-gap crystal,
dent and proportional to the local density of staePOS) inside layered omnidirectional mirrors the spontaneous emis-
[6,7]. It is therefore interesting to calculate the LDOS for sion rates do not go to zefd8]: in the frequency interval
specific dielectric geometries as, for instance, recently washere light cannot enter the structure, spontaneous emission
done for photonic crystals in two dimensions consisting of as taken over by the guided modes. Evidently, reflection ex-
finite number of cylinderg8]. Also the theoretical and ex- periments alone are not enough to tell what is going on in-
perimental study of the LDOS in spherical microcavities canside a photonic crystal.
be mentioned herf9]. The calculation of local densities of The perfect periodicity of infinite crystals increases the
states in infinite three-dimensional photonic crystals are nuehances for analytical solutions. Analytical properties of fi-
merically very involved[10,11]. In practice, photonic crys- nite crystals consisting dl unit cells are more difficult to
tals have a finite size, but the LDOS of a finite crystal wouldfind. Fortunately it is known from transfer matrix techniques
be even harder to calculate. In principle, the LDOS could12] how to express transmission and reflectiorNgperiod
directly be inferred from the Green function of a photonic Bragg mirrors simply in terms of the numbkrand the re-
crystal, but Green functions are hard or practically impos-lection p of a single unit cel[13]. In Ref.[19] this result
sible to find for finite crystals with refractive-index varia- was generalized to nonabsorbing layered structures where
tions in all three dimensions. Therefore, it is interesting tothe unit cell has an arbitrary refractive-index profile. These
look for other finite photonic systems for which Green func-analytical results are important. But as we learnt from the
tions can be calculated explicitly. In this paper we considelomnidirectional mirror, the knowledge of transmission and
three-dimensional light propagation in a system of periodiaeflection is not enough for understanding spontaneous emis-
dielectric layers, where the refractive index varies in onesion rates of internal sources: we also need to find the guided
modes of finite one-dimensional photonic crystals consisting
of an arbitrary number of unit cells. [120] a general method
*Email address: c.m.wubs@tn.utwente.nl was derived to compute propagating and guided modes and
TPresent address: Complex Photonic Systems Group, Faculty éreen functions of multilayer dielectrics with constant re-
Applied Physics, University of Twente, P.O. Box 217, NL-7500 AE, fractive indices in each layer. One has to be very careful not
The Netherlands. to miss any of the guided modes. The method involves a
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numerical step, namely, the solution of boundary conditions [ h(@))=|in(@)) + Go( @) T(@)| in(®)). 2)
at each dielectric interface. In our calculations, we want to
avoid such a step. The T-matrix formalism should not be confused with the

In the theory of(metallic diffraction gratings, it proved transfer matrix approach, which in the study of layered sys-
useful to study the limit of infinitely thin gratingl21] and  tems is most commonly used?2,13. Formally, one can
there homogeneous layers are called impedance sheets. Weite T(w)=V(w)[1—go(w)V(w)] *. The scattering prob-
study a Kronig-Penney model of a finite layered photoniclem is solved once an explicit form of the inverse operator is
crystal. Such models have been used before in the study ébund. The samd& matrix that solves the scattering problem
infinite layered photonic crystals in ofi22] and two[4,23]  for the field, also solves the scattering problémat is the
spatial dimensions; in the latter paper also guided modes ddyson-Schwinger equatigrior the Green function,
the infinite crystal are considered. Our model differs from

these works in that we consider finite crystals in three spatial G(w)=go(@)+go(w)V(w)G(w) 3

dimensions, in a formalism that is particularly suited for

finding all the optical modes in a unified way; tilocal) =go(w)+go(@)T(w)go(w). 4

density of states strongly depends on the number of spatial

dimensions considergd1]. Thus, theT matrix directly leads to scattered fields and to the
We use theT-matrix formalism of multiple-scattering Green function.

theory (see the classid24,25 or [26] for a recent account. Now consider an infinitely thin plane=z, that scatters

An advantage of multiple-scattering theory is that the propdight coming fromz<z,. In this paper we consider scatter-
erties of systems consisting of many scatterers can be givdAg of scalar waves. If an incident plane waves;,) = k)

in terms of the properties of the individual scatterers. Bound= |k ,k;) with k, real and greater than O scatters from the
ary conditions are automatically satisfied if they are satisfieplane, the in-plane wave vectéy is conserved. The total
by the single scatterer. Another advantage is that the formaWwave|y) is called a “true mode” or “mode function” and it
ism simplifies the calculation of Green functions enormouslyhas an incoming, a transmitted, and a reflected part. Trhe
The concept of a point scatterer has proved extremely usefunatrix for such a plane scatterer must have the form

for random multiple scatterinf27,28. Band structures and

local densities of states of crystals consisting of point scat- 1 ’ _

terers have also been studiggl29]. Here we propose the To(w)= (2m)? dky Tk @) Ky, zo){(Za Kyl (5)
planar analogue of the point scatterer, the infinitely thin

plane, which we coin thelane scatterer The function T(k;; ) describes the light scattering as a

_The_organization of the_paper is_ as follows. In Sec. Il weg,ntion of in-plane wave vector and frequency. At the mo-
briefly introduce theT-matrix formalism that we then apply 1 ant the function is not specified, but in Sec. IIC a model

to a single-plane scatteréBec. Il A) and toN-plane scatter- iy he derived for it. In the rest of the section, we express
ers at arbitrary positionsSec. 11 B. An analytical expression  yanqmission and reflection properties of a single plane in
for the T matrix is derived in the special case that tNe (o5 of itsT matrix. Furthermore, we analyze the forms that

planes are at regular distances. The specific model for ge T matrix can take if we assume that energy is conserved
plane scatterer that will be used throughout this paper is ing, he scattering process.

troduced in Sec. IIC. The optical modes of the crystal of £iot \we need a suitable representation for the plane-

plane scatterers are presented in Sec. Il and both the propgz,itering problem. The free- reen fundii h
gating (Sec. IIIA) and the guided _rrjodeeSec. 1B are gc:ttiveﬁk%gv?,s rea|_ipae§esprae%?eese?ﬁati;b((l‘?g?%) is
Q|scussed. In Sec. IV'the local densities 'of states correspon & explot|r—r'[)/(4m|r—r']) with @*=w+i7 so that the
ing to both propagating modes and guided modes are presreen function corresponds to an outgoing spherical wave.
sented. In Sec. V we conclude. In Fourier representation we hagg(k,k’;w) = (27)38%(k
—k")/[(w"/c)?—k?]. By the choice of the infinitesimally
Il. T-MATRIX FORMALISM FOR PLANE SCATTERERS small positive part we select the causal Green function
whose inverse Fourier transform gives zero for tinhe<
[30]. In the following, Green functions are implicitly under-
The modification of an incoming wavéy;,(»)) into  stood to be causal and the- notation is dropped. Now the
|#/(w)) due to the presence of a potentiglw) is given by  form (5) of the plane scatterer suggests a mixed representa-
the Lippmann-Schwinger equation tion {|k,z)}, wherek=(k, k) is the wave vector parallel
to the planes. Then the free-space Green function becomes
[4(@))=|thin(@)) +go(@) V(@) (). (N

A. General properties of the single-plane scatterer

9o(kj . zK'), 2" 0)=(k,Z|go( @)K} ,2")
Heregg(w) is the Green function of the system without the - ) .
potential. We use the abstract bra-ket notation; later we turn =(2m)6°(kj—k')go(k|,z=2"; ).
to a specific representation of the waves. The figitl) ) is (6)
the implicit solution of the scattering problem. We would
know this field explicitly if we would know the transition The functiongy(k,z; @) will also be called the Green func-
matrix or T matrix of the problem, which is defined vj@6]  tion and it takes the form
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_ explik,|z]) have as in the one-plane case thd)=V(1—goV) . The
Go(kj,Z w) = 2ik, (7 inverse is defined as an infinite series, so that
(N) = -
wherek,= \/(w/C)Z—k‘z‘ can be real or imaginary. Using this TH=VHVEV VgV gVt - -, (13

and Eqs{(2) and(5), we find for the mode function where nowV is the sum of the one-plane potentials. We now

try to actually do the summation of this infinite series of

4 T(kj; o ) _ . :
d(r)=e*r 1+ % . (z>z,) (8) plane-scattering events. Then, instead of writingTheatrix
1Kz in terms of potentials, it is more efficient to write it in terms
A o [Tk ) €2 of the one-pland matrices,
—eikry gkt TDTE ,2ik . (z<z,). 9)
z

TM=2 T+ > X TyGoTa
The expression between the square brackets if&ds the “ Bta @
transmission amplitude(k| ; ) in terms of theT matrix and
between the brackets in E(P) we have the reflection am- + 2 E 2 T,90T 90Tt - (14)
plitude p(k ;®). The reflected wave vectd® equals k|, vEB BEa @
—k,). Thus, we have expressed transmission and reflecti
properties of a single plane in terms of tamatrix.

Until now, we have not assumed that energy is conserve
in the scattering process. Energy conservation puts a restric-
tiqn on the fprm thal (k| ; ») can hgve, a restriction .that we . E E E f dzkulku)(k”|T3(k” 0)00(K| 24
will now derive. Energy conservation can be quantified with ~ (27)° "« 8 v
the help of the energy flux density vectdf31],

Written out explicitly, the term of third order in the single-
HlaneT matrices in this series is

1

—25,0)(1~ 84p)90(K|, 2~ 2, @)

Jrt=—a (w—(r’t)vw(r,tw VALY Vit (r,t) |, X (1= 6g,)|z.)(2

at at
(10 Now define the matrixD ,g(K|;®)=do(K|.Z,~2Z5;0)(1
d4p) and notice that the third-order term can be rewritten

(15

uE

where « is a proportionality constant depending on the __
choice of units. Since there is no energy transfer between

true modes, the energy current density in the z direction 1
should be the same far>z, and forz<z, for every mode 5 > > j a2k | k) (K T (K s )
| ) separately. In terms of the transmission and reflection, (2m) o B
this leads to the requiremejpt|“+[7|*=1; in terms of theT LTk 0) DKy )13 aplZa)(24]. (16)
matrix it reads
1Tk )2 So we can see the square of the matmD] in the third-
ImT(kj;0)=—> (H—w (11)  order terms. The fourth-order terms feature the cube of the
2 k, matrix (TD), and so on. This matrix structure enables us to

um the infinite series exactly: tAematrix of N parallel and

This is the optical theorem for the plane scatterer. Note that Hentical plane scatterers is given by

only holds for reak,. The most general matrix satisfying
the optical theorem has the form 1

(N)( )=
T(kj;0)=—[F X(kj;0)—i/(2k)] 72, (12) T (w) o)

OB ED AR Y

where the optical potentidf (k| ;w) for the plane is a real X(zg,kl, 17
function of its arguments. Furthermore, for planes that scatter

isotropically, we have- (k| ;») =F(kj,»). The Egs(9) and where

(12) together show that a larger optical potential leads to a N) o _ Y
higher reflectivity of the plane. Tap (K, @) =T(kj;0)[1=T(kj;0)D(kj;0) ], - (18)

The problem of finding thd matrix is now reduced to the
much simpler problem of finding the inverse of thiex N

Consider a system dfl identical and parallel plane scat- matrix T®N). For arbitrary positions of the planes, the inver-
terers at arbitrary positions, ,zg, and so on. At first, we do  sion must be done numerically. The matrix elements depend
not assume that energy is conserved in the scattering process) the positions and effective thickness of the parallel planes,
so that the single-plan& matrices need not be of the form and on the frequency and in-plane wave vector of the light.
(12). Just as in the one-plane case, we want to know mod8ince Eq.(17) is valid for arbitrary positions of the plane
functions and Green functions of tiéplane system. This scatterers, it could be the starting point for studying random
we do by calculating th& matrix T(N)(kH ;w). Formally, we  scattering.

B. N-plane scatterers
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The important special case that will be studied here is Define u=—2ik,/T(k|,») andx=exp(kza). ThenT{)
the situation where th&l planes are positioned at regular in Eq. (18) can be rewritten as- 2ik,M ;é with
distances a from each other, at positionsz,=a,z,
=2a, ...,zy=Na. We then have a three-dimensional opti-
cal Kronig-Penney model for a finite photonic crystal with
periodic variation of the refractive index in one dimension.
The regular distances between the planes enable us to do tkiée should like to know the inverse of thigx N matrix M
inversion of the matrix in Eq(18) analytically, as we shall for arbitraryN and in the Appendix this mathematical prob-
discuss now. lem is solved. The result is

M= 8+ (1= 8q)x<!l. (19)

TN —2ik,
af T o 2
(2= p)x

+[XhN(a+ 1,1)—hy(a,1)][hn(1,8) —xhy(1,8+ 1) ]
1+hy(1,)

hn(a, B) —xhy(a+1,8) —xhy(a, B+ 1)+ x*hy(a+1,8+1)

: (20

where the functiorhy(a,B) is defined as

2-w)x 1 N [cos{(a+ﬂ)m7r/(N+1)]—cos{(a—,6’)m7r/(N+1)] 21)

hN(a"B)EZ(l_M) N+1 &4 C—COS:m’ﬂ/(N'i‘l)]

From the definition ohy it follows thatM ~* is a symmetric matrix, as #!. The matrix elements ofN) strongly depend on
the form of the constar® in Eq. (21) and for realk, it is given by

2x2— u(1+x3) 2k, Re(T)+i(2k, Im(T)+|T|?)
= ———————=cogk,a) +sin(k,a . 22
2X(1=p) slea)reintes) AKZ+|T|?+ 4k, Im (T) 22
Fortunately, the summation in E€R1) can be done exactly so that we end up with a simpler expressidm,fi82],
o (2= p)x[cog(N+1—|a—pg[)Ka]-cog(N+1—(a+B))Ka] -
@B =50, sifKalsif (N+1)Ka] ’ 23

where the constantK=K(k;w) is defined by Ka  One can see that without energy dissipation, the Bloch wave
=arccosC). (The arccosine is a multiple-valued function vector is either realwhen —1<C=<1) or purely imaginary
but the functiorhy is not; for numerical evaluation &fy the  (otherwise. Imaginary Bloch wave vector (k| ,w) corre-

Chebyshev polynomials are usefuvidently,K has dimen- spond to transmission stop band regions ky,{) space.
sion[m~1] and in fact, it is equal to the Bloch wave vector This will be illustrated in Sec. Il A.

of an infinite crystal of plane scatterers separated by a dis-
tancea. In general K is complex. The important point that
the Bloch wave vector that is normally associated with the
infinite periodic potential also plays a role in the analysis of
a finite crystal, was also stressed in R&B]. Here the Bloch In the preceding subsection, tAematrix of the single-
wave vector shows up in an analytical expression forthe plane scatterer was assumed to be known. Now we will de-
matrix of a finite crystal of arbitrary sizB. No restrictions  rive a model for it, starting from a potential in the wave
on the form of the single-plarié matrix T(k; ; w) have been  equation. Consider a dielectric slab of thickndssd dielec-
applied in the derivation. tric function e. In principle, the dielectric function is a

Let us now assume that energy is conserved. This is thgeqyency-dependent complex functig@s], but here we ne-
ca?e vlvman everilzsw_]r?qle p_If\_ne h%ﬁ aﬁtnx trllzat zsgt'tﬂ'?irfhe glect dispersion and loss altogether by choosingeal and
ggr:g'?antg%eeg(()mgs reear: II\;ISOI’e(;/(IJVZrI’] VC?]?” t(}j'w(e gptiial tﬁeo_constant. Choose theaxis such that it is perpendicular to
rem holds, a simpler expression f6rcan be found by in- the surfaces, defining the latter as the surfaceg, andz

serting for the single-plan® matrix the form(12) =2, d. Then the scalar wave equation is

F(k ;o) {s(r) P2

T g 7 y2
2K, )sm(kza). (29 2 2 \Y

C. Model for the single-plane scatterer

C=cogk,a)— #(r;t)=0, (25

C

046612-4



LOCAL OPTICAL DENSITY OF STATES IN FINITE . .. PHYSICAL REVIEW E 65 046612

where e(r)=¢ for z betweenz, andz,+d, ande(r)=1 1.00 T T Y T
elsewhere. The Maxwell wave equations for the electric and z

magnetic field{12] reduce to this scalar wave equation in N 075 Slab T
some special cases: E@®5) describes the electric field of =)

s-polarized light or the magnetic field of p-polarized light for v 050 T
layered dielectric media. Suppose now that the thickness of 025k \
the slab is much smaller than the wavelengths of light we are 1 ~ Plane -
interested in. Then we can model the slab as a plane scat- 0.00 ; e e o
terer. We define the product of slab thicknelsand polariz- 0.00 0.05 0.10 0.15 020 025
ability ¢ — 1 as the effective thickned3. of the plane scat- d/ia

terer. We find the single-plan& matrix by solving the

. . ) . FIG. 1. Solid line: angle-averaged transmission through a slab
associated equation for the Green function in frequen%f J g d

refractive index 2.6 and thicknessl, as a functiond/\.

Space, Dashed line: angle-averaged transmission through a plane scatterer
with effective thicknes® = (n?>—1)d, as a function ofi/\.

[VZ+ (w/c)?1G(r,r;w)=8%(r—r")+V(r,w)G(r,r';w)
in the limit of |z—z'|— 0. Fortunately, there is no divergence
(26) so that we do not need a regularization procedure for plane

scatterers.

with V(r,w) = — (w/c)?Dsd(z—z,). It is easy to check that Now that we have a one-parameter model forTheatrix

a solution of the Dyson-Schwinger equati@®) is a solution ~ 0f a plane, we can use Ed8) and(9) to find the transmitted

of the equation above, provided that in E§) we take the and reflected amplitudes and p. The transmission ampli-

potential V() = — D¢ w/C)?|z,)(z,|. We shall now solve tude is

the Dyson-Schwinger equation, which in the mixed represen-

tation becomes 1

Kiiw)= .
)= D wloyi(2k)

(30)
<|(“ ,Z|G(w)|k/H ,Z'>=(27T)25(kH— k’H)go(k” ,Z—Z’;w)
. 2 Clearly, transmitted intensities range from one to zero when
T 90(kj 224 @)~ Derl(w/C)7] the eff):active thickness goes from gero to infinity.
X(K| 24| G(w)[K',Z"). (27 In the remaining section, we elaborate on the question
how well slabs of finite thickness can be modeled as plane
If in this equation we put equal toz,, then we can solve scatterers. We compare both cases by looking at the average
the equation foxk !Za|G(w)|k,H ,2'). If we insert this par- transmission, with the average taken over_sqlid angle.
ticular solution back into the Eq27) for generalz, then  For the plane scatterer the average transmission can be cal-
we can also find the Green function for genergl culated directly from Eq(30), giving
<kH ,Z|G(w)|k/” ,Zl>= (277)25(kH— k/H)G(kH ;Z,Z’;w) with 5
(| 71*)ay=1—(7Deg/N)arctafN /(7D )] (31
G(k|;2,2" ;@) =go(K| ;2= 2" ;) +go(K|;2— 24 0) . . - . e
Light transmission through a finite slab is describedNy's
XT(Kj;0)g0(K|;2,— 2" 0), (28) formulas[12] and the angle average must be calculated nu-
merically. Figure 1 shows the average transmissitor
where the frequency- and wave-vector-dependematrix  s-polarized lighj of a TiO, slab of thicknessl in air as well
equals as the average transmission of scalar waves through a plane
scatterer with effective thicknes@eﬁ=(n$i02—1)d. The

B —De(w/c)? transmissions are plotted as a function of thickrebdsvided
1+go(K| 10:0)D o w/C)2 by the wavelength\=2mc/w; the refractive mdemTiO2 is

2.6. Figure 1 shows that slabs thinner thaB@0 can be mod-
=—{[(w/c)®Deg] 1=il(2k)} % (29  eled adequately as plane scatterers with effective thickness
D= (n?>—1)d. Thicker slabs show resonances in the aver-
This T matrix is of the form(12) and hence it satisfies the age transmissiofdue to interference effegtshat the plane-
optical theorem(11). Note thatT depends ork; rather than  scattering model does not describe.
on k;: the optical potentiaF(k;;w) equals (/C)?D g in To give a concrete example, we consideda& 26-nm
this model, so that it depends only on frequency and not otthick slab of TiQ. If one constructs a Bragg mirror of such
the magnitude or direction of the wave vector of the incom-slabs alternating with air with a period of 260 nm, then evi-
ing light. A T matrix of a point scatterer can only be defined dently 10% of the Bragg mirror consists of TiQwhich is
after a careful regularization of the free-space Green functiomlso the typical number for three-dimensional photonic air-
go(r,r’;w) because the latter diverges in the linit—r’| sphere crystal§34]. In normal direction the optical path
—0 [28]. Here, in theT matrix for plane scatterei@9) it is length of the unit cell is 300 nm, so that the Bragg mirror has
the free-space Green functian(k,z—2z';w) that appears its first Bragg reflection at around 600 nm in that direction.

T(k; )
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Position (units of a) 00 0 a/\ 10

FIG. 2. Absolute values squared of two mode functions of a
system ofN=10 plane scatterers, as a function of thgosition in
the structure. The dotted line corresponds to a mode with
=0.50 and the solid line to a mode witi\ =0.51. Modes corre-
spond to incoming plane waves fron+ —« in the direction nor-
mal to the planes. The effective thickness of the plane scatterers e normal direction, but any direction is possiblas is
D.=0.46a. clear from the figure, the slight frequency difference of the

modes has an enormous influence on the mode profile in the

At that wavelength we havd=0.043\, so that the single crystal: the mode witha/A=0.5 is almost completely re-
slab can indeed be described as a plane scatterer the  flected, as the maximum amplitude of almost 4 of the almost
Bragg mirror as a periodic array of plane scattere®ur  standing wave at the left-hand side of the structure indicates;
choice of D« proceeds only a bit different: we chooBey  the mode witha/\ =0.51 has an amplitude that grows inside

=0.23\o, so that for wavelengths arouny=600 nm the  the structure and is almost completely transmitted.
plane scatterer has the same average transmission of 32% asag can be seen from E432) and from Fig. 2, the abso-

the slab. Furthermore, we choose the distambetween the lute value squared of(r: ) is a constant foz>Na. This
planes to be 300 nm, so that ttidue edge of thestop band g ;¢ (intensity transmissior{ 7|2 through theN-plane sys-

n ?:rm?l d'rTCrt'?nrr\T’]v'l:ibﬁq wozr?i(\)/o ntn:ﬁ me model f rtem. Since there are no losses, reflection and transmission
our scalar formalism we arve at the same model 1074y 5 5 one. In Fig. 3 the reflection is plotted for light
transmission and reflection of an infinitely thin plane as was

found in Ref[23] in another formalism, fos-polarized light Incoming in the normal direction, as a function of frequency.
§ ’ - y -;'he prominent features are the stop bands, the frequency

of the Maxwell fields around a dielectric slab in the limits Ntervals for which light cannot enter the crystal in this di-
¢—o andd— 0 while keeping the produch=ed constant. rect|c_Jn. The mode _\Nlth_i/)\=0.5 of Fig. 2 falls just inside
From our calculations and Fig. 1, it follows that it is actually the first stop band in Fig. 3, whereas the other mode corre-
the productDos=(e—1)d that should be kept constant sponds to the first reflection minimum at the blue side of this
while taking the limits. first stop band.

The stop bands correspond to frequencies for which the
Bloch wave vectofproportional to the cosine of E¢L2)] is
a complex number. In between the stop bands, the Bloch
A. Propagating modes wave vector is real and there one finds the reflection maxima

With the T matrix in hand, in Eq(20), we can use the and' minima that are characteristic for periodic m'edi.a. In Fig.
solution (2) of the Lippmann-Schwinger equation to calcu- 3 hlghe_r-order stop bands become_ broader. Thls_ is because
late the propagating modes of the finite photonic crystal. Théhe optical potentialDe¢(w/c)? rapidly grows with fre-
propagating modes in our model are labeled by the wavéuency since we do not take the frequency dispersidgf
vector and frequency of the corresponding incoming planénto account. Of course, one could improve on this by taking
wave; actually they are related through/€)2=k?. The  dispersion into account and writinds=[e(w)—1]d, but
propagating modg i, (w)) corresponding to arN-plane  the optical theorent11) only holds as long as the complex
crystal is given by part of e(w) can be neglected.

Transmission and mode profiles of propagating modes in
layered systems usually are calculated with the transfer ma-

FIG. 3. Reflectivity|p|? of normally incident waves by a crystal
of N=10 plane scatterers separated by a distanes a function of
a/\.

Ill. OPTICAL MODES

N

. _alker__ _ AiKper H
hlrio)=e 2kze ” aﬁzl exlik,|z trix technique[12,13. Here we showed that for a crystal of
_ plane scatterers one can alternatively use Thaatrix for-
— 2 ITOR (k) s ) €'e2s. (32)  malism. For presentation purposes we chiise10, but we

also considered mode profiles and reflection for 200 planes
If we put N=1 in this equation, then we find back the mode and more planes do not form a problem: fhenatrix ele-
function(8) for the single plane. In Fig. 2 the absolute valuesments ofN planes are known analytically and the calculation
squared of the mode functions are plotted for two mode®f the mode function boils down to a simple summation over
propagating normal to a crystal bf=10 planes(We choose the N? matrix eIementsT(a’\g(kH Tw).
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B. Guided modes than one guided modélepending on its thickness and
In the preceding section we found a continuum of propa_dlelectrlc constankt). These guided modes other than the

gating modes with real wave vector components in all thredirSt One are orthogonal to this first one. Their mode func-
directions. The crystals of plane scatterers could also suppofP"S have their extreme values inside the slab and change

a finite number of guided modes that propagate along th&lgn at least once inside the slab. In the limit of an infinitely
planes with in-plane wave vectoks™> w/c so thatk,=ix thin slab, the mode functions remain continuous, so that the
z

and kﬁ—x2=(w/c)2. The imaginary wave vector in the maxima, the minima, and the zeroes should coincide on the

direction makes that guided modes decay exponentially Ouplane. Therefore, a plane scatterer can support at most one

. . . : ided mode.
side the scatterer: unlike propagating modes, guided mod : . —
do not correspond to an incident wave. It is the dispersion |-t|tOW m,?n\xl gtr’]'ded .m?ddes .eX|dsttr|]n tathcrystal prlar?e th
relations of the guided modes that we concentrate on heré‘c‘::1 ergrs.t de T?,\\,’)e_JfS. envel ¢ a e\xl.tc;]cf#r évfgn €
the contribution of the guided modes to the local density oide erminan @f{ ) lis equa’ to zero. WIth the denini-
states is discussed in Sec. IV. tion of the matrixM in Eq. (19) this condition simplifies to

In general, the bound states of a scattering system can U\,/Ib\(lkln ;“}) ]h:(,)d\. Afor(;r_]ul? for thistgeterminan[;[ is Q;Veln in
found as the solutions of the Lippmann-Schwinger equatiorgd: (A1) of the Appendix, for an arbitrary number of planes

. L . . The result is that guided modes correspond to solutions of
in the absence of an incident waj26]. A guided modé i, .) a . . .
of the crystal of plane scatterers is bound in théirection 1+hn(1,1)=0, with hy(a, ) given in Eq.(23). We assume

and it satisfies that the planes do not gbsorb light and us_e_the faken f(_)r
the single-planelT matrix. Then the condition for guides
modes to exist becomes

pzo)= | dngky - mie V@0 zio), |
—o B sin(NKa)
(33 [2K+F(k“;w)]e Ka

SM(NTDKa] 2 (35)

with  the potential V(z0)=-— FEr’Lﬁ(Zf na), F  This single equation determines the number of guided modes
=De(w/c)? and the free-space Green function as definedhat can exist at a certain frequency for an arbitrary system
in Eq. (7). Given a frequency and the number of plan@é  sjze N. The frequency dependence of the equation is in the
this equation will have a finite number of solutions. In orderg|och wave vectoK and in the optical potentid.

to find them, define th&\-dimensional vectolr with com- A new gu|ded mode appears at a certain frequency with
ponents¥; = ,(z;) in which thez; are the plane positions. =0 and when the frequency becomes higher, this mode
Using Eq.(33), the following homogeneous linear system of hecomes more localized to the structure so thacreases.
equations can be derived: Thus, we can count guided modes at their point of first ap-

pearance, at=0. There we find that the conditid5) sim-

. _ plifies to sinNKa)=0. Now for wave vectork,=i«, the
[),Zl [Sapt Qo(K| Za—25;0)F]W =0 for Bloch wave vector satisfies
a=12,...N. (34) cogKa)=cosh«xa)—[F/(2«)]sinn(xa),  (36)

. _ 2 . . . _
Nontrivial solutions of Eq(34) only exist if the determinant S0 that withF = Dex(w/c)” we find guided modes with fre

of the coefficient matrix vanishes. Now this coefficient ma-A4€N¢!€S

trix can be rewritten as-F(T™)_ 2 with the use of the wp( k=0)= 267 (aDug) V1 — cogma/N)

general definition of tha matrix T=V(1—goV) L. So the m ef

guided modes can be found as the poles ofTtiheatrix. This for m=0,1,...N—1. (37)

is the direct connection between the guided modes and the

matrix. It turns out that for systems df-plane scatterers at a fixed

The guided modes of a single plane are easy to find. Fofrequency, there are at molstguided modes. AIN guided
N=1, the T matrix T{(k;w) of Eqg. (20) reduces to modes emerge in the frequency intervak 8<2c/\aDgy.
T(k;w) as in EQ.(29). The one-pland matrix has a pole An increase in the effective thickness of the planes makes
K(11)=(w/c)2Deﬁ/2. This is the dispersion relation for the this frequency interval smaller, because at the same fre-
guided mode of a single plan€One could equivalently quency the modes have largerand are more localized, just
present the dispersion relation asversusk, but here and as was analyzed for the single plane above. Or vice versa, for
in the following, we choose to present versusk.) The fixed « the frequency of a mode becomes lower when the
dispersion relation shows that for every frequency, a singleffective thickness increases. In the lilt—c a band of
plane has one and only one guided mode. The same singtriided modes is formed. The case of an infinite number of
guided mode for a single plane was found in R&8] using  planes was considered in Rg23] and there indeed the band
another formalism; the case of finild>1 was not consid- at k=0 is given by the frequency interval given above.
ered there. Figure 4 shows the dispersion of the modeg(«) as a

Why does a single-plane scatterer have only one guideflinction of «, in units of the plane separati@a for N=10.
mode? Dielectric slabs of finite thickness can support moréctually, the frequencies are plotted aé\, and all guided
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0.8 ——T———T1— LDOS is a function of position and frequency and will be
denoted byp(r,w). (This p is different from the reflection
o6t g amplitude of Sec. 11 Q.
< For scalar waves in three dimensiong(r,w) is
© —2wl(wc?) times the imaginary part of the Green function

04F ’ G(r,r;w). In free space, all modes are propagating modes

and po(r,w) = w?/(27?c®), independent of position. In di-
0.2F 1 electric structures, the LDOS is the sum of the local density
of propagating modep,(r;w) and of the local density of
0.0 —_— 1 guided modegpy(r;w), which we will also call the propa-
0 1 2 xa 3 4 gating and guided LDOS, respectively. Spontaneous emis-
sion can occur into both types of modes, the physical differ-
FIG. 4. Dispersion relations of the guided modes for a ten-planeence between the two cases being that light emitted into a
system. Thex on the horizontal axis equalsik,. The effective  propagating mode eventually can be detected in the far field,

thickness of the plane scatterersigy=0.46a. whereas light emitted into the guided modes does not leave
the structure.
modes are indeed seen to appearxatO when O<a/\ First we need to know the Green function of the crystal of

<(1/m)\/alDs=0.47. The figure illustrates that when the plane scatterers. Often a Green function is given and calcu-
product xa is much bigger than 1, the planes guide light!ated in terms of its mode decomposition, but here we pro-
independently so that tHe modes all have frequencies near ceed differently. The samimatrix (20) that gave the propa-
the one-plane frequency2«/Dy. For smallerxa, the N gating and gmde_d modes vv_hen inserted in the L_|ppmann-
planes interact more strongly and the frequencies of thechwinger equation, also gives the Green function when
modes become more separated. So going from right to left ifnserted in the Dyson-Schwinger equati@),

the figure, we go fromN independent single-plane guided N

modgs toN solutions of a genu?neN-pIane problem. The G(k|,2.2";0)=0o(K|, 2~ 2 ;0) + E do(K, 2~ 2, 0)
physical way to traverse the plot is of course by changing the af=1

frequency: at frequencies just belowc/2/aDgy there are
both well-delocalized and well-localized modes. At higher

frequencies, all guided modes are localized, whereas at IOWeIrhis is the Green function in the mixed representation and in

- . 1
e e e i, 10, grer o i the LDOS e st transfom 1 e spac
. Y ) . ) pected. using a two-dimensional inverse Fourier transformation and
tion of the guided modes will be illustrated in Sec. IV.

. , . then take the imaginary part. The crystal is translation invari-
Now let us cqmpare_Flg. 4 with Fig. 3.that showed th.eant in thex andy directions so that the LDOS depends on the
stop bands for light falling on the planes in the normal di-

rection. The first stop band in normal direction occurs for” position only. Moreover, in our modé9) the Individual

light with wavelengths 0.38a/A=<0.50. Light propagation pIanSs scatter light |sc.>trop|cally S0 Fhat.al?@'.\'ﬁ)(k“ ;,w)
normal to the planes is strongly suppressed. In this same Tug (K| ;). Then the integral over directiorks is trivial;
frequency interval, the four last guided modes of the structhe integral over the magnitude is split into a propagating
ture appear. More generally, for our choice®f¢, all the —and a guided part, as we present below.

interesting behavior of the guided modes appears around the The propagating LDOS is given by

first stop band for light propagating in the normal direction. / N

Even when the plane crystal blocks light coming from almost _ w wle

all directions, then light of this same frequency can be pp(Z,w)—pO(Z,w)—ﬁlm fo dk”k”a%‘;l Jo(ky,2
guided inside the structure. Whén,; is decreased, the stop

bands become narrower, whereas the frequency interval in ~2,;0)TO)(K ;@) go(K) 25— Z;w). (39
which the guided modes appear becomes wider.

XTM(ky ;@) go(ky 25— 2" ;). (39)

The integral is taken over the magnitude of the in-plane

wave vectors with values between 0 and/c, so that all

wave vectors contributing to the propagating LDOS are real.
In inhomogeneous dielectrics, the spontaneous emission The remaining part of the inverse Fourier transform gives

rate of a radiating atom depends on its position and is prothe guided LDOS,

portional to a quantity that is often called the local density of

states(LDOS). In quantum optics, many quantum states of ®

light can be associated with what in this paper we call an py(Z,0)=—

optical “mode,” so that the words “state” and “mode” have

a different meaning. Actually, with “density of states” it is X TN (K @)go(K) 25— Z;w). (40)

meant “density of modes” and indeed the latter term is

sometimes usefl18,19. But we stick to the familiar term Herek > w/c, so that the integrand in E40) is real except

LDOS and assume that it will not confuse the reader. Thet the polesk|(w) of the T-matrix elements. Now the

IV. LOCAL DENSITY OF STATES

N
Im f dk”kH 2 gO(kH Z—Zy )
wl/c a,B=1

71'2C2
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—20)| [ — &V
2.5} 1
5 pg<z;w>=( . )( 7 |exe—2«lz). @
> mC
= 2.0
£
3 1.5¢ So forN=1, the guided LDOS falls-off exponentially as a
z 10 function of distance from the plane, with a decay length of
' [«{"(w)] ™. At the position of the plane the relative guided
0.5 ; . LDOS py/pg is equal tor?De¢/\, which is equal to 2.27 for
0.0 : o M . the values of the parameters of Fig. 5. So we know how at
32 A 0 1 2 3 the position of the planpy goes up ang, goes down when
Position (units of a) the effective thickness is increased.

. ) ) For larger systems, fal=10 say, the guided modes can
. FIG. . Loclal d‘:ns;'t'e_SOOf Sta:je;‘ foigzl(r;glgplﬁni, releg!vg 10 th&sither be localized to individual planes or be delocalized over
ree-space value, faa/A =0.5 andD=0.4@. Both the radiative - ¢ o tire structure. At least, this was anticipated in Sec. Il B
(daShe.d Imﬁano! th.e guided LDOSdotted ling are shown, as well when discussing the dispersion relations of the guided
as their sumtsolid line). modes. Now we can check this. Figure@,® show the
propagating and guided LDOS as well as their sum, as a
T-matrix elements are written in Eq20) in terms of the function of position in and around the structure, for a fre-
functionshy, but it can be shown that the poles of the latterquency such tha/\ =0.2. Again, the densities were divided
do not correspond to poles of tﬁl‘e‘a’\g. The T-matrix ele- py the .fre_e-_space value for a good _comparison. Lo_cal densi-
ments only have poles when+lhy(1,1)=0, corresponding t|§s of individual modes are plotted in Flg.a‘; According to '
to the guided modes that were found in Sec. Ill B. The right-Fl(ElJ(-))4 there ar(elc;[)hree guided m?lg)es at this frequency, with
hand side of the equality40), therefore, simplifies into a «1 '@=0.84, k37°a=0.77, andx; "a=0.48, respectively.
sum over residues of the integrand at the guided-mode pole5rom Fig. Ga) one can learn that each of these three guided
The infinitesimally small positive imaginary parts of the modes is delocalized over all the planes and also that every
poles ensure thaty(z,)=0. next gu_|ded mode has one extra node in its m.ode. density.
Now we discuss what the LDOS actually looks like in a 1€ ghwded '—Dfoﬁ corresponds to tfhehsoI;]d line in Figdp
- : - it i m ntribution ree m nd i
system of plane scatterers. First consiger for a single (;ozst nei)tsgehgvet Seﬁgd}cz;)lllg ci)nssidc; tthee érygteal odes and it
plane located az=0. The T matrix is given in Eq.(29). - ' .
- . . Note thatp,(z,w) divided by the free-space value varies
Exactly at the position of the plane, the relative propagatlngaround 0.7 iggi(de t%e structurg. The guidepd modes are, there-
LDOS f.)p(.o'w)/pzo(o’w) turns out to be equal to the average fore, an important channel for spontaneous emission. This is
transmission(| 7|} 5, through the plandEqg. (31)]. As ex-

: X ’ also illustrated by Fig. ®), where for the same frequency
pected, highly reflecting planes affggf more strongly. Fig- e guided LDOS, the radiative LDOS, as well as their sum

ure 5 shows the local densities in the neighborhood of theyre shown. The frequency is well below the first stop band in

is not defined, we can choose a distaac@nd scale the plot the structurep,(z,w) is smaller thanp,(z,»). Notice also
such thatD.y=0.46a and a/A=0.5) At z=0 we indeed that the sunp,+ p, shows more periodicity in the structure
havep,/po=0.32, equal to the average transmission of thethanp,, or p, separately. Outside the structure the radiative
plane. Away from the plane, oscillates back tg,. LDOS climbs back to the free-space value, showing damped
Figure 5 also shows the guided LDOS for the single planepscillations; the guided LDOS drops down to zero outside
at z=0. With the pole of theT matrix located atK(ll) the structure. The decay looks exponential with a decay
=Dg(w/C)?/2+i 7, the guided LDOS40) in this case is length of about\/4. In fact, the decay is multiexponential

=
(=1

(@) j \‘ a/A=0.2 sl ® a/A=0.2
3 08f 4 =z
E \ M J 2 WMMMM
o
o6 \/ \/ § 1.0
= 5 = A LY b/ 7 AN Brd
S 0.4 FN A S\ 1 & ~ ~'\'_"_." A f
AR BTR DA P os} AT TR S
8 RANA VN R ’ N4 et 4
02 Zi ¢R AR Y. BN 1 / \
” 'l/l ’j \'\ "\ ," AN ‘\\\ ."" ,
0.0 B £ W Aoy 0.0 L h
2 0 2 4 6 8 10 12 14 T2 0 2 4 6 8 10 12 14
position (units of a) position (units of a)

FIG. 6. Local densities of states for a crystal of plane scatterersNwti0; densities are divided by the free-space density. Fi¢are
shows the guided mode LDQSolid line) ata/A=0.2. It is the sum of contributions from three guided modes: the(figted ling without
nodes, the second oridashed with one node, and the third guided moint dashefwith two nodes. Figurdb) shows at the same
frequency the guided LDOS&lotted ling, the radiative LDOSdashed as well as the total LDO%solid line).
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a/h=0.5 | 30} (b) a/=0.61
?. 251 1 FIG. 7. Radiativeg/dashed and
<20l | total (solid) LDOS of a ten-plane
?15_ ] crystal, fora/A=0.5 in (@) and
=z UUUUUUU a/A=0.6 in (b). Not shown in
; 1.0 WV\’\JU \[V‘N“ both is the guided LDOS, which is
| 05} HalAlalalal A AR A 1 the difference between total and
. 0 AR ARREARR radiative LDOS.
0

2 0 2 4 6 8 10 12 14 2 0 2 4 6 8 10 12 14
position (units of a) position (units of a)

because all three guided modes decay with their own decate planes, which is the only thing that happeng jovhen
length. Moreover, according to EG40) the exponential de- increasing the frequency even more. Interestingly, in be-
cay does not start at the outer planes only. tween the planes the radiative LDOS is small where the

Figure {a) also shows local densities of states, but for aguided LDOS is large, and vice versa, so that the variation in
higher frequency such thaf\ =0.5. This frequency is inter- the total LDOS is small. Near the planes, however, the total
esting, because it is the location of the blue edge of the firdtDOS is much larger than the free-space value, mainly due
stop band in normal direction, as can be seen in Fig. 3. Lighto pg .
that makes an anglé with the normal has a first stop band  In general, the propagating LDOS cannot be increased
that is shifted to higher frequencies, according to Bragg'smuch beyond the free-space value, at least for the effective
law 2acosf=\. At a/A =0.5, stop bands of many directions thicknessD .= 0.46a that we consider. This is somewhat
will overlap. Therefore, it is to be expected tha{r,w) is  surprising since individual propagating modes can be
much lower than in free space. Figuré)7shows precisely strongly resonant inside the structufsee Fig. 2 But
this: the p,(r, ) rapidly drops down to almost zero inside py(z,) is an integrak39) over all directions, some of reso-
the plane crystal. Actually, what we have in Figa)ris an  nant and others of decaying nature. As it turns out, this does
omnidirectional mirrof17]. This can be checked by varying not add up to form a large increase. Even if the fraction of
the angle of the incoming light in E¢32) (not shown: for  light spontaneously emitted into a certain direction can be
all angles ranging from 0 ° to 90 °, the first stop bands overdramatically increased compared to the emission in vacuum,
lap ata/\ =0.5. Figure 7a) suggests a working definition of the total emission rate into propagating modes is not in-
a finite omnidirectional mirrorA periodic structure is an creased much.
omnidirectional mirror at a frequency when the maximum A last remark on the mirror symmetry of the LDOS in
value ofp(z,w)/po(z,w) in the middle unit cell is smaller Fig. 5. The LDOS should of course be symmetricalzin
than some previously agreed-upon valwel. The param- =(N+1)a/2. In our formalism, this corresponds to a sym-
etero denotes the maximum negligible amount of propagatimetry in the T-matrix elementsTO=T{Y, , yi1 4. In
ing LDOS that one accepts inside a finite omnidirectionalparticular, this symmetry should also be found in the residues
mirror. For example, the structure of Figiay only counts as  of Tgﬂg at the polesk{\)(w) corresponding to the guided
an omnidirectional mirror when we acceptoaof 0.013 or  modes. We could use the symmetry in the plots as a check on
larger. Only for infinite structures can one find omnidirec-our calculations, because the plots were not made symmetri-
tional mirrors with 0=0. Although the numbeN of unit  cal “by hand.”
cells does not explicitly enter this definition, it is clear that
increasingN can help to turn a structure into an omnidirec-
tional mirror.

Figure qa) also shows that the guided LDO&(z, ) In this paper we have used the plane scatterer as our work
does not go to zero in the omnidirectional mirror. &\ horse and discussed its range of validity. We put it to use in
=0.5, the maximum number of ten guided modes have apthe T-matrix formalism of multiple-scattering theory. THe
peared in the ten-plane crystal. Since inside the structure th@atrix of N identical and parallel planes located at arbitrary
total LDOS is almost exclusively made up @f(r,»), spon-  positions was found as the inverse of a knaWr N matrix,
taneous emission at this frequency occurs into one of these Eq. (18); using the trick as discussed in the Appendix, in
guided modes with almost 100% efficiency. Conversely, theequation(20) an explicit expression for th&-matrix ele-
extraction efficiencyp,/(py+p,) of light spontaneously ments of a crystal of regularly spaced plane scatterers was
emitted inside the crystal will be almost zeroadh =0.5. given.

Finally, in Fig. 1b) the frequency is increased such that These analytical results enabled us to find relatively easily
a/\=0.6, above the first stop band in the normal directionboth the propagating modd&é Eg. (32)] and the guided
(see Fig. 3 Then incident light in and around the normal modes[defined by Eq.(35)] of a crystal consisting of an
direction can enter the structure again and thergfg(e, ) arbitrary but finite number of planes. Not only individual
is nonzero inside the crystal, as the figure shows. For thisnodes, but also the complete Green function could be found
frequency, the structure is not an omnidirectional mirror for[Eqg. (38)]. From the Green function, the local density of
any reasonable tolerance parameteThe combined density states can be calculated, which is the sum of a propagating
of the ten guided modes has become even more localized &nd a guided LDOS. The sum of the two determines the local

V. SUMMARY AND CONCLUSIONS
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spontaneous emission rate and the relative contribution of
the propagating to the total LDOS gives you the extraction
efficiency of spontaneously emitted light. Clearly, in order to
make a connection with experiments, it is important to know
the Green function of finite crystals. The knowledge of the
Green function and the LDOS is also needed for the inter-
pretation of images recorded with a scanning near-field optithen we have
cal microscop¢35]. Here especially the LDOS near the sur-
face of the crystal is important.

We chose to present results fdv=10. The ten-plane
crystal was shown to exhibit stop bands. Around the frequen- U=
cies of the first stop band in normal direction, guided modes
appear as delocalized over the whole crystal whereas for
higher frequencies they localize to the individual planes.
Around a/A=0.5 the crystal is an omnidirectional mirror. and similarly for powers of the lower diagonal matiix
We argued to consider a finite periodic structure as an omniFrom this, it follows that we can write the matrd as
directional mirror if the maximal value of the propagating N-1
LDOS in its innermost unit cell is smaller than some previ- \— 1+ 2 UP+LP)=pl+U(1-U) 4+ (1-L) L.
ously agreed-upon finite value. The LDOS of the crystal of
planes is a well-behaved function of position and frequency. (Ad)
The variations inside a unit cell can be large. Evidently, theyow consider the inverse of the matrix produtt-L)M (1

finite translation symmetry of the LDOS is broken for the ). Use this and Eq(A4) to arrive at the following ex-
finite crystals, especially near the surfaces. The total LDO$yression for the inverse of:

shows more translation symmetry than the propagating or 1
guided LDOS separately, which can be seen as a competition M7 =(1-U[p(d-L)(I-U)+(-L)U
between both types of modes with different outcomes when +L(1-U)] Y1-L). (A5)
going from one unit cell to another.

U= (A2)

o o o o
o o o X
o o X O
o X O o
—
Il
o o x O
o X O o
X O o o
© o o o

N

0
X

N

;. UN=0, (A3)

o O O O
o O O O
o O O

0
0

In this form, finding the inverse is much easier than before,
because the matrik- - - ] has only nonzero elements on the
diagonal and first off diagonals. This becomes clearer by
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The matrixM ! is known whenY ! and[1+Y~1z]7?!
are known. NowY has a simple structure and it can be
inverted immediately using the transformation matdiy
= J2/(N+ 1)sirklm/(N+1)]. It is its own inveirse and it di-

i . “1_ A —17 \i -1_ -1
‘The problem that arose in Sec. IIB and that is solved i@%%?:“;isﬁnvggo?fa(vk?\(is def\i]r?ed \;vath ™=t (k)
this appendix is how to find the inverse of the matrix
f(K)=w(1+x?)—2x%+2x(1— ) cod km/(N+1)]

(k=1,2,...N). (AT)

APPENDIX: ANALYTICAL EXPRESSION FOR T MATRIX
OF N-PLANE CRYSTAL

N
w

L X X X
X pm X X What remains to be done for the inversion\dfis the evalu-
M=|x2 x 4 x (A1)  ation of the infinite series
B xR X u (A+Y 12) t=1-Y 12+ (Y 12)2— (Y 12)3+

A8
Now since we have (A8)

N
The solution will be for generall, but matrices are presented ,\,-1 (o 2 -1 —
for N=4. Define the upper diagonal matrly and lower (Y7 12)= (2= X815 2 Jenf (M) Imp=h(k,p) 815,
diagonal matrixL as (A9)
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where in the last equality the functidny(k,p) was defined, — N(
we find that [(Y‘lz)“].kpzhN(k,l)h’,Q_l(l,l)&lp. Sum- defM(k;0)]= 2x(1-p) sif(N+1)Ka]
ming up all orders, we find that
(2—p)x|
= sif NKa]
(A+Y12) =] 8 ,— kD) S5 (A10) o
ko = kT | 14 hy(1,0) ) O N mar
ngl cos{Ka)—cos(—N+1
Inserting this into Eq(A6), we have found the inverse of the X sif(N+1)Ka]
matrix M. This result is used in Eq20) of Sec. I B.
For Sec. llIB it is useful to compute the determinant of (A11)

the matrixM and this can be done best using EA6),  Notice that the zeroes of the determinant ao¢ caused by
detM)=de{Y(1+Y~*Z)]. This determinant is equal to the products of co#@)—cos{mm/N+1]) going to zero, be-
[1+hy(1,1)] times the product of all thé(k)’s of Eq.(A7).  cause of the s[ifN+1)Ka] in the denominator. The determi-
With Eg. (22) and the definition of the Bloch wave vector nant is zero when of the other factor in the nominator is zero,

this gives which is equivalent t¢ 1+ hy(1,1)]=0.
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