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Local optical density of states in finite crystals of plane scatterers
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Spontaneous emission rates in a dielectric structure are position dependent and proportional to the local
optical density of states. The latter can be calculated when the Green function is known. In our scalar
formalism, we model dielectric slabs as infinitely thin planes and use theT-matrix formalism of multiple-
scattering theory to find an exact analytical expression for the Green function of a dielectric mirror of arbitrary
number of unit cellsN. All the propagating and guided modes of the structure are found. There are at mostN
guided modes and their dispersion relations are studied. The guided modes appear around frequencies corre-
sponding to the first stop band in normal direction. Local densities of propagating and guided modes are
presented, also for frequencies where the layered structure acts as an omnidirectional mirror.
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I. INTRODUCTION

Photonic crystals with a complete photonic band gap h
a frequency interval in the optical regime in which the to
density of states is zero@1#. In order to have such materia
in which spontaneous emission in all directions would
completely suppressed, much effort is made nowaday
fabricate photonic crystals with periodic spatial variation
the refractive index in three dimensions@2,3#. The refractive
index contrast must be high, the volume fraction of the hig
index material should be small@4#, the crystals preferably
should have many unit cells in all three directions, and lig
absorption should be absent@5#. In the optical domain, thes
combined requirements prove to be tough, and many
search groups are working on it.

In inhomogeneous materials such as photonic cryst
spontaneous emission rates, in general, are position de
dent and proportional to the local density of states~LDOS!
@6,7#. It is therefore interesting to calculate the LDOS f
specific dielectric geometries as, for instance, recently
done for photonic crystals in two dimensions consisting o
finite number of cylinders@8#. Also the theoretical and ex
perimental study of the LDOS in spherical microcavities c
be mentioned here@9#. The calculation of local densities o
states in infinite three-dimensional photonic crystals are
merically very involved@10,11#. In practice, photonic crys
tals have a finite size, but the LDOS of a finite crystal wou
be even harder to calculate. In principle, the LDOS co
directly be inferred from the Green function of a photon
crystal, but Green functions are hard or practically imp
sible to find for finite crystals with refractive-index varia
tions in all three dimensions. Therefore, it is interesting
look for other finite photonic systems for which Green fun
tions can be calculated explicitly. In this paper we consi
three-dimensional light propagation in a system of perio
dielectric layers, where the refractive index varies in o
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spatial direction only. Our focus will be on the local mod
densities in and around the structure. We look for a mo
that is simple enough to allow for analytical solutions y
realistic enough as to give insight.

Before introducing our model, we briefly discuss some
the relevant work on layered photonic crystals. Optical pro
erties of dielectric slab structures have been studied in
sively @12,13#, both theoretically and experimentally in pur
and applied optics@14,15#. An optically excited atom inside a
slab structure can spontaneously emit its photon into a ra
tive or a guided mode and both types of decay chann
contribute to the total spontaneous emission rate@16#. Lay-
ered dielectric structures that recently enjoyed some inte
are the so-called ‘‘omnidirectional mirrors’’@17#. With the
future photonic band-gap crystals they share the propert
omnidirectional reflection of light in a well-defined fre
quency interval. Unlike inside a photonic band-gap crys
inside layered omnidirectional mirrors the spontaneous em
sion rates do not go to zero@18#: in the frequency interval
where light cannot enter the structure, spontaneous emis
is taken over by the guided modes. Evidently, reflection
periments alone are not enough to tell what is going on
side a photonic crystal.

The perfect periodicity of infinite crystals increases t
chances for analytical solutions. Analytical properties of
nite crystals consisting ofN unit cells are more difficult to
find. Fortunately it is known from transfer matrix techniqu
@12# how to express transmission and reflection ofN-period
Bragg mirrors simply in terms of the numberN and the re-
flection r of a single unit cell@13#. In Ref. @19# this result
was generalized to nonabsorbing layered structures w
the unit cell has an arbitrary refractive-index profile. The
analytical results are important. But as we learnt from
omnidirectional mirror, the knowledge of transmission a
reflection is not enough for understanding spontaneous e
sion rates of internal sources: we also need to find the gu
modes of finite one-dimensional photonic crystals consist
of an arbitrary number of unit cells. In@20# a general method
was derived to compute propagating and guided modes
Green functions of multilayer dielectrics with constant r
fractive indices in each layer. One has to be very careful
to miss any of the guided modes. The method involve

of
©2002 The American Physical Society12-1



n
t

.
ni
y

s
m
ti
or

at

op
iv
nd
fie

a
ly
e

a

in

we
y

r
in
o
op

on
pr

e
tu

ld

e
ys-

r is
m

he

r-

he
l

e

a
o-
el
ss
in

at
ved

ne-

ve.

ion

r-

nta-
l
es

-
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numerical step, namely, the solution of boundary conditio
at each dielectric interface. In our calculations, we want
avoid such a step.

In the theory of~metallic! diffraction gratings, it proved
useful to study the limit of infinitely thin gratings@21# and
there homogeneous layers are called impedance sheets
study a Kronig-Penney model of a finite layered photo
crystal. Such models have been used before in the stud
infinite layered photonic crystals in one@22# and two@4,23#
spatial dimensions; in the latter paper also guided mode
the infinite crystal are considered. Our model differs fro
these works in that we consider finite crystals in three spa
dimensions, in a formalism that is particularly suited f
finding all the optical modes in a unified way; the~local!
density of states strongly depends on the number of sp
dimensions considered@11#.

We use theT-matrix formalism of multiple-scattering
theory~see the classics@24,25# or @26# for a recent account.!
An advantage of multiple-scattering theory is that the pr
erties of systems consisting of many scatterers can be g
in terms of the properties of the individual scatterers. Bou
ary conditions are automatically satisfied if they are satis
by the single scatterer. Another advantage is that the form
ism simplifies the calculation of Green functions enormous
The concept of a point scatterer has proved extremely us
for random multiple scattering@27,28#. Band structures and
local densities of states of crystals consisting of point sc
terers have also been studied@6,29#. Here we propose the
planar analogue of the point scatterer, the infinitely th
plane, which we coin theplane scatterer.

The organization of the paper is as follows. In Sec. II
briefly introduce theT-matrix formalism that we then appl
to a single-plane scatterer~Sec. II A! and toN-plane scatter-
ers at arbitrary positions~Sec. II B!. An analytical expression
for the T matrix is derived in the special case that theN
planes are at regular distances. The specific model fo
plane scatterer that will be used throughout this paper is
troduced in Sec. II C. The optical modes of the crystal
plane scatterers are presented in Sec. III and both the pr
gating ~Sec. III A! and the guided modes~Sec. III B! are
discussed. In Sec. IV the local densities of states corresp
ing to both propagating modes and guided modes are
sented. In Sec. V we conclude.

II. T-MATRIX FORMALISM FOR PLANE SCATTERERS

A. General properties of the single-plane scatterer

The modification of an incoming waveuc in(v)& into
uc(v)& due to the presence of a potentialV(v) is given by
the Lippmann-Schwinger equation

uc~v!&5uc in~v!&1g0~v!V~v!uc~v!&. ~1!

Hereg0(v) is the Green function of the system without th
potential. We use the abstract bra-ket notation; later we
to a specific representation of the waves. The fielduc(v)& is
the implicit solution of the scattering problem. We wou
know this field explicitly if we would know the transition
matrix or T matrix of the problem, which is defined via@26#
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uc~v!&5uc in~v!&1g0~v!T~v!uc in~v!&. ~2!

The T-matrix formalism should not be confused with th
transfer matrix approach, which in the study of layered s
tems is most commonly used@12,13#. Formally, one can
write T(v)5V(v)@12g0(v)V(v)#21. The scattering prob-
lem is solved once an explicit form of the inverse operato
found. The sameT matrix that solves the scattering proble
for the field, also solves the scattering problem~that is the
Dyson-Schwinger equation! for the Green function,

G~v!5g0~v!1g0~v!V~v!G~v! ~3!

5g0~v!1g0~v!T~v!g0~v!. ~4!

Thus, theT matrix directly leads to scattered fields and to t
Green function.

Now consider an infinitely thin planez5za that scatters
light coming fromz,za . In this paper we consider scatte
ing of scalar waves. If an incident plane waveuc in&5uk&
5uki ,kz& with kz real and greater than 0 scatters from t
plane, the in-plane wave vectorki is conserved. The tota
waveuck& is called a ‘‘true mode’’ or ‘‘mode function’’ and it
has an incoming, a transmitted, and a reflected part. ThT
matrix for such a plane scatterer must have the form

Ta~v!5
1

~2p!2E d2kiT~ki ;v!uki ,za&^za ,kiu. ~5!

The function T(ki ;v) describes the light scattering as
function of in-plane wave vector and frequency. At the m
ment the function is not specified, but in Sec. II C a mod
will be derived for it. In the rest of the section, we expre
transmission and reflection properties of a single plane
terms of itsT matrix. Furthermore, we analyze the forms th
the T matrix can take if we assume that energy is conser
in the scattering process.

First we need a suitable representation for the pla
scattering problem. The free-space Green functiong0(v) has
the well-known real-space representationg0(r ,r 8;v)5
2exp(iv1ur2r 8u)/(4pur2r 8u) with v1[v1 ih so that the
Green function corresponds to an outgoing spherical wa
In Fourier representation we haveg0(k,k8;v)5(2p)3d3(k
2k8)/@(v1/c)22k2#. By the choice of the infinitesimally
small positive part we select the causal Green funct
whose inverse Fourier transform gives zero for timest,0
@30#. In the following, Green functions are implicitly unde
stood to be causal and the ‘‘1 ’’ notation is dropped. Now the
form ~5! of the plane scatterer suggests a mixed represe
tion $uki ,z&%, whereki[(kx ,ky) is the wave vector paralle
to the planes. Then the free-space Green function becom

g0~ki ,z;k8i ,z8;v![^ki ,zug0~v!uk8i ,z8&

5~2p!2d2~ki2k8i!g0~ki ,z2z8;v!.

~6!

The functiong0(ki ,z;v) will also be called the Green func
tion and it takes the form
2-2
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LOCAL OPTICAL DENSITY OF STATES IN FINITE . . . PHYSICAL REVIEW E 65 046612
g0~ki ,z;v!5
exp~ ikzuzu!

2ikz
, ~7!

wherekz5A(v/c)22ki
2 can be real or imaginary. Using thi

and Eqs.~2! and ~5!, we find for the mode function

ck~r !5eik•rF11
T~ki ;v!

2ikz
G , ~z.za! ~8!

5eik•r1eikR
•rFT~ki ;v!e2ikzza

2ikz
G , ~z,za!. ~9!

The expression between the square brackets in Eq.~8! is the
transmission amplitudet(ki ;v) in terms of theT matrix and
between the brackets in Eq.~9! we have the reflection am
plitude r(ki ;v). The reflected wave vectorkR equals (ki ,
2kz). Thus, we have expressed transmission and reflec
properties of a single plane in terms of itsT matrix.

Until now, we have not assumed that energy is conser
in the scattering process. Energy conservation puts a res
tion on the form thatT(ki ;v) can have, a restriction that w
will now derive. Energy conservation can be quantified w
the help of the energy flux density vectorJ @31#,

J~r ,t !52aF]c* ~r ,t !

]t
“c~r ,t !1

]c~r ,t !

]t
“c* ~r ,t !G ,

~10!

where a is a proportionality constant depending on t
choice of units. Since there is no energy transfer betw
true modes, the energy current densityJ• ẑ in the z direction
should be the same forz.za and forz,za for every mode
uck& separately. In terms of the transmission and reflect
this leads to the requirementuru21utu251; in terms of theT
matrix it reads

Im T~ki ;v!52
1

2

uT~ki ;v!u2

kz
. ~11!

This is the optical theorem for the plane scatterer. Note th
only holds for realkz . The most generalT matrix satisfying
the optical theorem has the form

T~ki ;v!52@F21~ki ;v!2 i /~2kz!#
21, ~12!

where the optical potentialF(ki ;v) for the plane is a rea
function of its arguments. Furthermore, for planes that sca
isotropically, we haveF(ki ;v)5F(ki ,v). The Eqs.~9! and
~12! together show that a larger optical potential leads t
higher reflectivity of the plane.

B. N-plane scatterers

Consider a system ofN identical and parallel plane sca
terers at arbitrary positionsza ,zb , and so on. At first, we do
not assume that energy is conserved in the scattering pro
so that the single-planeT matrices need not be of the form
~12!. Just as in the one-plane case, we want to know m
functions and Green functions of theN-plane system. This
we do by calculating theT matrix T(N)(ki ;v). Formally, we
04661
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have as in the one-plane case thatT(N)5V(12g0V)21. The
inverse is defined as an infinite series, so that

T(N)5V1Vg0V1Vg0Vg0V1•••, ~13!

where nowV is the sum of the one-plane potentials. We no
try to actually do the summation of this infinite series
plane-scattering events. Then, instead of writing theT matrix
in terms of potentials, it is more efficient to write it in term
of the one-planeT matrices,

T(N)5(
a

Ta1 (
b5” a

(
a

Tbg0Ta

1 (
g5” b

(
b5” a

(
a

Tgg0Tbg0Ta1•••. ~14!

Written out explicitly, the term of third order in the single
planeT matrices in this series is

1

~2p!2 (
a

(
b

(
g
E d2kiuki&^kiuT3~ki ;v!g0~ki ,za

2zb ;v!~12dab!g0~ki ,zb2zg ;v!

3~12dbg!uza&^zgu. ~15!

Now define the matrixDab(ki ;v)[g0(ki ,za2zb ;v)(1
2dab) and notice that the third-order term can be rewritt
as

1

~2p!2 (
a

(
b

E d2kiuki&^kiuT~ki ;v!

3$@T~ki ;v!D~ki ;v!#2%abuza&^zbu. ~16!

So we can see the square of the matrix (TD) in the third-
order terms. The fourth-order terms feature the cube of
matrix (TD), and so on. This matrix structure enables us
sum the infinite series exactly: theT matrix of N parallel and
identical plane scatterers is given by

T(N)~v!5
1

~2p!2 (
a

(
b

E d2ki(
a,b

uki ,za&Tab
(N)~ki ,v!

3^zb ,kiu, ~17!

where

Tab
(N)~ki ,v!5T~ki ;v!@12T~ki ;v!D~ki ;v!#ab

21 . ~18!

The problem of finding theT matrix is now reduced to the
much simpler problem of finding the inverse of theN3N
matrix T(N). For arbitrary positions of the planes, the inve
sion must be done numerically. The matrix elements dep
on the positions and effective thickness of the parallel plan
and on the frequency and in-plane wave vector of the lig
Since Eq.~17! is valid for arbitrary positions of the plan
scatterers, it could be the starting point for studying rand
scattering.
2-3
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The important special case that will be studied here
the situation where theN planes are positioned at regul
distances a from each other, at positionsz15a,z2
52a, . . . ,zN5Na. We then have a three-dimensional op
cal Kronig-Penney model for a finite photonic crystal wi
periodic variation of the refractive index in one dimensio
The regular distances between the planes enable us to d
inversion of the matrix in Eq.~18! analytically, as we shal
discuss now.
n
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Definem[22ikz /T(ki ,v) and x[exp(ikza). ThenTab
(N)

in Eq. ~18! can be rewritten as22ikzMab
21 with

Mkl[mdkl1~12dkl!x
uk2 l u. ~19!

We should like to know the inverse of thisN3N matrix M
for arbitraryN and in the Appendix this mathematical pro
lem is solved. The result is
Tab
(N)5

22ikz

~22m!x2 H hN~a,b!2xhN~a11,b!2xhN~a,b11!1x2hN~a11,b11!

1
@xhN~a11,1!2hN~a,1!#@hN~1,b!2xhN~1,b11!#

11hN~1,1! J , ~20!

where the functionhN(a,b) is defined as

hN~a,b![
~22m!x

2~12m!

1

N11 (
m51

N H cos@~a1b!mp/~N11!#2cos@~a2b!mp/~N11!#

C2cos@mp/~N11!# J . ~21!

From the definition ofhN it follows thatM21 is a symmetric matrix, as isM . The matrix elements ofT(N) strongly depend on
the form of the constantC in Eq. ~21! and for realkz it is given by

C5
2x22m~11x2!

2x~12m!
5cos~kza!1sin~kza!F2kz Re~T!1 i ~2kz Im ~T!1uTu2!

4kz
21uTu214kz Im ~T!

G . ~22!

Fortunately, the summation in Eq.~21! can be done exactly so that we end up with a simpler expression forhN @32#,

hN~a,b!5
~22m!x

2~12m! H cos@~N112ua2bu!Ka#2cos@~N112~a1b!!Ka#

sin@Ka#sin@~N11!Ka# J , ~23!
ave

de-
e

o

where the constantK5K(ki ;v) is defined by Ka
5arccos(C). ~The arccosine is a multiple-valued functio
but the functionhN is not; for numerical evaluation ofhN the
Chebyshev polynomials are useful.! Evidently,K has dimen-
sion @m21# and in fact, it is equal to the Bloch wave vect
of an infinite crystal of plane scatterers separated by a
tancea. In general,K is complex. The important point tha
the Bloch wave vector that is normally associated with
infinite periodic potential also plays a role in the analysis
a finite crystal, was also stressed in Ref.@19#. Here the Bloch
wave vector shows up in an analytical expression for thT
matrix of a finite crystal of arbitrary sizeN. No restrictions
on the form of the single-planeT matrix T(ki ;v) have been
applied in the derivation.

Let us now assume that energy is conserved. This is
case when every single plane has aT matrix that satisfies the
optical theorem~12!. Then it is evident from Eq.~22! that the
constantC becomes real. Moreover, when the optical the
rem holds, a simpler expression forC can be found by in-
serting for the single-planeT matrix the form~12!

C5cos~kza!2S F~ki ;v!

2kz
D sin~kza!. ~24!
s-

e
f

e

-

One can see that without energy dissipation, the Bloch w
vector is either real~when21<C<1) or purely imaginary
~otherwise!. Imaginary Bloch wave vectorsK(ki ,v) corre-
spond to transmission stop band regions in (ki ,v) space.
This will be illustrated in Sec. III A.

C. Model for the single-plane scatterer

In the preceding subsection, theT matrix of the single-
plane scatterer was assumed to be known. Now we will
rive a model for it, starting from a potential in the wav
equation. Consider a dielectric slab of thicknessd and dielec-
tric function «. In principle, the dielectric function is a
frequency-dependent complex function@33#, but here we ne-
glect dispersion and loss altogether by choosing« real and
constant. Choose thez axis such that it is perpendicular t
the surfaces, defining the latter as the surfacesz5za and z
5za1d. Then the scalar wave equation is

F«~r !

c2

]2

]t2
2¹2Gc~r ;t !50, ~25!
2-4
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LOCAL OPTICAL DENSITY OF STATES IN FINITE . . . PHYSICAL REVIEW E 65 046612
where «(r )5« for z betweenza and za1d, and «(r )51
elsewhere. The Maxwell wave equations for the electric a
magnetic fields@12# reduce to this scalar wave equation
some special cases: Eq.~25! describes the electric field o
s-polarized light or the magnetic field of p-polarized light f
layered dielectric media. Suppose now that the thicknes
the slab is much smaller than the wavelengths of light we
interested in. Then we can model the slab as a plane s
terer. We define the product of slab thicknessd and polariz-
ability «21 as the effective thicknessDeff of the plane scat-
terer. We find the single-planeT matrix by solving the
associated equation for the Green function in freque
space,

@¹ r
21~v/c!2#G~r ,r 8;v!5d3~r2r 8!1V~r ,v!G~r ,r 8;v!

~26!

with V(r ,v)52(v/c)2Deffd(z2za). It is easy to check tha
a solution of the Dyson-Schwinger equation~3! is a solution
of the equation above, provided that in Eq.~3! we take the
potentialV(v)52Deff(v/c)2uza&^zau. We shall now solve
the Dyson-Schwinger equation, which in the mixed repres
tation becomes

^ki ,zuG~v!uk8i ,z8&5~2p!2d~ki2k8i!g0~ki ,z2z8;v!

1g0~ki ,z2za ;v!@2Deff~v/c!2#

3^ki ,zauG~v!uk8i ,z8&. ~27!

If in this equation we putz equal toza , then we can solve
the equation for̂ ki ,zauG(v)uk8i ,z8&. If we insert this par-
ticular solution back into the Eq.~27! for generalz, then
we can also find the Green function for generalz,
^ki ,zuG(v)uk8i ,z8&5(2p)2d(ki2k8i)G(ki ;z,z8;v) with

G~ki ;z,z8;v!5g0~ki ;z2z8;v!1g0~ki ;z2za ;v!

3T~ki ;v!g0~ki ;za2z8;v!, ~28!

where the frequency- and wave-vector-dependentT matrix
equals

T~ki ;v!5
2Deff~v/c!2

11g0~ki ,0;v!Deff~v/c!2

52$@~v/c!2Deff#
212 i /~2kz!%

21. ~29!

This T matrix is of the form~12! and hence it satisfies th
optical theorem~11!. Note thatT depends onki rather than
on ki : the optical potentialF(ki ;v) equals (v/c)2Deff in
this model, so that it depends only on frequency and not
the magnitude or direction of the wave vector of the inco
ing light. A T matrix of a point scatterer can only be defin
after a careful regularization of the free-space Green func
g0(r ,r 8;v) because the latter diverges in the limitur2r 8u
→0 @28#. Here, in theT matrix for plane scatterers~29! it is
the free-space Green functiong0(ki ,z2z8;v) that appears
04661
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in the limit of uz2z8u→0. Fortunately, there is no divergenc
so that we do not need a regularization procedure for pl
scatterers.

Now that we have a one-parameter model for theT matrix
of a plane, we can use Eqs.~8! and~9! to find the transmitted
and reflected amplitudest and r. The transmission ampli-
tude is

t~ki ;v!5
1

12 iD eff~v/c!2/~2kz!
. ~30!

Clearly, transmitted intensities range from one to zero wh
the effective thickness goes from zero to infinity.

In the remaining section, we elaborate on the quest
how well slabs of finite thickness can be modeled as pl
scatterers. We compare both cases by looking at the ave
transmission, with the average taken over 4p solid angle.
For the plane scatterer the average transmission can be
culated directly from Eq.~30!, giving

^utu2&av512~pDeff /l!arctan@l/~pDeff!#. ~31!

Light transmission through a finite slab is described byAiry’s
formulas@12# and the angle average must be calculated
merically. Figure 1 shows the average transmission~for
s-polarized light! of a TiO2 slab of thicknessd in air as well
as the average transmission of scalar waves through a p
scatterer with effective thicknessDeff5(nTiO2

2 21)d. The

transmissions are plotted as a function of thicknessd divided
by the wavelengthl[2pc/v; the refractive indexnTiO2

is

2.6. Figure 1 shows that slabs thinner thanl/20 can be mod-
eled adequately as plane scatterers with effective thickn
Deff5(n221)d. Thicker slabs show resonances in the av
age transmission~due to interference effects! that the plane-
scattering model does not describe.

To give a concrete example, we consider ad526-nm
thick slab of TiO2. If one constructs a Bragg mirror of suc
slabs alternating with air with a period of 260 nm, then e
dently 10% of the Bragg mirror consists of TiO2, which is
also the typical number for three-dimensional photonic a
sphere crystals@34#. In normal direction the optical path
length of the unit cell is 300 nm, so that the Bragg mirror h
its first Bragg reflection at around 600 nm in that directio

FIG. 1. Solid line: angle-averaged transmission through a s
of refractive index n52.6 and thicknessd, as a functiond/l.
Dashed line: angle-averaged transmission through a plane sca
with effective thicknessDeff5(n221)d, as a function ofd/l.
2-5
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MARTIJN WUBS AND A. LAGENDIJK PHYSICAL REVIEW E65 046612
At that wavelength we haved50.043l, so that the single
slab can indeed be described as a plane scatterer~and the
Bragg mirror as a periodic array of plane scatterers!. Our
choice ofDeff proceeds only a bit different: we chooseDeff
50.23l0, so that for wavelengths aroundl05600 nm the
plane scatterer has the same average transmission of 32
the slab. Furthermore, we choose the distancea between the
planes to be 300 nm, so that the~blue edge of the! stop band
in normal direction will be atl05600 nm.

In our scalar formalism we arrive at the same model
transmission and reflection of an infinitely thin plane as w
found in Ref.@23# in another formalism, fors-polarized light.
There, the authors start from a boundary condition anal
of the Maxwell fields around a dielectric slab in the limi
«→` andd→0 while keeping the productm5«d constant.
From our calculations and Fig. 1, it follows that it is actua
the product Deff5(«21)d that should be kept constan
while taking the limits.

III. OPTICAL MODES

A. Propagating modes

With the T matrix in hand, in Eq.~20!, we can use the
solution ~2! of the Lippmann-Schwinger equation to calc
late the propagating modes of the finite photonic crystal. T
propagating modes in our model are labeled by the w
vector and frequency of the corresponding incoming pla
wave; actually they are related through (v/c)25k2. The
propagating modeuck(v)& corresponding to anN-plane
crystal is given by

ck~r ;v!5eik•r2
i

2kz
eiki•r (

a,b51

N

exp@ ikzuz

2zau#Tab
(N)~ki ;v!eikzzb. ~32!

If we put N51 in this equation, then we find back the mo
function~8! for the single plane. In Fig. 2 the absolute valu
squared of the mode functions are plotted for two mo
propagating normal to a crystal ofN510 planes.~We choose

FIG. 2. Absolute values squared of two mode functions o
system ofN510 plane scatterers, as a function of thez position in
the structure. The dotted line corresponds to a mode witha/l
50.50 and the solid line to a mode witha/l50.51. Modes corre-
spond to incoming plane waves fromz52` in the direction nor-
mal to the planes. The effective thickness of the plane scattere
Deff50.46a.
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the normal direction, but any direction is possible.! As is
clear from the figure, the slight frequency difference of t
modes has an enormous influence on the mode profile in
crystal: the mode witha/l50.5 is almost completely re
flected, as the maximum amplitude of almost 4 of the alm
standing wave at the left-hand side of the structure indica
the mode witha/l50.51 has an amplitude that grows insid
the structure and is almost completely transmitted.

As can be seen from Eq.~32! and from Fig. 2, the abso
lute value squared ofck(r ;v) is a constant forz.Na. This
is the ~intensity! transmissionutu2 through theN-plane sys-
tem. Since there are no losses, reflection and transmis
add up to one. In Fig. 3 the reflection is plotted for lig
incoming in the normal direction, as a function of frequen
The prominent features are the stop bands, the freque
intervals for which light cannot enter the crystal in this d
rection. The mode witha/l50.5 of Fig. 2 falls just inside
the first stop band in Fig. 3, whereas the other mode co
sponds to the first reflection minimum at the blue side of t
first stop band.

The stop bands correspond to frequencies for which
Bloch wave vector@proportional to the cosine of Eq.~12!# is
a complex number. In between the stop bands, the Bl
wave vector is real and there one finds the reflection max
and minima that are characteristic for periodic media. In F
3 higher-order stop bands become broader. This is bec
the optical potentialDeff(v/c)2 rapidly grows with fre-
quency since we do not take the frequency dispersion ofDeff

into account. Of course, one could improve on this by tak
dispersion into account and writingDeff5@«(v)21#d, but
the optical theorem~11! only holds as long as the comple
part of «(v) can be neglected.

Transmission and mode profiles of propagating mode
layered systems usually are calculated with the transfer
trix technique@12,13#. Here we showed that for a crystal o
plane scatterers one can alternatively use theT-matrix for-
malism. For presentation purposes we choseN510, but we
also considered mode profiles and reflection for 200 pla
and more planes do not form a problem: theT-matrix ele-
ments ofN planes are known analytically and the calculati
of the mode function boils down to a simple summation ov
the N2 matrix elementsTab

(N)(ki ;v).

a

is

FIG. 3. Reflectivityuru2 of normally incident waves by a crysta
of N510 plane scatterers separated by a distancea, as a function of
a/l.
2-6
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B. Guided modes

In the preceding section we found a continuum of pro
gating modes with real wave vector components in all th
directions. The crystals of plane scatterers could also sup
a finite number of guided modes that propagate along
planes with in-plane wave vectorski.v/c so thatkz5 ik
and ki

22k25(v/c)2. The imaginary wave vector in thez
direction makes that guided modes decay exponentially
side the scatterer: unlike propagating modes, guided mo
do not correspond to an incident wave. It is the dispers
relations of the guided modes that we concentrate on h
the contribution of the guided modes to the local density
states is discussed in Sec. IV.

In general, the bound states of a scattering system ca
found as the solutions of the Lippmann-Schwinger equa
in the absence of an incident wave@26#. A guided modeuck&
of the crystal of plane scatterers is bound in thez direction
and it satisfies

ck~z;v!5E
2`

1`

dz1g0~ki ,z2z1 ;v!V~z1 ;v!ck~z1 ;v!,

~33!

with the potential V(z;v)52F(n51
N d(z2na), F

5Deff(v/c)2, and the free-space Green function as defin
in Eq. ~7!. Given a frequencyv and the number of planesN,
this equation will have a finite number of solutions. In ord
to find them, define theN-dimensional vectorC with com-
ponentsC j5ck(zj ) in which thezj are the plane positions
Using Eq.~33!, the following homogeneous linear system
equations can be derived:

(
b51

N

@dab1g0~ki ,za2zb ;v!F#Cb50 for

a51,2, . . . ,N. ~34!

Nontrivial solutions of Eq.~34! only exist if the determinan
of the coefficient matrix vanishes. Now this coefficient m
trix can be rewritten as2F(T(N))ab

21 with the use of the
general definition of theT matrix T[V(12g0V)21. So the
guided modes can be found as the poles of theT matrix. This
is the direct connection between the guided modes and tT
matrix.

The guided modes of a single plane are easy to find.
N51, the T matrix T11

(1)(ki ;v) of Eq. ~20! reduces to
T(ki ;v) as in Eq.~29!. The one-planeT matrix has a pole
k1

(1)5(v/c)2Deff/2. This is the dispersion relation for th
guided mode of a single plane.~One could equivalently
present the dispersion relation asv versuski , but here and
in the following, we choose to presentv versusk.! The
dispersion relation shows that for every frequency, a sin
plane has one and only one guided mode. The same s
guided mode for a single plane was found in Ref.@23# using
another formalism; the case of finiteN.1 was not consid-
ered there.

Why does a single-plane scatterer have only one gui
mode? Dielectric slabs of finite thickness can support m
04661
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than one guided mode~depending on its thicknessd and
dielectric constant«). These guided modes other than t
first one are orthogonal to this first one. Their mode fun
tions have their extreme values inside the slab and cha
sign at least once inside the slab. In the limit of an infinite
thin slab, the mode functions remain continuous, so that
maxima, the minima, and the zeroes should coincide on
plane. Therefore, a plane scatterer can support at most
guided mode.

How many guided modes exist in a crystal ofN-plane
scatterers? We have just derived that they occur when
determinant det@(T(N))21# is equal to zero. With the defini
tion of the matrixM in Eq. ~19! this condition simplifies to
det@M (ki ;v)#50. A formula for this determinant is given in
Eq. ~A11! of the Appendix, for an arbitrary number of plane
N. The result is that guided modes correspond to solution
11hN(1,1)50, with hN(a,b) given in Eq.~23!. We assume
that the planes do not absorb light and use the form~12! for
the single-planeT matrix. Then the condition for guide
modes to exist becomes

@2k1F~ki ;v!#e2ka
sin~NKa!

sin@~N11!Ka#
52k. ~35!

This single equation determines the number of guided mo
that can exist at a certain frequency for an arbitrary sys
size N. The frequency dependence of the equation is in
Bloch wave vectorK and in the optical potentialF.

A new guided mode appears at a certain frequency w
k50 and when the frequency becomes higher, this m
becomes more localized to the structure so thatk increases.
Thus, we can count guided modes at their point of first
pearance, atk50. There we find that the condition~35! sim-
plifies to sin(NKa)50. Now for wave vectorskz5 ik, the
Bloch wave vector satisfies

cos~Ka!5cosh~ka!2@F/~2k!#sinh~ka!, ~36!

so that withF5Deff(v/c)2 we find guided modes with fre
quencies

vm~k50!5A2c2/~aDeff!A12cos~mp/N!

for m50,1, . . . ,N21. ~37!

It turns out that for systems ofN-plane scatterers at a fixe
frequency, there are at mostN guided modes. AllN guided
modes emerge in the frequency interval 0<v<2c/AaDeff.
An increase in the effective thickness of the planes ma
this frequency interval smaller, because at the same
quency the modes have largerk and are more localized, jus
as was analyzed for the single plane above. Or vice versa
fixed k the frequency of a mode becomes lower when
effective thickness increases. In the limitN→` a band of
guided modes is formed. The case of an infinite numbe
planes was considered in Ref.@23# and there indeed the ban
at k50 is given by the frequency interval given above.

Figure 4 shows the dispersion of the modesvm(k) as a
function of k, in units of the plane separationa, for N510.
Actually, the frequencies are plotted asa/l, and all guided
2-7
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MARTIJN WUBS AND A. LAGENDIJK PHYSICAL REVIEW E65 046612
modes are indeed seen to appear atk50 when 0<a/l
<(1/p)Aa/Deff50.47. The figure illustrates that when th
product ka is much bigger than 1, the planes guide lig
independently so that theN modes all have frequencies ne
the one-plane frequencyA2k/Deff. For smallerka, the N
planes interact more strongly and the frequencies of
modes become more separated. So going from right to le
the figure, we go fromN independent single-plane guide
modes toN solutions of a genuineN-plane problem. The
physical way to traverse the plot is of course by changing
frequency: at frequencies just below 2c/AaDeff there are
both well-delocalized and well-localized modes. At high
frequencies, all guided modes are localized, whereas at lo
frequencies the inverse decay lengths (k)21 are larger so
that only delocalized modes are to be expected. The loca
tion of the guided modes will be illustrated in Sec. IV.

Now let us compare Fig. 4 with Fig. 3 that showed t
stop bands for light falling on the planes in the normal
rection. The first stop band in normal direction occurs
light with wavelengths 0.35<a/l<0.50. Light propagation
normal to the planes is strongly suppressed. In this sa
frequency interval, the four last guided modes of the str
ture appear. More generally, for our choice ofDeff , all the
interesting behavior of the guided modes appears around
first stop band for light propagating in the normal directio
Even when the plane crystal blocks light coming from alm
all directions, then light of this same frequency can
guided inside the structure. WhenDeff is decreased, the sto
bands become narrower, whereas the frequency interva
which the guided modes appear becomes wider.

IV. LOCAL DENSITY OF STATES

In inhomogeneous dielectrics, the spontaneous emis
rate of a radiating atom depends on its position and is p
portional to a quantity that is often called the local density
states~LDOS!. In quantum optics, many quantum states
light can be associated with what in this paper we call
optical ‘‘mode,’’ so that the words ‘‘state’’ and ‘‘mode’’ have
a different meaning. Actually, with ‘‘density of states’’ it i
meant ‘‘density of modes’’ and indeed the latter term
sometimes used@18,19#. But we stick to the familiar term
LDOS and assume that it will not confuse the reader. T

FIG. 4. Dispersion relations of the guided modes for a ten-pl
system. Thek on the horizontal axis equals2 ikz . The effective
thickness of the plane scatterers isDeff50.46a.
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LDOS is a function of position and frequency and will b
denoted byr(r ,v). ~This r is different from the reflection
amplitude of Sec. II C.!

For scalar waves in three dimensions,r(r ,v) is
22v/(pc2) times the imaginary part of the Green functio
G(r ,r ;v). In free space, all modes are propagating mo
and r0(r ,v)5v2/(2p2c3), independent of position. In di
electric structures, the LDOS is the sum of the local dens
of propagating modesrp(r ;v) and of the local density of
guided modesrg(r ;v), which we will also call the propa-
gating and guided LDOS, respectively. Spontaneous em
sion can occur into both types of modes, the physical diff
ence between the two cases being that light emitted in
propagating mode eventually can be detected in the far fi
whereas light emitted into the guided modes does not le
the structure.

First we need to know the Green function of the crystal
plane scatterers. Often a Green function is given and ca
lated in terms of its mode decomposition, but here we p
ceed differently. The sameT matrix ~20! that gave the propa
gating and guided modes when inserted in the Lippma
Schwinger equation, also gives the Green function wh
inserted in the Dyson-Schwinger equation~3!,

G~ki ,z,z8;v!5g0~ki ,z2z8;v!1 (
a,b51

N

g0~ki ,z2za ;v!

3Tab
(N)~ki ;v!g0~ki ,zb2z8;v!. ~38!

This is the Green function in the mixed representation and
order to find the LDOS we must transform it to real spa
using a two-dimensional inverse Fourier transformation a
then take the imaginary part. The crystal is translation inva
ant in thex andy directions so that the LDOS depends on t
z position only. Moreover, in our model~29! the individual
planes scatter light isotropically so that alsoTab

(N)(ki ;v)

5Tab
(N)(ki ;v). Then the integral over directionsk̂i is trivial;

the integral over the magnitudeki is split into a propagating
and a guided part, as we present below.

The propagating LDOS is given by

rp~z,v!5r0~z,v!2
v

p2c2
Im E

0

v/c

dkiki (
a,b51

N

g0~ki ,z

2za ;v!Tab
(N)~ki ;v!g0~ki ,zb2z;v!. ~39!

The integral is taken over the magnitude of the in-pla
wave vectorski with values between 0 andv/c, so that all
wave vectors contributing to the propagating LDOS are re

The remaining part of the inverse Fourier transform giv
the guided LDOS,

rg~z,v!52
v

p2c2
Im E

v/c

`

dkiki (
a,b51

N

g0~ki ,z2za ;v!

3Tab
(N)~ki ;v!g0~ki ,zb2z;v!. ~40!

Hereki.v/c, so that the integrand in Eq.~40! is real except
at the poleski(v) of the T-matrix elements. Now the

e

2-8
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LOCAL OPTICAL DENSITY OF STATES IN FINITE . . . PHYSICAL REVIEW E 65 046612
T-matrix elements are written in Eq.~20! in terms of the
functionshN , but it can be shown that the poles of the lat
do not correspond to poles of theTab

(N) . The T-matrix ele-
ments only have poles when 11hN(1,1)50, corresponding
to the guided modes that were found in Sec. III B. The rig
hand side of the equality~40!, therefore, simplifies into a
sum over residues of the integrand at the guided-mode po
The infinitesimally small positive imaginary parts of th
poles ensure thatrg(z,v)>0.

Now we discuss what the LDOS actually looks like in
system of plane scatterers. First considerrp for a single
plane located atz50. The T matrix is given in Eq.~29!.
Exactly at the position of the plane, the relative propagat
LDOS rp(0,v)/r0(0,v) turns out to be equal to the averag
transmission̂ utu2&av through the plane@Eq. ~31!#. As ex-
pected, highly reflecting planes affectrp more strongly. Fig-
ure 5 shows the local densities in the neighborhood of
plane.~Although forN51 the distance between the planesa
is not defined, we can choose a distancea and scale the plo
such thatDeff50.46a and a/l50.5.! At z50 we indeed
haverp /r050.32, equal to the average transmission of
plane. Away from the plane,rp oscillates back tor0.

Figure 5 also shows the guided LDOS for the single pla
at z50. With the pole of theT matrix located atk1

(1)

5Deff(v/c)2/21 ih, the guided LDOS~40! in this case is

FIG. 5. Local densities of states for a single plane, relative to
free-space value, fora/l50.5 andDeff50.46a. Both the radiative
~dashed line! and the guided LDOS~dotted line! are shown, as well
as their sum~solid line!.
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rg~z;v!5S 22v

pc2 D S 2k1
(1)

4 Dexp~22k1
(1)uzu!. ~41!

So for N51, the guided LDOS falls-off exponentially as
function of distance from the plane, with a decay length
@k1

(1)(v)#21. At the position of the plane the relative guide
LDOS rg /r0 is equal top2Deff /l, which is equal to 2.27 for
the values of the parameters of Fig. 5. So we know how
the position of the planerg goes up andrp goes down when
the effective thickness is increased.

For larger systems, forN510 say, the guided modes ca
either be localized to individual planes or be delocalized o
the entire structure. At least, this was anticipated in Sec. II
when discussing the dispersion relations of the guid
modes. Now we can check this. Figures 6~a,b! show the
propagating and guided LDOS as well as their sum, a
function of position in and around the structure, for a fr
quency such thata/l50.2. Again, the densities were divide
by the free-space value for a good comparison. Local de
ties of individual modes are plotted in Fig. 6~a!. According to
Fig. 4 there are three guided modes at this frequency, w
k1

(10)a50.84, k2
(10)a50.77, andk3

(10)a50.48, respectively.
From Fig. 6~a! one can learn that each of these three guid
modes is delocalized over all the planes and also that ev
next guided mode has one extra node in its mode den
The guided LDOS corresponds to the solid line in Fig. 6~a!;
it is the sum of the contributions of the three modes and
does not behave periodically inside the crystal.

Note thatrg(z,v) divided by the free-space value varie
around 0.7 inside the structure. The guided modes are, th
fore, an important channel for spontaneous emission. Thi
also illustrated by Fig. 6~b!, where for the same frequenc
the guided LDOS, the radiative LDOS, as well as their su
are shown. The frequency is well below the first stop band
any direction~see Fig. 3!. As is clear from Fig. 6~b!, inside
the structurerp(z,v) is smaller thanrg(z,v). Notice also
that the sumrp1rg shows more periodicity in the structur
thanrp or rg separately. Outside the structure the radiat
LDOS climbs back to the free-space value, showing dam
oscillations; the guided LDOS drops down to zero outs
the structure. The decay looks exponential with a dec
length of aboutl/4. In fact, the decay is multiexponentia

e

FIG. 6. Local densities of states for a crystal of plane scatterers withN510; densities are divided by the free-space density. Figure~a!
shows the guided mode LDOS~solid line! at a/l50.2. It is the sum of contributions from three guided modes: the first~dotted line! without
nodes, the second one~dashed! with one node, and the third guided mode~dot dashed! with two nodes. Figure~b! shows at the same
frequency the guided LDOS~dotted line!, the radiative LDOS~dashed! as well as the total LDOS~solid line!.
2-9
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FIG. 7. Radiative~dashed! and
total ~solid! LDOS of a ten-plane
crystal, for a/l50.5 in ~a! and
a/l50.6 in ~b!. Not shown in
both is the guided LDOS, which is
the difference between total an
radiative LDOS.
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because all three guided modes decay with their own de
length. Moreover, according to Eq.~40! the exponential de-
cay does not start at the outer planes only.

Figure 7~a! also shows local densities of states, but fo
higher frequency such thata/l50.5. This frequency is inter
esting, because it is the location of the blue edge of the
stop band in normal direction, as can be seen in Fig. 3. L
that makes an angleu with the normal has a first stop ban
that is shifted to higher frequencies, according to Brag
law 2acosu5l. At a/l50.5, stop bands of many direction
will overlap. Therefore, it is to be expected thatr r(r ,v) is
much lower than in free space. Figure 7~a! shows precisely
this: ther r(r ,v) rapidly drops down to almost zero insid
the plane crystal. Actually, what we have in Fig. 7~a! is an
omnidirectional mirror@17#. This can be checked by varyin
the angle of the incoming light in Eq.~32! ~not shown!: for
all angles ranging from 0 ° to 90 °, the first stop bands ov
lap ata/l50.5. Figure 7~a! suggests a working definition o
a finite omnidirectional mirror:A periodic structure is an
omnidirectional mirror at a frequencyv when the maximum
value ofrp(z,v)/r0(z,v) in the middle unit cell is smaller
than some previously agreed-upon values!1. The param-
eters denotes the maximum negligible amount of propag
ing LDOS that one accepts inside a finite omnidirectio
mirror. For example, the structure of Fig. 7~a! only counts as
an omnidirectional mirror when we accept as of 0.013 or
larger. Only for infinite structures can one find omnidire
tional mirrors with s50. Although the numberN of unit
cells does not explicitly enter this definition, it is clear th
increasingN can help to turn a structure into an omnidire
tional mirror.

Figure 7~a! also shows that the guided LDOSrg(z,v)
does not go to zero in the omnidirectional mirror. Ata/l
50.5, the maximum number of ten guided modes have
peared in the ten-plane crystal. Since inside the structure
total LDOS is almost exclusively made up ofrg(r ,v), spon-
taneous emission at this frequency occurs into one of th
guided modes with almost 100% efficiency. Conversely,
extraction efficiencyr r /(rg1r r) of light spontaneously
emitted inside the crystal will be almost zero ata/l50.5.

Finally, in Fig. 7~b! the frequency is increased such th
a/l50.6, above the first stop band in the normal direct
~see Fig. 3!. Then incident light in and around the norm
direction can enter the structure again and thereforerp(z,v)
is nonzero inside the crystal, as the figure shows. For
frequency, the structure is not an omnidirectional mirror
any reasonable tolerance parameters. The combined density
of the ten guided modes has become even more localize
04661
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the planes, which is the only thing that happens torg when
increasing the frequency even more. Interestingly, in
tween the planes the radiative LDOS is small where
guided LDOS is large, and vice versa, so that the variation
the total LDOS is small. Near the planes, however, the to
LDOS is much larger than the free-space value, mainly d
to rg .

In general, the propagating LDOS cannot be increa
much beyond the free-space value, at least for the effec
thicknessDeff50.46a that we consider. This is somewha
surprising since individual propagating modes can
strongly resonant inside the structure~see Fig. 2!. But
rp(z,v) is an integral~39! over all directions, some of reso
nant and others of decaying nature. As it turns out, this d
not add up to form a large increase. Even if the fraction
light spontaneously emitted into a certain direction can
dramatically increased compared to the emission in vacu
the total emission rate into propagating modes is not
creased much.

A last remark on the mirror symmetry of the LDOS
Fig. 5. The LDOS should of course be symmetrical inz
5(N11)a/2. In our formalism, this corresponds to a sym
metry in theT-matrix elements,Ta,b

(N) 5TN112a,N112b
(N) . In

particular, this symmetry should also be found in the resid
of Ta,b

(N) at the poleskm
(N)(v) corresponding to the guide

modes. We could use the symmetry in the plots as a chec
our calculations, because the plots were not made symm
cal ‘‘by hand.’’

V. SUMMARY AND CONCLUSIONS

In this paper we have used the plane scatterer as our w
horse and discussed its range of validity. We put it to use
the T-matrix formalism of multiple-scattering theory. TheT
matrix of N identical and parallel planes located at arbitra
positions was found as the inverse of a knownN3N matrix,
in Eq. ~18!; using the trick as discussed in the Appendix,
equation~20! an explicit expression for theT-matrix ele-
ments of a crystal of regularly spaced plane scatterers
given.

These analytical results enabled us to find relatively ea
both the propagating modes@in Eq. ~32!# and the guided
modes@defined by Eq.~35!# of a crystal consisting of an
arbitrary but finite number of planes. Not only individu
modes, but also the complete Green function could be fo
@Eq. ~38!#. From the Green function, the local density
states can be calculated, which is the sum of a propaga
and a guided LDOS. The sum of the two determines the lo
2-10
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spontaneous emission rate and the relative contribution
the propagating to the total LDOS gives you the extract
efficiency of spontaneously emitted light. Clearly, in order
make a connection with experiments, it is important to kn
the Green function of finite crystals. The knowledge of t
Green function and the LDOS is also needed for the in
pretation of images recorded with a scanning near-field o
cal microscope@35#. Here especially the LDOS near the su
face of the crystal is important.

We chose to present results forN510. The ten-plane
crystal was shown to exhibit stop bands. Around the frequ
cies of the first stop band in normal direction, guided mod
appear as delocalized over the whole crystal whereas
higher frequencies they localize to the individual plan
Around a/l50.5 the crystal is an omnidirectional mirro
We argued to consider a finite periodic structure as an om
directional mirror if the maximal value of the propagatin
LDOS in its innermost unit cell is smaller than some pre
ously agreed-upon finite value. The LDOS of the crystal
planes is a well-behaved function of position and frequen
The variations inside a unit cell can be large. Evidently,
finite translation symmetry of the LDOS is broken for th
finite crystals, especially near the surfaces. The total LD
shows more translation symmetry than the propagating
guided LDOS separately, which can be seen as a compet
between both types of modes with different outcomes w
going from one unit cell to another.
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APPENDIX: ANALYTICAL EXPRESSION FOR T MATRIX
OF N-PLANE CRYSTAL

The problem that arose in Sec. II B and that is solved
this appendix is how to find the inverse of the matrix

M[S m x x2 x3

x m x x2

x2 x m x

x3 x2 x m
D . ~A1!

The solution will be for generalN, but matrices are presente
for N54. Define the upper diagonal matrixU and lower
diagonal matrixL as
04661
of
n

r-
i-

n-
s
or
.

i-

-
f
y.
e

S
or
on
n

-
-
p-

n

U5S 0 x 0 0

0 0 x 0

0 0 0 x

0 0 0 0
D ; L5S 0 0 0 0

x 0 0 0

0 x 0 0

0 0 x 0
D . ~A2!

Then we have

U25S 0 0 x2 0

0 0 0 x2

0 0 0 0

0 0 0 0
D ; UN50, ~A3!

and similarly for powers of the lower diagonal matrixL .
From this, it follows that we can write the matrixM as

M5m11 (
p51

N21

~Up1L p!5m11U~12U!211~12L !21L .

~A4!

Now consider the inverse of the matrix product (12L )M (1
2U). Use this and Eq.~A4! to arrive at the following ex-
pression for the inverse ofM :

M215~12U!@m~12L !~12U!1~12L !U

1L ~12U!#21~12L !. ~A5!

In this form, finding the inverse is much easier than befo
because the matrix@•••# has only nonzero elements on th
diagonal and first off diagonals. This becomes clearer
rewriting

M215~12U!@Y1Z#21~12L !

5~12U!@11Y21Z#21Y21~12L !, ~A6!

whereY[(m1mx222x2)11(12m)(U1L ) is a symmetric
band diagonal matrix and the matrixZ has matrix elements
Zkl[(22m)x2dk1d l1 so that only its upper left element i
nonzero.

The matrixM21 is known whenY21 and @11Y21Z#21

are known. NowY has a simple structure and it can b
inverted immediately using the transformation matrixJkl

[A2/(N11)sin@klp/(N11)#. It is its own inverse and it di-
agonalizesY: we haveY215JL21J with Lkl

215dkl f
21(k)

where the functionf (k) is defined as

f ~k![m~11x2!22x212x~12m!cos@kp/~N11!#

~k51,2, . . . ,N!. ~A7!

What remains to be done for the inversion ofM is the evalu-
ation of the infinite series

~11Y21Z!21512Y21Z1~Y21Z!22~Y21Z!31•••.

~A8!
Now since we have

~Y21Z!kp5~22m!x2d1p (
m51

N

Jkmf 21~m!Jmp[hN~k,p!d1p ,

~A9!
2-11
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where in the last equality the functionhN(k,p) was defined,
we find that @(Y21Z)n#kp5hN(k,1)hN

n21(1,1)d1p . Sum-
ming up all orders, we find that

~11Y21Z!kp
215Fdkp2S hN~k,1!

11hN~1,1! D d1pG . ~A10!

Inserting this into Eq.~A6!, we have found the inverse of th
matrix M . This result is used in Eq.~20! of Sec. II B.

For Sec. III B it is useful to compute the determinant
the matrix M and this can be done best using Eq.~A6!,
det(M )5det@Y(11Y21Z)#. This determinant is equal to
@11hN(1,1)# times the product of all thef (k)’s of Eq. ~A7!.
With Eq. ~22! and the definition of the Bloch wave vecto
this gives
T

S
ia

s.

C.

n
ss

.

C.

.

04661
f

det@M ~ki ;v!#5F 21

2x~12m!G
NH sin@~N11!Ka#

2F ~22m!x

12m Gsin@NKa#J

3

)
m51

N Fcos~Ka!2cosS mp

N11D G
sin@~N11!Ka#

.

~A11!

Notice that the zeroes of the determinant arenot caused by
the products of cos(Ka)2cos(@mp/N11#) going to zero, be-
cause of the sin@(N11)Ka# in the denominator. The determ
nant is zero when of the other factor in the nominator is ze
which is equivalent to@11hN(1,1)#50.
. E

s

d.

s.

s

-

, T.
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