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Diffraction by a small aperture in conical geometry: Application to metal-coated tips
used in near-field scanning optical microscopy
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Light diffraction through a subwavelength aperture located at the apex of a metallic screen with conical
geometry is investigated theoretically. A method based on a multipole field expansion is developed to solve
Maxwell’s equations analytically using boundary conditions adapted both for the conical geometry and for the
finite conductivity of a real metal. The topological properties of the diffracted field are discussed in detail and
compared to those of the field diffracted through a small aperture in a flat screen, i.e., the Bethe problem. The
model is applied to coated, conically tapered optical fiber tips that are used in near-field scanning optical
microscopy. It is demonstrated that such tips behave over a large portion of space like a simple combination of
two effective dipoles located in the apex plane~an electric dipole and a magnetic dipole parallel to the incident
fields at the apex! whose exact expressions are determined. However, the large ‘‘backward’’ emission in theP
plane—a salient experimental fact that has remained unexplained so far—is recovered in our analysis, which
goes beyond the two-dipole approximation.
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I. DIFFRACTION AND NEAR-FIELD OPTICAL
MICROSCOPY

Diffraction and scattering are among the most diffic
phenomena encountered in optics. Eigenvalue problems
complex boundary conditions have to be solved in orde
account for the finite wavelength of light in the interactio
between optical waves and matter. Exact solutions are
tremely rare and limited to simple, idealized diffracting o
jects. In general, approximation methods are used for diffr
tion problems involving apertures or obstacles of arbitr
geometry. For example, the interaction of light with a scre
in the limit where the wavelength is short compared to
dimensions of the obstacles was already treated a long
ago by Huygens, Fresnel, and Kirchhoff~among others!.
This case corresponds to small deviations from geometr
optics. However, it is totally irrelevant for phenomena im
plying strong near-field patterns which occur for wav
lengths comparable to the dimensions of the diffracting
ject. In these cases, the interaction of light with mat
cannot be considered as a small perturbation, and the re
boundary problem must be solved exactly.

This is the situation encountered in near-field scann
optical microscopy~NSOM! in which strong interactions ex
ist between a nanosource and nearby nano-objects@1–4#. In
NSOM, the specimen is usually illuminated through a su
wavelength aperture located at the apex of a coated, tap
fiber tip. Such an optical tip can be mimicked by a trunca
metallic cone, i.e., a very complex geometry. The aim of
present paper is to study this diffraction geometry in orde
elucidate the properties of actual tapered optical tips.
though a rigorous solution of the problem will not be give
we will make use of an approximation method based o
field expansion in ‘‘quasispherical’’ multipoles which is val
in the far field. Maxwell’s equations are solved analytica
within this scheme, which allows us to describe in detail
1063-651X/2002/65~4!/046611~8!/$20.00 65 0466
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topological properties of the diffracted field. In particular, w
will show that the dipole behavior anticipated earlier@5,6#
can be formally justified and that it remains valid over
large portion of space. The predictions of our analysis
found to be in a fair agreement with available far-field em
sion patterns of actual conical optical tips.

The paper is organized as follows. In Sec. II, the probl
of diffraction through an aperture in a metallic screen is
troduced in general terms. In Sec. III, a method to so
electromagnetic problems with conical geometry is dev
oped. The radiation pattern of a conical optical probe is
scribed in Sec. IV for the case of a tip coated with a perf
metal, which is extended to real metals in Sec. V. Section
compares the theoretical results with experimental emiss
patters of metal-coated, optical fiber tips. A summary
given in Sec. VII.

II. INTRODUCTION TO THE PROBLEM OF
DIFFRACTION BY SMALL APERTURES:

THE BETHE-BOUWKAMP SOLUTION

In classical optics, the diffraction of light by an apertu
in a screen is studied within the Kirchhoff approximatio
@7,8#. The use of this scalar method is justified in numero
cases where the polarization of light can be ignored a
where the aperture size is large compared to the wavele
of the incident radiation. In order to apply the Huygen
Fresnel principle to light diffraction by small aperture
Smythe@9,10# has developed a vectorial Kirchhoff integr
formula based on the Green’s function method. The form
ism is very general but—like Kirchhoff’s scalar theory—i
practical application is restricted to long wavelengths co
pared to the geometrical parameters of the aperture.
first-order solution consists in neglecting the influence
boundary effects on the light in the aperture zone. T
method, which may be viewed as the electromagnetic co
terpart of the Born@11,12# approximation in quantum me
©2002 The American Physical Society11-1
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chanics, is adapted to the quasigeometrical regime of M
well’s equations. However, it is not adapted to lo
wavelength radiation.

Bethe @13# ~and after him Bouwkamp@14#! developed a
rigorous solution for the case of a small circular aperture i
perfect metallic plane by solving an electrostatic and mag
tostatic eigenvalue problem for the static near field exist
in the vicinity of the aperture. This solution, which gener
izes previous work by Rayleigh@15#, can be easily recovere
by using oblate spheroidal coordinates and harmonica w
functions. The Helmoltz equation@¹21k2#c50, which re-
duces to the Laplace equation for small hole sizes¹2c50,
has the solutionc(j,h,f)5Pl

m(j)Pl
m( ih)e6 imf, wherePl

m

denote Legendre wave functions indexed by two integ
l ,m. j,h,f are the oblate spheroidal coordinates. The Be
solution exhibits a complicated behavior in the vicinity of t
aperture. Nevertheless, the Bethe solution reduces to a
tipole expansion in the near-field domain limited byr /l;1
~which corresponds tor→1` for the static Laplace equa
tion wherel→1`). In the particular case of an inciden
plane wave, it reduces to an electromagnetic dipole field~see
Fig. 1!. The corresponding effective dipolesPeff and Meff
depend on the aperture radius and on the incident elec
magnetic field E0 ,B0 as given by the formulaPeff5
7(1/3p)a3E0,' , Meff56(2/3p)a3B0,i . The signs in
front of the expressions refer to the ‘‘incident1 reflected’’
domain and to the ‘‘transmitted’’ domain, respectively. It
interesting to note that the factor of 2 difference betwe
Meff andPeff appears in all similar situations as we will se
throughout this paper. The physical signification of the Be
dipoles can be understood using the Clausius-Mossotti@16#
formula. It describes the polarization produced by a loca
constant electromagnetic fieldE0 ,B0 in a small dielectric
sphere of constant permittivitiese,m which is immersed in a
homogenous medium with permittivitiese0 ,m0. According
to this formula, we haveP5e0(e/e021)/(e/e012)a3E0
and M5(1/m0)(m/m021)/(m/m012)a3B0. With the
condition e/e0 ,m0 /m!1 for a hole in a perfect metal, w
obtain the following two relations:P52(e0/2)a3E0 ,
M5(1/m0)a3B0, which are related by the same factor of 2
for the Bethe case.

The diffraction of light by a small aperture in a perfect

FIG. 1. A rigorous representation of the magnetic~a! and elec-
tric ~b! fields in the vicinity of a circular aperture in a metall
screen. The aperture has subwavelength size and the screen h
infinite conductivity. The fields reduce to uniform far fieldsE0 ,B0

in the incident part of space (2), and to a dipolar field in the othe
part ~1!.
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conducting plane can be regarded as the complementary
to the scattering of a wave by a small conducting partic
This point of view is in agreement with the electromagne
Babinet @17# theorem, which yields this result directly~see
@9,18#!. Rayleigh developed the theory of diffraction b
small particles and found that the shape of the particle is
a fundamental parameter if one is interested in the far-fi
pattern of the scattering wave only. This is due to the f
that the light cannot distinguish the shape of the particle
the wavelength is very large compared toa. Therefore, we
anticipate that the existence of two effective dipoles and th
far-field behavior is very general and does not depend on
shape of the small hole or the screen geometries. The e
expressions for these dipoles may depend on the hole s
and their directions may differ from the Bethe case, but
factor of 2 difference betweenM andP as well as the pres
ence of the fields and their dependence on the third powe
the radius probably constitute general results. A validity c
terion for this statement can be found in the curvature of
surface at the hole location. If the curvature is too stro
~i.e., if the curvature radius is too small!, the hypothesis can
not be considered as reasonable due to the presence of s
boundary effects at the surface. Therefore, we expect
validity of the dipole model to diminish with decreasing cu
vature radius. More precisely, the spatial domain in wh
the dipole model is applicable reduces progressively t
small solid angle around the optical axis when the curvat
radius decreases, i.e., when boundary effects invade sp
We will see below that these general trends are confirmed
theory.

III. THE QUASIMULTIPOLE METHOD

The method of quasimultipoles developed here is the
sult of a convergence of three domains in electromagneti
It lies at the intersection of~i! the metallic waveguide theory
for guides with variable cross sections@19–21#, ~ii ! the
spherical multipole expansion method developed by B
wkamp@16,22# for electromagnetic fields applicable to loca
ized source distributions, and~iii ! the Hall @23# equilibrium
solutions for conductors with conical geometry. For instan
the electromagnetic field radiated by a conical antenna o
conical hole can be described using this formalism. In or
to simplify the discussion, we will use the same notation
spherical multipoles as presented by Jackson@16#. Let us
consider a source-free region of space with permittivitiee
and m. A conical surface with half angleb separates this
space into an ‘‘outside’’ region and an ‘‘inside’’ region. Ifb
exceedsp/2, the external and the internal regions are mu
ally exchanged. For simplicity, these zones are considere
decoupled and totally independent. This is possible in
case of a perfectly conducting metallic surface in which tu
neling of the field through the surface is forbidden. Fro
now on, we will consider only the external problem. Ma
well’s equations can be written~assuming ane2 ivt time de-
pendence! as

s an
1-2
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E5
i

ke
“3H, H52

i

km
“3E,

“•E50, “•H50. ~1!

Making use of the identity¹2(r•A)5r•(¹2A)12“•A,
these equations reduce to

~¹21k2em!r•E50, ~¹21k2em!r•H50. ~2!

By writing the Laplace operator in spherical coordinates, a
separating the angular and radial variables, a typical solu
of Eq. ~2! can be expressed as follows:

c~r !5 (
n,m,6

an,m
6 hn

6~kAemr !Yn,m~u,f!. ~3!

Both Hankel functionshn
6 appear in this expansion~the 6

signs refer to outgoing and incoming waves, respective!.
They satisfy the spherical Bessel equations for the ra
variable r and the quasiharmonic functionsYn,m

}Pn
m(cosu)eimf defined in the literature@23–25#. The latter

represent the generalization to a conical geometry@23# of the
well-known spherical harmonicsYl ,m used in spherical ei-
genvalue problems. However, an important modificat
with respect to spherical harmonics is the presence of a n
integer parametern which replaces the integerl and which
depends on the boundary conditions on the cone. The
sible values ofn in Eq. ~3! follow an infinite sequence which
is a function ofb: np5np(b)(p integer!. The exact rela-
tion depends on the boundary conditions on the cone
analogy with the spherical case and with waveguide the
we now decompose the electromagnetic field obeying a
cific boundary condition on the cone into two parts: a ma
netic quasimultipole part~M! of the transverse electric fiel
~TE!, and an electric quasimultipole part~E! of the transverse
magnetic field~TM!. These two parts are characterized
components of order (n,m) satisfying

r•En,m
E,652S m

e D 1/4An~n11!

k
hn

(6)~krAem!Yn,m~u,f!,

r•Hn,m
M ,65S e

m D 1/4An~n11!

k
hn

(6)~krAem!Yn,m~u,f!,

~4!

and

r•Hn,m
E,650, r•En,m

M ,650. ~5!

In this article we consider only outgoing radiation propag
ing in vacuum. For reasons of generality, we must use
types of indicesnE(b) and nM(b) because of a differenc
between the boundary conditions for TE and TM waves.
example, if the conductivity of the metallic cone is infini
~the perfect conductor!, we must have the boundary cond
tions
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YnE ,m~u,f!uu5p2b50,

]YnM ,m~u,f!

]u
U

u5p2b

50. ~6!

These expressions fix the authorizedn values as a function
of b. Hence, an electromagnetic field satisfying spec
boundary conditions can be written as an expansion in
and TM waves, and we have

H5 (
nE ,m

anE ,m
E hnE

(1)~kr !
LYnE ,m~u,f!

AnE~nE11!
2

i

k (
nM ,m

anM ,m
M

“

3S hnM

(1)~kr !
LYnM ,m~u,f!

AnM~nM11!
D , ~7!

and

E5 (
nM ,m

anM ,m
M hnM

(1)~kr !
LYnM ,m~u,f!

AnM~nM11!
1

i

k (
nE ,m

anE ,m
E

“

3S hnE

(1)~kr !
LYnE ,m~u,f!

AnE~nE11!
D , ~8!

E5(
l

alEl , H5(
l

alHl , ~9!

wherel refers to TE and TM waves. In addition it can b
demonstrated@16# that we have

an,2m5~21!m11an,m* . ~10!

The coefficientsal are determined by integration with re
spect to the solid angle that includes the entire allowed
main V0:

al5k2E
V0

r•~E3Hl* !rdV. ~11!

Hence, we can express the angular distribution of radia
power, defined asdP/dV5(c/8p)r 2E3B* , as follows:

dP

dV
5

c

8pk2 I ~2 i !nE11 (
nE ,m

anE ,m
(E)

LYnE ,m~u,f!

AnE~nE11!
3 r̂

1~2 i !nM11 (
nM ,m

anM ,m
(M )

LYnM ,m~u,f!

AnM~nM11!
I 2

. ~12!

In addition we can write the total radiated power as

Ptotal5
c

8pEV0

Re@ r̂•~E3H* !!r 2dV5
c

8p (
l

ial
1i2.

~13!
1-3



i

di

tr
en
a
ac
za

fie

ec
y
e

tic

a
w

o

al

4

s
.
on
in

mi-

dius

ms
ot

to
can
ch
ten-
o-
n-

ee-
lt.

tion
in

ly

the
be
lcu-
r
ns

tic
re
um

ted
f the
3D

on,
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IV. THE RADIATION PATTERN OF A COATED TAPERED
FIBER TIP

The tapered and metal-coated optical fiber tip used
NSOM @26–28# is characterized by a ‘‘funnel’’ geometry in
which an aluminum layer~thickness of;100 nm) is evapo-
rated onto a glass cone truncated at its apex by a small
~diameter of 2a;60 nm, see Fig. 2!.

The shape of the tip reveals a partially conical geome
Therefore, the system is—to first approximation—equival
to a conical antenna and it can be described by a qu
multipole expansion. Nevertheless, in order to take into
count the finite size of the aperture domain in our modeli
tion, we study the field outside a sphere of radiusa/sinb
only. This so-called aperture zone represents the near-
region (r /l<1) of the fiber tip~see Fig. 2!. Let e.m.1 be
the electric and magnetic permittivities of vacuum. The el
tromagnetic field in the regionr /l>1 can be described b
an expansion using the quasimultipole formalism. The co
ficients an,m contain all properties of the electromagne
field.

In order to calculateE and B in the radiation zone, we
need to know the field on the spherical sectionV0, i.e., in the
near-field zone of the aperture@see Eq.~11!#. Unfortunately,
there is as yet no complete theory of light diffraction by
small aperture in a screen with conical geometry, and
must rely on approximations. Thean,m coefficients can be
evaluated by using a Taylor series written in the vicinity
the tip origin. We obtain, using Eq.~11!, the following ex-
pressions to first order inr :

al.2p ik3H 2E~0!•
1

4pEV0

r3~ r̂3El* !r 2dV

1B~0!•
1

2ipkEV0

~ r̂3El* !r 2dV1•••J
1

1

6 (
a,b

@Ql,a,b]bEa~0!2Ml,a,b]bBa~0!#.

~14!

In Eq. ~14!, the symmetric terms with prefactorsQl,a,b and
Ml,a,b are neglected in a first approximation. The integr
can be evaluated using the following properties:~i! the b

FIG. 2. An idealized metal-coated fiber tip with its characteris
funnel shape. The top angleb is less than 15 °, and the apertu
diameter 2a is of the same order of magnitude as the alumin
coating thickness, i.e., 100 nm.
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value is small and, as a consequence, the fraction (p
2V0)/(4p) is negligible, ~ii ! the authorizedn values are
close to 1, and~iii ! there are only the two first root
nE,p51 , nM ,p51 associated with our boundary problem
These second and third hypotheses will be justified later
but they can be intuitively understood by realizing that,
the limit of a very small tip angleb, the theory must reduce
to the case of a linear antenna in which the first and do
nating radiation mode is the dipole term withl 51. Hence,
using Maxwell’s equations, we have

anE ,m
E .22p ik3^EnE ,m

E* &•
1

3

a3

~sinb!3
E~0!,

anM ,m
M .22p ik3^BnM ,m

M* &•
2

3

a3

~sinb!3
B~0!, ~15!

where the average is taken in the spherical domain of ra
a/sinb.

Note that in the spherical harmonic expansion the ter
imi>1 are prohibited by recursion relations, but this is n
the case here.

In order to calculateal , we need to know the local field
B(0),E(0) at the center of the aperture. We would like
mention that a rigorous representation of the near field
be drawn for a two-dimensional tip as shown in Fig. 3. Su
a tip is described by magnetostatic and electrostatic po
tials which can be found using the well-known complex p
tential method valid for the Laplace equation in two dime
sions @29#. Numerical calculations by Novotnyet al. @30#
show the same field behavior. The field topology in the thr
dimensional~3D! case can be anticipated from this 2D resu
The choice of this field topology is based on the assump
that the mode entering the conical part of the tip is the one
the preceding hollow, circular cylinder. This is principal
the polarized TE11 mode used in near-field microscopy.

Turning back to the 3D case, we remark that, despite
lack of a rigorous analytical model, the near field can
computed numerically using different methods. These ca
lations confirm the intuitive field topology obtained in ou
2D result. Using our 2D model and numerical computatio

FIG. 3. The electric~a! and magnetic~b! fields in the near-field
zone of a two-dimensional cone, calculated rigorously with adap
complex potentials. The assumption is made that the topology o
3D problem can be obtained by deforming the 2D case. In the
case,~a! and~b! planes are perpendicular to each other. In additi
the magnetic field in~a! and the electric field in~b! are perpendicu-
lar to both planes for symmetry reasons.
1-4
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DIFFRACTION BY A SMALL APERTURE IN CONICAL . . . PHYSICAL REVIEW E 65 046611
obtained by other authors, we postulate that the unkno
near-field components are linked to each other by the ‘‘pl
wave’’ relation

^E&5^B&3 ẑ, ~16!

wherez is the cone symmetry axis. This condition may
intuitively understood by assuming that the incident lig
propagating in the fiber is linearly polarized. This means t
the symmetry of the field is conserved at the aperture
shown in Fig. 3. The electric and magnetic amplitudes at
center of the aperture domain~i.e., at the top of the cone! can
be determined from the Poynting theorem@18#, which
imposes the equality *ViBi25*ViEi22 i (c/v)r(E
3B* )r rdV in the spherical domain of the aperture zone.
the surface integral is equal to zero in this formula, i.e.
most of the energy is either transmitted or reflected but
stocked or dissipated in the near-field zone, we obtainE(0)
.B(0) as a good approximation.

Hence, with this symmetry condition, the field is entire
determined and the calculation shows that the only nonv
ishing terms havem51. The normalized angular distributio
of radiated power is then

1

P

dP

dV
.

2

5 I Im
LYnE,1~u,f!

AnE~nE11!
3 r̂

12 Re
LYnM ,1~u,f!

AnM~nM11!
I 2

, ~17!

in which only then valuesnE andnM have been considered
It is worth noting here that our derivation of Eq.~17! can

be obtained in a similar way by means of a quasispher
eigenfunction expansion of the scalar Green’s functions fo
cone @31–35# with Dirichlet ~or Neumann type! boundary
conditions depending onnE (nM) and m. The scalar field
r•E (r•B), and consequently the coefficien
anE ,m

E (anM ,m
M ) given by Eq. ~15! can be easily deduce

from a surface integral onV0. Conical Green’s functions
~which have already been used in the context of near-fi
optics for apertureless microscopes@36,37#! connect surface
integrals, given by Eq.~11! and Eq. ~15!, directly to the
Huygens-Fresnel principle.

In order to complete this section we note that the ra
(1/P)(dP/dV) represents the physical quantity in measu
ments of the angular power emitted by actual fiber tips
explained later on. The total radiated power of the fiber
can be expressed as a function of the fieldE(0):

Ptotal.
5c

864k2 S ka

sinb D 6

@E0#2. ~18!

This formula can be compared with the Bethe resultP
5(5ck6a6/108p2k2)E0

2, whereE0 is the field at the cente
of the aperture@18#. The same behavior appears in the tw
formulas: a dependence ona6 and onE0

2. The difference
arises from the (sinb)6 term, which represents the secon
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geometrical parameter of the fiber tip. It is important to no
that this formula contains an unknown variable: the fieldE0.
This field is a function of the transmission of the tip whic
depends on the overexponential decay in the conical wa
guide due to the cutoff of the propagating mode in the fib
@38#. This decay is not taken into account in our mod
which prevents us from computing the tip transmission.

V. BOUNDARY CONDITIONS AND PERTURBATION
METHOD

In order to complete the solution of Maxwell’s equation
we will describe the boundary conditions on the cone a
justify the above assumptionn.1. A simple analogy with
waveguide theory permits us to establish the boundary c
ditions in a conical geometry~this corresponds to the case
a ‘‘waveguide’’ of variable cross section!. For a perfect
metal, we have

YnE ,m~u,f!uS50,
]YnM ,m~u,f!

] cosu
U

S

50. ~19!

These equations impose a condition onnE and nM that re-
stricts the allowed values to infinite, growing sequencesnE,p
and nM ,p that depend onb and m(p integer!. BecauseR
5ka/sinb<1 in the near field, two successive rootsn8<n
associated with a TM mode~or a TE mode, respectively!
obey

an8,m8
E,M

an,m
E,M

;~kR!n82n!1. ~20!

This allows us to neglect, to a good approximation, all ro
except for the first two withp50. The calculation of these
roots is possible for a small cone angleb using the approxi-
mation formula of Hobson and Schelkunoff@23,39#, which
gives form51,

nE,0,m51.11
1

2 ln~2/b! 12/~b!2,

nM ,0,m51.11
1

2 ln~2/b! 16/~b!2. ~21!

For a tip angle of 15 ° we haven0.1.03. This approximation
can be compared with the values obtained by solving E
~19! numerically. Here we have for the samebnE,0.1.033
andnM ,0.0.967.

In reality, aluminum is a good but not perfect metal th
possesses a frequency-dependent complex dielectric con
ec5ec81 i ec9 . In the optical domain forl<800 nm, the per-
mittivity of aluminum can be described by the Lorentz fo
mula

ec~v!.12
vp

2

v21 ivg
. ~22!
1-5



n

-
f
M

o

ob
of
ng

f

ed
te

e

ed

ni

re
n

sid

allic
nt is
ave
re-

t
fit
e

-
ion

-

or
to
s
ent
rre-
the

.

A. DREZET, J. C. WOEHL, AND S. HUANT PHYSICAL REVIEW E65 046611
The plasma frequency and the damping constant are give
vp.15.56 eV andg.0.608 eV, respectively@38#. At l
.633 nm, we haveec.254.41 i18.8, which implies a re-
fractive index nc5Ae51.181 i7.12 and a skin depthd
51/2knc9.7 nm, which is small but not negligible com
pared to the metallic cladding of.100 nm. The influence o
the finite skin depth on the ‘‘perfect’’ and unperturbed T
and TE modes may be taken into account.

The perturbed solution is discussed in the textbook
Jackson@16#. The result is a condition linkingE andB on the
surface with the aluminum permittivity@16#:

Ei5E2û~E•û!.2A1

ec
û3B. ~23!

This implies an effective current confined to the surface
tained by integration of Ohm’s law in the aluminum layer
thicknessd located just below the conductor surface. Usi
Eq. ~23!, we can establish

YnE ,muS52 iA1

ec

kr

nE~nE11!

]YnE ,m

]u
U

S

,

]YnM ,m

]u
uS5 iA1

ec

nM~nM11!

kr
YnM ,mU

S

. ~24!

As expected, this reduces to the unperturbed condition
s5`. By using the substitutionn→n (0) on the right-hand
side of Eq. ~24! we have to lowest ordercEuS
. f E(]cE

(0)/]n)uS and (]cM /]n)uS. f McM
(0)uS , where the

factorsi f E,Mi are small. In order to calculate the perturb
n, we use the two-dimensional Green’s theorem in its in
gral form @16#, and we obtain

nE
(0)~nE

(0)11!2nE~nE11!.~1.41 i0.23!kr,

nM
(0)~nM

(0)11!2nM~nM11!.~1.41 i0.23!31025
1

kr
.

~25!

nE,0 andnM ,0 are functions of two radiir E.18 nm andr M
5l5633 nm that are adjusted to reproduce the experim
tal results discussed below. The two values ofn are complex
and the real parts are close to unity as expected:nE.0.95
20.01i , nM.0.96. These fits reveal that the adopt
boundary conditions depend on a typical lengthr ,l that is
probably linked to the aperture radiusa.20 nm~this value
is in agreement with the aperture radius obtained by scan
electron microscopy@5#!. With these values ofn we can
calculate the radiated power distribution of the tip@40#.

VI. COMPARISON WITH EXPERIMENTAL DATA

Measurements of the far-field radiated power of tape
fiber tips in theS andP planes have been carried out exte
sively by Obermu¨ller and Karrai @5,6#. As seen in Fig. 4,
there is an important backscattering effect in theP plane. The
experimental data and the results obtained with the qua
04661
by

f

-

or

-

n-

ng

d
-
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pole model~using the values ofnE,M obtained above! are
also shown in Fig. 4 for comparison@40#. The agreement is
good for most angles with the exception of extremeu values
corresponding to grazing observation angles on the met
cone. The disagreement between theory and experime
probably due to higher terms in the expansion that we h
neglected. This is confirmed by the recent independent
sults obtained by Shinet al. @41#, who fitted the experimen
to an expansion in classical spherical multipoles. Their
contains dipolar terms~where the factor of 2 plays the sam
role as in our model! as well as quadrupolar (l 52) and
octopolar (l 53) terms. The behavior of the field in the ex
treme regions probably also depends on a modified diffus
due to surface roughness@42#.

The dipole model of Obermu¨ller and Karrai, which corre-
sponds ton51 ~a value close to the real valuesnE,0 and
nM ,0), gives good results for theS polarization but cannot
reproduce the backward emission in theP plane. The fact
that the two values ofnE,M approach unity explains the effi
ciency of the dipole model for small azimuthal angles~in this
regimeYn,m.Y1,m). In addition we can formally justify the

FIG. 4. Normalized angular distribution of radiated power f
~a! the P polarization where the incident electric field is parallel
the analysis plane, and~b! the S polarization where the detector i
scanned perpendicularly to the plane of polarization of the incid
light. Experimental data are shown as circles. The thick line co
sponds to the present quasimultipole model, the thin line to
two-dipole model. The experimental data~aperture radiusa
520 nm, light wavelengthl5633 nm) are taken from Refs
@1,2#.
1-6
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dipole model by considering Eq.~15! as the generalization
for conical geometry of the fundamental definition of mul
pole moments which enter into the spherical harmonic m
tipole expansion, and which are used for localized sou
distributions. Using this analogy, we deduce the two eff
tive dipoles associated with the aperture as

Peff5
1

4A2

a3

sinb3
E~0!,

Meff52ẑ3Peff52
1

4A2

a3

sinb3
B~0!. ~26!

Once again, the characteristic factor of 2 between the m
netic and electric moments appears in this formula. Figure
and 6 are two equivalent representations of the spatial de
dence of radiated power. In particular, the ‘‘orbital’’ repr
sentation of Fig. 5 shows the important backward emiss
in the plane containing the effective electric dipoleP and the
tip axis (P plane!. This backward effect is less important
the S plane containing the tip axis and the magnetic dip
due to the strong near-field effect on the metal surface.
factor of 2 in Eq.~26! @as in Eq.~17!# stresses the differenc
between electric and magnetic dipoles as discussed in
Introduction~namely, an oscillating charge in the case of
electric dipole and a rotating charge for a magnetic dipo!.
This factor of 2 and the dependence of the dipoles ona and
on E0 are similar to those in the Bethe model and the R
leigh diffusion theory for subwavelength particles and hol
but the dipole orientations are different, a result unexplain
by the Bethe-Bouwkamp solution.

We note in addition that the far fields radiated by a sm
distribution of electric and magnetic dipoles located in t
apex zone that satisfy a relation of the type given by Eq.~26!
are equivalent to those deduced from Eq.~15! @and conse-
quently Eq.~17!# in the limit of subwavelength distributions
This fact, which can be obtained by means of the sca

FIG. 5. ‘‘Orbital’’ representation of the angular radiated pow
of the tip „r 5I (u,f),u,f…. The figure shows the important back
ward emission in theP plane passing through the tip axis and co
taining the effective electric dipoleP.
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Green’s functions discussed above, gives further suppor
the analogy between dipoles and the aperture at the apex
cone.

It is worthwhile to mention that Roberts@43# has used the
method of quasimultipoles for the interior problem of ‘‘sma
hole coupling of radiation into a near-field probe.’’ In th
problem the author used the limit of smallb where
Yn,m(u,f);Jn„(n1 1

2 )u…eimf and showed that the couplin
of a wave into a conical waveguide implies effective dipo
given by the Bethe-Bouwkamp solution. These dipoles
perpendicular to the aperture, a result completely differ
from the problem of radiation by a tip that generates dipo
located in the aperture plane.

For completeness, we wish to comment on some ad
tional, interesting properties of the emission by conical t
that are relevant to the experiment. The quasimultip
model shows that the aperture radius disappears in the
mula Eq.~17! and, consequently, in the radiation profile. W
can understand this fact using the analogy with Rayleig
and Mie’s theory@12# of diffusion by small particles, which
follow the same behavior as our model and which can
associated with the impossibility of seeing details sma
than the wavelength of light. In particular, the aperture s
cannot be a relevant variable in the limit of small apertur
For the same reason, the tip angleb does not play an impor-
tant role in the diffraction profile. The dependence on t
aperture radius is very different in the short-wavelength lim
and for large aperturesa>l. For a large hole, the transmis
sion must approach unity and, as a consequence, the ape
radius may appear in the profile. We then havedP/PdV
;(ka)2 cos2(u)@2J1(kasinu/ka sinu#2 and P;cE0

2a2/8,
which can be compared withP;(ck6a6/k2)E0

2, valid for
Bethe’s theory and our conical subwavelength apert
model.

VII. SUMMARY

An optical fiber tip with a small aperture in the met
coating as used in NSOM is usually characterized by its

FIG. 6. 3D isoline representation of the electromagnetic ene
density ~arbitrary units! in the far-field zonekr@1. This figure
shows the difference in the far-field energy distribution that ex
between theS and P polarization planes, and the presence of
important backscattering effect in theP plane. Additionally, the tip
of the metallic cone is represented as a sphere. The sphere at t
apex corresponds to the~unknown! near-field zone where the far
field divergent energy distribution proportional to 1/r 2 is no longer
valid.
1-7
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gular transmission profile. In order to describe this pro
theoretically, we presented in this paper an analytical mo
for light diffraction through a subwavelength aperture
cated at the apex of a metallic screen with conical geome
For this purpose, a field expansion in quasispherical mu
poles was developed to solve Maxwell’s equations anal
cally. Special care was taken to consider realistic bound
conditions adapted not only to the conical geometry but a
to the finite conductivity of the coating. Our model is able
reproduce and to explain the experimental results. The
fraction in the far field is demonstrated to remain similar
h

-

,

-

04661
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that obtained with the two-dipole model@5,6# over a large
portion of space. The latter model is formally justified in o
approach. In particular, we find a characteristic factor o
difference between the expressions for the magnetic and
electric dipole~which is reminescent of the Rayleigh diffu
sion theory by small particles and the Bethe problem!. In
addition, the previously unexplained large ‘‘backward’’ emi
sion in theP plane ~which does not exist in theS plane!
results directly from our analysis. This ‘‘P emission’’ arises
from a Poynting vector flow along the coated surface of
tip, an effect that cannot be described within a simple dipo
model.
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