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Diffraction by a small aperture in conical geometry: Application to metal-coated tips
used in near-field scanning optical microscopy
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Light diffraction through a subwavelength aperture located at the apex of a metallic screen with conical
geometry is investigated theoretically. A method based on a multipole field expansion is developed to solve
Maxwell's equations analytically using boundary conditions adapted both for the conical geometry and for the
finite conductivity of a real metal. The topological properties of the diffracted field are discussed in detail and
compared to those of the field diffracted through a small aperture in a flat screen, i.e., the Bethe problem. The
model is applied to coated, conically tapered optical fiber tips that are used in near-field scanning optical
microscopy. It is demonstrated that such tips behave over a large portion of space like a simple combination of
two effective dipoles located in the apex plaae electric dipole and a magnetic dipole parallel to the incident
fields at the apexwhose exact expressions are determined. However, the large “backward” emissiorPin the
plane—a salient experimental fact that has remained unexplained so far—is recovered in our analysis, which
goes beyond the two-dipole approximation.
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I. DIFFRACTION AND NEAR-FIELD OPTICAL topological properties of the diffracted field. In particular, we
MICROSCOPY will show that the dipole behavior anticipated earljé;6]

can be formally justified and that it remains valid over a
Diffraction and scattering are among the most difficultlarge portion of space. The predictions of our analysis are
phenomena encountered in optics. Eigenvalue problems witfpund to be in a fair agreement with available far-field emis-
complex boundary conditions have to be solved in order t$ion patterns of actual conical optical tips.
account for the finite wavelength of light in the interactions _ 'he paper is organized as follows. In Sec. II, the problem
between optical waves and matter. Exact solutions are exf diffraction through an aperture in a metallic screen is in-
tremely rare and limited to simple, idealized diffracting ob- troduced in general terms. In Sec. lll, a method to solve
jects. In general, approximation methods are used for diffracE/ectromagnetic problems with conical geometry is devel-

tion problems involving apertures or obstacles of arbitraryOped' The radiation pattern of a conical optical probe is de-

geometry. For example, the interaction of light with a screenscnbed |n.Se'c. IV for the case of a tip cpated with a pgrfect
in the limit where the wavelength is short compared to themEtal’ which is extend_ed to real me_tals n S_ec. V. Sect|(_)n .VI

: . ._compares the theoretical results with experimental emission
dimensions of the obstacles was already treated a long ti

atters of metal-coated, optical fiber tips. A summary is
ago by Huygens, Fresnel, and Kirchhadimong others n}g Pl I P . y

X o __given in Sec. VILI.
This case corresponds to small deviations from geometrical
optics. However, it is totally irrelevant for phenomena im-
plying strong near-field patterns which occur for wave-
lengths comparable to the dimensions of the diffracting ob-
ject. In these cases, the interaction of light with matter
cannot be considered as a small perturbation, and the related |n classical optics, the diffraction of light by an aperture
boundary problem must be solved exactly. in a screen is studied within the Kirchhoff approximation

This is the situation encountered in near-field scanning7,8]. The use of this scalar method is justified in numerous
optical microscopy¥NSOM) in which strong interactions ex- cases where the polarization of light can be ignored and
ist between a nanosource and nearby nano-objéetd]. In  where the aperture size is large compared to the wavelength
NSOM, the specimen is usually illuminated through a sub-of the incident radiation. In order to apply the Huygens-
wavelength aperture located at the apex of a coated, taper&desnel principle to light diffraction by small apertures,
fiber tip. Such an optical tip can be mimicked by a truncatedSmythe[9,10] has developed a vectorial Kirchhoff integral
metallic cone, i.e., a very complex geometry. The aim of theformula based on the Green’s function method. The formal-
present paper is to study this diffraction geometry in order tasm is very general but—like Kirchhoff’s scalar theory—its
elucidate the properties of actual tapered optical tips. Alpractical application is restricted to long wavelengths com-
though a rigorous solution of the problem will not be given, pared to the geometrical parameters of the aperture. The
we will make use of an approximation method based on dirst-order solution consists in neglecting the influence of
field expansion in “quasispherical” multipoles which is valid boundary effects on the light in the aperture zone. This
in the far field. Maxwell’s equations are solved analytically method, which may be viewed as the electromagnetic coun-
within this scheme, which allows us to describe in detail theterpart of the Born 11,12 approximation in quantum me-

II. INTRODUCTION TO THE PROBLEM OF
DIFFRACTION BY SMALL APERTURES:
THE BETHE-BOUWKAMP SOLUTION
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conducting plane can be regarded as the complementary case
to the scattering of a wave by a small conducting particle.
This point of view is in agreement with the electromagnetic
Babinet[17] theorem, which yields this result direct{gee

) ) % +)

=

= [9,18]). Rayleigh developed the theory of diffraction by
==

=

small particles and found that the shape of the particle is not
a fundamental parameter if one is interested in the far-field
pattern of the scattering wave only. This is due to the fact
that the light cannot distinguish the shape of the particle if
the wavelength is very large comparedaoTherefore, we
anticipate that the existence of two effective dipoles and their
Sfaﬁfield behavior is very general and does not depend on the
infinite conductivity. The fields reduce to uniform far fiellg, B, s%ape O,f the small hOIe, or the screen geometries. The exact
in the incident part of space~(), and to a dipolar field in the other expressions for these dipoles may depend on the hole shape
part (+). and their directions may differ from the Bethe case, but the
factor of 2 difference betweeM andP as well as the pres-

chanics, is adapted to the quasigeometrical regime of Max€nce of_ the fields and thei_r dependence on the third_ppwer_of
well's equations. However, it is not adapted to longthe radius probably constitute general results. A validity cri-
wavelength radiation. terion for this statement can be found in the curvature of the
Bethe[13] (and after him Bouwkampp14]) developed a surface at the hole location. If the curvature is too strong
rigorous solution for the case of a small circular aperture in di.€., if the curvature radius is too smiafthe hypothesis can-
perfect metallic plane by solving an electrostatic and magnenot be considered as reasonable due to the presence of strong
tostatic eigenvalue problem for the static near field existingooundary effects at the surface. Therefore, we expect the
in the vicinity of the aperture. This solution, which general- validity of the dipole model to diminish with decreasing cur-
izes previous work by Rayleigi5], can be easily recovered vature radius. More precisely, the spatial domain in which
by using oblate spheroidal coordinates and harmonica wavihe dipole model is applicable reduces progressively to a
functions. The Helmoltz equatiofV>+k?]¢=0, which re-  small solid angle around the optical axis when the curvature
duces to the Laplace equation for small hole siZég=0,  radius decreases, i.e., when boundary effects invade space.
has the solutions(¢&, 7, ) = P"(£)P"(i n)e*'™¢, whereP["  We will see below that these general trends are confirmed by
denote Legendre wave functions indexed by two integersheory.
I,m. & n,¢ are the oblate spheroidal coordinates. The Bethe
solution exhibits a complicated behavior in the vicinity of the
a_lperture. Neyerth_eless, the B.ethe solut.ion. rgduces to a mul- lIl. THE QUASIMULTIPOLE METHOD
tipole expansion in the near-field domain limited by ~1
(which corresponds to— +co for the static Laplace equa-
tion whereN— +). In the particular case of an incident
plane wave, it reduces to an electromagnetic dipole fede
Fig. 1). The corresponding effective dipoldty and Mg«

(a) (b)

FIG. 1. Arigorous representation of the magnétrand elec-
tric (b) fields in the vicinity of a circular aperture in a metallic
screen. The aperture has subwavelength size and the screen ha

The method of quasimultipoles developed here is the re-
sult of a convergence of three domains in electromagnetism.
It lies at the intersection df) the metallic waveguide theory

depend on the aperture radius and on the incident electr(SEJr gL_Jides Wit_h variable cross sectiont9-21, (i) the
magnetic field Eq,B, as given by the formulaP. = spherical multipole expansion method developed by Bou-

T(13m)a%Ey,,  Meg= i(2/:,.,77)‘,71350“_ The signs in yvkamp[16,22_for_ ele_ctromag_n_etic fields applicabl_g to local-
front of the expressions refer to the “incident reflected”  1zed source distributions, ar(@i) the Hall [23] equilibrium
domain and to the “transmitted” domain, respectively. It is Solutions for conductors with conical geometry. For instance,
interesting to note that the factor of 2 difference betweerfhe electromagnetic field radiated by a conical antenna or a
M ¢ and P appears in all similar situations as we will see conical hole can be described using this formalism. In order
throughout this paper. The physical signification of the Bethdo simplify the discussion, we will use the same notation for
dipoles can be understood using the Clausius-Mosgtii ~ spherical multipoles as presented by JackEb8l. Let us
formula. It describes the polarization produced by a locallyconsider a source-free region of space with permittivides
constant electromagnetic fiel,,B, in a small dielectric and u. A conical surface with half angl@ separates this
sphere of constant permittivities . which is immersed in a space into an “outside” region and an “inside” region.
homogenous medium with permittivities), uo. According  exceedsr/2, the external and the internal regions are mutu-
to this formula, we haveP=ey(e/eq—1)/(elex+2)a’E,  ally exchanged. For simplicity, these zones are considered as
and M= (/o) (w/ mo— 1)/ (u/ mo+2)aB,. With the decoupled and totally independent. This is possible in the
condition €/ g, o/ u<<1 for a hole in a perfect metal, we case of a perfectly conducting metallic surface in which tun-

obtain the following two relations:P=—(ey/2)a’E,, neling of the field through the surface is forbidden. From
M = (1/uq)a®B,, which are related by the same factor of 2 asnow on, we will consider only the external problem. Max-
for the Bethe case. well’'s equations can be writtefassuming are ™' ' time de-

The diffraction of light by a small aperture in a perfectly pendencgas
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i i YV 0, e =0,
E=—VXH, H=-—VXE, E,m( ¢)|0 B
ke ku

Yy, m(0,0)
V-E=0, V-H=0. (1) 90 =0. (6)
O=m—p
Making use of the identityV?(r-A)=r-(V2A)+2V-A,

. These expressions fix the authorizedralues as a function
these equations reduce to

of B. Hence, an electromagnetic field satisfying specific
boundary conditions can be written as an expansion in TE

2 2 _ 2 2 _
(Vo+keu)r-E=0, (Vi+kew)r-H=0. (2 nq1m waves, and we have

By writing the Laplace operator in spherical coordinates, and

separating the angular and radial variables, a typical solution H= 2 At h(+)(kr)LYvE,m( 0.¢) _i_ E aV v
of Eq. (2) can be expressed as follows: vem EMVE Vre(vg+1)  Kogrm ™™
P LY, .m(6,¢)

W= 2 a,ph; (kVeun)Y, «(6,4). 3 x(h(;)(kr)ﬂ , @)
Both Hankel functionsh;, appear in this expansiofthe + and
signs refer to outgoing and incoming waves, respectjvely
They satisfy the spherical Bessel equations for the radial LY (6,4) i
variable r and the quasiharmonic functionsY, E= 2 a¥  hCH(kr) vp oM +'_ 2 af v
«P™M(cos#)e™ defined in the literaturg23—23. The latter iam MM Jom(vy+1)  Kogm &
represent the generalization to a conical geome&8y of the
well-known spherical harmonic¥) ,, used in spherical ei- (h(”(k )LY,,E,m( 0, ¢)) ®
genvalue problems. However, an important modification Ve \/m

with respect to spherical harmonics is the presence of a non-
integer parameter which replaces the integérand which
d_epends on the_ boundary condltlc_)ns_ on the cone. Thg pos- EZE a,E,, HZE aH,, 9)
sible values o in Eq. (3) follow an infinite sequence which ) )

is a function of 3: v =vy(B)(p intege). The exact rela-

tion depends on the boundary conditions on the cone. Iwhere\ refers to TE and TM waves. In addition it can be
analogy with the spherical case and with waveguide theorydemonstratedl16] that we have

we now decompose the electromagnetic field obeying a spe-

cific boundary condition on the cone into two parts: a mag- a, _m=(— 1)m+1a’,j,m. (10
netic quasimultipole partM) of the transverse electric field

(TE), and an electric quasimultipole p&H) of the transverse The coefficientsa, are determined by integration with re-
magnetic field(TM). These two parts are characterized byspect to the solid angle that includes the entire allowed do-

components of ordery;m) satisfying main Q;
r-EE:n?=—(% V(VT)hii)(kr@)Yum(e,(ﬁ), aﬁszﬂ r(EXH)rdo. (1)
0
e\ Y4 vt 1) Hence, we can express the angular distribution of radiated
r-Htf;n*z(;) %hf’(kr@)vm(a,@, power, defined ad P/dQ = (c/87)r2Ex B*, as follows:
(4) dP C LYV m( 01¢)
d —= (—i)ert a(E)mE'—xF
an dQ  gzk? vem B \/m
r-HE==0, r-EMi=o0. (5) LY, (6.8’
+(=iymtt Y Al e (12
In this article we consider only outgoing radiation propagat- Ymom vm(vm+1)

ing in vacuum. For reasons of generality, we must use two - ) )

types of indicesvg(8) and vy(B) because of a difference In addition we can write the total radiated power as
between the boundary conditions for TE and TM waves. For

example, if the conductivity of the metallic cone is infinite ZLJ RET (ExXH* ))r2d0 = — atl2
(the perfect conductdrwe must have the boundary condi- g ) a, o ) 8w E}\: Il
tions (13
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- - FIG. 3. The electrida) and magneticb) fields in the near-field
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zone of a two-dimensional cone, calculated rigorously with adapted
FIG. 2. Anidealized metal-coated fiber tip with its characteristic complex potentials. The assumption is made that the topology of the
funnel shape. The top angj@ is less than 15°, and the aperture 3D problem can be obtained by deforming the 2D case. In the 3D
diameter 2 is of the same order of magnitude as the aluminumcase,(a) and(b) planes are perpendicular to each other. In addition,
coating thickness, i.e., 100 nm. the magnetic field ifa) and the electric field irib) are perpendicu-

lar to both planes for symmetry reasons.
IV. THE RADIATION PATTERN OF A COATED TAPERED

FIBER TIP value is small and, as a consequence, the fraction (4

The tapered and metal-coated optical fiber tip used in—q)/(4m) is negligible, (i) the authorizedv values are
NSOM [26—-29 is characterized by a “funnel” geometry in close to 1, and(iii) there are only the two first roots
which an aluminum layefthickness of~100 nm) is evapo- vg -1, ¥up-1 associated with our boundary problem.
rated onto a glass cone truncated at its apex by a small diskhese second and third hypotheses will be justified later on
(diameter of 2~60 nm, see Fig. 2 but they can be intuitively understood by realizing that, in

The shape of the tip reveals a partially conical geometrythe limit of a very small tip anglgs, the theory must reduce
Therefore, the system is—to first approximation—equivalento the case of a linear antenna in which the first and domi-
to a conical antenna and it can be described by a quasiating radiation mode is the dipole term witk-1. Hence,
multipole expansion. Nevertheless, in order to take into acusing Maxwell’s equations, we have
count the finite size of the aperture domain in our modeliza-

tion, we study the field outside a sphere of radaisin e e 1 asd

only. This so-called aperture zone represents the near-field a, m=—2mk <Ey;,m>'§ ——E(0),

region {/\<1) of the fiber tip(see Fig. 2 Lete=u=1 be (sinp)

the electric and magnetic permittivities of vacuum. The elec- ) 5

tromagnetic fleld. in the reg|op/)\;1 can be d.escrlbed by a';" m2—277ik3<B',\/"* .2 -a B(0), (15

an expansion using the quasimultipole formalism. The coef- M M3 (sing)3

ficients a, ,, contain all properties of the electromagnetic

field. where the average is taken in the spherical domain of radius
In order to calculatee and B in the radiation zone, we a/sinp.

need to know the field on the spherical sectidg i.e., in the Note that in the spherical harmonic expansion the terms

near-field zone of the apertufsee Eq(11)]. Unfortunately, |m||=1 are prohibited by recursion relations, but this is not
there is as yet no complete theory of light diffraction by athe case here.

small aperture in a screen with conical geometry, and we |n order to calculate, , we need to know the local field
must rely on approximations. The, ., coefficients can be B(0),E(0) at the center of the aperture. We would like to
evaluated by using a Taylor series written in the vicinity of mention that a rigorous representation of the near field can
the tip origin. We obtain, using Ed11), the following ex-  be drawn for a two-dimensional tip as shown in Fig. 3. Such

pressions to first order in: a tip is described by magnetostatic and electrostatic poten-
1 tials which can be found using the well-known complex po-
a)\:27rik3[ —E(0)- _f X (r X E¥)r2dQ tential method valid for the Laplace equation in two dimen-
4 J o, sions [29]. Numerical calculations by Novotngt al. [30]

1 show the same field behavior. The field topology in the three-

+B(0)- _J' (rXEH)r2dQ+- - ] dimensional3D) case can be anticipated from this 2D result.
2imk ] o, The choice of this field topology is based on the assumption
that the mode entering the conical part of the tip is the one in

+= Oy o 594E4(0)— M, o 395B,(0)]. the preceding hollow, circular cylinder. This is principally
6 ;ﬁ’ LOn.a.%8E(0) na.p?pBa(0)] the polarized TE11 mode used in near-field microscopy.
(14) Turning back to the 3D case, we remark that, despite the

lack of a rigorous analytical model, the near field can be
In Eq. (14), the symmetric terms with prefacto, , ; and  computed numerically using different methods. These calcu-
M, .5 are neglected in a first approximation. The integralslations confirm the intuitive field topology obtained in our
can be evaluated using the following propertié$:the 8 2D result. Using our 2D model and numerical computations
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obtained by other authors, we postulate that the unknowgeometrical parameter of the fiber tip. It is important to note
near-field components are linked to each other by the “plan¢hat this formula contains an unknown variable: the figjd
wave” relation This field is a function of the transmission of the tip which
depends on the overexponential decay in the conical wave-
(Ey=(B)xz, (16)  guide due to the cutoff of the propagating mode in the fiber
[38]. This decay is not taken into account in our model,
wherez is the cone symmetry axis. This condition may bewhich prevents us from computing the tip transmission.
intuitively understood by assuming that the incident light

propagating in the fiber is linearly polarized. This means that V. BOUNDARY CONDITIONS AND PERTURBATION

the symmetry of the field is conserved at the aperture as METHOD
shown in Fig. 3. The electric and magnetic amplitudes at the
center of the aperture domaiire., at the top of the conean In order to complete the solution of Maxwell’s equations,

be determined from the Poynting theoref8], which  we will describe the boundary conditions on the cone and
imposes the equality [y|B|?=/\|E|?—i(c/w)$(E justify the above assumption=1. A simple analogy with

X B*)rrd() in the spherical domain of the aperture zone. Ifwaveguide theory permits us to establish the boundary con-
the surface integral is equal to zero in this formula, i.e., ifditions in a conical geometrithis corresponds to the case of
most of the energy is either transmitted or reflected but noa “waveguide” of variable cross sectibnFor a perfect
stocked or dissipated in the near-field zone, we obEid)  metal, we have

=B(0) as a good approximation.

Hence, with this symmetry condition, the field is entirely Yy, m(6,d)
determined and the calculation shows that the only nonvan- Yoe m(6,¢)[s=0, ————— =0. (19
ishing terms haven=1. The normalized angular distribution S

of radiated power is then . . .
These equations impose a condition gn and vy, that re-

stricts the allowed values to infinite, growing sequenees
ld_Pzﬁ meF and vy , that depend o3 and m(p intege). BecauseR
PdQ 5| Vig(ve+1) =ka/sinB<1 in the near field, two successive roots< v
) associated with a TM modér a TE mode, respectively
LY,,,.1(60,¢) obey
+2 Re————— 17
Vepm(vm+1) E.M
v',m’ v —v <

in which only thev valuesyvg andv,, have been considered. aEM (kR) <L (20

It is worth noting here that our derivation of E@.7) can nm

be obtained in a similar way by means of a quasisphericafhis gliows us to neglect, to a good approximation, all roots
eigenfunction expansion of the scalar Green'’s functions for @xcept for the first two withp=0. The calculation of these

cone[31-39 with Dirichlet (or Neumann typeboundary 45 is possible for a small cone angleusing the approxi-

conditions depending ome (vy) andm. The scalar field a0 formula of Hobson and Schelkungf#3,39], which
r-e (r-B), and consequently  the  coefficients gives form=1
E 1

a,c m (avam) given by Eq. (15 can be easily deduced
from a surface integral oif)y. Conical Green’s functions 1
(which have already been used in the context of near-field veom=1=1+ 21n(21B) + 2[(B)*
optics for apertureless microscode&$,37) connect surface
integrals, given by Eq(11) and Eq.(15), directly to the 1
Huygens-Fresnel principle. v =14+ .
In order to complete this section we note that the ratio Mom=1 21In(2/B) +61(B)*
(1/P)(dP/dQ) represents the physical quantity in measure- _ _ o
ments of the angular power emitted by actual fiber tips agor atip angle of 15° we have,=1.03. This approximation
explained later on. The total radiated power of the fiber tipcan be compared with the values obtained by solving Egs.

(21)

can be expressed as a function of the fiE(®): (19) numerically. Here we have for the sanfee o=1.033
and vy ¢=0.967.
5¢c [ ka \© In reality, aluminum is a good but not perfect metal that
tota™ W W [E0]2. (18 possesses a frequency-dependent complex dielectric constant

€.= €. tieg. Inthe optical domain fok <800 nm, the per-

This formula can be compared with the Bethe reseit mittivity of aluminum can be described by the Lorentz for-

mula
= (5ck®a®/108m2k?)E2, whereE, is the field at the center
of the aperturd18]. The same behavior appears in the two 2
formulas: a dependence @af and on Eé. The difference €(w)=1— “p (22)

arises from the (sip)® term, which represents the second w2+iw7'
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The plasma frequency and the damping constant are given by 10
wp,=15.56 eV andy=0.608 eV, respectively38]. At \
=633 nm, we have.~—54.4+i18.8, which implies a re-
fractive index n.=e=1.18+i7.12 and a skin depths
=1/2kn{=7 nm, which is small but not negligible com-
pared to the metallic cladding e$100 nm. The influence of
the finite skin depth on the “perfect” and unperturbed TM
and TE modes may be taken into account.

The perturbed solution is discussed in the textbook of
Jacksorj16]. The result is a condition linking andB on the 0,0
surface with the aluminum permittivity16]:

Quasi multipole {
model p

2-dipole model

Intensity (arb.units)
o
(6]

180 -120 60 0 60 120 180
" oa 1. Angle (de
E|=E—0(E-02—\/€:0><B. (23 gle (deg)
Cc

This implies an effective current confined to the surface ob- . 1,0 1 S-Polarization
tained by integration of Ohm’s law in the aluminum layer of 0
thicknessé located just below the conductor surface. Using S
Eq. (23), we can establish o J
E 05 Quasi multipole
= 0, del
. | \F ki ool > N
= — | —_— , =
”E'm|s e.ve(vet+l) 0960 |S &
O
g 2-dipole model
£ g ,
Yy, ,ml _ \/IVM(VM-F].) v 24 00] P
a0 'S € kr e

-180 -120 60 0 60 120 180

As expected, this reduces to the unperturbed condition for Angle (deg)

- i ituti (0) iaht-
O'd > ny léSlngthe SUbStlrt]u“on/TV | on tthe ”ght hand FIG. 4. Normalized angular distribution of radiated power for
Site 0(0) q. (24 we have to OV(V(SS order e|s (a) the P polarization where the incident electric field is parallel to
=fe(dye’lon)|s and @y /on)|ls=Ffuiy’ls, where the 4o analysis plane, an@) the S polarization where the detector is

factors|fg v are small. In order to calculate the perturbedscanned perpendicularly to the plane of polarization of the incident
v, we use the two-dimensional Green’s theorem in its intedight. Experimental data are shown as circles. The thick line corre-

gral form[16], and we obtain sponds to the present quasimultipole model, the thin line to the
) (0) ) two-dipole model. The experimental dat@perture radiusa
v (vg'+1) = ve(ve+1)=(1.4+i0.23kr, =20 nm, light wavelengtt\=633 nm) are taken from Refs.
[1,2].
. 1
v+ 1) — vy (vy+1)=(1.4+i0.29 X 10 SH- pole model(using the values oig y, obtained aboveare

(25) also shown in Fig. 4 for comparisdd0]. The agreement is

good for most angles with the exception of extrethealues
ve o and vy o are functions of two radif =18 nm andr corresponding to grazing observation angles on the metallic
=\=633 nm that are adjusted to reproduce the experimercone. The disagreement between theory and experiment is
tal results discussed below. The two values afre complex probably due to higher terms in the expansion that we have
and the real parts are close to unity as expected:0.95 neglected. This is confirmed by the recent independent re-
—0.01i, w»y=0.96. These fits reveal that the adoptedsults obtained by Shiet al. [41], who fitted the experiment
boundary conditions depend on a typical length\ thatis  t0 an expansion in classical spherical multipoles. Their fit
probably linked to the aperture radias=20 nm(this value  contains dipolar terméwvhere the factor of 2 plays the same
is in agreement with the aperture radius obtained by scannin@!e as in our modeglas well as quadrupolarl £2) and
electron microscopy5]). With these values o> we can octopolar (=3) terms. The behavior of the field in the ex-

calculate the radiated power distribution of the [#g)]. treme regions probably also depends on a modified diffusion
due to surface roughnefs42].

The dipole model of Oberntler and Karrai, which corre-
sponds tor=1 (a value close to the real valueg o and

Measurements of the far-field radiated power of tapered,, o), gives good results for th& polarization but cannot
fiber tips in theS andP planes have been carried out exten-reproduce the backward emission in tReplane. The fact
sively by Obermiler and Karrai[5,6]. As seen in Fig. 4, that the two values ofg \ approach unity explains the effi-
there is an important backscattering effect infhglane. The  ciency of the dipole model for small azimuthal anglisthis
experimental data and the results obtained with the quasidregimeY, ,,=Y1,,). In addition we can formally justify the

VI. COMPARISON WITH EXPERIMENTAL DATA
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FIG. 6. 3D isoline representation of the electromagnetic energy
density (arbitrary unitg in the far-field zonekr>1. This figure
shows the difference in the far-field energy distribution that exists

FIG. 5. “Orbital” representation of the angular radiated power between theS and P polarization planes, and the presence of an
of the tip (r=1(0,¢),6,¢). The figure shows the important back- important backscattering effect in tifeplane. Additionally, the tip
ward emission in thé® plane passing through the tip axis and con- of the metallic cone is represented as a sphere. The sphere at the tip
taining the effective electric dipolB. apex corresponds to thenknown near-field zone where the far-

field divergent energy distribution proportional ta4is no longer
dipole model by considering E@15) as the generalization valid.
for conical geometry of the fundamental definition of multi-
pole moments which enter into the spherical harmonic mul
tipole expansion, and which are used for localized sourc

distributions. Using this analogy, we deduce the two effec- i's worthwhile to mention that Roberfé3] has used the

Green’s functions discussed above, gives further support to
the analogy between dipoles and the aperture at the apex of a

tive dipoles associated with the aperture as method of quasimultipoles for the interior problem of “small
hole coupling of radiation into a near-field probe.” In this
1 ad problem the author used the limit of smaB where
:m sing° E(0), Y, m(8,0)~J,((v+3)0)e™? and showed that the coupling
of a wave into a conical waveguide implies effective dipoles
given by the Bethe-Bouwkamp solution. These dipoles are
A a’ perpendicular to the aperture, a result completely different
Meir=2ZX Pey= Zm Sng® B(0). (26)  from the problem of radiation by a tip that generates dipoles

located in the aperture plane.

) . For completeness, we wish to comment on some addi-
Once again, the characteristic factor of 2 between the magional, interesting properties of the emission by conical tips
netic and electric moments appears in this formula. I_:|gures fhat are relevant to the experiment. The quasimultipole
and 6 are two equivalent representations of the spatial depefodel shows that the aperture radius disappears in the for-
dence of radiated power. In particular, the “orbital” repre- mula Eq.(17) and, consequently, in the radiation profile. We
sentation of Fig. 5 shows the important backward emissiozan understand this fact using the analogy with Rayleigh’s
in the plane containing the effective electric dipBland the  and Mie’s theory[12] of diffusion by small particles, which
tip axis (P plane. This backward effect is less important in follow the same behavior as our model and which can be
the S plane containing the tip axis and the magnetic dipoleassociated with the impossibility of seeing details smaller
due to the strong near-field effect on the metal surface. Ththan the wavelength of light. In particular, the aperture size
factor of 2 in Eq.(26) [as in Eq.(17)] stresses the difference cannot be a relevant variable in the limit of small apertures.
between electric and magnetic dipoles as discussed in tHeor the same reason, the tip angileloes not play an impor-
Introduction(namely, an oscillating charge in the case of antant role in the diffraction profile. The dependence on the
electric dipole and a rotating charge for a magnetic dipole aperture radius is very different in the short-wavelength limit
This factor of 2 and the dependence of the dipolemamd  and for large aperturee=\. For a large hole, the transmis-

on E, are similar to those in the Bethe model and the Ray_sion must approach unity and, as a consequence, the aperture

leigh diffusion theory for subwavelength particles and holes@dius may appear in the profile. We then halfe/Pd(

2 P P 2 2,2
but the dipole orientations are different, a result unexplained” (K@) 0052(0)[2J1(kasm0/ka_sm 0] 6a6nd2 P~cEa /8,
by the Bethe-Bouwkamp solution. which can be compared witP~ (ck®°a®/k“)Eg, valid for

We note in addition that the far fields radiated by a smallBeéthe’s theory and our conical subwavelength aperture

distribution of electric and magnetic dipoles located in theMdel

apex zone that satisfy a relation of the type given by (E£6) VII. SUMMARY

are equivalent to those deduced from Etf) [and conse-

quently Eq.(17)] in the limit of subwavelength distributions. An optical fiber tip with a small aperture in the metal
This fact, which can be obtained by means of the scalacoating as used in NSOM is usually characterized by its an-
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gular transmission profile. In order to describe this profilethat obtained with the two-dipole modg5,6] over a large
theoretically, we presented in this paper an analytical modeportion of space. The latter model is formally justified in our
for light diffraction through a subwavelength aperture lo-@pproach. In particular, we find a characteristic factor of 2

cated at the apex of a metallic screen with conical geometr)f.j

For this purpose, a field expansion in quasispherical multi
poles was developed to solve Maxwell's equations analyti
cally. Special care was taken to consider realistic boundar

ifference between the expressions for the magnetic and the
electric dipole(which is reminescent of the Rayleigh diffu-
sion theory by small particles and the Bethe problem

addition, the previously unexplained large “backward” emis-
¥ion in theP plane (which does not exist in th& plane

conditions adapted not only to the conical geometry but alsgesyits directly from our analysis. This™ emission” arises

to the finite conductivity of the coating. Our model is able to

from a Poynting vector flow along the coated surface of the

reproduce and to explain the experimental results. The diftip, an effect that cannot be described within a simple dipolar

fraction in the far field is demonstrated to remain similar to

model.
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