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Exact calculation of the angular momentum loss, recoil force, and radiation intensity
for an arbitrary source in terms of electric, magnetic, and toroid multipoles
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An exact calculation of the radiation intensity, angular momentum loss, and the recoil force for the most
general type of source, characterized by electric, magnetic, and toroid multipole moments and radii of any
multipolarity and an arbitrary time dependence, is presented. The results are expressed in terms of time
derivatives of the multipole moments and mean radii of the corresponding distributions. Although quite cum-
bersome, the formulas found by us represent exact results in the correct multipole analysis of configurations of
charges and currents that contain toroidal sources. So the longstanding problem in classical electrodynamics of
relating the radiation properties of a system to quantities completely describing its internal electromagnetic
structure is thereby exactly solved. By particularizations to the first multipole contributions, corrections to the
familiar formulas from books are found, mostly on account of the toroid moments and their interference with
the usual electric and magnetic ones.
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[. INTRODUCTION pointlike toroidal dipole, electromagnetic properties of toroi-
dal solenoidq9], toroidal electromagnetic structure of Ma-
While in the radiation emitted by a system there are twojorana fermiong10,11], induced toroidal moments and tor-
families of waveqEl and M), the system itself is described oidal polarizabilities[12,13, intrinsic toroidal moments of
by three families of multipolegelectric, magnetic, and tor- certain molecules arising even in the framework of the usual
oid). The subject of toroid moments may look somewhatparity conserving electromagnetic interaction on account of
unusual to some readers, although Blatt and Weisskbjpf the intricate internal structure of the molec(ilet], work in
for instance, have made some remarks about multipole corcondensed matter physics by Dubovik and collaborators
tributions coming from the induction currentthe curl of  [15], study of the fields of moving toroid dipold46], etc.
magnetizatioh in the situation when multipole expansions We note also our own worKL7] on the toroidal moments of
are carried out in connection with a magnetically polarizablethe knotted linear currents.
medium. Zeldovich[2] was the first to note that a closed If a system of charges and currents, besides the usual
toroidal current(which cannot be reduced to a usual chargeelectric and magneti¢time dependentmultipole moments
and magnetic multipole momenepresents, in fact, a certain does possess also time varying toroid moments and distribu-
new kind of dipole(it selects a direction in space as the tions, there will be, in general, additional contributions to the
dipoles do. He did that in the context of the violations of radiation intensity, the angular momentum loss and the recoil
discrete space-time symmetries, when he observed that farce due to the radiation of electromagnetic waves by the
spin 1/2 particle, for instance, might possess, besides th@roidal sources. In a recent pagés] the classical electro-
usual electric and magnetic dipole moments, a third kind oflynamics formula for the rate of angular momentum loss by
dipole characteristic, to which he gave the interpretation ira time-dependent toroid dipole has been derived and dis-
terms of a toroidal current. Although by the Glashow-Salam-<cussed in connection with a forced precession of the toroid
Weinberg electroweak theory every lepton and quark mustlipole around a given axis. Actually the problem of the new
possess one such toroid dipole, the first experimental eviwith respect to the usual electric and magnetic multipole
dence of a nuclear spin-dependent contribution to atomienoments and distributiopgoroid contributions to the radia-
parity nonconservation arising on account of a nuclear toroition intensity, momentum, and angular momentum loss,
dal dipole, came thirty years later and is actively investigatedvithin classical electrodynamics, can be solved exactly for
nowadayd3]. Theoretically, in work summarized in the re- any multipole ordef, not only in the dipole casd €1), and
view papers[4—6], by clarifying and generalizing Zeldov- we do this in the present paper. Indeed, the complete multi-
ich’s original idea, an entire class of toroidal multipoles waspole analysis of Dubovik and TscheshKak6] is used in the
shown to be needed in order to achieve a correct and conpresent work to achieve an exact calculation of the radiation
plete multipole parametrization of the most general type ofntensity, angular momentum loss, and recoil force for the
source in both classical and quantum electrodynamics. Tomost general source that includes all types of electric, mag-
oidal moments were investigated in various contexts and renetic, and toroid moments and distributions of any multipo-
search areas ranging from classical electrodynamics to elarity order and an arbitrary time dependence. The results are
ementary particles, nuclear, atomic, molecular, and soliggxpressed in terms of time derivatives of the mean-square
state physics. References to previous work may be found iradii of any ordern (n=0 order means the corresponding
the above mentioned reviews. We particularly note the fol-multipole moment itse)f Although quite long, the formulas
lowing: work done in connection with parity nonconserva-found by us are exact results in the correct multipole analysis
tion in atomg 7], the calculation done by Ginzburg and Tsy- in the most general situation. By retaining from them only
tovich [8] for the Cherenkov radiation emitted by a classicalcontributions of the first multipoles, we find corrections to
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the familiar formulas from books, mostly on account of the %

toroid moments and their interference with the usual electric ; = L k?dk, m=-1,..1, 1=012....

and magnetic ones.

~ Due to the complexity of the calculations and in order toThe sums ovet in the equations above and throughout be-
fix notations and conventions, we have to go to much detailoy starts a =0 for the electric multipole form factors and
either in the presentation of the general formalism _of Refsgt1=1 for the magnetic and toroid ones.

[4], [6]_or in the despnpuon of our own results obtained on  The dot overQ,, means derivation with respect o

its basis, so that this paper contains also some parts eSSep-_ (F) is the system of regular solutions of the Helmholtz

tially methodological, aimed to achieve a better clarity. equation
The paper is organized as follows: we shall continue to '
present in this IntroductiofSec. ) the main formulas from (A+K?) Fim(F) =0, (1.9

Ref.[4], with minor corrections and changes of notations, in

order to have at our disposal a sound basis for the next . T

lengthy calculations. In Sec. Il, the exact formulas for the Fim D) =h(KN)Yim(), A=, (1.9
potentials and fields, expressed either in terms of the electric,

magnetic, and toroid multipole form factors or, alternatively, j|(kr):(277)3’2i'J|+1,2(kr)/\/W,

in terms of time derivatives of mean radii are presented.

Section 1 contqins the presentation of the expresséons of th@herej, andJ, . 1, are spherical and cylindrical Bessel func-
fields at large distances in orderO(1/r) [andO(1/r%) for  tions (see Appendix A for conventions and propertiedile

those combinations needed in the course of the jaPec- v, are the usual spherical harmonics. The normalization
tions 1V, V, and VI contain, respectively, the calculations of gnd completeness conditions are

the radiation intensity, angular momentum loss, and recoil

force. Section VIl is devoted to conclusions and a short dis- N 3 (2m)® ,
cussion of the relation between our work and previous results ﬁmk(r)ﬁm’k’(r)d r= i Smur K2 o(k—k"),
given in the literature. A number of appendixies are included (1.6)

to help the reader as much as possible to follow and control
the calculations. R N se
In Ref. [4], it has been shown that the most general dis- > Fink N Feni(F)=(2m)38(F—F"),
i . I,m,k
tribution of charges and currents expressed by the charge

densityp(F,t) and current density(f,t), related by the con-

tinuity relation Ek = fo k2dKk, (1.7
ap(ft)y - . A1y >

pfyt )+V~j(F,t)=0, (1_1) ~7:Imk( I’) ( 1) fimk(r)- (18)

The basis vector functiong()),(f) (A\=—,0,+) are solu-

can be completely parametrized in terms of three families ofions of the vector Helmholtz equation,

electric, magnetic, and toroid multipole form facto@,

(— K2, M (— K21), Tim(— K2,1) as follows: (A+K?) Fimi(F) =0, (1.4)
) i )
L1 L VAm(21+1) k(1) = —====V X {F T 1)} =1 (K1) Yy (),
PO G e M e D 9
X le(_ kzit)j:lmk(l?)l (12) -1 |

Flou(in)= ﬁ Eﬁ XV X{T i D)}

| NAm(21+1)(1+1)
J@2l+ 1)

s C iy
()=, 2, (-1

1 -
=m[ﬁj|+l<kr>v.mmm>

X 1 KM (= K2,0) F{O(F)

AT+ 1o (kD Yy (], (1.20

1.
—Qim(0t kZTm—kz,t} o i = ~ 1 . 5 R
* |G QO+ K Tin k50 Finl0)= = ¥l D= e VT 4k 1)
1 [ L )
X |$&+g QO(—kz,t)ﬂm&(r)}, — T+ 141 (KO) Yy 4 1m() ] (1.11)

(1.3  The spherical vectors are
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B —i2l+ 1)1
[Yirm(M)],= Z Chv L WYim(d), w=-101 M — K2, t) = ——— (21+1)
112 c(—ik)'Vam(2l+1)(1+1)/1
- g 3
FN(F), (\=0,+) satisfy the normalization and complete- J J¥ ()Y () (7,0 dr,
ness conditions, (1.23
2m)3 * (L2 ) —(_1ym L2
f Finl (1) Fno (183 = 8081, mrm(k—?&k—k'), Mim(—KD=(=1"M —n(—k50, - (1.23)
(1.13 —(2l=1)11
T ke = —— 2D
c(—ik)' T am(1+1)
2 DT AR =(2m) 887, )
(1_14) Xf \/I—J |*+1(kf)Y|’f+1m(ﬁ)
2 . 200 (7 _ 4 (—ikr)' 7t
FEM(=F)=(—1)'FN(F), A=0,=. (119 1],k )—w
One has also - -
XY _am(A) (1) dr, (1.249
*“(r*):—;%xtﬁ (r)z—lﬁ FOF), £ (12 m 2 :
mi kKJ(T+1) mk k7 mK Th(—K3D=(—1™ _(—K5t).  (1.24)
(1.18 Using
ooy 1 . 1. A (ikr)'
Find = T = T X Flal D), Find ) ~ iy Yim(), (1.25
(1.19
the electric formfactor®,,(—k?,t) of Eq.(1.22 give in the
C=—irx© (1.18 k?—0 limit the usual electric multipole moments,
. Va4
Fu) is longitudinal, QD=0 = | Vi metr e
. . (1.26
VX Fini(F)= (1.19
Developing the formfactor®Q,,,(—k>?t) in Taylor series
SV R [with respect to the first argument—k?)], one gets the
v ﬂmk(r)_'k}'—mk(r)’ (1.20 mean d-order radii of the ®pole charge distribution,
while £, F*) are transversal, (— 2)“
e Qum(—k2,1)= 20 Q. @27
V- F D=V FO(F)=0. (1.21
n
N [Tty = _ K2
So, instead op(F,t), J(f,t), one has an equivalent descrip- Qim (V) d(—kz)”Q'm( k%.Dlke-o.
tion of the system of charges and currents in terms of the
electric, magnetic, and toroid formfactor®,,(—k>2,t), —n . 2"(21+2n+ 1! 0]
M m(—k2,1), Tim(—Kk2,t), which, by inversion of Eqg1.2), im\t) = (2| Fon m (1)
(1.3), are
I+2nY* 3 1.2
Qin(—K21) T f W(Mp(7,0d.  (1.28
2+ p(F0)jF (KDY () dr To find the correct factors relating the higher-order deriva-
—|k) [4m(21+1) i ' tives of the formfactors to the multipole mean radii of vari-

Qikm(_kzvt)z(_ 1)mQI,7m(_

ous orders, one uses relations of the type

Jr(kr) | (i)™ i (k)
kl = 2n kl+n

(1.22
dn
d(— K"

k?,t), (1.22) (1.29
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Radii of zero orderf=0), i.e., the first term in Eq(1.27
are just the multipole moments themselves,

12 (0)=Qun(k?=0)=Q[%(t)=Qin(t).  (1.30

The same situation holds for the magnetic and toroid multi-

pole form factors,

M.m(—kz,n—E (_ i ——mMmiM),

(1.3
Minl(t)= ¢ Mim(—Kk2,1)| (1.31)
d( k2)n Im U k2=03 .
® 2)n
Tim(—K2,1) ZO Tim(), (1.32
Tt = ) Tim(— k20| (1.32)
d( k2)n Im k2=0- .

The multipole magnetic moments are

e

Mim(t) =M (t) =M im(0.) = il

21+

=

X f FEX(F,1)]-VYE (A)d3r
[

o Jal+ni+1) +1)(| +1)

— |Y*

IIm

(R)-J(F,1)

(1.33
and the toroid ones,
Tim(D)=Ti() =Tim(01)
\/H +1] v* 2
:—mff' 1( il -1m(M)
2\// [+1) . -
2|(+3 Y||+lm(n)] j(F!t)darv
(1.349

the radii of various 2 order are connected to the derivatives

of the corresponding formfactors by

20(21+2n+ 1)1

WMW”

plm( )=

e Ji+n2+1) +1)(2| +1)

2n+IY*
IIm

(R)-j(F,t)d%r
(1.35
Ph=Mn(k2=00)=M[It)=M (1), (1.36

in the magnetic case and by
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_2"2l+2n+ 1)l

Rin @rpn Oy
) /477 jds l+2n+1 g
c(2|+l) [+1 (21+2n+3)
. Vi+1
XYﬁ+1m(ﬁ)+ 2(n+l) Yﬁ lm(n) (r t)
(1.39
Re(D=Tin(K=00)=TIA()=Tn(t), (138

in the toroid case.

Instead of the electric, magnetic, and toroid formfactors
Qim(—Kk2,1), M;,(—K?,1), Tm(—k>?t) [as given by Egs.
(1.22, (1.23, and(1.24], which are functions of two vari-
ables(the momentum transfer variablek? and timet) it is
useful to express equivalently this full information about the
electromagnetic structure of the system in terms of the mean-
square radii of various typqzm(t) p (), R (t) (electric,
magnetic, toroigy multipolarity (1), and orders (8) (a
mean-square radius of order=0 is just the corresponding
multipole moment given by Eqgs.(1.28), (1.35, and(1.37).

All these radii are still functions of time and their derivatives
of various orders with respect to time will occur in the cal-
culations. Since up to numerical factors all these radii are
themselves derivatives of the formfactofd,,(—k>2,t),
Mm(—k2,1), Tym(—k2,t) of various ordergn) with respect

to (—k?) atk?=0 [see Eqs(1.27) (1.31), and(1.32)], we
shall work throughout this paper with the double-superscript
quantities, QM (0t), MM (01), TM™(0y),

m"(0h)= j ; _dd—;anm(—kz,t) ,
t L (_ ) k2=0
(1.39
Min " (01) = ¢ %Mm(—kz,t) ,
m dt”| d(—k?) o
(1.40
Tin*(00)= ;j - d—;zﬂT'm(—kz,w :
t | (_ ) K2=0
(1.41

in which the first superscript indicates the order of derivation
with respect to € k?) at k?=0, while the second, the order
of derivation with respect to time of the corresponding
formfactor. The relationships between these double-
superscript quantities and the derivative$ order v) with
respect to time of théorder n) mean-square radijwhich
include, forn=0, multipole momentsof electric, magnetic,
and toroid type, are obviouslyEgs. (1.28, (1.35, and
(1.37]

21+ 1)1 —
SN, 0]

v) — o
o 2"(2l+2n+1)!! dt”

Qi (1.42

046609-4



EXACT CALCULATION OF THE ANGULAR MOMENTUM . .. PHYSICAL REVIEW E 65 046609

21+ 1) d”—- and calculate the fields according to the well known formulas
M{P(08) = s —— p2h(1), (1.43
m 2"21+2n+ 1)1 dtrTim .
E(F,t)= LA Vo(F.t 2.3
TM) o (2l+ 1 a4 R 1.4 e ¢ e -7
im(04)= 2+ 2an+ DI ae N m(D. (144 ) o
B(f,t)=VXA(F,t). (2.9

For clarity purposes we stress again that the double-
superscript quantitie® ™™ (0t), MM®(ot), TMM (01 Since we want to have the fields expressed in terms of the
are nothing else but derivatives of ordemwith respect to Dubovik-Tscheshkov electric, magnetic, and toroid formfac-
time t at anyt of the derivatives of orden with respect to  tors of the source, first we have to introduce Fourier trans-
(—k?) taken atk?=0 of the corresponding electric, mag- forms with respect to time fop(f,t), f(F,t) and their
netic, and toroid formfactor®Q,(—k2,t), Mn(—k>21), corresponding  multipole  formfactors Q;,(—k?,t),
Tim(—k?2,t) introduced previously. To avoid confusions, M,,(—k?,t), T)m(—k?1t) entering Eqs(1.2) and (1.3). In
when a single superscript will sometimes occur, we shall pubrder to fix notations in the course of this paper, we have to
it inside square brackets when it means derivation agive below the corresponding formulas.
(—k?) [as in Egs.(1.27), (1.31), and (1.32)] and inside So, one has for the charge density,
simple parantheses when it means derivation at

The quantities above QW™ (0t), MW (0y),
T(WM)(0t) give us the full information about the multipole
content of the source and it will be in terms of them that we

p(F,w)= f:dt p(r,t)sin(wt),

shall express our results for the radiation intensity, angular R 2 (= )

momentum loss by the system, and the recoil force. Although p(F,O)=— fo p(F o)sin(wt)do, (2.9
cumbersome, the formulas that we shall list represent exact

results in the multipole analysis of the most general configu- —

ration of charges and currents. They allow for immediate (F,0)= E (- 4m(2l+1)

particularization to the first multipole contributions to the ’ (27T)3| mk (2|+1)”

physical quantities mentioned above, usually treated in text- ) R

books, and in this way one succeeds in obtaining correct X Qim( =K%, @) Fimi(F), (2.6
expressions by completing the results given there with terms .
(as a rule belonging to the toroid class of multipolésat with

could be of the same order of magnitude as the usual ones. "

For the radiation intensity, angular momentum loss, and re- Q|m(—k2,w)=f dtsin(wt) Qum(— k%),
coil force we shall give, at the end of Secs. IV, V, and VI, 0

respectively, all these contributiofigp to the (1¢°) order

inclusively in the development over )/ powerd that, to T L2 .
our knowledge, have not yet been reported. Qm(—k%t)= gy dw Qim(—k%w)sin(wt), (2.7)
Il. POTENTIALS AND FIELDS OF A GENERAL SOURCE and for the current density

To find the fields created by a most general distribution of . S
charges and currents described by the charge depéity) j(F,w)= fo dtj(r,t)cogwt),
and the current densitj/(F,t) that satisfy the continuity re-
lation Eq.(1.2),

- 2 (= .

i( Z—J’ dw j(F,w)coq wt), (2.9
p(rt) - - /0
o TVry=0,

- 1 L VAm(21+ 1) (1+1)
we have to start as usual from the retarded saaldrt) and J(F,w)= (27)3 |%k (—ik dl+1)n
vectorA(r,t) potentials

( |r—r'|) X[ch.m(—kz,w)ﬂ,%)k(r*)
c
o(T, t)—f 3 7| : 2.1 +[Qim(0,@) + K2C T m( — k2, @) 1 F )
. t_|F—r*'| \/ 7 Qim(— K2 @) Fini( (2.9
-~ 1Jd3*'1 | ° 2.2
Y @2 ith
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M n( — K2, @)= J:dtcos(wt)M,m(—kz,t),

2 o
Min(—K20 = [ "o My —2,0)c05 01),
(2.10

Tim(— k%, 0)= f:dt cog wt) Tjm(—K2,1),

T|m(—k2,t)=%J:dwﬂm(—kz,w)cos{wt). (2.11)

Qim(0,w) and generallyQ,(— k2 w) are simply notations

(when the time argument is lacking, the dot obviously does

not mean time derivatiyeand stand for

Qim(0,w)= J:dtcoswt>'Q|m<o,t>,
O~ K2 ) = f;dtcoswnqm(—kz,t),
. 2 (= .
Qun(01)=— JO dw Q(0,w)cog wt),

. 2 (= .
Qn(~K0 == [ "o Qun(~ K2, w)c0s 1),

Qim(0,0)=0Qn(0,0),

) w2 w2
le<_?vw)Elem —?,w>- (2.12
The continuity relation Eq(1.1) reads
V-j(F,0)+wp(F,w)=0. (2.13

PHYSICAL REVIEW E65 046609

and the vector potential

A(F,H)=AD(F, D) +AP(F 1), (2.17)
AD(F )
. (O] > )
2 de tste,*», sin E|r |
_% wsm(w) r j(l’ ,w)w,
(2.18
AD(F 1)

(2.19

To these purposes one needs the Green’s functions. For
the scalar potential case, one Hase Refs[19], [20], [4]),

ei(w/c)|F—F'\ 1 w
:EE% fl*m(w/c)(f),)Hlm(w/C)(F)v r>r’v
(2.20

w
= AqrC % ﬁm(a)/c)(r ’)Mm(w/c)(r)y

With these Fourier transforms one has to evaluate further

the scalar potential
e(F,t) =M (F,) + P (F 1), (2.14

e (F,t)

(2.15
¢ P(F 1)
. w - =7
. Zde stﬂ 3 sin Elr |
——; o  coq wt) I p(f ,a))w,
(2.16

r>r’, (2.2
w
sin(E|F—F’|) "
7= ~ 4mc ~ ﬁm(w/c)(F,)ﬁm(w/c)(r)1
r>r', (2.22
where Fim./q) IS given by Eq.(1.5),
) . . r
Fim(wic) (N =1 ry Yim(A), A=, (1.9

while Hlm(w/c)(F) and ./\/]m(w,c)(F) are defined like
Fim(wic)(1), but with the spherical Bessel function of the first
speciesj, replaced, respectively, with the spherical Hankel
functionh{*) and the spherical Bessel function of the second
speciex, (see Appendix A for conventions

Hlm(w/c)(r):h|(+)(%r)Ylm(ﬁ)- (2.23

Mm(w/c)(F):n|<%r)Y|m(ﬁ)- (2.29

Himk @andN, satisfy the same normalization, completeness,
and parity conditions as those satisfied By, Eqs.(1.6),
(1.7), and(1.9),
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J Hlmk(F)Hrrmrkr(r)dsr:fMmk(f))/\/ﬁmrkr(r)dsr

= f ]—]mk(F)fﬁm,k,(F)dgr

(2m)°

= 5||/5mm/T 5('(_'(,),

(2.29
2, Himd 1) Hir(F)
=2 M IN(F) = 2 Fienkl F) Frnd )
—@mpar-r), T - J:kzdk, (226

Nimi =F)=(=1)'Nimi(F).
(2.27)

Himi —F) = (= 1)"H; (1),

Also one has, as faF{)), the relations,
VXA ())=0, VX Fiu()=0,

NGV =TKNi(1), V- Hi k() = iK (),
(2.27)

NG =V - N2, (F) =0,

In the case of the vector potential it is helpful to have

PHYSICAL REVIEW E 65 046609

| = 47702 ffmm/c) Im(w/c)(r)
ooy
ffm(w/c )'Mr(n(w/c)(r)
0 o (0 -
+'7:fm)(’;)/c )J\/'Ir(n()w/c)(r)]y r>r,1
(2.29

- w - =
sm(Elr—r’|)
|—> 2 [ffr:():/c)(r_)

F—f'|  4mcfm

’ =+ =
)‘ffm()w/c)(r)

+ ffn;(t/c)( r )ffr;()w/c)( ")
-0 R
) ffm)(w/c)(r)]

r>r’

(2.30

+ ffm@/c)

where H},, and N;%, (A\=0,*) are defined likeF{}, ®*)
[Egs. (1.9—(1.1D], but with h;” and n, instead ofj, and

satisfy exactly those relations satisfied By} that are un-
affected by the replaceme'nt—>h|(+), n,. So one has

(0) ; N .
Himi(F) I = (rH,mk(r)>
( “”(r)) |<|+1)VX PN mid(F)

representations for the Green'’s functions in terms of the basis
vector functions for the vector Helmholtz equation. So, we

shall use(see Refs[19], [20], [4])

ei(w/c)\(—r"|

1l w

T4 ﬁlm(w/c)(r ) HiN wie) (D), 117,

(2.28
which results from the slightly more general expression

1 elleeli-r]

3T

E [ Ir}ﬁ)(t)/c) )]I

47TC|

/(N .
'[Hl(m)(w/c)(r)]k, r>r',

(2.28)

and

h{*™)(k
—( n(f(r)r))vnmm) (2.31
(+) . =, .
imk(7) 1 . (erk(r))
( |§n+k)(r)> VI +1) NS TNimi (1))
(2.32
Hima(7) ( .mkm)
(fwink)m) it 239
and
f N (F) - HO o (FYIF
= f N (F)- NN () dF
f FNE)-FN) (A3
(2m)3
= 81Oy Snr— ez~ S(k—K'), (2.34
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2 [Hfr)ﬁ)k(f ] [Hl(r)m\q)k(r,)]j A(F,t)Z,&(l)(F,t)+E\(2)(F,t),

o 1 o
= > LARUOT LAN) AN = 57 | o coson)
=(2m)*6;8(7—r"), (2.39 y —Iw)l L gm(2+1)(1+1)
fim Jir+1n

HN(—F)=(= 1) MHR(P),
2

w
wMIm _?! |m w/c)(r)

(=) =(=1)" NN, A=0=. (2.3

Equationg2.29 and(2.30 can be obtained through straight-
forward calculation by separating the real and imaginary
parts in Eq.(2.29.

2 2
@ ® VAN <
+ wQ|m(0,w)+ FTIm - Ef’w Mm(w/c)(r)

Using the forms given above for the Green’s functions, g 2
one obtains from Eqs2.14—(2.16) the scalar potential in + —wQ|m( - w)ﬂﬁ(jzo, )(F)],
the form vi+1 e

o(F,1) = D(F,t)+ o2 (T1),

(2 1 ° .
A1) = 2722 |, dww sin(wt)

c

1 o
O(Ft)y=— i
(r,t) g fo dow sin(wt)

2 Iw)' Lam21+1)(1+1)
—iw\'" V21+1 o Jier+1mn
XZ( 2+

‘”2 M -2 ) Fionwic)(7)
> w - —,
T 2@ )Mm(a)/c)(r)! Im C2 Im(w/c)

><le

>

Im(w/c)(r)

2 2
= +| 0Qun(0.0) + =Ty — =
90(2)(?,'[):—77@%] dww cog wt) Im{ Y, c |Im
0

2
—iw|' J2I+1 W m( i ] (2.39
o\ o N inten(
(1)2

XQim| — =0

)}]m(w,c)(F). (2.37 So, with Egs.(2.3), (2.37), and(2.38 and using

For further purposes we rewrite the expression given w
above for the scalar potential more compactly as V Fnwre)(F) =1 < ﬁn‘&o/@(?),

o(F,t)=— m J;) dow

o) T

v i LSOO Nimure (F)

S

VNin(oro) (1) =1 = Mo (P,

X2,

) one finds the exact expression for the electric fié(d’,t)
0] emitted by the most general type of source described by the
+Cogwt) Fim wfc)(r)]Q'm( 2@ ) (2.37) electric, magnetic, and toroid multipole formfactors

Qm(—Kk21), Mim(—k21), Tim(—Kk>31) in terms of their
Analogously, one gets for the vector potential from Eqs.Fourier transforms in timeQ,,(—k? ), Mn(—k? ),
(2.19—(2.19, Tim(—k?,0) atk=wl/c,
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1 I+2 /2|
<rt)——r2f do (=)' 1(C) (

2|+—]_)”[Slr](wt)Mm(w/c(r)+COS{wt) Im(w/c)(r 1Qim

PHYSICAL REVIEW E 65 046609

=

1 1 J4m(21+1)(1+1) )

T 2a% f do 2, (=)' 1( ) 7;(2|+1)!! {[ S0t e 7+ 05 0 Finture (1]
W ( i + w[sin( wt) N ) +cod wt) £%  (F)IM ( w_2 )
\/l_ ®Qjm 2 o[ sin(w |m(w/c)( o Im(w/c) IMim 2

+[SIN( @) Nt ey (F) +COL 0t) Fihl ) (1]

The analogous expression for the magnetic fild’t)
can be obtained from E@2.38 by simply taking the curls of

the functionsN{y /e (1), Fintare(F). Using

VX Fal(F)=V XN (F)=0,

>

VX FHQUP == = Hl(F), TxFl(r) === HY(D),

TR == S R0, VXM=

Imk(r)

2
0Qun(00) + %Tm( -

wZ
—,w
CZ

|

(2.37 [or EqQ.(2.37) and EQgs.(2.38]. Some comments on
the last equations may still be in order in connection with
gauge invariance questions. Our potentig{g,t), A(F,t) as
given by Eqs.(2.37) and (2.37) and Eqgs.(2.38 do satisfy
the Lorenz condition

(2.39

s . 1 dp(r,t)
. + =
V-A(F,1) p—

=0. (2.41

This can be immediately checked again with the aid of the
relations

one finds the following exact expression for the magnetic

field I§(F,t) emitted by the most general type of source in _ _ o Lo
terms of the Fourier transforms of the electric, magnetic, and - M(F)=0, V- NiA(F)=0, V- Nnu(F)=ikAmi(F),

toroid formfactors:
. 1 o @ 1+2
Pt — -1 =
B(ft) szfo dwlZm( i) (C)

\/477(2|+1)(|+1)J , 4y s
ATy (A

wZ
—,®
C2

+[ = Sin 1) F9 10 (1) + COL @) NG00 ()]

|

The exact formulas for the electric field E.39 and for
the magnetic field Eq.2.40 express without any ambiguity
the way in which the multipole content of the soukseeci-
fied by the electric, magnetic, and toroid multipole formfac-
tors) reflects itself in the fields created.

The expressions of the field(F,t), B(F,t) given in Egs.
(2.39 and(2.40 we shall work with have been derived by
means of the well known proceduf&gs. (2.3) and (2.4)]
from the retarded scalar and vector potentig(§,t), A(F,t)
defined by Eqgs(2.1) and(2.2) and calculated in terms of the
electric, magnetic, and toroid multipole formfactors as in Eq.

+coq wt) *,;t;,c)(r)]Mlm( —

(2.40

w (1)2
X| Qm(0,0) + ETIm AL

when one finds

7. AL(F )=
VAT, 57202

J:dwwz coq wt)
—i w) ' Jam(21+1)
C

21+ 1)1
(1)2

&

><Q|m( w)Mm(w/c)(F),

c?’

V-AA(F )= -5

—iw\
C
2

w
X Qim Al

dewwz sin(wt)
Vam(21+1)

2I+10)n

x>

I,m

)j'-lm(w/c)('?)a
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1 deV(F 1) 1 o )
————Wfo dww” cog wt)

c at
5 iw)'\/(ZH—l)
*a |\ T @ron
wZ
X Qim _?!w)jvim(w/c)(l?)!
1 99 (F 1) 1 o ,
E%ZWJQ dww25|n(wt)
5 —iw)'\/(ZH—l)
&\ o 2 on
wZ
X Qim _?aw)f.lm(w/c)(r)-

Therefore, one has separately

19eM(Ft)

V. AL F )+ =
V-AY(r,1) c P

0, (2.42
1ae2(F,t)

—).—)(2) rt)+ —
VAR + - ——

0, (2.43

and the Lorenz condition Eq2.41) for A(F,t)=AM)(F,t)

+AQ(F.t) and o(F,t) = o(F,t) + ¢)(F 1) is verified.
So the gauge in which our expressions forA are writ-

ten down is the Lorenz gauge established by the Lorenz con-
dition Eq.(2.41). To evidentiate the gauge freedom still left
after satisfying the Lorenz condition, we display below a

PHYSICAL REVIEW E65 046609

- 1 o
A'D(F )=~ .22 fo dow cog wt)

X2,

I,m

(—iw)"l Vam(21+1)(1+1)
c Ji@l+1n

2

w
Xy oM, —?,w

-0 .
)J\/’If‘n()w/c)( r)

+

w? w?
®0Qm(0,w) + ?T|m( — ?,w)

Cil 2\ e
\/Il_'_—leIm(_%'w)Aflgn(i)/c)(r)]v

o +) e
N|§n(w/c)(r)

+

212 e 1 o )
A (r't)ZZTrzcz . dow sin(wt)

=1 J4m(21+1)(1+1)
J@2l+1)n

(1)2 -0

<= [

c

+

o R
ffm()w/c)(r)

w? w?
0Qn(0,w)+ FTIm( - _21(‘))
2

C
Co\l N
+ \/|2_|__le”“< —%,w) |m()w/c)(r)]- (2.49

Indeed, the new potentials' (',t), A’(F,t) given by Eqgs.

more general form of the po@entials than the one given in2.44 and(2.45 [and moreover, their two components sepa-
Egs.(2.37) and(2.38, with which we could have perfectly rately specified by the superscripts), (2), ¢’ @7 t),

worked as well as from which the same fieElsB as in Egs.

A'M-@)r t)] are related to the old oneg(f,t), A(F,t)

(2.39 and (2.40 would have resulted, both forms for the [with their components®:@)(F 1), 5\(1),(2)“0] given by

potentials[i.e., Egs.(2.37) and(2.38 on one side and Egs. Egs.(2.37) and(2.38 through the following gauge transfor-
(2.44 and (2.45 below, on the othdrbeing gauge equiva- mation:

lent,

@' (F,H)=¢ M(F,t)+ ¢ @ (F,1),

C, (= —iw\" V2I+1
P4y — 21 ; Rl I e
oY F’%L dwws'““’”%( R ES
(02 N
X Qim i Nim(wre)(F),

~ Cy (=
o' A(Ft)y=— W%f dww cog wt)

™ 0
—iw|' J2I+1

| w2
><.,Zm T) 21+ 1)1 Q'm(_?’“’>

X Fim(wic)(F); (2.44

A(F ) =A"D(F0)+A (1),

1 dAV(F 1)
' D7 1) = M(F 1)~ P

at

A H=ADF, 1)+ VAD(F 1), (2.46

1 dAP(F 1)

(= o @(Ft)— = — 7

o' D)= ?(F1) c g
A7 1) =AD (7 1)+ VAR (1), (2.47)

) LAY

¢'(FH)=¢(f)— = ———, AMY=AMD+ VAL,
(2.48
AT D) =ADF 1) +AP(T D), (2.49

with

046609-10
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1 o
A(l)(r,t)E m JO doo Cos{wt)

—iw)'_1\/477(2|+1)

c (21+1)!!

>

w? ic .
><wQ|m( - ?,w) (C1—= D Mm(wre)(F),

w

(2.50
AP(F )= 27712C2 f:dww coq wt)
w (_i_w)'l Vam(21+1)
m c (21 + 1)1
w? ic .
><""le( - ?aw)z(cz_l)]:lm(w/c)(r)-
(2.51

Equations(2.46—(2.49 can be checked again immediately

by noting that
Sy ic . ~
Mm(wlc)(r): - ;V-/\(m(w/c)(r)-
S0 ic . .
ﬂm(w/c)(r): - ;Vﬁm(wlc)(r)-
Since

(A+ KA Nim(wro)(F) =0,  (A+K?) Finwic/(F) =0,

the gauge functiond @, A, A=AD+ AP satisfy the
wave equation

A L7 AD(FH=0, [A L AP (FH)=0
2 (r,t)=0, 252 (r,t)=0,
(2.52

(A L7 A(F,t)=0 2.5
22 (r,t)=0. (2.53

The new potentialg’ (F,t), A’(F,t) [as well as their two
componentse’ (-7 1), A’M)-)F t) separately satisfy
again the Lorenz condition

o 1 90" (7 1)

. (L + - =
VAW 0, (2.54
. 19" A(rt
V-A’(z)(r*,t)JrE(PT():O, (2.55

PHYSICAL REVIEW E 65 046609

- 1 ﬁ¢’(F,t)_

VAP )+ g 0. (2.56

Therefore, the new potentials’ (F,t), K(F,t) from Eqgs.
(2.44) and (2.45 are more general than the old ones from
Egs.(2.37) and(2.38 and are gauge equivalent to them; both
forms of the potentials satisfy the Lorenz condition but in the

new onesp’, A’ the remaining gauge freedom after the Lo-
renz condition that has been satisfied is explicitly displayed
through the two remaining real arbitrary consta@ts C,.

The old potentialsp, A of Egs.(2.37) and(2.38 are obtained

as particular cases from the new onrgs A’ of Eqgs.(2.49
and (2.45 for
Equation(2.57) fixes the gauge in which the potentiats

A are given in Eqs(2.37 and (2.38. Another convenient
gauge would have been the Coulomb one, corresponding to
the choice

C,=C,=C=0, (2.58
when the potentialg”, A” satisfy the conditions
¢"(F,1)=0, VA"(F,t)=0. (2.59

Due to their gauge equivalence discussed before, all these
forms of the potentials lead obviously to the same fields

E(F,t), B(f,t) and since we have worked here only with
these fields, all the results obtained in this paper are gauge
invariant, as they must.

lll. FIELDS AT LARGE DISTANCES

In order to calculate the radiation intensity, angular mo-
mentum loss, and recoil force we need to obtain from the
exact expressions of the electric and magnetic fields Egs.
(2.39 and (2.40 formulas expressing the behavior of the
fields at large distances. Next we shall calculate the fields
E(F,t) andB(f,t) to orderO(1/r). To that purpose, we use
the following asymptotical behavior of the spherical Bessel
functionsj,(wr/c), nj(wr/c) (see Appendix A for conven-
tions and definitionsfor r —o, to O(1/r):

w ar
© sin(zr—lg)
j|(—r)~47Til _—,
c
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C
w |7T
o SiN Er— E
N1 Er ~—4i > ,
Er

w
—r
c
w |7T

w 1SIn EI’ E

n_q1| =1 |~4mi - , 3.9

—r
c

in order to find theO(1/r) expressions of the veector func-
tions Fit e (F), Nt wrey (1) (A =0,+1) entering the fields:

| w w
or gl SN Er_IE

F o) (F) ~
Im(w/c) \/m

Y im(1),

w v
O 4~ coscrlz

Vv2l+1

ffm(wlc

C

XY g () + T+ 1Y) ()]

w o
. o 47i1-1 %9 17
n(wic)(F) ~
Im(wlc) 21+1

XY - am() = T+ 1Yy (D)

(3.2

w ar
own gt 8 7).

N(O)w Py ~ —
Im( /c)( \/m

PHYSICAL REVIEW E65 046609

w m
O Ari!~ 1 Sin Cr—IE

Nitntorey (F) ~
Im(w/c) \/m

c

XY g () + T+ 1Y) ()]

w a
Sy O A sif g1y

c

XIIY - () = + 1Y) 1 (M ];

(3.3

S
Il
=10

So, on the basis of Eq&2.39 and(2.40), the electric and
magnetic field<€E(f,t),B(,t) evaluated at large distances in
order O(1/r), in terms of the multipole formfactors
M n(— w?/c? w), Tim(—w?/c?,w) and the electric multi-
pole moment),,(0,w), are

>

o(1/) 2\ 1 [ I+1
E(F,t) ~ (——)—f do>

wmC/ I Jo m C

Vam(21+1)(1+1) , ( w? )
haeon | Mml T

Xsin

w m\ - .
wl— EI""I E Y||m(n)

w w2
+| Qun(00) + ET|m( - ?,w)

w ar
Xcog wt— —r+I1 =
C 2

N A I+1 _ .
X \/ﬁYnﬂm(nHmYn—lm(ﬂ) ,

(3.4)
. o(1/r) 2\ 1 [
B(r,t) ~ (_;)TJ' do
0
< o't Am(21+1)(1+1)
et i+
M w? . w I1T
Im —?w Sin wt—EH- E
X il Yy 4 1m(A) + 1y 1)
— n —— _ n
\/m II+1m 21+1 I1=1m
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® 2
+i| Qm(0,w) + ETIm( - m)
w 7\ -
XCO{wt_Er‘FlE Y||m(ﬁ)]. (35)

E(F,t) and I§(F,t) as given above verify the transversality

condition in the wave zone,

r

FXE(F,t)zé(F,t). (3.6)

At this point, our aim is to get rid of the integral over

and we can do that by introducing the double-superscript

quantities from Eqs(1.39—-(1.44), which are, up to num-
bers, time derivative¢the second superscrjpof the multi-
pole mean-square radii of any tygelectric, magnetic, tor-
oid) and orderimarked by the first superscrjpiVe consider
first the magnetic field@(r,t) as given by Eq(3.5) and treat
separately contributions of the terms with-even andl
=o0dd to the sum ovel.

In the |l =even casel =2k (k=1/2k=integer), with the
Fourier transformations Eq&.7), (2.10, and(2.11) one has

w2
_2
c?

=(—1)"2+1f dt’ |v|<'+1>(

w|+1M|m(

2

)Sln(wt ),

@' "1Qum(0,w)=(—1)"? f “dt Q| V(0 )cog wt'),
0

3.7
(,()2
w|+2T|m( _ ?,w)
o 2
:(_1)|/2+1f0 dtrTI(rln+2)( - — ,t')cos{wt’),

where the(single superscript denotes the order of derivation

with respect to the secondime) argument of the formfac-
tors. Using

sinl t—w—r+lz =(—1)"sin t—w—r
in w c 5 =( in w o |

co t—w—rJrIz =(-1)"co t—w—r (3.9
w c 5]= w o | .

in Eq. (3.5, and then Eqs(3.7), one gets contributions to
é(F,t) from terms containing, e.g.,

PHYSICAL REVIEW E 65 046609

* r
f dww|+1M|m(— )sm( wt—w—>
0 Cc

N

wrl
'COE{ wt’—wt-i-? .

)

(3.9

Now developing the I(+1) derivative (with respect to
time) of the magnetic formfactor under the integrals in terms
of the (essentially magnetic radii, i.e., developing as in Eq.

(1.3D,

(rr:])(Hl)(O,t’),

one introduces the double-superscript quantities
MW+ t') defined in Eq(1.40 and succeeds so to take
both integralsovert’ and overw) in Eq. (3.9) and express
the result in terms of a Taylor series,

oo wz . r
fo dww|+lM|m<—?,w>Sln w(t—E”

R | r
(n)(I+2n+1) _
zo n!cz"M'm <O’t c)'

— ( _ 1)|/2+11

(3.10

To get Eq.(3.10), use has been made of the relation

” 2n ’ r
w"coSw|t' —t+ —
0 Cc

Analogously, one finds

fwdwleQm(O,w)Co{w(t— L”
0 Cc
=(- 1)|/2 Q(O) (I+1) (0t r)
- 2
fo oo 2l - ofongel -
0 c C

1 r
(n)(1+2n+2) _
ZFC T <O,t C>,

do=(—1)"7s2"

;

t'—t+ |,
C
(3.11

(3.12

_( 1)|/2+1

(3.13

which completes the calculation of the=even part of
B(F,t) in O(1/r).

In the |=o0dd cas | =2k+1k=(l—1)/2=integeif] the
analysis goes on the same lines, with only minor modifica-
tions, which compensate themselves, so that the final result

for E§(F,t) at large distancegO(1/r)] remains the same, ir-
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o(1ir)

(r t) = (F,t).

respective of whethdris even or odd in the sum ovérin
the wave zone, the electric fielf(f,t) can be computed
from B(F,t) as

—‘|ﬁ¢

We stress again that the double-superscript quantities

E(Ft)z—fXI§(Ft) (3.14 QMM ot), MMM oy, TWM(0t), have been defined
' r e ' through Eqgs(1.39—(1.44 [in the equations above they ap-

pear, of course, at the retarded time-¢/c)], which, for
So, we obtain the following expressions for the electricclarity purposes, we give again here:
and magnetic fields at large distances in or@€i/r) ex-
pressed in terms of the double derivatives of the formfactors, darr a0
where the first superscript indicates the order of derivation QN (0t)= == | =77 Qum(— k2,1)
: : dt”| d(—k)
with respect to the first argument of the formfactor at zero !
value of this argument, while the second superscript indi- (1.39
cates the order of derivation with respect to the second argu-
ment.[i.e., in terms of the double-superscript quantities in- (n)(y) _d )
troduced in Eqs(1.39—(1.44), which are, up to numbers, (0= dt” d(_kZ)anm(_k 3
time derivatives(the second superscrjpof the multipole - -
, . . i (1.40
mean-square radielectric, magnetic, and toroief any or-
der (the first superscript,

v[ dn

v [ n

d
Tin®01)= ar mﬂm(—kz,t)

o 1 1 Vam(2l+1)(1+1)

> k2:O
By i+ N

(1.41

r|mC

For the calculation of the angular momentum loss by the
system in Sec. V one neediE, AB, AXE, AxB, (i

x| —0@0+D[ gf— —
Im ’
=r/r) at large distances. We shall first see to or@¢d/r)

\ﬁ R R JI+1 . what the results are and sing&,iB turn out to be vanish-
X \/mY”Hm(n) T 1Y“ (1) ing in this order, we shall evaluate furthéE andniB to the
nextO(1/r?) order to get the relevant first nonvanishing con-
_ E 1 M(m+2n50) Ot—i g () tributions. _ . . .
~ g2t Vim L=</ Yiim For the time being, let us confl_ne o_urselves to the first
n=0 orderO(1/r). Regardless of approximations one has
14 1 r
- (n)(I+2n+2) _ L N - R N
ey nica T (O't c) F o are) (1) =Nl (D) =0(=T71),  (3.17)
g R = since (Y;m), =0, while for the(+), (—) superscripts, using
X Yyt 1m(M) + ==Y} —1m(N)
21+1 V2I+1
~ \/I+1
3.19 [Yiicim(M)]r=— Yim(R),
V2t 1
. oamg 1 Jam(21+1)(1+1)
BY = T T arn R X _
LY —im(M ] = ==Y im(N),

21+1
|()
one has
2 (n)(l+2n+1)(olt [) R NIES I
n= ¢ ﬁflfnti,/c)(ra)zm _J|+1((g +hi- 1(w ”Ym(n)
J R . [+1 . g (318
\/— i1+ 1m( 1) o7 1 i1—1m(1) .
. w
Finiore(N= 3151 Ij|1(—r)
m(+2n+ Mo (21+1) c
2 ()(I 2n+2) 0t— C)Yllm(n)}v .
(3.16 +(|+1)J|+1( )Ylm(n) (3.19
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VI(I+1) ®
_n|+1<gr)

Im(w/c ( )= m

w2
iz

+(I+1)n|+1< ”Ym(n)

>

Yim(1), (3.20

) ()=
WNimwre(N = 2151y

(3.21)

Therefore, using the asymptotical behavioxfl/r) of j,
andn, (see Appendix A one gets

O(1/r)

A lwre)(T) ~ O (3.22
r—oo
w ar
o1/ co —r—IE
r]~7:Im(wlc (r ~ — 4!t o im(1),
r—oo Z
c
(3.23
. o(1/r)
N nmie)(F) ~ 0 (3.24)
r—oo
o T
) o(1r) sin Er—l >
by (F) ~ =AY (1),
r—o “r
c
(3.25

With Egs. (2.39, (2.40 one sees that indeed to order

O(1/r) one has

R o(1ir)
E(f,t) ~ O,

r—o

(3.26

i
r

B(r,t) ~ 0. (3.27

r—o

P o(1ir)
v

Now, by looking to the expressions of the fielE§F,t),

B(F,t) to O(1/r) [Egs.(3.4) and(3.5)], one sees that to find
AxXE, AXB to the same 1/ order, one needs the vector
products between=r/r and the appearlng vector spherical

harmonics. With the unit vectoraz,—n—r/r e,,, eq,, one J

has

PHYSICAL REVIEW E 65 046609

& X Yiim(M)=E,(Yiim) o= Eo(Yiim)

J2l+1 o y
= —— _1m— €
1| M ez M
Val+1 e I+1Y
= — e ,
\/I— I1+1m r 1+ 1 Im
(3.28
since
Gy 2|+1(? - 2|+1(? :
=1 _ =1 ,
IIm/ 6 \/m I=1m/¢ \/I— I1+1m/¢
(? ) 2I+1(? ) _\/2I+1(? )
=—1 _ == — .
IIm/ ¢ +1 II—=1m/6 \/|— II+1m/6

Eliminating the terms witte,Y,, in Egs.(3.28), one gets

Y1+ 1m(f).
(3.29

EST
Yy —gm(n)+i

AX Y m(f) =i —_—
(M=o 21+ 1

—+

Also, one has

8 X Y4 1m() = é(p(\?n +1m)o—Eo(Yy) +1me

N
=i Yim(A), 3.3
\/m IIm( ) ( 0)
since
. o
(Yir+1m)o=1 1 (Yim)e»
. VI
Y m Y m 3
( IN+1 )<p \/m( 1 )0
and, analogously,
I+1 .
8 XYy _ym() =i Y im(f). (3.3
21+1

Using the vector products of Eqé3.29—(3.31), one finds
the following general relations expressim*g<ﬁ,(§])(w,c)(r*),

AX N, e () (=6 =F/r,\=0,=

N > o ) w \|+1
nx‘}-ll(’r?()w/c)(r):h(Er) I T 1 Yy —1m(1)
+i \% A) |, 33
T 1+ 1m( )1 (3.32
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ﬁxﬁﬁnﬁl/c)(r): @2+

] ®
i1 Er

+(I+1)j,- 1(—r”Ynm( n),

(3.33
N . | |(|+1) )
nx IEn(()»/c)() 21+ 1) J|—1(Er)
} ® -
_J|+1<Ef) Yim(f),  (3.34
_ e 0) . ) RV I N .
X NMim(wie)(F) =N . '\/mYn—lm(n)
N )
+I 2|+1YII+1m(n)7 (3.39
Ny ~ I w
nx/\/qu(i)/c)(r):m In|+1<Er>
o \].
+(|+1)n|1(gr”Yum(ﬁ),
(3.39
L o iyl(d+1) w
Ngn(z)u/c)(r):m n|1(gr)

)
Tl T

Yim(f). (337

Now, using the large behavior of the spherical Bessel

functions to order 1/ one finds from Eqgs(3.32—(3.37)
above the desired asymptotical behavitr O(1/r)] of the

vector productsix £, (1), AXNQ), e (1) (R=F/r):

O(1/r) 47TI

X T s (7))~ J—N 1Y) 1m(F)

| I7T
sinl —r 5

+\ Y am() ] ————,

w n
. o) A co Er_|§
AX F (D) ~ 4 Yy (A) ——————,

(3.33)
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R o(1/r)
AX Fi i) (F) ~ 0; (3.34)
R O(l/r) 4t
XN sy (1)~ *[J_ 1Y) - ()

w v
co{Er—IE)
Y ()],

—r
C

(3.35)
o m
i o) i sin Er—l 5
X Ny (F) ~ A7 Yy () —————,
—r
C
(3.36)
. o(1/r)
XN e (F) ~ 0. (3.37)

With the aid of the Eqs(3.32)—(3.37) given above, one
finally obtains the desired asymptotical behavior at large dis-
tances, in order O(1/fr), of the vector product
(FIr) X E(F,t) of the electric field, in terms of the electric,
magnetic, and toroid formfactors

P o) 4 1 (= w1t
- X r ~ o —
- XE(F,1) J;rjo dw;n T
2
NP WEN
(2|+1)H(
- w 77 v —>
X sin wt_ErHE Yy —1m(R)
2
. w T\ -
Xsin wt—EH—I? Y+ 1m(R)
. [0} w2
+iy2l+1 Qun(0) +  Tim| ~ 7.

w m\
XCO{ wt— Ef‘f’l E Y||m(ﬁ)} . (338)

Similarly, one finds for the vector product af with the
magnetic fieldB at larger in orderO(1/r) the expression:
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r
r

XB(Ft) ~ ——=~

do,

o 41f o't I+1

Ja T
\/ZI—MIm

e

7T v —>
> Yiim() —

0}
coy wt— —r
Cc

) w
X sin wt—ErJrI

+w_|_ w?
— — )
c Im EZ

1z
2

Gt renn g

Q|m(o1w)

X[+ 1Y) () + ﬁ?.|+1m<ﬁ>]]. (3.39

Now we shall use Eqg3.38 and(3.39 to find the cor-
responding expressions farx E, ix B to orderO(1/r) in
terms of the double-superscript quantitied(™")(0),

M{MMt), TWM(0t) [Egs.(1.39—(1.41)], just as we did

in going from Eqs.(3.4) and (3.5 to Egs.(3.15 and(3.16
in the case of, B [orderO(1/r)]. One finally finds

r

™~

FXB(I’,

o(1Ir) 9j \/_

—><E(r t) ~

(2I+1)(1+1)

1
2 T+1

r fmec JI@2l+1)n

o0

.
X —er%)“”)(o,t— E) +2

n=o0 N!

XTfr?q)(Hszrz)(Ot_ —) }Yllm(n)

[+1

1

2n+

C

1

2\

+_

XZE

= n|C|+2n+l

X Mfr?])(l +2n+1)( O,t_

A\ Y am(M)],

O 2\ I+1

roftmol2I+)n

1 r
X E|+_1Q|(r?1)(l+l)< Ot— E)

o0

1
1+2n+2
_2 | +2n+2T|(rTw)(Jr " )(O,t
n=o0 N!'C

X[V 1Y) (A + IV 1m(F
2 ” 21+1)(1+1
'J—Z s V2I+1)(1+1)

Ji@2i+1n
VI ()

.

)]

(3.40

1

romoaso  Ji2i+ 1)

r -
X Ml(rf;])(|+2n+l)< 0t— E) Yllm(ﬁ)-

n'c

[+2n+1

(3.4
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With these formulas we end our considerations restricted
to the ordeiO(1/r) and evaluate in the next,r¥/order,RE,
AB. So, we shall find the first nonvanishing contributions to
these quantities, since i@(1/r) they are zerdEqgs. (3.26
and(3.27)]. To this purpose, one needs the next terms in the
asymptotical behavior of the spherical Bessel functions as
compared with Eqs(3.1). We shall use

. w s
o) ) sin x—1 - co X_IE
J1(x) X:w 4i — + 21 I( +1)—X2 ,
™
O(142) co X_IE
nx) ~ —4mi'
X— 00
. | 71-
sin| x—1 =

+2wi'|(|+1)T,
(3.42

which follow from the development

2 [ a\ 2~ k(1 +2k)
I+ 22X)= \/g[sm(x" E) go (2K)1(I—2K)!1 (2x) &

" o

co X_IE

“'*E“’ZJ (—1)%(1+2k+1)!
XA kDT 2k— D202

and the relations
i i
j|(X):(277)3/2$3|+1/2(X),n|(x):(277)3/2ﬁN|+1/2(X),
Nis 10X =(—1) "1 - (%),
With Egs.(3.42 one has taD(1/r?) (i=n/r),

o |’7T
smCr 2

A ‘7:Im(w/c)(r)~_47ﬂl+lvl(| 1)————Yin(1),
- Fiintire)(F)

~| —4mi'tt

w T
sin(—r—l —)
. C 2 =
+27i' 1241+ 2) ———— | Yim(1),
2
r

°N|€
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- Mty (1)~ 4 T 1) Y1),
2
2’
ﬁﬂ/ii\;(z)u/c)('?)
AGat]
sinf —r—1 -+
~| —47i' 2 ¢ 2
—r
w v
CO{EF—|§)
—27-ri'+1(I2+I+2)w2— Y m(1).
2
2’
(3.43

So, from Egs.(2.39 and (2.40 and Eqgs.(3.43 above,
one finds the desired leading contributionsitcE andri- B
in O(1/r?),

P o(lh) 4 oo
FE(F1t) -~ mJ’O d(t)
" (I+1)V21+1 ] )
o @+nn e
w (,1)2
X1 Qm(0)+ = Tim| =z
. w m
Xsin wt——=r+1=|Y,n(A), (3.49
C 2
d B o 4 fwd » (1+1)V2l+1 w\'
r By e e SN I ITRR Y

w2 w a
XMm Al co wt—ErJrIE

(3.45

XY m(R).

To have the corresponding expressionﬁdf andni- B to
O(1/r?) in terms of time derivatives of radii.e., in terms of
the double-superscript quantiti€d™ ) (0t), MM (0yt),

Tf;)(V)(O,t) defined by Eqs(1.39—(1.41)], one has again to

use EQgs(3.10—(3.13 and consider separately theeven
andl =odd contributions to the sum overOne finally finds

PHYSICAL REVIEW E65 046609

P Bt 0um 272 o (1+)V21+1] o) o1
r B 7 & @rnnd |9 (%7
” 1 r
_ (n)(1+2n+1) _
D e (X c”
XY m(M), (3.49
P S or?) 2412 (1+1)\2I+1
P BOOY ~ m I+ nid
. 1 (n)(1+2n) r -
X n§=:o n!CZnMIm O’t_E Yim(N).
(3.47)

At this point we end the analysis of the large distance
behavior of the fields; we have at our disposal all the quan-
tities necessary for the further calculation of the angular mo-
mentum loss, recoil force, and the radiation intensity in terms
of the multipole content of the most general type of source.

IV. RADIATION INTENSITY

Here we calculate the radiation intensitiypr a general
distribution of charges and currejpis the case of the most
general time variation of the sources, in terms of quantities
of the type MW+ 9D(0t—r/c) where M, stands for any
multipole form factorQ,(k?,t), M;n(k%1), T;m(k?,t) and
the first superscript denotes tf® derivative with respect to
(—k?) at k?=0, while the second superscript denotes the
(I+q) derivative with respect tbatt—r/c.

We have first to evaluate the Poynting vector

N c . o
8= —(ExB),

- (4.2)

and express the radiation intensity as the surface integral of

the radial component &, S;, over a sphere of large radius
r [21],

2
|=r2f dQS,:%fdQ(Exé)r. (4.2

The result should be essentialyndependent, of course.
The electric and magnetic field&(f,t), B(F,t) need to be
evaluated to orde©(1/r) and the corresponding formulas

are those of Eqg3.15 and(3.16.
One needs to evaluate the surface integral over ttzam-

ponent of the vector,
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1 J@+D(+ DI+ D7+

I+1"+2
ey mim C

g . J+1

I

(n")(1"+2n"+1)
I"m’

{z L

n—on'lc?

~0)(1"+1
_IQ|(/T)TE’ )Y| m r+ 2

|/ ’
on"c m

The argument of the vector spherical harmonicss fi
=r/r. The surface integration in E¢4.2) over the vector

products of spherical vector harmoni¢s,
formed by reducing them to scalar productsYgf,,, when

the integral can be taken immediately. So, using formulas of

the type

N

YVirrm X Vi am) =~ 2|+1\?|'|'m"\?||m, (4.4
, R N )
(YI’I’+1m’XYII—1m)r:|mYI’I’m"YII—lmi
(4.5
and
_ _ . I
fdQ(YII+1mXYI'I’m’)r:_l(_l)mﬁéll’amm’a
(4.6)
. . _ N
f dQ(Yj—1mX Yy ) =—i(=1)" 2|+15||' m,—m’ s
4.7

@i+l + 1)1

1 o0
: \/ﬁYII+1m+ \/ﬁYn—lm] E e

have been per-

1+2n+1)vy 0)(I+1
Mg E DY — Qi Y

- 1
|

n=0 I‘]!C2n

N l+1 .
Y + Yii-1m

1 (n)(l+2n+2)

N T
JIT+1 .

Y// /+ YII !
\/2|—+Il+lm 21 +1 171 lm]

(n )(|’+2n’+2)?I | }
! Vm! .

4.3

) , r
XMl(r?] )(1+2n +1)*(O,t— =

r
o))}
C

Equation(4.8) above expresses the radiation intensity for
a most general type of source, characterized by the electric,
magnetic, and toroid multipole formfactor®,,(—k?t),
Mm(—k2,1), Tim(—k?,t), for an arbitrary time dependence
of the latter, in terms of their derivatives at both arguments
[see Egs.(1.39—(1.41)], which are nothing else but time
derivatives(up to numerical known factorsof the mean-
square radii of the multipole distributions of various types
and order{see Eqs(1.42—(1.44)]. Equation(4.8) exploits
exactly and fully the multipole content of the source, for an
arbitrary time dependence, in the calculation of the intensity
of radiation emmited by that source.

We recall that the first superscript indicates the order of
derivation with respect to the first argumentk?, of the
formfactor, while the second, the order of derivation with
respect to the second argumen#ll terms appearing in Eqg.
(4.8) are real, being equal to their complex conjugates. Equa-
tion (4.8) of the radiation intensityl is obviously positive
definite also, as better seen from the following equivalent but

1 r
+ T(n)(|+2n+2) O,t— o
c2'Im c

XT(H )(I+2n +2)% (4.8)

one gets for the intensity of radiation the following generalmore compact form in which it can be written:
formula in terms of the derivatives of the electric, magnetic,

and toroidal form factorgwith respect to both arguments _2 1 (1+1) (0)(|+1) r
—k? andt), in which the (1¢) powers in front of various ctir-nr@i+1nn Qim T
contributions are explicitly evidentiated, ,
1 1 r
2 _ - (+2n+2) qs_
1= L (+1 Q@1+ g _r cE WT (O’t c)
et 2—nn 2+ 1N c ,
r
I M(n)(l+2n+1)( 0t— _) 4.8
-3 1 @0+ - ") pma+2n+2)x Ot—i En: nlc?" c (4.8)
- n!02n+1 Im C Im ’ c

From the above formula, one recovers easily in the dipole

case (=1,n=n’'=0), the known expressior{s4,6]), for the

r
0)(I+1)% (n)(I+2n+2) _
Qi <0t ) Im (0’t c) radiation intensities in the case of the electric dipole,

1

2n+2n’

+2

an' NIN'lC 4.9

Mfm('*z““)(o,t—g) -2 5
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the magnetic dipole: for all r andt.
We have to evaluate, using the electric and magnetic
|:_236+12’ (4.10 fields of the sourceéE(F,t), B(F,t) at large distances, the
3c angular momentum loss by the source per unit tj2H
and the toroid dipole: dM r3 R
2 Wilm EJ dQ[(A-E)(AXE)+(A-B)(AXB)].
I= 3t (4.11 (5.2

But to the order (1) there are other contributions too, The integ_ration has to pe _done over a spherical surface of
and from the general expression E4.8) we can straightfor- 1arge radiusr and the limitr—o must subsequently be
wardly derive the correct formula for the radiation intensity taken. As it is well known from textbooksee, e.g., Ref.
valid to the order (105) inclusively in terms of the lower [21]), Eq. (5.1) is derived by taking into account that the

electric, magnetic, and toroid multipole quantities. Itis  total angular momentum lost by the system per unit time is
just the flux of angular momentum of the radiation field

5 . . 4 - . " through a spherical surface of large radius
_ 2 22 2 _m.p2
T3t e ™ gt 3t s ™ P dm, r
1. 1 d_tlzfsijkxjffklnlds, dS=r2dQ, i=r 62
) LD
+ 55 Qs 5008 Mas (4.12

whereo;; is the three-dimensional Maxwell stress tensor,
The lower multipoles appearing abovg are Ehose of Ap- 1 1
pendix C. For convenience, we recall trdht rﬁL t are the Uij:E[EiEj"‘BiBj_ Eé‘ij(Ez-i- B2)|. (5.3
electric (charg@, magnetic, and toroid dipole®? the first

mean-square radius of the magnetic dipole distribution, aApplying Eq.(5.1) to the radiation fields at large distances

Qu,p» My, the electric and magnetic quadrupole momentsone cannot, however, take the fields only to the dider,
We note also thatsummation over repeated indicies is un- i - i1 this ordefi- E=fi-B=0 and the integrand vanishes.

derstoo N -
9 One can use the fields and B to O(1/r) only to get the
Qiﬁz QupQap= Q2 + Q§y+ Q2+ 2Q§y+ 2Q2 + 2("352 factorsn >iE andp XB in Eq. (5.1). The Ionglt-udlr?al com-
. . . 3 . . ponentsikE andriB appear on account of contributions of the
=2(Q%,+ Q7+ QZ,+ Q%+ QF,+ QuQyy), next orderO(1/r?) and it is so that the integral in E¢5.1) is
of order O(1/r®) and the distance essentially disappears
12 5= My g g = MZ,+ M2+ M2+ 202 + 22, + 22, from the result, as it must. The ?xpressionﬁmé, fix B to
T R S P S ST orderO(1/r) and those foRE, B to orderO(1/r?) in terms
= 2t MGy + MGy M+ My + Miodhyy), of the multipole content of the source, i.e., in terms of time

derivatives of all the electric, magnetic, and toroid mean-

where the relations square radii of the corresponding distributions, have been

Quxt Qyy+Q,,=0, Q;=Q;;, obtained in Sec. Ill, Eqs3.40 and(3.41) and Egs.(3.46
and(3.47), respectively.
M+ Myy+m,,=0, m;=m;, The contributions of the electric and magnetic fields to the
angular momentum loss as given by E§.1) will be con-
have been used. 0@,z is (1/6)D,; of Ref. [21]. sidered separately,
We note that by working with the fields only to the ¢3y R R R
order, in Ref[21] are lost not only terms given by the toroid dM dM®©  dm(mag
dipole [the third and fourth in Eq(4.12)], but also the fifth,  TERr T e (5.4

amounting to radiation on account of the interference be-
tween the magnetic dipole moment and the mean-square rasth
dius of the magnetic dipole distribution.

dm(eh rs R B,
V. ANGULAR MOMENTUM LOSS dt :r'['l EJ [(A-E)(AXE)], (5.9
We consider an arbitrary system of charges and currents .
described by the charge densjiyr,t) and the current den- dm(mag i r3 f - BB -
sityj(F,t) that satisfy the continuity relation dt _rTl A [(n-B)(MxB)]. 5.6
J I?,t N . . . . . .
p( )+divj(F,t)=O The contribution of the electric field will be dealt with

first. With Egs.(3.40 and (3.46), we have then to calculate
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dmed < As it is seen from the Eq95.8—(5.10 above, the dis-
T lim 4—(\], +J,+Jp), (5.7)  tancer drops out from the expression E&.7) of the electric
t r—w T part of the angular momentum loss per unit time, as it must.

The integrals over the solid angle still remaining in Egs.
(5.8—-(5.10 can be simply evaluated with the aid of the

where N
Cartesian components of the spherical vect¥is,, (I’
=I,I"=1x1) (expressed in terms of;,,) given in Appendix

j _2\/; 2 (I+1)y21+1 (0)<| 01— D and the usual normalization relations
o2 |/ o@r+nnd
L e T [ 40X Y (9= 1 B
_; n|02”+1T O,t—E
2\ 1 41 | 40X, (Y (= (= 1600,
ro| e nte! 20 721 1)
The needed integrals then are
S M7 +2n" 1) Ot—i
I! L) C .
| 40X 91 )
><fd‘(lYlm(n)Yl’l'—1m’(n)1 (58) R (_1)m (|+m)(|_m+1)
:ex |(|+l) I"m,—m’+1
- :2\/; 2 (I+1)y21+1 (0)(|) 01— \/(|_ YT+ m+1)
o2 |5 @r+nnd 0+ 811 0m—mr—1
1 r (=)™ J(I+m)(l-m+1)
_ = T(m+2n+1) _
; n|02n+lT (O’t C) ] |: \/ |(|+l) 5II’5m,fm’+1
Xzﬁ 1 I’ +1 (= 1)m\/(|— )(I+m+1) }
r "m’'n’ n’!C|’+2n’+l \/I—!(2|/+1)“ |(|+1 I"¢m,—m’'-1
m
XM (n"H(1"+2n"+1) 0t— E +éz (—1)m+1—5||/5m,m/ y (51])
I'm’ =g J(+1) '
XJdQY|m(ﬁ)YI’I’+lm’(ﬁ)1 (59) f dQYIm(ﬁ)?l’V*lm’(ﬁ)
2 (=™ J(I=m+1)(I-m+2)
Jo= 2\/—[2 (I+|1)V)2| Q<°><'>(0t ) & T (I+1)(21+1)
& 21+ 1) c
\/_ ><5I,I’—15m,—m’+1
r 2\
—Zwﬂm“*z”“)(ox——) (=)™ [(I+m+1)(I+m+2)
n nlc c r S 1 —10m —m' -1
2 (I+1)(21+1) : m.=m
Jar+n+1) '
X[ I,lﬂ (2',“,)(' +1) I LG S (R MU
e @ y 2 (I+1)(21+1)
v Ql(O)(l +1>( 0t— [) X6 11-10m,—m'+1
!m! C

|( 1)m (I+m+1)(1+m+2)
\/ (I+1)(21+1) 5""—15”"—""'—1}

" (I+m+1)(1-m+1)
(=1 \/ (+1)(21+1) 5""—15""—“"’}'

(5.12

1 ’ ’ ’ r
(n")(1"+2n" +2) _r
+§ nr!CZn’+1TI’m’ (O't C)H

[ 40X, (1) ¥y ). (5.10

+é,

046609-21



E. E. RADESCU AND G. VAMAN

[

>

=€y

(= 1)m\/(|+m 1)(1+m)

|(2|_|_1 5I,I’+15m,—m’+1

(=™ J(I=m=1)(I—m)
+ \/ |(2|+1) 5I|I’+15m,—m’—l

i(—1)™ [0+m=1)1+m)
2 \/ [(21+1)

>

+ey

X 5I,I’+15m,7m’+1

i(—D"™ /(I-m=21)(I—-m)
- 2 \/ |(2|+1) 5I,I’+15m,m’l}

I—m)(I+m)

&, — (=17 Wal,l’JrlEm,m’}

(5.13

In this way one finds the desired result for the electric
field contribution to the rate of the angular momentum lost
by the system through radiation of electromagnetic waves.

Writing separately the contributions a_, J., 30 to

dMe'/dt according to Eq(5.7) as

dmeh (d|\7l(e')>(j) (dl\7l(e')>(j*) (dm(en)(jo)

dt dt dt dt
dmeb (Ja) o3 ,
n =lm 73 @)==.10. (67)
one has
d|\7|(€‘|) (‘]*)_1 2 (_1)m+1( +2)
dt | 2,4 @+1nn2i+3)
1 r
I e Y (D10 __
Xn/!C2I+2n’+2[QIm (O,t C)

1 r
_ = T(m+2n+1) .
; g2 I Tim (O’t c”

X|Vl=m+1)(I-m+2)

XM n )(I+2n +2)(0t_£)
Tc

—VJ(I+m+1)(1+m+2)

r
xM,il)“*lz”m*Z)(o,t—E) , (5.14
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(d|\7|<e'>)(9-)_ Ly i(—1)™(1+2)
dt /, T2 5 (2 DN2I+3)N

<0)<|><0t )

1 r
_2 WTW(HZMU(OI_ _)

1
Xn"CZHZ” +2

C

X[V =m+1)(I—m+2)

n")(I1+2n"+2
XM{T R

r
o
C

+V(I+m+1)(1+m+2)

% M(n’)(l+2n’+2)

r
ot— E) }, (5.1

I+1,—1-m
dmeed (32)
dt
z
S (-1)™1+2)  J(I+m+1)(1-m+1)
e (21 DI21+3)! n'1c2l+2n 42
r
| oia os-
r
_ (n)(1+2n+1) -
;mc 77T Nim (OI C”
r ! r
U IS 516
dl\7l(e'))(j+)
dt
1 5 (=)™ +1) 1
T 2,5 @D+ g

x| or- ¢

-2

r
(n)(I+2n+1) _
n n|C2n+1T (o't C)j|

! ! r
X[ (I+m=1)(I+mM{" )|+ 2 >(o,t— E)

—Ja=m=1)(1—m) m{") 20 >(0t— g)

(5.19
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d|\7|(9|) (j+) dl\_;l(el) (50)
%5 )
y
- > (y™ A+ D ! 1 (D7 +1) 1 [ o0 0t -
2 0 =D @I+ D! pryc2+a’ T 2fml@-nnEi+nn AT m [T
O ot i 1 masans r
X|Qim | 0t ¢ En: ez T Tim 0t—¢
r r
( )(|+2 +1) .
; YR mo (O’t c” x[\/(l+m)(l—m+1){ Q(O)(IH)( E)
’ ' r
X[ V(I+m=1)(I+m) M{" )+ 2" )<0,t——) n Tnha+an'+2) g F
¢ o /|C2n +1 |1 m ! c

+\(I=m=1)(1—m) m{" )20 >(0t—£)

—\J(=m) (|+m+1){ Q“’)““)(, 2)

(5.18
) 1 ) ) r
Y J 20+ ae D
(dM(eI))( o) +§, n,!CZH,HTL,m (0;[ c) ]
dt
z
(5.2
s (—1)™1+1) JT—m)(I+m)
e =D+ gyt )
o (dM(en)(Jo)
r
X Qf%“”(o,t—g) dt |,
i(—l)mm(l+1) 1
1 r _ M or
_E—n,C2n+1T|(m)(H2n+l)<0t_E) 2 =D D 2w @m0k
n .
/ , r _Z 1 T(M{+2n+1) Ot—i
x My zn )(O,t—E); (5.19 T nicZn L im T
(dM(el))(jo) % _QI(O)(rITl+l)(Oat_E)
dt . . r
ol Ut B PN P +2 mTf,”')r(n'”“’*”(o,t—E”.
Em (2| H(20+1)N CZ|+1|_Q|(m()(O’t_E) n n'lc
(5.22
1 (I+2n+1) r
2 e T 0

It is worth noting that the magnetic-type multipole mo-
[ r i ; 7 (el)
— A0+ s L ments and radii of the system contribute ttM'®"/dt
X{ Vi+m( m+1){ Q= (O’t c) (through interferences with the electric and toroid corespon-
dentg only through thejt-pieces [Egs. (5.14—(5.19],
TE ) —— I(n1 )(I+2n’+2)( Ot— [) while they are absent from thky piece[Egs.(5.20—(5.22)],
n’ ’|c2" nrrg2n o hamm c in which only interferences of the type(electric
: +toroid) X (electrict+toroid) are there.
r The evaluation of the magnetic-field contribution to the
_ Q@¢+b _ g
FI=m)+m+1) l h-1- m( ) angular momentum loss, given by H§.6), goes entirely on
the same line as in the electric field case, so we skip over
} details and give directly the lengthy result, but splitting,

1 , ) r
) —— (RIS ] P
? nr!CZFI +1  h—=1-m Cc

however, the long expression in a slightly different manner
as before, by evidentiating perhaps more suggestively the
(5.20  various types of interferences. So one has
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dM(mag [ gpj(mag d|\7|<ma9>) (dM(ymag))
= +| —
dt dt /oy dt /o0t dt
(5.23
1 » (—D™1+1)  JO+m)(I—m+1)
T2, S T@I=DI2I+ 1)1 prpng2itentan’+l

where the subscrigél, M indicates interferences between the

magnetic type multipole radii themselves, while the subscript
M, Q+T indicates interferences between magnetic and
electricttoroid type radii,

o

dm(ma
dt

r ’ ' r
% Mfrr:‘)(l+2n)(olt_ E) Ml(aj(rl]+2n +l)(0,t_ E

(-D)™1+1) Jl-m)(I+m+1)
(21— 1)1 (21+ )1 pip’1c2 +2n+2n’ +1

1
_52

I,m,n,n’

><M(n)(HZn) Ot—i M(n’)( +2n'+1) Ot—i
. Im ’ c I,—1-m ’ c/’
i s (—1)™(1+1) Ja+m)(I—m+1)
T2, S 1D DI qpric2i e’ (5.29
(dM;ma@)
r ! ’ r ———
XM;mﬂw(o,t—E)M;gﬂg;zn ”)(O,t—E) i,
-1)™m(l+1 1
i (—1)™1+1) Va—m)(I+m+1) =i > (=1)"m(+1) .
- S2I=1)1 21+ D)1 qrpr1g2i+2n+2an’+1
2, S 1RI=DN(2I+ 1)1 piprig2itant2n’ sl ,m,n,n e
r ' , r r r
(n)(1+2n) _ (n")(I1+2n"+1) _ | (1 ' i
XM(" (O,t C)Mh_l_m (O,t C). ) XMfr'%)(+2”)(0,t—E)Mff‘_)rfq+2” +1)(0,t—6>,
5.
(529 (5.26
(mag) _
(dL) :}2 Sl L (n)(l+2n)(0t_£)
dt  /yoer 200 (211U @I+ D! nic't2n Him T c
[ r , ) r
I iAo = TR or-g
(I+2)J0—m+1)(I—m+2) c 5 c
(21+1)(21+3) c'? “~ Nl t2n +3
[ r ) ) r
(0)(1+2) _ - (n")(1+2n"+3) _
(1+2)V(I+m+1)(1+m+2) Q'+1l—1-m(0’t c) 5 T 171, (O’t c)
(21+1)(21+3) c'*? oy n'1cltan +3
[ r ) , r\
o, Wfor-5) o Ta o
+(1+1)JI+m=1)(1+m) J Z’o T
_ i , ’ e
I LY B e [
—(+1)JI—m=-1)(I-m) g EO T : (5.27)
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(mag) i _
(dMy _r D (=™ :ll , M(n)(l+2n)(0t_£)
dt )y gur 20mn (2I=D2I+ D! nic't2n im Tc
[ (0)(1+2) Ot_i - T(n’)(l+2n’+3) Ot_i
(I+2)J(l=m+1)(l—m+2)| ~'*1m =" ¢ > I+11=m T
(21+1)(21+3) c't? o n'ic+an’+3
[ (0)(1+2) Ot—i - T(n’)(l+2n’+3) Ot_[
(1+2)J(I+m+1)(I1+m+2)| <IFi-imm{ =0 ¢ S I+1-1-m e
(21+1)(21+3) c'? _n,=0 n’ic+2n’+3
[ r ) )
Qo 0-5) - T+ or- 1|
+(I+1)\/(I+m—1)(l+m)- d EO T
i r ) . r
Qo 02— 1] T 0 1)
+(1+1)J(I=m=1)(I—m) . —zo T , (5.28
(mag)
(sz ) _ (—pm 1 M<”)('+2”)<Ot—£>
dt e tmn (21=1)I(21+ 1)1 nictt 2 M " c
(0)(1+2) Ot—i - T(n’)(|+2n’+3) Ot—i
(1+2)J(+m+1)(I—-m+1) | <HL-m{ ™0 ¢ S Flom "o
(21+1)(21+3) c'*? “~ n'1cltan +3
r ' / r
Qo 0r- 5| - T8 op- 1]
+(1+1)J(I=m)(1+m) J 2 e (5.29
n"=0 n'c
|
So we have completed the calculation of the angular mo- dM,, (—1)m+t 1
mentum loss per unit time. The electric field contribution in dt Z% 2l—Dn 2+ ! Pl
Eq. (5.4 is given by Egs.(5.7) and Egs.(5.14—(5.22), ’
while the contribution of the magnetic field in E¢.4) is 01
given by Egs(5.23—(5.29. The results have been expressed % 1+2 yI+1 I1+1,1) A
L. . > 2|+1 \/m m+u,—@,m
by giving formulas for the Cartesian componentsddi/dt.
Ellaborating still a little bit these results and writing them for i
the spherical components of the vecthvl/dt, they can be HU+DVI2I=1) CrifitumB
put in a more compact form in terms of known Clebsch-
Gordan coefficients. i Vi+1 1
So, in spherical componentg & —1,0,+1), one finally +E(|+1) N Crv - umCl
obtains for the angular momentum loss per unit time the (5.30

following general expression:
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1
_ 0)(l) "Y(1+2n"+2)
A=2 ———[QnM{T 2
n' C n’!
"y(1+2n’ 0)(1+2

Mg QR )
+z ;[M(n’)(l+2n’)-|—(n)(|+2n+3)

by c2n+2n’ 4310 m [+1,-m—pn
_Tl(rr;])(l+2n+l)Mfirffl;%nr;+2)]i (53])

_ (0 () pg(n")(1+2n")
B_E’ Czn’n,l [le Ml*l,*,u.*m
n H
"Y(I+2n’ 0)(!
—Mip QO L]
+E ;[M(n’)(l+2n’)T(n)(I+2n+1)
, CZn+2n’+1n|nr| m I=1,-—m—pn
n,n . H

n(l+2n+1 n")(I+2n’
ST,

(5.32

1
— 0)(! 0)(1+1 0)(l I+2n+2
C= _Ql(m)( )QI(,—)<;;,—rr)1+Z C2n+1n| [Ql(m)( )Tl(,nz(;/,—r‘rr: )
n !

I+2n+1 0)(I+1
_|_T|(rrT1])( n )Ql(,l( )

pw—m

I+2n’ "(+2n"+1
M(r?w)( n )Ml(?—ii—mn )

’
nn' C2n+2n n'n’!

1 ’ !
+ ?Tl(r?])(l +2n+1)-|—|(’n_)lil_+n%n +2)

. (5.33

The connection with the Cartesian components is as usuaII)Z,

M, 1

dt ol

dM,  dM,
at ' dt )

dM ) 1(o||v|X _dMy)

dt |l dt dt
dM,  dM,
dt  dt - (5.34

The argument of all the double-superscript quantitie
QW™ MM 7MW [which up to numerical factors are
just time derivatives of the multipole electric, magnetic, and

toroid radii of the system, see EQq$l1.42—(1.44)] is t

PHYSICAL REVIEW E65 046609

k2—0:|

and their relationship with the multipole chargelectrig,
magnetic, and toroid mean-square ra_itﬁspectivelyrlzm“(t),

pim(t), RAN(t)] of various ordergzero order means just the

corresponding multipole moment itsglEqs.(1.42—(1.44]:

14 dn

TWop = Tim(— K2 t
im(O) dt”m'm( t)

@+
(n)(») - 2n
Qm (0D = 5nz2n+ 1y g "imt):

@+nn d

(n)(») = -
Mim (OO = 52 an+ it g Pim(t):

RAN(t).

21+ 1) d”
(M) (0 1) = A
Tim " (O) 2"(21+2n+1)!1 dt”

All these radii express exactly the multipole content of the
most general type of source. They characterize completely
the system; in this paper, their time dependence is left arbi-
trary.

At this point, a comment on the time dependence in the
formulas obtained for the angular momentum lost per unit
time by the system through radiation may be in ortes a
matter of fact, this comment holds also for the calculation of
the recoil force, radiation intensity, etcThe question is that
apparently(i.e., rigourously, from the mathematical point of
view) the evaluation of the limits —o like the one in Eq.
(5.1) might rise some delicate problems, since the fi€lcB
under the integral are by definition solutions of the Maxwell
guations that are zero at infinity. But in principle one may
valuate the angular momentum lost per unit time by the
system through a sphere of arbitrary radius

dM(r,t) B
T:EJ' dQ[(R-E)(AXE)+(A-B)(AXB)].
(5.1)

It is practically hard to do that in the vicinity of the
source, so one does it for largebut not just in the limitr
—o0: one must still have non-negligible terms of order31/
from the integral to compensate th&in front of it. That is
Jwhy, in general, one may speakd)f?l(r,t)/dt as a function
of r. One should remember that the argument of the radii in
the final result fordM/dt is t—r/c. This means that if an
observer at a distanag from the source measures the angu-

—r/c. We recall for convenience the definitions of the lar momentum that flows through the surface of radiys

double-superscript quantities in terms of the correspondinguring the time intervall and other observer situated at the
multipole electric, magnetic, and toroid form factors distancer,>r; does the same thing and starts measuring at

[Egs.(1.39—(1.4D)]:

k2o}
kZO}

d[ o
Qim0 = v [QO( —K2t)

n

m'vhm(—kz,t)

dl/
Mz 0= W[

the retarded timgwhen the waves reached himafter the
same time interval he will find the same answer as the first

observer. That is why M/dt, the recoil force, etc., still de-
pend(unessentiallyonr through the retarded time-r/c in
the argument of the radii from the final result.

We shall exploit the above general formulas E@s30—
(5.33 by writing down the expression of the angular mo-
mentum loss correct up to terms oti/in the development
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over 1t powers. For contact with relations given in the lit-
erature, we have come back to Cartesian components and use
the corresponding connections with the spherical compo-
nents for the first multipole moments and radii given in Ap-
pendix C. We find

o 0. 1
—3ma,3t )+8aﬁy<2Q§ﬁQ57 tBt +3mﬁp7

1 —1
—§mﬂpy+ 2m5,3m57

M
gt = C(QQ)+C(MM)+C(QM)+C(QT)+C(MT)
(5.42

1
+| terms of higher order thaF(w:—5 .

+C(TT), (5.39

where the various diagonal and interfererietectric, mag-
netic, and toroi@l contributions are

All the time derivativegdoty of the multipole quantities
appearing in the Eqg5.42 above, as said before, have as
argumentt—r/c. We mention that in the expression of the

rate of the angular momentum log#1/dt calculated in Ref.

2 .
C(QQ)= 5C58aijQBiQﬂj, (5.39

1 1 '_
5c°\ 3 € aij |P]

Cgsa”d d

C(MM) == 5z &qijmim; —
1 ==—1
+3 3 € aij IpJ 2 m]mﬁlmﬁj (5.37)

C<QM)=—%(r’haidi+maiai—2éaimi—2émmi>,

[21] (the Problem 2 at the end of Paragraph 72, the 1988
Russian editiononly the first term of our Eq5.42) is given,
while Eq. (5.42 completes the result given in R¢21] with

the remaining contributions of orderc®/(of magnetic typg

of order 1£* (which include a toroid dipole piegeand of
order 1£° (which also include toroid pieces, this time ap-
pearing not only the toroid dipole moment, but the toroid
guadrupole moment as well

VI. RECOIL FORCE

The recoil force is the momentum lost by the system per

unit time, i.e., the flux of momentum taken off from the
(5.38  system by radiation of electromagnetic way2s],
AP S F= [ oynds ds=rdo, A--. 6.
CQN) = 3aeaijditi+ zcaeqijtid), (5.39 i= | 9ijh = , ; -
1 . o . ajj is the three-dimensional Maxwell stress tensor given by
C(MT)=-— ﬁ(mai M + 2t ;M — 3t — 3mM,,t;), Eqg. (5.3 and the integration has to be done over a sphere of
(5.40 large radiug.
' A system that emits electromagnetic radiation suffers then
2 . the recoil force
C(TT):_ﬁgaijtitj' (54]) A (E2~|—Bz)

|

(6.2

_nm[——fdﬂ[é E-f)+B(B-A)—

r—o0

2
In the expressions above, dots mean time derivatives, the

argument of the multipole quantities involvedtisr/c, and i
d; is the electric(charge dipole momentQ;; is the electric -
guadrupole momenty; the magnetic dipole momer)[ii2 the
first mean-square radius of the magnetic dipole distribution,
m;; the magnetic quadrupole moment,the toroid dipole
moment, t;; the toroid quadrupole moment. All these first
usual multipole quantities are listed for convenience in Ap-
pendix C together with their corresponding spherical-basis

analogs. Reordering the above formulas in powersobhe  and we have to calculate

S

We need the electric and magnetic fieElgndB to order
O(1/r). To this order the fields are transversal,

i=0, B-f=0,

has . r L
F=——f dQr(E?+B?), 6.3
dMm, 2 Ce i1 . . 87
T:—ﬁa‘algy(dﬁdy"'mﬁmy)'f‘g g(_maﬁdﬁ o
. . - . .. . 2 o r =5 2o
e 1 . i Lo o r 25 2o
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r N >
FZ=—ﬁj dwz(E?+B?), (6.6)

for r—oo, with E and I§~O(1/r), so thatr in front of the
integrals will finally drop from the result, as it must.

Our aim is to evaluate the recoil force in terms of the
multipole content of the source in the most general situation,
i.e., for all types of source’s multipole&lectric, magnetic,
toroid), any multipolarity order and an arbitrary time depen-
dence of the quantities involved. This means that we want to

express the recoil force in terms ¢éssentially the time

derivatives of the system’s various multipole radii, i.e., in

PHYSICAL REVIEW E65 046609

1 -
F,=—r? J'dQY i)B2(F,t), 6.9
z N 10(MBA(F,t) (6.9
i.e., one has to find the surface integrals
|1:f dQY,,(R)BA(F 1), (6.10
I—l:f dQYl—l(ﬁ)gz(Flt)v (611)
|O:f dQY,o(R)BA(F,t). (6.12

terms of the double-superscript quantities defined in Egs.
(1.39—-(1.41) [which are related to the radii as in Egs. Then the recoil force will be, in the Cartesian basis

(1.42—(1.44)]. To this purpose, as it is seen from E(2)—

(6.6) above, one needs only ti@(1/r) multipole content of

the fieldsE,B as given by Eqs(3.15), (3.16 of Sec. lll. The

calculation, however, is tedious and we shall give here only

the main steps and final results, presenting nonetheless some-
times certain details about technicalities that involve some y

lengthy expressions and relegating to appendixes for some

other formulas. The calculation goes as follows:

Step(1). Since the field<€,B in orderO(1/r), given by
Egs.(3.195 and(3.16), satisfy

o(1hr) _
= B(rF,1),

roo.
- X E(F,1)
r
one has
E2(F,t)=Ba(F 1),

and Eqgs(6.4—(6.6) mean that one has to calculdtarger,
n=r/r),

r2 v2 dOQ[Y,_1(A)—Y4(A)]B3(F,t), (6.7)
X 3 1-1 14 oy :
Fy=—r?i v2 JdQ[Y (A)+Y;_1(A)]B3(F.t), (6.8
y oy 11 1-1 ),

[’

1 Vam(2l+1)(1+1)

2 V2 (I l1) (6.13
=—r —1— 1), .
X 4.3 vt
F 2 V2 (il _q+ily) (6.14
=TI I _ | s .
437 ! !
F,=—r2 ! I (6.15
z 237 '
and in spherical basis
F ! (F +iF,) r’ I (6.16
= —_ — | e — , .
LY, 237
F ! (F —iF,) "~ | (6.17)
1= —(Fy—iFy)=——F—=I1_4, .
Y, A 237 '
r2
Fo=F,= — ——I,. 6.1
0 z 2 /—377_ 0 ( &

Step(2). We start considering the integrgl of Eq. (6.10.

One has to evaluate it witﬁ(F,t) under the integral as given
by Eg. (3.16, i.e., one has to calculate the lengthy expres-
sion

1
|1:_2fdQY11(ﬁ)|2m 1

M(n)(|+2n+1)<0t_ L)

r  C Jd@l+nn  [Sonie® M c
N oI+ 1 R (T R | r

mYIH—lm( )+—mY”_1m(n) —|Q|(r?1>('*1)(0,t—E)Y,,m(n)+ Ezo n!CZanﬁ?('”””) Ot—¢
XYim(A) [ 4 2 S LG TURED (?;)/<|’+2n’+1)(0t_£) L\?I'I’+1 (1)

" d @i +nn e e/l 2r+1 m

I"+1 . , r\ . [ o r\.
+—Y/ r_ ’ ﬁ _| (9)(1 +1) O,t__)Y "N'm’ ﬁ +_ 7 (? ),(I +2n +2) O,t__)Y "'rm’ ﬁ .

i 1m()) Qi'm o) Yirm () czon'!c% I"'m o) Yo ()

(6.19

So, to findl;, one splits it into six types of different pieces and calculates them separately,
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=M QR4 T+ QM 1 TM 4 QT (6.20
We give here only the expression I@f'\" , the other pieces having the obvious corresponding form

1 Aa\(I+21)(I"+1 A
|1MM: 2 ( ) ) M(“)(Hznﬂ)Mf?m),(' +2n’+1)

I ’ |
T e U T L N TR G-I DY I NG K YT

X Wf dQYn\?,,+1m.\?l,l,+1m,+2\/|(|'+1)JdQYn\?,|+1m-\?l,l,_lm,+\/(|+1)(|'+1)

Xf dQYll?||_1m'?|/|l_lm/ . (6.21)
|
From now on we shall drop the argumentst(o;/c) andni 1 (=)'
in the spherical vector functions when unnecessary. —2 > cA+antan’+3
,n, n’

Step (3). It is seen that essentially one has to compute

many surface integrals over products of three spherical har- n 2 A+ 1)\3m
monics, which can be performed in terms gf \Bfigner co- X Ad+2) (217 +41+ 1) y3m
efficients with the aid of the formul22], nin' 21+ D)1 (21 +3)11 (1 +1)(21 +1)(21 +3)
XE M (") +2n+1)M(n )(I-;Zn +2>( ! I+1 1)
> + — ]
| 40X, (Y1 Y ) mlm —1-m 1
6.2
(@ D@L, D@5t D [ 1 |3) (623
- o 0O 0 O and analogous expressions for all the other pieces in Eq.
" (6.20,
[ PR P
x my m, mg)’ (622 |QQ:£ (-1) 2y3n(I+1)
Lorrfm AT ai-pn@-3)ni2i-n2i+1)
In this section, unlike our procedure in Secs. IV and V when | -1 1
we used in the calculations the usual Clebsch-Gordan coef- X D <0><I+1>Q(9)(I_ _m( )
ficients, we preferred to work with the more symmetrical 3 m m —-1-m 1
Wigner symbolg22]. We recall the known relationship, 1 (-1t
+ 124 AR
SR PR
— (=11 lems__ = clulals
(ml mz m3 ( 1) \ 2|3+1 my,my,—mg’ v 2\3’7T(|+2)
(6.22) (21=D1 21+ DT+ 1) (21 + 1) (21 +3)
. - _ +
The Cartesian components %f;, (i) that enter the expres- XE Qf,?])('H)Q(g)('ff) . ! I+1 1), (6.24)
sions of the fields Eqg3.15 and(3.16), and hence the ex- m m —-1-m 1
pression to be evaluated and which have to be expressed in
terms of the usual spherical harmoni¥¢g,(fi) through 3 T 1 D (-1
symbols, are given for convenience in Appendix D. So, one l1 __2 -~ . nin'lg? +2n+2n’+2
finds
1 (—1) y 2y37(1+1)
——2 2 m =D @2=3)nyi2l-1)21+1)
n !
y 8l(I+1)y3ml XE T(n)(|+2n+2)-|-(n (I1+2n’ +1)( | -1 1)
1m .
N’ 1(21+ D1 (21— )2l -1)(21+ 1) m —1-m 1
, -1 1 1 (-1t
I+2n+1 |+2 —
X% M|(rr:-|)( Fant )Mfiff_t—nm)(m _1_m 1) 2 nE n|n1|02|+2n+2n’+4
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2\3m(1+2)

X
2= I+ I+ 1)(21+1)(21+3)

I 1+1 1
% -I—(n +2n+2)-|—(n )(1+2n’ +3)
%: Im L=i=m o lm —1-m 1)’
(6.25
QM:ﬂZ (-1t 3m(l+1)(21+1)
r2f5 nic™™ 22 a1+ )n 21— 1)n
(0)(I+1)p g (N)(1+2n+1) ! I 1
X% Ql,flmeIm _l_m m 1 1
(6.26
|TM_ii (-1
1 72 oyt nin’lg2n+2n’+21+3
" 1 V3m(l+1)(21+1)
(2l+ 1)1 (21— N
(n)y(1+2n"+2)p g (N)(1+2n+1) I l 1
X% Tl,flfm Mlm —-1-m m 1 !
(6.27)
4 (—1)'*+t (1+1)
__Z,H, n'1c2n +2+2 (21—1)1 (21— 3)!!
% v3m 2 Q(O)(H—l) (I+2n +1)
J(@2I+1)21—- o
I 1-1 4 (—1)
X m —1-m 1 +r_22, n'1g2n’ +2l+4
(1+2) V37
( —DiE+LHY Ja+1)21+1)(21+3)
I 1+1 1
% (0)(1 +1T(n )(I+2n +3) _
% Q| |+1,—1—m m _1_m 1

(6.28

So, one completes the calculation of the intedsadrom Eqg.

(6.10.

Step(4). The integrall _;, Eq. (6.1, is calculated from

the result obtained above fog, Egs.(6.20, (6.23—(6.29),
using the obvious relation

(6.29

— *
l—l__IJ_!

and the properties under complex conjugation of the double-
superscript quantitie®{V ), M{M") " which are of the type

MM = (— 1ymp (M) ete (6.30
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following from the same properties of the whole electric,
magnetic, and  toroid  formfactors Q,(—k3t),

M m(—k2,1), Tim(—k?,t) they are originating fronisee Egs.
(1.22)—(1.24)]. One changes than— —m (the summation
over m remains again from-1 to | because of symmetry
and one uses the known relatif2?2]

(Jl J2 13):(_1)j1+12+j3( J1 J2 I3 ’
m m; ms —m —Mm; —my
(6.31)

for the appearing Bsymbols, to get finally the expression of
I _, we are looking for, which is entirely similar to the one
for 1, given above(with the expected due changes in the
indices and 3 symbols.

Step(5). One computes in the same way the intedgadf
Eq. (6.12. The result is

Lo=IEM+ 19+ 1 T+ISM+1IM+19T,

(6.32
where

1
_2

-1
2 (=1

’
o’ n!n/!02n+2n +2l+1

y 8I(1+1)3nl
(21— 21+ 1)1 (21 =1)(21+1)

" m o

I—1,—m

% M(n)(l+2n+l)M(n’)(I+2n’)
Im m -m 0

(_l)l+l

2n+2n’+21+3

1
—22
,m,n,

n nin’lc
y 42124414+ 1)(1+2)\37
21+ (21+3)I I+ 1) (21 +1)(21 +3)
I 1+1 1)
m -m 0/

(6.33

% Mfrr:])(Han)Mm,l),(lTnzn/+2)(

2\3m(1+1)

2i=ntr2=3)yi2l-1)(21+1)

p_\

1 l
0)(1+1 0)(! E

I-=1,—m

| 1-1 1
m —-m O

2\3m(1+2)

X
I+ VI +1)(21+1)(21+3)

I 1+1 1
XQ(O)(|+1)Q(0)(|+Z)( )

m —-m 0/

(6.39
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_ |
|TT:1 (=1  T(M(+2n+2)p(n")(1+2n" +3) i+l 1
0 r_zlmnn’ nin’1c2+2n+2n’+2 Im [+1,—m m -m 0/
" 2\3m(1+1) (6.39
21— 21=3)1yi2l—-1)(21+1)
-1 1 2 (-1t Bar(l+1)(21+1)
X T +ant2ypin) s 2n +1>(m Cm 0) =12, & nreznaTe N
1 (_1)I_l 1 (0)(|+1 (n)(I+2n+1)
_ X
r2 Enn, nin’ig2l+2n+2an’ +4 (21— )“(2I+1)"Q Im
I I 1
y 237(1+2) x(_m ol (6.36)
(2= I+ +1)(21+1)(21+3)
|
H |
|TM:A;| (-1 ‘/377(|+1)(2|+1) 1 T(n)(l+2n+2)M(n)(I+2n+1) I 1
0 T2 A ninnc2ranean’s3 N 2=+ 1) Im -m m o)
(6.37
| —
_i (-1t 43m(1+1) (1+1) o +1T(n)(l+2n+1)| -1 1
r2 e e ' v2 fol—1)(21+ 1) (21— 2I=3)1r ~<m —lmm m -m 0
|
+32 (-1 437 (1+2) (1+2) st (|+2n+3)<| I+1 1)
P e e+ 4 (T3 1) 21+ 1)(21+3) (I=Di2I+1nn ~<m m -m O
(6.39

Step(6). With 14, | _;, 15 of Egs.(6.10—(6.12) calculated we have ended this part of the work and have at our disposal the
recoil force according to Eq$6.13—(6.15 or Eqgs.(6.16—(6.19.

Now we list the final expression of the recoil force for the most general configuration of charges and currents. The result
is expressed in the spherical basis= — 1,0+ 1) with the aid of 3-symbols, in terms of derivatives of the system’s electric,
magnetic, and toroid formfactors. The order of derivation with respect to the momentum trankf@rig specified by the first
superscript, while the order of time derivatives is given by the second superscript.

F,.=[Q.QI+[M,M]+[T,T]+[Q.M]+[Q,T]+[M,T], (6.39
_ (DT (I+1) (' -1 1) 01+ 5(O)1)
[QQ1=2 ~grir (21— 1)1 (21 -3)!! |(2|—1)(2|+1)% m —pem O Qe

(—1) (1+2) I 1+1
+> 3 (

1
(0)(1+1) (0)(I+2) , 6.4
ToCTTT 2=+ +1)(21+1)(21+3) ‘m )Qm QiFi-p=m (6.40

m —u—m u

_ (- (-1
[M’M]_I “~  in’1g2+2n+an’ 1 +| “~  nin’1c2+2n+2n’+3
y 411+ 1)1 y 2(1+2)(212+ 41 +1)
2l-Dir2r+nye-1021+1) 21+ 1)1 (21+3)1 (1 +1)(21+1) (21 +3)
-1 1 I+1 1
3 > |
m —ummeou m Tphmmou
XM(n)(I+2n+1)M(E )(l;znm ><Mm])(l+2n+1)M(Tll)(l;2nm+2), (641)
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(_1)|+1
[T,T]:|%1’ nin’1c2l+2n+an’+2
o (I1+1)
—DnE-3)n2-1)2+1)
-1 1
% (N1 20+2) ') (120" 1)
% —pu—m ,U«)T T
(1)

+ 2

’
Do’ n! nr!c2l+2n+2n +4

y (1+2)
(21— 21+ )1 JI+1)(21+1)(21+3)

|+2n+2 I+2n'+3
T(n)( n )-|—n>(_ﬂ nm ),

[+1 1)
—u—moou
(6.42

Ja+1)(21+1)
20D+

. (—1)
[Q.M]= _2|§1 nlc2F2ni2 (

)Q(O) I+1)M n) +2n+1)

m l—p—m om o) e
(6.43
(-1
[Q.T]= 22 n'1c2l+2n’+2
y (I+1)
l=D2=-3)"yI20-1)(21+1)
xS -1 Q(O)(I+1)T(n )1+2n" +1)
m \m —u—m “Lopmm
(_l)|+l
+2|En, n/!02|+2n’+4
y (1+2)
21— 21+ D)1 I+ 1)(21+1)(2+3)
xS I+1 1 (O)(I+1)T(n)(l+2n +3)
m\m —u-m pu L=p=m =
(6.44
. (_1)|+1
[M'T]=_2||§1' nin’1c2+2n+2n’+3
Ja+1)(21+1) | | 1
X
l-nrE+nnide l—g—m m u
XTff]l),Eljrﬁn,+2)M|(rrrl1)(l+2n+l)- (6.45
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The summations are to be taken for=—1,...,+1; |
=1,2,.;n n'"=0,12,... The appearingj3symbols are
those from Ref[22], related to the usual Clebsch-Gordan
coefficients as follows:

=(—1)17lmmy(2j,+ 1) 12giviziz

mg,mp, — Mg’

j1 d2 s
m; my; m3

The Cartesian components of the recoil fokgg Fy, F,
are related td=, (v=—1,0,1) by Eqs(6.16—(6.18),

F+1=—%(Fx+iFy), (6.16)
F71=i(Fx—iFy), (6.17)
V2
Fo=F, (6.18)
From the general expression &f, (u=-1,0,1) one

finds easily the expression of the recoil force exact up to the
1/c® order inclusively,

2 1
Fa:_ 3C aB,ydBm 5C5 maﬁmﬂ

2 . . .
ﬁQaBdﬁ_ﬁsaﬂymBIy, (646)
In the formula abovegq, B, ye(X,y,z) and summation
over repeated indices is understood, as always in this paper.

The electric, magnetic, and toroid dipole momedfsh, t,

and the electric and magnetic quadrupole momedts,

m,; are those from Appendix C. Note that oQr,s is Q,
=1/6D ,z from Ref.[21]. Our Eq.(6.46 completes the result
given in Ref.[21] (in the Problem 2 at the end of the Para-
graph 71, the 1988 Russian editjpindeed, by working with
the fields correct only up to the (@) order, in this refer-
ences one misses two terms of ordercf)/[the second and
the fourth terms in Eq(6.46)] and only the first(of order
1/c*) and the third(of order 1£°) are appearing. It seems
interesting to us that besides contributions coming from the
usual electric and magnetic multipoles, the recoil force, start-
ing already to the tP order, receives a contribution coming
from the less usual toroid dipole momefthe last, fourth
term in Eq.(6.46)],

2

3c®

—y

Ifmagnetic toroid_

Looking at Eq.(6.46) one sees that this magnetic-toroid
interference is to be considered on the same footing with the
third (1/c®) term (computed in Ref[21]) and the second
(1/c®) term (missed in Ref[21]).

VIl. CONCLUSIONS AND DISCUSSION

The main conclusion of this paper is that for the most
general configuration of charges and currdinsluding tor-
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oidal current structures, which in other approaches are eithexct formulas for contributions coming from interferences be-
unproperly treated or partly lost through approximatjates-  tween various toroid multipoles and the usual electric and
scribed by the charge densityr,t) and the current density magnetic ones.
J(F,t) satisfying only the continuity relation, the radiation =~ Our work goes far beyond the multipole analysis pre-
intensity as well as the rates of momentum and angular mos€nted for pedagogical purposes in certain chapters or para-
mentum loss through radiation, within classical electrody-9raphs of the known books on classical electrodynamics, in-
namics, can be calculated exactely for any time dependencduding the marvellous books by Jackd@d] or Landau and
of the sources. Lifschitz [21], which served over decades to the formation of
We did that calculation with the aid of the multipole de- SO many physicists and certainly will continue to do this.
composition of Ref[4] in which, by the introduction of a Since for the present research aims some new elements
third family of multipoles, the toroid ones, one achieves a@'® necessary, we find it useful to shortly give here some

. I . explanatory remarks concerning the relations between our
complete parametrization @f(r,t), j(f,t) (without any ap- : .
proximation in terms of quantities, which at least, in prin- work and the presentations related to it in such textbooks.

ciple, do have a direct physical significance. The final result%h Our Eqgs.(4.12, (5.42, and (6.4 being different from

are expressedirough quite long formulas, we admit, but |15 B SR IERRARTE Bt B O S e
exac}) in terms of time derivatives of the system’s electric y '

: : . Since the radiation emitted by the first element of the toroid
(chargg, magnetic, and toroid mean square radii various ;amily of multipoles, the toroid dipole, comes along with the

orders and are obtained for an arbitrary time dependence Otadiation emitted by, e.g., the electric quadrupole, we refer to
the latter. The exact formula for the radiation intensity is y 9 q pole, .
the Paragraph 71 “Quadrupole and magnetic-dipole radia-

given by Eq.(4.8) [or Eq. (4.8)], the one for the angular ., .
momentum loss is expressed by E(30—(5.33 and the tion” of Ref. [21] and use below the notations and number-
ing of the equations from there.

one for the recoil force by Eq$6.39—(6.45. Although quite Developing the integrand in the previous E86.2) that

long (which is understandable in view of their generaligll xpresses the retarded vector potential
these equations represent exact results in the correct mulfXP P '

pole analysis of configurations of charges and currents that 1

include toroidal sources. One immediate bonus from these A= _f o rmedV (66.2
expressions comes by particularizing them to the contribu- cRy

tions of the first multipoles. Then corrections to the previ- .

ously known familiar formulas are found, mostly on accountin powers over - f/c (t'=t—Ry/c,i=Ry/Ry) and keeping
of the toroid moments and their interference with the usuabnly the first two terms, the authors found

electric and magnetic ones, to the best of our knowledge not

yet reported. Such correctiori$o the order (1¢°) inclu- .1 > 1 9 -

sively] are given, e.g., in Eq5.42 for the angular momen- A= ﬁf jpdV+ c?Ry Wf (F-1)jpdV.

tum loss and in Eq(6.46 for the recoil force.

Finding an exact multipole analysis was a Iongstandings
problem in electrodynamics and confusions have arised in
the past due to the different number of independent quanti- 1
ties required for a complete characterization of the sources A= —E ev+
on one side and of their radiation fields on the other side. Ry
Indeed, sources should be described by three classes of mul- L o
tipoles while the radiation they emit is described by only twoVNere the summation is over the charges and the intéx
classes, the usual El and Ml waves. This reduction occurs ofere and further omitted. Now, with the relation
account of the additional restrictions on the scalar and vector

ettingf= pu and going to point charges, they got

1 0
CZ_ROEE ev(r-n), (71.1)

. - . . 19 1 1
potentials ¢, A, which, apart from the Lorenz condition J(F.ﬁ)zzﬁ?(ﬁ.rﬂ_El‘}(ﬁ.ﬁ)_ir(ﬁ.lj)
V.A+delat=0 (the analog of the continuity relation fer
andj, V-j+dpl/at=0) are still subject to gauge invariance 19 1

J V- +plt=0) ar jec 1o gaud == 2R (AP + S[(FX5) XA,
constraints, whilep and j are not. This problem has been 2 ot 2

fully solved in Ref.[4] and in this context the exact results
obtained in our work bring yet another support to the clari-they have got foA the expression
fication of this matter of principle. The toroid multipoles

introduced in Ref[4] turn out to be indispensable in getting 5 12 1

the closed for_mqlas.for thfa angular momentum loss, r_econ A= —+ = s S eF(1i-F)+ (X A),
force, and radiation intensity for an arbitrary source derived cRy 2c“Ry dt cRy

and presented here. (71.2

We mention also that our Eq&5.30—(5.33 include not )
only an exhaustive generalization of a previous result conwhere d is the electric dipole moment and
cerning the angular momentum loss by a radiating toroidii=1/2cXZe(r'Xv) is the magnetic dipole moment of the sys-
dipole[18] to any 2-toroid multipole, but furnishes also ex- tem. Now comes the first questionable point. To work out the
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expression ofA from their Eq.(71.2, the authors used their + -+, 9(X)=c+dx+---, one cannot get the expansion of
Egs.(66.3 for the fieldsH andE. the productf(x)g(x) correct to thesecondorder inx, but

only to the first. To have the second orderfd¢k)g(x) one
. i .01 - has to have the expansions ©fx), g(x) valid to second
H=cAXA,  E=[(AXm)Xn], (66.3  order also; otherwise one loses terms. Next, we shall show
simply how one must proceed in order to get the full contri-

which is valid only in the plane-wave approximation where bution to the rhs of the relations férand F in the last two

H andE arestrictly perpendicular and both strictly perpen- equations, thus bringing the Landau-Lifschitz results Ifor
dicular onfi, by adding to the right-hand side rhs of Eq. andF in full agreement with ours. One has first to get what
(71.2 a term proportional t@i on account of the fact that the IS missing toA as given by Eq(71.3, then to give up the
fields H, E would not be affected by this operation, and Planeé-wave approximations Eq&6.3 for the fields and to

forming so the electric quadrupole moméint their notation ~ cOMPute them correctly from the basic formulas,

D, p=€(3X,Xg— 845 %)]. So they find 185 . o

= —= —_——_—— — X
3t Ve, H=VXA,

m

_d 1 2
A= cRO GCZRO_ZZ e[3r (- F)—1ir’]+ cRo(m ), in terms of both the vector and tlsealar potentiale. So we
o _shall recover our expressions E@4.12, (5.42), and(6.46
wherefrom they got their final form for the vector potential optained in our general approach, but this time within the
- procedure of Landau-Lifschitg21], by completing it with
. d 1 1 . what is missing. And what is missing is the consideration of
A= cRy 602R0D+ ﬁ(mxn), (713 the next term in the initial development & in powers of
r-n/c, together with an analogous treatment of the scalar
with D being the vector of component,=D ,zng (sum-  potentiale. We do it now in the same spirit as in the Landau-
mation over repeated indices understodtis with this form  Lifschitz treatment, with only minor algebarical complica-
of A that the authors finally founfLising again Eqs(66.3  tions due to the newr( fi/c)? term.

for the fields valid only in the plane-wave approximagion SO, starting from Eq(66.2) and the corresponding one for
their form of the fields, the scalar potentialp and keeping also the next term in

r-nl/c, one gets
H L {(SX*H 1(|3><*)+[("*><*)><j 1 1 9
= n)+— n mxXn)XxXnjy, e > R\
c?Ry 6c Az—fjt/dVJrz——,f(r-n)Jt/dV
(71.4) cRy C°Ry dt
1 9

l S 1 5 - - PR 2.-’[
I [(dxﬁ)xﬁ]+a[(oxﬁ)xﬁ]ﬂﬁxrﬁ)]. T 23R, ﬁt’zf(r N7jedV,
0

E=

Up to this point, everything would be all right if the consid- — i dv+ i i F-i) o, dV
; i o . ¢ P 7| (F-M)py
erations were limited to the fields: indeed, one has contribu- R CRy dt

tions to them coming, among others, from the electric quad-

2
rupole moment of the system. But with these fields, one +%(9_,2f (F-f)2p,dV
starts calculating next physical quantities that quadratic 2¢°Rg dt
in fields, such as the radiation intensity, 1 e
2 - 1 - 2 . + 6C3ROFJ (F'ﬁ)gp’[’dvy
|=3—gd2+ WD?YBJF 3—Zﬁ’|2, (715)
¢ ¢ and so, for point charges, instead of Eg@1.1) one must
immediately next and the recoil force consider
.1 1 9
11 = 2, A= Ry 2 O R 2 ()
=— — | — —(dXxXm
F., o 150Daﬁdﬁ+ 3(d M|, L
=\ 2 ’
=35 e(r-n 71.7
in the second problem at the end of the same Paragraph 71. 2c°R WZ (Mm% ( )

And that is not permissible, and it is here that the toroid

dipole moment contribution, among others, get lost. 2 1 9 Lo 1
The rhs of the last two expressions, faandF,,, contain ¥~ R et CRo ot

pieces correctly computed, however, these pieces are not the

whole result, but only part of it, in the same sense as from " 1 E e(F-1i)3

the first-order expansions of two functiorf§x)=a-+bx 6c°R, o7t3
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and instead of the equation preceding E&L.3 one should
use here

X >, e(F- )2+

(Q=total charge

PHYSICAL REVIEW E 65 046609

electric octupole moment

1
Qa)\MZEE €

1
N grz(raéerrAcSaMJrrM&M)}

r2
5aﬁ(l’>\r#— g 5}\/-L)

r2 r2
Mo\ — géa}\

“5
- g(r_}lj)(ra&\#-l- r)\ﬁaﬂ-l- rﬂﬁa)\)} ) .

. 1
(Qm\#:gz e{U,e

Sap |t Opu

N

N

Then, in order to evaluate the last terms in the above So the pieces lost in the Paragraph 71 of R2f] due to
equation forA containing fi-F) one has to use the follow- the omission of the?/Jt* terms in Eqs(71.1) are

ing algebrical identity in the vectons, f, v (which can be

checked directly by anyome

n
(ﬁ'F)Zva EaBy 4 3 [(er) r)\+(r><v)7\r‘y]

ngn, . ) 1 .
+ 5 [r,(F-v)—2r v,/]—g[ra(rv)

r%5+27(7- )

—-2r% ]+Eﬁ~
“ 5

nn, r2
+T UB 5&[3 r)\ru—g5)\ﬂ +5ﬁ)\
r2 r2
X rarﬂ—gﬁw + 0, rah—g&m

2
- g(r'J)(rag)\,u.—'_r)xaa,u.—’_rp.&a)\)];

it serves to put in evidence the contributions of the various

new lower multipoles:
magnetic quadrupole moment

1
m,, = 3c e[(FXV)r\+(FX0),r,],

toroid dipole moment

1
ty=1c 2 elry(F-o)=2r%,],

first mean-square radius of the electric dipole charge distri-

bution

—

ra=> er?,

=

r2=> e[r2;+2r(f-v)]|,

1 4 .
Wﬁf d3r (- F)2j L(F ')
:%@%222 e(ni-N?v,
- ;Fj—gﬁgz(ﬁom( Ro)ff,\+ %t
—%lfa-f— 1(0;(% 5Ro-T :2 % anp

Also note that the last two terms gfare

1 (92 Jd3 2.7\ 2 7t/
2Roc? T2 r(n-rp(r,t’)

1 &
= 2R0C2 WE e(n'r)2

N,Ng .. 1 2)
RoC? Qup 6R,C?

1 (93 3r /R A3 Y
6R CSF d r(n'r) P(r.t )
1

6R c® at32 e(n-r)

L

n.ngn. .
«a BY ———f-ra.

1
Ryc® 87T ToR.c

The correct form of the vector and scalar potentials, there-
fore, are(coming back from now on to the notations of our

paper for the observation poiﬁl0—> r),
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_ . A rg .
AT )=—d,— 2 (F-M),+ =55Qup

rc r<c rec
a .I._(2)_ aBy I [FX(Fxt)]a
6rc? 4 2r3c2 B oTye r3c?
e
a o D By
+
10.3 3 d r3C3Qaﬁyl
1 1 o Trp. 1
Ft)=-Q+ —HF-d+ —t@
@(r,1) I,Q r2c 13¢c2 QaB 6re2 d
Mo gf 1 =

The argument of all the multipoles above ts—(/c).
Consequently the field€, H, are

1 g 1 "
P 1) =— —— (FXd) ,+ 35 [FX(FXm
Ha(rat) rZCZ(r d)a r.3(:2|:r (r m)]a

saﬁyrﬂl’g:. I’arﬂl’ymﬁy_l_(rxt)a
recs 7o 2rics recs

eraB Saﬁyrﬁr 5I‘§ A
S 2r2ed iR oL

1
+| terms of higher order thal?? ,

1 r o rg - r,rgr
> - > B¢ al ply
Eo(f)=—-—50,+ 73> (F-d)— -
a( ) rCZ a rBCZ( ) r203QaB r4C3
- €4 .
XQpyt _rzcz("xm)a"‘ 21353 "B oMys
[(FXt)XF],
T 38

1
+| terms of higher order thal?gg

Comparing our Eq9(71.4') with Egs.(71.4 of Ref.[21],
one sees that new multipole contributions appear, includin

PHYSICAL REVIEW E65 046609

sions forH, E, we calculated them starting from both the
retarded scalar and vector potentials developed-iifc to
the right order, while in Ref[21] one has used only the
vector potential developed one order lessim/c and the
plane-wave approximation Eq&6.3, which is insufficient.
So one loses in Paragraph 71 of Refl] the toroid dipole
moment alongside with other “normal” lower multipole con-

tributions(such asm,, , r2), which could bedepending only

on the internal dynamics of the systenf the same order of
magnitude as the electric quadrupole moment contribution
already retained.

Calculating the radiation intensity, recoil force, and angu-
lar momentum loss with the above fields, obtained within the
framework of Paragraph 71 of RgR1] amended by a cor-
rect handling of all the necessary multipole terms, one recov-
ers exactly the corresponding results from our paper, ob-
tained by us by particularizing our exact results obtained in a
general context to the lower multipole contributions.

In Paragraph 72 of Ref21] “The radiation field at near
distances,” one goes indeed outside the plane-wave approxi-
mations, one calculatéapproximately the now contributing

longitudinal componentsi-E, Ai-H, but one limits now
from the start the considerations only to the electrical dipole
radiation, thus giving up from the start the radiation coming
from higher source’s multipoles. And so one does the same
also for the calculation of the angular momentum loss pre-
sented in problem 2 at the end of Paragraph 72.

To summarize, what is the lesson following from the
above considerations? The lesson is that in order to have

correct expressions for F,,, dM/dt one has to calculate the

fields E, H accurately enough in a region as close to the
source as needed, in order to avoid losing competing terms.
The same also holds for the treatment presented by Jackson
[24], where the “radiation field” is considered and studied in
relation to the sources but the toroidal moments and radii,
hidden in Eqs(9.167 and(9.168 are afterwards lost in the
long wavelength approximation. In our paper the fields given
by our Egs.(2.39 and (2.40 are exacteverywhereoutside
the sources and correctly related to them, while those parts of
the fields that remain in the rLbrder in distance for — oo
[as given by our Eq93.4) and(3.5)] are similar to the ones
considered by Jackson. A warning in this respect on manipu-
lating with the fields in the wave zone has been long ago
given by Blatt and Weisskopf Reff1], Appendix B “Multi-
&ole radiation,” Sec. IV. “The sources of multipole radiation;
ultipole moments,” in the footnote 1 that warrants to be

that of the toroid dipole, which have to be considered on thgiiaq here wholly:

same footing with, e.g., the one of the electric quadrupole
moment.E, H, are no more the fields of a plane wave but of

a spherical wave. They are the correct ones as against those!lt follows from this derivation that the angular mo-

of Egs.(71.4 obtained in Ref[21] in the plane-wave ap-
proximation. Note that to the orderrlin distancen- E,

i-H are still vanishing, but to the nextrf/order[appearing
in the correct formulas above in what has been named as

(terms of higher order thanrb®) in the equation foE and
as (terms of higher order than ) in the equation foiH]
are not (i-E+#0,i-H#0). To get the above correct expres-

mentum is contained everywhere in the field, not
merely in the near zone, as asserted by HeitBs).
This can be seen most simply by imagining that the
field was emitted during the short timkt. The field
then spreads out like a spherical shell, and the angular
momentum contained in the field initially has to stay
within that expanding shell.

We can write(3.2) in the form
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correct multipole expansion of the current densily The

nonradiating part from thery f) term (the middle term in
Eq. (9.167 of Ref. [24] or the second term in Eq.7.1)
above is exactly compensated by parts of the first term
pdla[rj(kr)]. Here, for simplicity, we shall substantiate
what we have said above only in the simpler dipole dase
=1, but the conclusions will be valid for aly The point is
that in the harmonic approach developed in Ré#], the
o appearing factors df multiplying p in Eq. (9.167 [or in its

(F E) or (r-?—_{) or both are p_roporﬂonal o _» 9ving transcription(7.1) above forM=0], complicate the picture
a finite contribution to the integral even in the wave because in the harmonic case one has

zone.

G:(4wc)-1f [(F-H)E —(F-E)H]dV
+complex conjugate.

Heitler's argument is based on the fact that the fields
are transverse in the wave zone. However, this trans-
versality is not complete. Eithef or H or both have
radial components proportional 1o 2, so that either

People seem to have paid little attention to this. p(F,H)=p(MHe ', w=ke, (7.3
Next we shall show explicitly where the toroid moments
and radii are hidden in the treatment given in H@#4] and  and, therefore,p is related in this case, to its time de-
how are they subsequently lost in the long wavelength aprivative p
proximation.
We do this by carefully analyzing the multipole amplitude i i
of the electric radiatiomg(l,m) given by Eq.(9.167 or Ref. P= PP (7.9
[24]. We set the magnetizatiah{=0 in Eq.(9.167 of Ref.
[24], because in our work we have orylyandf in vacuum  and in turn, by the continuity relation

(unlike Ref.[24] where one hag, | and the magnetization

M), which does not restrict the generality since we can de- p+V-i=0 (7.5
scribe a medium as well. So, we rewrite here 33167 of
Ref. [24] for M=0, (expressing the charge conservajioane has, in the har-
, monic case considered in R§24], the following connection
4wk J . betweenp andj:
a I,m=—jd3rY* 0, { —[rj(kr np -
el M= s m(0.0){ p=-[ri1(kN)] |
[
ik .. p=——V-j. (7.6
+g(r-J>J|(kr)], (7.0 ke

Therefore, thek factors in Eq.(9.167 of Ref. [24] or Eq.
(7.1) above are tricky and one should be careful. Now we
start analyzing in detail the dipolé£€1) case and see con-

where the Bessel functiong(kr) appearing above are those
of Ref.[24], which differ from ours by a factor df4i']™?,

_ 1 cretely what happens.
jRef [241= jithis papef, (7.2) So writing Eq.(7.1) for =1, m=0 and using Eq(7.4)
Al one has

Our aim is to show the important fact that the amplitude

ag(l,m) as g_]lve_n b}/ Eq(?.l)_ in terms ofp andj (without ag(l=1m=0)= 4_7ka dSron{ bi[rj (kD]
any magnetization\) contains twoindependent partsthe v2c ar

usual one related to the charge distributpand another one

coming from the toroidal sources, more precisely from both +K2(F- f)jl(kr)]. 7.7
the toroidal moments and the corresponding toroidal mean-

square radii, i.e., coming from the whole toroid multipole

formfactor T,,(—k?,t). In Ref. [24], only the first part is Setting in Eq.(7.7) above the concrete expressions of the
considered and related to the electric multipole momenspherical functionYy, and of the Bessel functiopy (kr),
Qim(0t) while the second one is slighted in the long wave-

length approximation as being of a higher ordekin 13 z
First, we note that the toroidal moments are hidden only onzg — -, (7.9
in the middle ¢- f) term of Eq.(9.167 of Ref.[24] [i.e., in !
the second term of Eq7.1) abovq since the toroid moments
are related to the current densifyand not to the charge sinkr  coskr

" (KN = —5m— 7.9
densityp. However, the middlef: j) term in Eq.(9.167) of kD=2 T (79

Ref.[24] contains also the nonradiating electric mean-square
radii, as it is seen from Eq1.3) of this paperexpressing the and calculating furthes/ar[rj1(kr)], one finds
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I—1—0—6kfd3z'1 k ! ! k 1'k+'k
ag(l=1,m=0)=+ L rF pWCOS( r) W22 Hcos{ r) Wsm( r)+sin(kr)
x sin(kr)+sin(kr)} 2 %aa, s
Fkr= gkt gk + (71D
()| oy sin(kr) — — cogk
(T 1) gz sin(kn) = -codkn) | . and for the second square bracket in the rhs of (Zd.0,
7.10
Developing now the trigonometric functions in series, 1 1
| B o Wsm(kr)—ﬁcos(kr)
SlnX—X—a‘Fa—ﬂ‘l‘"', _1k lk33 1 k55 .
) . 5 —§ r—% r +% r°+ . (712
LK X
O T e

Inserting these developments into the rhs of E410 and
and retaining only terms to the ordet inclusively, one finds  retaining only terms to the ordé&P inclusively, one finds for
for the first square bracket in the rhs of Eg.10), ag(l=1m=0),

k z 2 2 1 -
ag(l=1,m=0)= @EJ d3r - (p LT K3r3+p —— K35+ K3(F-§)

15 140
1 .1 1
- 3P — k33 2.7y — k55
><3kr k(rJ)SOkr+k(rJ)840kr +eee (7.13
|
Taking outside a general factor kf one gets further: where
k2 (2 2 d=—i
aE(I=1,m=0)=\/G?[§f d3rpz— 1_5sz d3rpr2z d;=~iwd,. (7.19

Since the next two integrals, containipg in the rhs of Eq.

k2 3. k4 N (7.14) cannot be related to electric multipole moments, we
+§f d°r(r-j)z+ mJ’ drpr-z shall use the continuity relation E¢7.5 and shall putp

4 =—V.j into them. By part integration we put these next
_ @f &3 (F- )2z +--- . (7.14 two integrals containing into the form

3p: 2 3 (0. D\r25— 37 9 (r2
The second and the fourth integrals in the rhs of &ql4 f d*rprz= fd rv-prz fd rj-v(rz)
above represent the first- and the second-order mean-square

radii of the electric dipole distributions, respectively. They :f d3rj*-(22F+ IZrz):f d3r[22(F-f)+r2j ]
are exactly compensated by the same radii appearing in the =
third and fifth integrals containing’( f). (7.18

Now we want to put in evidence inside the rhs of Eq.
(7.14) quantities with known well defined multipole content. @d
We observe that the first integral inside the braces from the o
rhs of Eq.(7.14) is justd,, i.e., the time derivative of the f d’rpriz= —f d*r(V-j)r'z
component of the electric dipole moment,

R =f d3rj-V(rz)
d:J pFdir, (7.15
) =J d3rr2j(4zF+kr?)
f d®rpz=d,, (7.16 =fd3rr2[4z(F~f)+r2jz]. (7.19
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Returning to the expression E(.14) for ag(l=1m=0),
and inserting the expressions from the rhs of E@sl8 and
(7.19 into it, one finds

2
d+k2

ac(l=1m=0)= J_k

——fd3r(22(r i

1 .
+r2j)+ §f d3r(f-j)z
(1)

1 -
—d3r?(4z(r-j)

eV

1 -
+r2j,)— %J d3r(F-j)r?z

(Z)J

The first square bracket in the rhs of E@.20 is

(7.20

2 -
["'](1)23—0j d®r[z(F-j)—2r?], (7.2)

while the second one is

2 -
o= 550950 SrI37%.-27 D)2l (722

Inserting the rhs of Eq47.21) and(7.22 into the rhs of Eq.

PHYSICAL REVIEW E 65 046609

(see Appendix C for the relation between the spherical and
Cartesian expressions of the lowest order multipoles consid-

ered in our paper, as well as for a discussioRéfxpressed

in the Cartesian basisThe exact cancellation of the first
mean-square radii of the electric dipole in the rhs of Eqg.
(7.14) can be easily seen noting the identity,

. 2=
f d3rz(F-])=2ct,+ g(lrg)z, (7.26

Wherer_g is the first mean-square radius of the electric dipole

distribution,
2= f d3rpr?r

Similarly one can see the exact cancellation of the second-
order mean-square radius of the electric dipole distribution.
So finally it is seen tha&g(I =1,m=0) can be expressed

as

k4
—iwd,+k%ct,+ — (RZ)

ag(l=1m=0)=

ﬁk
C

3

+(terms of higher order thak®).

(7.27

Noting the relations between the spherical and Cartesian

(7.20 one finally finds for then=0 component of the elec- components of the toroidal dipole moment and the first tor-

tric dipole coefficienag(I =1,m=0) considered in Ref24]

oidal dipole radius given in Appendix C,

and usually used in the literature, the following form in terms

of quantities with well defined multipole content:

2@

ag(l=1m=0)= S [ iwd +k210J d3r[z(F-)
—2r2jz]+k4280f d3r[3r?j,

—2(F-z]} + (7.23

t,=T10,R __(R NI=1m=0> (7.28

as well as Eqs(1.37) expressing the numerical factors enter-
ing the connections between the derivatives of the formfac-
tors and the mean-square radii,
. ~2"21+2n+ 1)l d"
N T DT oL

(—K2V)]2=0, [EQ. (1.37)]

XTim

Indeed, in Eq.(7.23 above, the formerly hidden toroidal Which in our casel(=1m=0n=1) becomes
contributions have made their appearance and all the nonra-

diating electric mean-square radii coming from both the first
(p) term and the second (j) term in Eq.(7.1) have exactly

canceled, as it must: the first integral in the rhs of &523
is just thez component of the toroidal dipole moment,

Ezif [F(F-j)—2r2]1d% (7.24)
10c ’ :

while the second integral expresses just @taliating first

R_Z(w)zloLT (— K2, )] (7.29
10 d(_k2) 10! W) [K2=0> .

one can write the coefficierstg(l=1,m=0) in the form

2
ag(l=1m= 0)—£—[ i 0Q;0(0,0)

+Kk2cT o — K2, 0)]. (7.30

mean-square radius of the toroid dipole distribution in theThe same kind of relation holds also in general, for ny

Cartesian basis,

—

= 1 R N
R2=@f d3rr?[3r?j—27(F-])] (7.25

\/_ 2

3 G — 1 0Qim(0,0) + K2 T|m(—k?,)].

(7.3)

ag(l,my=
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Qm(0,w) are the(compley Fourier components of the elec- APPENDIX A: CONVENTIONS FOR BESSEL
tric multipole moments and,,,(— k2, ») the (complex Fou- AND HANKEL FUNCTIONS

o] _1]
> (-1

rier components of the toroidal form factors considered in  The cylindrical Bessel functions of first species are
tunately, in Ref[24] the toroidal contribution in Eq.7.31) is ST (j+v+l)

our paper. We recall that fok?=0, the form factors
x\ 2
Rz . i

lost as being of a higher order k when making the ap-

Tim(—k?, ) reduce to the toroid moments,(0,w). Unfor- x\?
J.(¥)=|5
2
proximations that lead to the electric multipole coefficient in For v=m=integer: J_,(x) = (—1)™J(X). The cylindrical

Eqg. (9.169. Bessel functions of second species are
So, from Eq.(7.3) it is seen that the electric multipole

coefficientag(l,m) from Eq.(7.1) contains two different in- N :J,,(x)cos( var) —J_(X)

dependent pieces, the electric moment and the also radiating v sin(var)

toroidal formfactor. Both these pieces are independent from_ =~ .

the third term of Eq.9.167 from Ref.[24] related to the Cylindrical Hankel functions are

magnetizationM (which leads there to the so called “in- H<i)(x)=J (X) =N ().

duced electric moments®Q[.,). The El radiation coming 3 : i

from the toroidal moment is two orders i higher that the  Spherical Bessel functions of first species are

one from the electric moment and shifted in phase with.

To disentangle the radiation coming from the toroidal form- C o a1 1+ 172X

factor from the one coming from the corresponding electric Ji(x)=(2m)>4 -

moment one needs a spectral analysis of the radiation. As

noted in Ref[4], one may also extract the toroidal moments Spherical Bessel functions of second species are

and radii by flowing an electric current through the source.
To have the fields exact everywhere outside the sources

and subsequently exactly calculate the physical quantities

Fo dM/dt that are quadratic in the fieldsvhat we did in

this pape), one needs first eompleteparametrization of the Spherical Hankel functions are
sources in terms ahdependenmultipole parameters, up to h( 0=, iy (x)
the ultimate ones, the multipole radii of various tygekec- ' JEO=1M(X),
tric, magnetic, toroigl any multipolarityl and any order. To 1 d\'sinx
our knowledge, such a multipole parametrization is the one jl(x)=4wi'(—x)'(— —) —
from Refs.[4,5] which essentiallywith some minor errors x dx/ x
corrected in our papghas been used by us to find correctly

I, F,, dM/dt. There are mathematical rules that must be n|(x)=—4wi'(—x)'<
obeyed if one wants exact results, but which may be diverse,

may be disagreeable, and even disputable on their economiyy and highx behavior:

cal aspect. The point is that here, nevertheless, is something

more. There is a physical subtlety that makes our approach ) |7
unavoidable: the magnetic and toroid mean-square radii of X! SIn| X— 7)
various orderslo radiate, while the electritccharge radii do h(x) ~ 47ri'—”; ji(x) ~ 4ai'———;
not. Only the electric radius of order zefoe., the electric x—0 (2+1nn X
momenk of any multipolarity does radiate. One of the main

virtues of the multipole analysis given in Refd], [5] was to cos( |7T)
achieve not only an exact mathematical expansiop(oft), q=nn iy _
j(F.t) (related bydp/ot+Vj=0) into a complete set of in- n|(x)X:O—4m X7 n|(x)X:m—4m X :
dependent multipole parametdible radij, but to do this in

such a way as to disentangle properly, without any approxi- e*i(x=(172)

mation, thenonradiating electric radii from the radiating h(=)(x) ~ F4mi' ™t
magnetic and toroid ones. That is why Wwadto go to radii X0

and not restrict ourselves to multipole moments as in most

textbooks, including Jackson’s, not because of unnecessafyne has

mathematical arguments, but because here physics is in- i

volved with its powerful demands; anq rewards, perhaps_— — ()= =—[1j,_1(2) + (1 +1)j,+1(2)],
e.g., the somewhat easy way of solving the not so trivial dz 21+1

problem of the arbitrary time dependence of the sources.

Some of the final results of this work have been reported . _ iz .
in Ref. [25]. (@)= 57 li-(@ = ia@)].

ni(x)= (233 N 2220

1 d\'cosx
x dx/  x

X—00

X
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APPENDIX B: WORKING FORMULAS With
We list below some working formulas often used in this 1 _
paper[22]: rﬁ=2—cf d3r[FXj(F,1)],
. d 1 N
v =il—Z= v one has
VX[¢(r)YIIm] I(dr r)¢(r) \/mY|I+1m
1
fd 1+1 Vi+1 . My=—(my—imy),
i ot —— (1) ==Y —1m. V2
dr  r V2l +1
d 1+2 I M ! (me+im,)
> v . > 1-1= = = (MyT1my),
VX[¢(r)YII+1m]_I dl’+ r ¢(r) \/mYllmv V2
M 0:_m
) : (d 1-1 J+1 v
VX[ Yi—am] =1 gr= ——] o) T +1Yllm’ 3. Toroid dipole The toroid multipole moments were de-
fined as
- +1/(d | - .
VL) Vi = - a—;)qﬁ(r)vuﬂm . :_ﬂj el gr (T
21+1 Im C(2|+1) II=1m r
JIo[d |+1) _ R
+ — 4+ ——| ()Y 1m- 2 g Mz -
A C A AR t s —mvﬁﬂm(;)lur,t)dsr.
APPENDIX C: CONNECTION BETWEEN SPHERICAL With
AND CARTESIAN COMPONENTS OF THE FIRST
MULTIPOLES

= 1 he he
t=—f [F(F-)—2r?]]d%,
. o 10c

Since, in this paper, we have completed some formulas
given in known books with contributions coming from the 5.q has
toroid family of multipoles (previously either simply not
considered or neglected as small corrections or sometimes 1
obscurely included in so called “retardation effects,” we Ti=— —(tc—ity),
give below in the first relevant cases the connections be- V2
tween the sphericalas used in this papeand the(usually
employed Cartesian components of the first multipoles. ]

1. Electric (charge) dipoleFor the electric multipole mo- -'—171:‘72('[XJr ity),
ments we have used

. Tio=t,.
Qim(t)= Vdn ff'Yfm(E)p(F,t)d% . c
V2l+1 r 4. Electric (charge) quadrupole~or | =2
With N

P
Qum()= NG fd3rr2p(F,t)Y§m(F).
6=f p(F,1)Fdqr,

With
one has 1 ) 1\
Qijzifp(f,t) rirj— 3 ;- |d,
1 . 1 )
QlOZdzr Qll:5(_dx+ldy)v Qlflzﬁ(dx"_ldy)- one has
2. Magnetic dipole For the magnetic multipole moments \/g .
we had ’ P ? P Q2= 5 (Qux=2iQxy = Qyy),
i VAl [P\ J6
_ 3 R .
M'm“)—‘sz drr Yﬁm(r)l“ﬂ- Qz-2=5 (Qut2iQuy = Qyy),
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Qo= VB(—Q+iQy), Qo 1=V6(Qu+iQyy),

Q20=3Q;;.
5. Magnetic quadrupoleFor =2,
i V8w - r -
R 3..2u% || e
M2m(t) c \/F:) drr Y22n<r)l(r;t)-
With
1 3 - e - >
mijzﬁf dor[(FX])ir+ (X j);ril,
one has
3 _ 3 .
My= E(mxz_”nyz): My_1=— E(mxz_’_'myz)a
G .
M= — T(mxx_ 2|mxy_ myy)a
6 .
M2_2=—T(mxx+2|mxy—myy),
3
IV|20=_§mzz-

6. Toroid quadrupole For =2,

Tom(t)=—

\/27Tf 3
5c '

With

1 g 2 . . 2 - 3
tik:@ [4rir (F])=5ro(rijxtryji)+2r(rj) oy ldr,
one has

N _ V2 ,
Ty=— ‘/—j(txz— ity,), T2—1:‘/_§(txz+ ity,),

1 1
TZZZ%(tXX_ Zitxy_tyy), TZ—ZZE(tXX—’— 2ith_tyy)’

Too=1;;.

7. Electric (charge) octupoleFor =3,

. i
Qon= 5 | d3rp<F,t)r3Y§m(;)-

With

1( 5 - 1,
Qik|(t):gf drp(r,t) =g’ (1 8+ rdiy +110ik) |

s (T 2v2. [T\ .
Y21mF+WY23mF j(r,t)ydsr.

PHYSICAL REVIEW E65 046609

one has

Q30=15Q;,,

153 . .
Qz1=— T (Qzaxt |nyy+ |Qxxy):

15
Qsz=—3 \/; (Qzz7t 2nyz+ [ 2Qxyz) )

3V5

Q33: - T (Qxxx_ 3nyx+ inyy_ [ 3Qxxy)a

Q3-m=(=1)"Q%n.

8. Magnetic octupoleFor | =3,

i 3w e e
Mam(t)=— 2 \/7] d3rr Y3, J(F1).

With
15 3 N >, N g N >
mijk:zj‘drrirj(rX])k+rirk(rXj)j+rjrk(r><])i
Oij e O
+€(r><r><r><])k+€(r><r><r><])j

5jk o, P, P, T
Jr?(r><r><r><1)i

one has
1
MSO_ 1_2mzzza
M3y = % (Mt imyyy+ imxxy)-
V2 :
M32=8—\/1_5(mzzz+2myyz+|2mxyz),
M ! ( 3 +i i3 )
=——(Myy,—3M iMyyy—13Myy),
33 24\/5 XXX YyX yyy XXY.

M m=(—1)"M%,.

9. Electric (charge) hexadecapol&or | =4,

, )
Qum(t) = Tﬁ f dsrp(rim“vzm(;).

With
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1
Qik|m(t):2f d3rp(r.t)[rirkr|rm_7r2(5ikr|rm+ Sill I m

+ Siml M1+ Sl il mt Skl iF 1+ Siml'i1k)

1
+3_5r4(5ikﬁlm+ Sil SkmT SimSk1) |

one has

35
Q4021_6qzzzza

745

Qu=— 8 (Axzzz~ iQyzz)-

7 /5 .
Q42:§ E(qxxzz_ nyzz_lquyzz)a
V35

Q4= — 8 (Cxxxz— 3Q><yyz+ inyyz_ i BqXXVZ)’

3570

Q44: 32 (QXXXX 6quyy+ qyyyy |4quyy 4qxny)1

Q4,—m: (— 1)mQZm .

10. First mean-square radius of the chargeor |=0,
m=0,r_(2,o(t)=f d3rr 2p(F,t).
With the Cartesian definition

@(t):f dre2p(F ),
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1 — _
@4=Eﬂﬁhﬂﬁﬁﬂ

12. First order mean-square radius of the magnetic dipole
distribution For =1,

— 12
pi= IC\/‘[_Wfdg’rrSY () j(F.1).

With

1 o
pizzz_csiij d3rr 2riji(F,1),

(22=—f d3rr2(rxj) |,

one has

1 -
2 _ 2+ 2
pu—ﬁ(px—lpy),

1 -
2 2_ 2
p1-1= —=(=px—ipy).
Y X Y

13. First mean-square radius of the toroidal dipolEor

) ol

le(t)— — —f d3rr?

PR (1 :
Sy Y 1o Jr,

one has
= — and in the Cartesian basis it results for the first mean-square
rg (H)=rgot). radius of the toroid dipole distribution the form
11. First mean-square radius of the electric (charge) di- = 1 PP o
pole Forl=1, R (UZ@J dirr {3rej(r,t)—2r[r-j(F,t)]}.

Eﬂn=yggffw%mo%49-
With the Cartesian definition
i = [ drrrpr,
one has
rf=(rd)z,

1 — _
== L))

Note that the square bracket multiplyingunder the integral
above is not the toroid dipole density in the Cartesian basis.
In the electric and magnetic cases this particularity for radii
in the Cartesian basis does not occur.

One has

R?=—-R?,
- 1 -
R2= —(R?,—R?_,),
X \f2( 11 1 1)

P
RZ= —(R?,+R?_,).
Y" 5 11 1-1
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14. First mean-square radius of the electric (charge)

quadrupole For =2,

— 41
Zn=\5 | Frrtorovs,

With
__ 1 1
rid)= Ef d3rr2(rirj— §5ijr2)P(F,t),
one has
2
r20 3r(zz)'
rgl \/—(r(Z) r(2)

2 2 2
I’22 \/\(r() r() y))

2 = (— )" 3)*.

APPENDIX D: CARTESIAN COMPONENTS OF VY/m

(I'=1,1%£1)

The vector spherical harmonid$ () (fi=f/r) are de-

fined in the spherical basis as

[Vim(M1,= 2 Co Yy (1),
m!

in terms of the usual spherical harmoni¥s,, and the
Clebsch-Gordan coefficients. Since we used them exten-
sively in the course of this work, we list below the expres-

sions of the Cartesian Components\ﬁ,m (1"=1,1x1),
Vimde= = =Y, gt 2
IIm/ x ‘/2 I,m—1 ‘/2 I, m+1-
- icq iCs
Y =—— =Y ,
( Ilm)y ‘/2 I,m—1 ‘/2 I,m+1

(?Ilm)zz C2Yl,mv

where

Va+m)(I—=m+1)

J(21+2)

C]_:_

B m
NS

Va=m)(I+m+1)

T 2+ 2)

p=—1,0+1,
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N (o
(Yi-1m)x=— 5Y|—1,m—1Jr 5Y|—1,m+1,
- icq ics
(Y - ) =T - -1 = - ’
I1-=1m/y \/f I-1m—-1 \/i I—1m+1

(Yi—1m)z=C2Yi—1m,

where

Ja+m—=1)(I+m)

N YTy

_\/(I—m)(l+m)
N T

o Na—m-1)d-m)
N T E

C1

(Yiis1m)x=— v

l+im-1T —=Yit1m+1s

V2
icq ics

(\?||+1m)y: Ty Hm-1T

I+1m+1:

(?II +imz= CZYI+1,m:

where

NI-m+1)(I-m+2)

T 222+ 3)

Vad+m+1)(I—-m+1)

JO+1)(21+3)

N(+m+1)(I+m+2)

S 222+ 3)

In the calculation of the recoil forcéSec. V) use has

been made of the Cartesian component¥ pf., expressed
with the aid of the 3 Wigner symbols, rather than Clebsch-
Gordan coefficients as above, so we give below for conve-
nience the equivalent relations as well:

1M 21+1

02:_

(?Ilm)x: (—
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(Yim)y=(—1)' "™ 121+1

I
_m)YI,m—l

2

| 1 |
m+1 -1 -m Yime|s

- | 1 |
Yim)z= (=DM 121+1 m 0 _m>Y|,m?
(Vi—im)x= (=D M2l +1
1/1-1 1 | v
X| —— Cime
Vvlm=1 1 —m/ '"tm?
1/1-1 1 |
vZim+l -1 —-m Vicamea
(Vii—imly= (1) ™21 +1
i [(1-1 1 |
>< —_—
vaim=1 1 -m Yicim-1
i [1-1 1 |
S a\m+l -1 —m Yicimels
R e I-1 1 |
(Yll—lm)z:(_l) v2l+1 0 -m Y|—1,m;
(Vs am)x= (=D M2l +1
1/1+1 1 | v
>< —_—
‘/2 m_l 1 -m |+1m—-1
1/1+1 1 |
5 m+1 -1 —-m YI+1,m+1 '
Visamly= (1) ™21 +1
i [(I1+1 1 |
X| —— Y _
VI m—1 1 -m I+1m—-1
i [1+1 1 |
_E m+1 -1 -m Y|+1,m+1 )
R I+1 1 |
(YII+1m)z=(_1)|+m\/2|+1 0 _m>YI+1,m-

We recall that the B symbols are related to the Clebsch-
Gordan coefficients as follow2]:
I Is
my ms

j2
my

IENPNE!

):(_1)1112”‘3— .
V2jg+1 MMM
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APPENDIX E: COMPONENTS OF VY, (I"’=1,1%1)
IN SPHERICAL CORDINATES

In Appendix D, we have listed the Cartesian components
of \?”,m (I"=1,1£1) we have worked with. Here we shall
give the components o.?“ 'm IN the spherical coordinates,

6, ¢) and, by using some recursion formulas, put them into a
slightly different form that provides some relations between
various such components witH’&l,1+=1) that we have
used in the calculations. One has in terms of Legendre asso-
ciated functionsP|"(cosé),

(?Ilm)rzoa

(_1)m+1
2

2+ 1)(I—m)!

(Yim) o= Aarl(1+1)(1+m)!

X[(1+m)(I—m+1)(cosh)P" *(cosh)
+(cosh) P (cosh) + 2m(sin 6)

X P"(cosf)]e'™?,

i(—nmt
2

\/ (21+1)(I—m)!
Aml(I+1)(I+m)!

Yiim) o= [(1+m)

X (I—m+1)P" *(cosh) — P"" }(cosh)]e'™;

(ED
N (—1m (I=m)!
Yi-am) == Py R [(I+m)(I+m—1)
X (sin0)P{"*(cosh) — (sin ) P""}(cosh)
+2(1+m)(cosh)P" ,(cosh)]e'™?,
i (—n™ [ (—m)!
X (cos®) P"*(cos) — (cosh) P} (cosh)
—2(1+m)(sing)P" ,(cosh)]e'™¢,
- i(—1™ [ (I—m)!
X (1+m—1)P"(cosd) + P""}(cos) |e'™;
(E2
N (=" (T—m)!

X (I—m+2)(sin9) P[";*(cos6)
—(sin#) P\ H(cosh)—2(I—m+1)

X (cosh)P[", ;(cosh)e'm?,
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i (—1)m (T—m)!
X (I—m+2)(cosh)P" - (cosh)
—(cosh) P (cosh) +2(I —m+1)

X (sin#) P, ;(cosh)]e'™¢,

: i(—1)" (I—m)!
Miame=" \/47T(| TDarmy mmD

X (I—=m+2)P"*(cos) + P, (cosh) e'™e.

(E3)

Note that ourP" is (—1)™ the P{" from [23]. Using the

PHYSICAL REVIEW E65 046609

a [ii—myi |
Yy—1m)=(=1)" mﬂ (cos@)e'™?,
- -nH™ [/ (-m)!
(YH*lm)():( 2 4’7T|(I+m)' [_(|+m)

X (I—=m+1)P" (cos#) + P"* *(cosh) ]e'™¢,

i—n™ [ (1—m)!

Yii-1m)e =" 47l (1+m)!

[(I+m)

X (I+m—1)P" (cosh) + P"" }(cosh) ]e"™m¢;

(E9

following recursion formulas for the Legendre associated

functionsP%(x),

X
J1—x2

X (v+ p+1)PH(X)=0,

PET2(x)—2(p+1)

PLIY) + (v p)

XPH(X) — P¥, 1 (X) + (v+ u) y1—x2P* Y(x)=0,

(2v+ D)xPy(x)=(v=p+1)P () + (vt ) PL_1(X),

VIR (0= (”“(‘;Ef:l‘)‘ SR

G pt)
(2v+1)

Py 1(X),

1 1
V1-x2PA (%)= 2 D Py (X)) — v 1) P10,

one can bring EqgE1)—(EJ) to the useful form

(?Ilm)r:Oy

R (—1)m*? (I—m)!
Yim)o=""3 \/477|(| FH2I+1)(+m)!

X{I[(1=m+1)(I—m+2)P"*(cosh)
+ P coso) ]+ (1 +1)[(1+m)

X (I+m—1)P" *(cosd) + P[""*(cose)]}e'm,

i(—)™ @200 —m)!
2 prpy g prpeea L AU

(Yim) =

X (I—=m+1)P" (cos#) — P"* *(cosh) 1e'™¢;
(E4)

] T+Da-mt |
Misime=—(=D" 477(I—+m)!P' (cosh)e'™?,

» (—1)m (—m)!

X (I+m)P" (cosh) — P"* 1(cosh)1e'™¢,

: i(—1)m (I—m)!
Yiieam)e = \/4w(| FDamy L mEy

X (I—m+2)P"*(cosh) + P }(cosh) Jeme.

(E®)

From Eqgs.(E4)—(E6) one can immediately derive rela-
tions of the type

(%.m)fﬁ[ﬁ (Y s 1m) ot VIH LYy - 1m) o],

i o Tv1
(Yi-1m) =1 m(Yum)w

i T
(Yi+1m)e=1 m(Y||m)<p,

—\/|—(\?||—1m)gpJr \/|+1(\?||+1m)¢:01 (E7)

which we have used in the calculations.

046609-46



EXACT CALCULATION OF THE ANGULAR MOMENTUM . .. PHYSICAL REVIEW E 65 046609

[1] J. N. Blatt and V. F. WeisskopfTheoretical Nuclear Physics [13] A. Costescu and E. E. Radescu, Phys. Re85P3496(1987);
(Publishing House for Foreign Literature, Moscow, 1954 Ann. Phys.(N.Y.) 209, 13(1991).

[Russiar};, English original:(Wiley, New York, 1952. [14] I. B. Khriplovich and M. E. Pospelov, Z. Phys. D: At., Mol.
[2] Ya. B. Zeldovich, Zh Eksp. Teor FiZ3, 1531 (1957 [Sov. Clusters17, 81 (1990; R. R. Lewis, Phys. Rev. A9, 3376
Phys. JETF, 1184(1958)]. (1994.

[3] M. C. Noecker, B. P. Masterson, and C. E. Wieman, Phys. Rev15] . M. Dubovik et al, JINR-Dubna Report No. P14-92-321
Lett. 61, 310(1988; C. S. Wood, S. C. Bennett, D. Cho, B. P. (1992); Report No. P6-93-2441993; Report No. P17-93-455

Science275 1759(1997). (1993,

[4] V. M. Dubovik and A. A. Tscheshkov, Fiz. Elem. Chastits At. [16] J. A. Heras, Phys. Lett. 249, 1 (1998.

Yadras, 791(1974 [Sov. J. Part. Nucl, 318(1974]. [17] E. E. Radescu and G. Vaman, Phys. Re%4E056609(2001).
[5] V. M. Dubovik and L. A. Tosunian, Fiz. Elem. Chastits At. [18] E. E. Radescu and D. H Vlac,i Phys. ReVSE 6030(1998
Yadral4, 1193(1983 [Sov. J. Part. Nucl14, 504 (1983]. — . . e )
[6] V. M. Dubovik and V. V. Tugushev, Phys. Ref87, 145 [19] M E. Rose,Multipole Flelds(qullshlng .House.e for Foreign
(1990. Literature, Moscow, 1957[Russian; English original:(New
York, Wiley, 1955.

[7] I. B. Khriplovich, Parity Nonconservation in Atomic Phenom- ) ]
ena(Nauka, Moscow, 1988 (Gordon and Breach, New York [20] P. M. Morse and H. Feshbackethods of Theoretical Physics

1991). (Publishing House for Foreign Literature, Moscow, 1960
[8] V. L. Ginzburg and V. N. Tsytovich, Zh Eskp. Teor F&S, 84 [Russiar}, English original:(New York, Wiley, 1952.
(1985 [Sov. Phys. JETB1, 48 (1985]. [21] L. D. Landau and E. M. LifschitzCourse of Theoretical Phys-
[9] G. N. Afanasiev, Fiz. Elem. Chastits At. Yad2a, 172 (1990 ics (Pergamon Press, New York, 1993/ol. 2, 4th revised
[Sov. J. Part. Nucl21, 74 (1990]; 23, 1264(1992 [23, 552 English ed.;Theoretical Physic$Ed. Nauka, Moscow, 1988
(1992]; G. N. Afanasiev and V. M. DubovikiNew Trends in Vol. 11, 7th revised Russian edition.
Theoretical and Experimental Nuclear Physi®¥orld Scien-  [22] A. Edmonds, Deformations of Atomic Nucle{Publishing
tific, Singapore, 1992 House for Foreign Literature, Moscow, 195&ussian.
[10] E. E. Radescu, Phys. Rev. 2, 1266(1985. [23] H. Bateman and A. ErdelyKligher Transcendental Functions
[11] E. E. RadescuNew Trends in Theoretical and Experimental (McGraw-Hill, New York, 1953, Vol. 1; Russian translation:
Nuclear Physic§World Scientific, Singapore, 1992 (Nauka, Moscow, 1973
[12] E. E. Radescu JINR-Dubna Communication Report No. E4{24] J. D. JacksonClassical ElectrodynamicS8rd ed.(Wiley, New
85-165 (1989; Rev. Roum. Phys31, 139 (1986; 31, 143 York, 1999.
(1986; 31, 145(1986. [25] E. E. Radescu and G. Vaman, Phys. Re85:035601(2002.

046609-47



