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The propagation of a pulse through one-dimensional photonic crystals that contain a dispersive and absorp-
tive defect layer doped with two-level atoms is discussed. The dynamical evolution of the pulse inside the
photonic crystal is presented. Superluminal negative group vel@biéypeak appears at the exit end before it
reaches the input epds discovered. Although the group velocity is larger thmand even negative, the
velocity of energy propagation never exceeds the vacuum light speed. The appearance of the superluminal
advance or subluminal delay of the pulse peak inside the photonic crystal or at the exit end is due to the wave
interference from Bragg reflections.

DOI: 10.1103/PhysReVE.65.046607 PACS nunierd2.70.Qs, 41.20.Jb, 42.25.Bs, 73.40.Gk

[. INTRODUCTION fective refractive index. In the stop band the effective refrac-
tive index is anomalous. Therefore, the propagation of pulses
Periodic dielectric media called photonic crystals have atin the stop band is superluminal. Near the band edge, how-
tracted considerable attention in recent yddis The essen- ever, the effective refractive index has a positive steep slope
tial property of the photonic crystals is the band-gap strucsuch that group velocity can be slowggi9]. Particularly, if
ture. Multilayered medium is considered as a simple exampla periodic 1DPC is perturbed by a defect layer, the slope of
of one-dimensional photonic crystal§DPCg. The electro- the effective refractive index at the defect mode frequency
magnetic field of frequency within the gap is evanescentwill become very steep, which causes a great group delay
Since the evanescent field is analogous to the wave functig®].
of an electron in a quantum barrier, the 1DPCs were used as The superluminal propagation has been an interesting
an optical barrier to investigate the tunneling tifge-4]. The  subject in recent yeafd 0]. Although the superluminal phe-
tunneling time of an optical pulse through the optical barriemmomena were observed experimentally, the mechanism re-
was proved to be superluminal. mains controversidlll]. It is generally explained as reshap-
The time delay of pulse propagation through dielectricing of pulses. Japha and Kurizki suggested a universal
media is defined as;=tg(c/vyg—1), wheret, is the time  mechanism for the superluminal time delays in nondissipa-
through the same vacuum distance, agds the group ve- tive media[12]. They emphasized that phase coherence
locity. The group velocity, according to the definition, played a key role in the tunneling, and demonstrated that the
=dw(k)/dk, is dependent on the frequency-wave numbersuperluminal time delay is a result of predominantly destruc-
dispersion relation. The dispersion of media originates frontive interference between accessible causal paths. In a finite
the interaction of light with matter. There are two kinds of 1DPC, the group velocity ; and the energy velocityg are
resonant interaction. One is that the light frequency matchesot the samd13]. It is demonstrated that they satif$4]
a transition frequency of atoms or molecules. Around the)E=|t|2vg.
resonant frequency the dielectric function or refractive index In this paper, we consider the temporal-spatial evolution
is frequency dependent. This kind of dispersion is usuallyof a pulse inside an 1DPC. The pulse is decomposed into an
referred to as material dispersion. The other occurs when thiategral of all Fourier components. The behavior of indi-
light wavelength matches a characteristic length of the mevidual components is determined by means of a transfer ma-
dia, for example, the size of a dielectric cell in the photonictrix method, while the temporal-spatial behavior of the pulse
crystals. In this case the Bragg reflection becomes strong. Ais calculated by integrating all Fourier components. The ad-
a result, a stop band or forbidden gap is created. Near theantage of this way is that it can deal with the case where the
band edge, the dispersion relation is significantly modifiedconstituent materials themselves are dispersive. We consider
This kind of dispersion is usually referred to as structuralnot only the case that the 1DPC is made up of nondispersive
dispersion. materials, but also the case that the periodic 1DPC contains a
The dispersion relatiom (k) for infinite 1DPCs can be dispersive defect layer. The defect layer is doped with two-
derived from Bloch’s theorerfb]. For finite 1DPCs, the dis- level atoms that leads to a dispersion relation of Lorentz
persion behavior can be described by an effective refractiveype. The combination of the structural resonance of the
index that is defined via the complex transmission coefficienmultilayer geometry and the atomic resonance in the defect
[6,7], and the group velocity can be calculated from the efdayer leads to a large negative group velocity.
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[l. TRANSFER MATRIX FORMALISM FOR PULSE wheren;(w) = Vej(w) is the refractive index that is a con-
PROPAGATION stant in the same layer for a given The general solution of

In an 1DPC, the propagation of an optical pulse is gov—Eq' (4) can be expressed as

erned by the wave equation ©
2 Ej(Z,w)=E+j(w)eXF{i Enj(w)(Z_Zj_l)}

" e Ty, @
Y Z! =5 5 Zy )
c? gt? £oC2 ot?

(92
—E(zt) -
0z
. (5

w
+ E_j(w)eXF{ =i Enj(w)(Z_ZJ‘_l)
where E(z,t) is the electric field andP(z,t) is the electric
polarization. Suppose that the pulse can be expressed as an

integral of its Fourier components mV XE=—(d/dt)B=i wB we can get the magnetic field

) nj(w) LW
Bz | Ezwe do, @  Bzw)= L E. (wextion(v)(z-7_y)

and the Fourier component of the polarizati®{z, o) e e .
=x(z,w)E(z,w) under linear response approximation. The E-jlo)exp —ien(0)(z=z-4) |1, (6
equation for the Fourier component of electric field can be
written as which is polarized along axis. Define

d? 2 (z,0)=E{(z,w), 7

— E(z0)+ — e(2,0)E(2,0) =0, 3) ¥1j(z.0)=Ej(z.0) @

dz? c? _

,j(2,w)=icBj(z,), (8)

wheree(z,w) =1+ x(z,w) is the dielectric function.

Our method is that we firstly solve E(B) layer by layer, such that the electric compone#{(z,w) and the magnetic
then integrateE(z,w) by using Eq.(2) to obtain the component),(z,») can be measured by the same unit. The
temporal-spatial behavior of the pulse. The integral is a coelectromagnetic field then can be expressed by a two-
herent superposition of all Fourier components including thecomponent wave function vector,
forward waves and backward waves with complicated rela-

tions of phases. j(z,0)
We consider normal propagation mdirection (layers in Vi(z,w)= Yoi(Z,w) ] ©)
x-y plan@. The electric field is polarized alongdirection. In .
the jth layer the electric fieldj(z, ) satisfies From Egs.(5) and (6) we can obtain the transfer matrix
) ) relating V(z+Az,w) to ¥(z,0),
d o,
gzt Zn(eE(ze0) Vi(z+Az,0)=M(AZ,0)¥(z,0), (10
=0,z-1<2z<z,j=12,... N), (4)  where
|
w A 1 o A
co Enj(w) z msm Enj(w) z
M;(Az,0)= 11
| w
—nj(w)sw{gnj(w)Az cos{gnj(w)Az
|
Becausey;(z,w) and ¢»(z,w) are proportional to the tan- where the propagation matrix
gential components of the electric field and the magnetic
field, respectively, they are continuous functionzofcross ji-1
the layer interfaces. At any positiapV¥ (z,w) connects with Q(zj—1+tAz,w)= Mj(Az,w)H M;(d;, ). (13
i=1

V¥ (zy,w) through a propagation matrix. For example, in the
jth layer @z;1<z<z), the field atz=z; +Azis
From Egs.(12) and (13) we can calculate the electric field
and the magnetic filed at any position provided that
V(z_1+A2,0)=Q(zj 1+ AZ,w)¥(z9,w), (12 W (29, 0)=[1(20,®), (g, »)]" is known.
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V¥ (zy,w) can be determined by matching the boundary 2

condition. Assume the light is incident from the regionzof
<0. In this region the field is a superposition of forward field

and backward field,

E(z,0)=Ei(z,w)e"*+E,(z,w)e ', (14)
wherek= w/c. At the incident end we have
Ei(0,w)+E,(0,w)
T(0,w)= (15

i[Ei(0,0) —Ex(0,w)]/)

Generally, the forward(inciden) field E;(0,w) is given,
while the backwardreflection field E, (0,0) is to be solved.

In order to solveE, (0,0), another boundary condition at the

exit endz=zy should be utilized. In the region of>z,,
there is only forwardtransmitted field,

E(z)=Ey(z,w)ek@ ), (16)
Thus,
Ei(zy, )
‘P(ZN,G)):(inSEt(ZNaw))' @

where ng is the refractive index of the substrate. Suppose
that the matrix connecting the incident end and the exit end

is Xy(w), we have

V(zy,0)=Xn(0)¥(0), (18)
where
wior-Iwiao-(50) ) @
Equation(18) may be rewritten in a form of
W (0,0) =Xy () ¥ (zy,0). (20
Because dé¥lj(d;)=1, we have deXy(w)=1 and
XNl(“’):(X—Zi(:()w x_:(loi(>w))' &
Substituting Eqs(15), (17), and(21) into Eq. (20) yields
E/(Ow)=r(w)E;i(0,w), (22)
Ei(zn,0)=t(0)E{(Ow), (23)

wherer (w) is the reflection coefficient of a monochromatic
plane wave of frequency that can be expressed in terms of

the elements of the matriXy(w),

[Xoo( @) —NgXp1( @) | =i [NeXq @) +Xp1( @) ]

[Xoo @) +NeXpa( @) [ —i[NgXqo @) = Xo5(w) ]’
(24

rw)=

and t(w) is the transmission coefficient of the monochro-

matic plane wave that can be written as

t(w)

B [Xo @) +NeXpy( @) ]—i[NgXqo @) —Xo1(w) ]
(25

Thus, we can express the electromagnetic field=ad with
the incident fieldg;(w) as follows:

1+r(w)
i[1-r(w)])’

With ¥ (0,0) in hand, we are able to calculate the
temporal-spatial behavior of the pulse. By multiplying a time

factor, e”'“!, to each side of Eq(12) and integrating all
frequency components, we have

V(0,0)=E;j(0O,w) (26)

'ﬁl(Zyt):f (z,w)e “'do

=J Ei(0.0{[1+1(0)]Q11(2,0)

+i[l-1()]QiAzw)}le “'dw  (27)
and
‘/fz(zyt):j lﬂz(Z,w)e*i‘”tdw
=f Ei(0,w){[1+r(w)]Qz(z,0)
+i[1-r(0)]Qx(z,w)}e “'dw,  (28)

whereQjj(z,w) are the elements of the propagation matrix
(13). The electric displacemenD(z,t) can be obtained
through

D(Z,t)zeowg(z,t)zeof e(w) iy (z,w)e dw, (29

where € is the vacuum permittivity. The unit af3(z,t) is

the same ag/,(z,t) and ¢,(z,t). Obviously, the field func-
tions given by Egs(27), (28), and (29) are the coherent
superposition of all frequency components including forward
waves and backward waves. The waves enter the integral
have complicated relations of phases.

IIl. NUMERICAL RESULTS AND DISCUSSION

Suppose a Gaussian pulse is incident on the surfage at
=0. The electric field of the Gaussian pulse at the surface is
expressed as

E,(0t)=Eqe /7, (30
and its Fourier spectrum is
7E
E (0,0)= —Jie* P04 (31)
a

wherew, is the carrier frequency of the pulse. By defining
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f=w—w, (32)
and ¢4(z,t) through
P(z,)=Egpsi(z,t)e o,

we can find¢4(z,t) from Eq. (27):

(33

be(2,t)= ﬁ f e PEM 141 (£+ w0) |Quu(z. £+ w0)
(34

FHi[l-r(é+wo)]QuAz é+wo)te ' ddg,  (35)
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eters of the 1DPC is chosen as the same as those used by
Steinberget al. [2]. The 1DPC has a structure oAB)°A
with the refractive indexea,=2.22 andng=1.41. The op-
tical thickness of each layer is,da=ngdg=\o/4, where
No=692 nm is the midgap wavelength. The midgap fre-
quency iswg=21c/\y and the corresponding optical period
is To=2m/wg. The total thickness of the sample is about
1081 nm. When light through the same vacuum distance as
the sample thickness, it takes a time of 3.6 fs.

Suppose the carrier frequency of the Gaussian pulse is
w.= wg, and the characterized time of the pulseris30r,.
In Fig. 1(a) and (b) we show the temporal-spatial evolution
behaviors of the dimensionless slowly varying envelopes

which is the dimensionless slowly varying envelope of the| 4. (z,t)| and|¢,(z,t)|, respectively. The time origin is take
electric componengy(z,t). The dimensionless slowly vary- 55 the instant at which the peak of the incident Gaussian

ing envelope of the magnetic componeff(z,t) is defined
through
Yo(z,)=Eqdy(z,t)e 0!, (36)

From Eq.(28), we find

ba(2,t)= ﬁ f e PR 141 (£+ w) |Quu(2. £+ w0)
(37

+i[1-r(é+wo)]QuAz é+wo) e 'fde. (38)

pulse arrives at the surface p£0. It is shown that at any
spatial position, the temporal profiles of both electric field
|$1(z,t)| and magnetic fieldp,(z,t)| are approximately a
Gaussian curve. Although the attenuated tendency from the
incident end to the exit end fot,(z,t)| and|¢,(z,t)| is the
same, the details of them are quit different. The node posi-
tions of | ¢,(z,t)| are the antinode positions pb,(z,t)|.

From the temporal-spatial curves we are able to find out
the time at which the electric field or magnetic field reaches
its maximum at any position. The times corresponding to the
maximum|¢4(z,t)| and the maximun¢,(z,t)| at different
positions are shown in Fig. 2. In the first half part of the

The dimensionless slowly varying envelope of electric dis-1DPC, the field at the node position reaches the peak at

placement is written as

T — 2824
$3(z,1) 2\/;J e(w)e UL+r(é+wo)]

X Q11(Z,&+ w¢) (39
+Hi[1-1(é+0)]QuAz.é+ o) fe¥dE.  (40)

The energy density for nonmagnetic materials is
U(z,t) = €9| Eq|?u(z,1), (42)

where the dimensionless energy density

1
U(Z,t) = Z{Rd: ¢1(Z,t)¢§ (Z1t)] + Rq: ¢2(21t) ¢; (th)]}

(42)

The Poynting vector can be expressed as
S(z,t) = ceg|Egl®s(z,t), (43)

where the dimensionless Poynting vector
s(zt)= %Re[i b1(zt)$3(z,0)]. (44)

A. Quarter stack of constant refractive indexes

aboutt=—16.6 fs. While at most other positions, the field
reaches the maximum in an interval of time from 0.7 fs to
1.7 fs. Since the electric field and the magnetic field are not
in phase, we cannot define the time delay by the peak of
|$1(z,1)| or by the peak of¢,(z,t)|. The time delay should

be defined by the peak of the density of energy. According to
the definition of the density of energy, it depends on both
electric field and magnetic field. Therefore, it should be cal-
culated by Eq(42). After calculating the density of energy
we are able to find out the timig, at which the density of
energy reaches the maximum. Suppose the density of energy
at the positiorz reaches the maximum at tintg , the time
delay can be determined by=t,,—t,, wheret is the time
through the same vacuum distance. In Fig. 3 we plot the time
delay. It is shown that the time delay become negative when
z>200 nm. The maximum negative delgy=—2.1 fs oc-
curs in the interior of the 1DPC. At the exit end, the time
delay isty=—1.9 fs. The time delay at the exit end is in
agreement with the stationary-phase predicfih], but it
differs slightly from the experimental measurement of
—(1.47£0.21) fs[2].

If we use the peak timg, to define the peak propagation
velocity vy =2/ty, then we find that the maximumy, is
3.4c, as shown in Fig. 4see the trianglgs The maximum
v occurs in the interior, not at the exit end. In general, the
peak propagation velocity in homogeneous media is equal to
the group velocity that is defined ldew (k)/dk. However, in
the case of finite 1DPCs, the peak propagation velagity

We first consider a quarter wave stack where all layers areannot be determined by an overall dispersion relaii¢k).
characterized by two constant refractive indexes. The paranFhe appearance of the peak is a result of coherent superpo-
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FIG. 3. The time delay inside the perfect quarter stack.

sition of forward waves and backward waves of all Fourier
frequency components. It is the wave interference inside the
1DPC that leads to the reshaping of the Gaussian pulse.
Since the evolution of the pulse in the 1DPCs is a reshaping
processes, the peak velocity, cannot be understood as an
ordinary group velocity.

The energy velocity g should be defined by the density
of energy and the Poynting vectorvg(z,t)
=[s(z,t)/u(z,t)]c. It is found thatv ¢ is quite different from
vm - In Fig. 4, we plot the energy velocityg at the time
when the density of energy reaches its maxim(gee the
squarels From our calculation we find that the maximum
is equal to 0.4@. At any position and at any time the energy
velocity never exceeds the light speed in vacuum
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B. Quarter stack with a dispersive defect layer

Now we consider the case that a quarter-wave layer at the
center is replaced by a half-wave layer. The structure of the
FIG. 1. The temporal-spatial evolution behaviors of the dimen-1DPC changes tABABADABABA where D is a half-
sionless slowly varying envelopesa) The electric component Wave defect witmpdp=Xo/2 andnp=ng.
|61(z,1)|; (b) The magnetic componehi,(z,t)|. It is known that if a defect layer is placed into the 1DPC,
a defect mode will appear in the stop band. At the defect
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FIG. 2. The time at which the electric fieldp triangle or the

magnetic field(down triangle reaches the maximum.

FIG. 4. The peak velocity,=2z/ty and the energy velocity
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peaks due to the two-level atoms. The minimum transmis-
sion is approximately equal to 0.012, which is approxi-
mately equal to the transmission of the perfect quarter stack.
We find that the double peaks are analogous to the case of
the double gain peaks of the three-level atoms used by Wang
et al. who got a gain-assisted superlumiriaégative group

; velocity [16].

i In finite 1DPCs, the group delay through the whole struc-

T T T T T T T T T T
Real part of neﬁ(m)-1 Transmission without

with 2-level atoms

1.0

0.8

0.6 Transmission with

2-level atoms

04r

Transmission

ture can be written ak=ty(ng—1), whereng=c/uv is re-
o2k i ferred as to the group index. The group index can be deter-
I mined by
! _ (@) =) + 0 @7
N 1 ' 1 ' 1 N 1 L 1 L n =n ,
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 g\ (0)+ o dw

(w-0)/@, wheren(w) is the real part of an effective refractive index

FIG. 5. The transmission through an 1DPC with a haIf-waveneff(w):n(w)+iKq,)(w) which is defined by the transmission
A ;
defect layer in the middle. Dashed line, the defect layer is nondisSO€fficientt= JT€?. The real part ofies(w) is [6,7]

perive (without doped two-level atomisthin solid line, the defect
layer is doped with two-level atoms; heavy solid line, the real part n(w)= co(w) (49)
of the effective refractive index. Lo ’

mode frequency we can see a resonant transmission peaXd its imaginary part is

The transmission peak is analogous to the narrow transmis- .

sion peak in a complete absorption background of an elec- =

tromagnetically induced transparency gas system, which w(w)= 2Lw InT(w), (49)

leads to a steep dispersion curve with positive slope and

causes to an extremely slow group velodityg]. A calcula-  whereL is the total thickness. In Fig. 5 we plot the real part

tion of effective refractive index showed that the resonann(w) of the effective refractive index with the heavy solid

transmission peak in the band gap of 1DPC can as well prdine. The dispersion of effective refractive index between the

duce a steep dispersion of the effective refractive infddx transmission peaks is anomalous, as the case between the

At the defect mode frequency the group delay is positive ang@ain peaks of the three-level in R¢L6]. It is expected that

extremely large. In Fig. 5 we show the transmission peak irsimilar superluminal propagation will occur in the 1DPC

the band gap by a dashed line for the 1DPC perturbed by doped with the two-level atoms.

nondispersive half-wave defect layer. We first compare the temporal-spatial evolution of the
The behavior of resonant transmission at band gap will bdields for the cases with and without the doped two-level

changed if two-level atoms are doped into the defect layeratoms. The characterized time of the Gaussian pulse is taken

We assume the linear susceptibility produced by the dopedsT= 1007, so that the pulse has a narrow spectrum band. In

two-level atoms can be written as Fig. 6 we show the temporal-spatial behavior|gf (z,t)|
and|¢,(z,1)| for the case without the doped atoms. In this
@)= — r (45) case the energy is centered around the defect layer.

The defect layer becomes dispersive and absorptive when
it is doped with two-level atoms. Due to the dispersion and
wherel is proportional to the oscillator strength dependingabsorption in the defect layer, the evolution of the fields is
on the transition dipole moment and the density of the twochanged. The temporal-spatial evolutions of electric field
level atoms, andy is the phenomenological linewidth. The |¢4(z,t)|, magnetic field ¢,(z,t)|, and electric displacement
transition frequency is assumed to be equal to the midgapps(z,t)| are shown in Figs. (8), 7(b), and 7c), respec-
frequency so that the Bragg resonance of the multilayerdively. The fields are no longer centered around the defect
structure is strongly coupled with the atomic resonance. Thé&yer. They become attenuated fields, as the case in perfect

w—wgtiy’

resultant dielectric function of the doped layer is quarter stack.
The effects of the two-level atoms on the time delay are
e(w)=egtx(w), (46) shown in Fig. 8. In the case that no two-level atoms exist, the

pulse propagation is subluminal with a large positive time
which contains a nonresonant background contribuégn delay. The maximum delay,=23.8 fs occurs at about
=n§ in addition to the contribution of the dipole oscillators. =500 nm, and the time delay at the exit end tig
The thin solid line in Fig. 5 indicates the transmission for the=22.5 fs. When the two-level atoms are doped, the sublu-
case with doped two-level atoms, where the linewidth isminal propagation changes to superluminal propagation with
taken asy=0.0lw,, and the oscillator strength is chosen large negative time delay. The negative delay can régch
such thatl’=0.01w,. The single peak is split into a double =—30.5 fs at the exit end, which is much larger than the
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FIG. 6. The temporal-spatial evolution behaviors of the fields
for the case that the defect layer is nondisperiwéthout doped
two-level atomg (a) The electric field ¢,(z,t)|; (b) The magnetic
field | p,(z,1)].

delayty=—1.9 fs of perfect quarter stack. In the case of
large negative time delay, the peak appears at the exit end
before the incident peak reaches the input end, that is to say,
it corresponds to a negative group velocity if we consider the
thickness of the sample divided by the time when the peak
appears at the exit end as the group velocity.

Although the peak of energy dens”:y appears before the FIG. 7. The temporal-spatial .eVOIUtiOn b.ehaviors of the fields
arrival of the pulse peak through vacuum, the energy velocitfor the case that the defect layer is doped with two-level atdgs:
never exceeds the light speed in vacuum. In Fig. 9 we showhe electric field[44(z,t)[; (b) The magnetic field ¢,(zt)]; (c)
the energy velocity as function o at the time when the The electric displacemenips(z,t)|.
energy density reaches its peak for the cases with and with-
out the two-level atoms. The maximuog is approximately by the peak time at which the density of energy reaches the
equal to 0.6€. In the region behind the defect layer ( maximum. The time delay at the exit end is agreement with
>724 nm), the energy velocities are the same for bothhe predication of stationary-phase method. In the stop band,
cases. The minimum energy velocity is as slow as@.09  the propagation through perfect quarter-stack is superlumi-

nal. The superluminal propagation changes to subluminal
IV. CONCLUSIONS propagation if a nondispersive half-wave defect layer is

We have investigated the temporal-spatial evolution of theplaced into the periodic structure. If the half-wave defect

pulse propagation in the 1DPC. The time delay is determinethyer is doped with two-level atoms such that the layer be-
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FIG. 8. The time delay for the case that the defect layer is FIG. 9. The energy velocity for the case that the defect layer is
nondisperive(open diamongand for the case that the defect layer Nondisperive(open diamoniand for the case that the defect layer
is doped with two-level atomésolid circle). is doped with two-level atomésolid squarg

sent the velocity of energy propagation. The energy velocity

comes dispersive and absorptive, the subluminal propagati ; .
P P bropag dever exceeds the light speed in vacuum.

changes again to superluminal propagation with large neg
tive time delay. The occurrence of the large negative time

delay is a result of the Bragg resonance coupled with the ACKNOWLEDGMENTS

atomic resonance.
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