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Superluminal pulse propagation through one-dimensional photonic crystals
with a dispersive defect
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The propagation of a pulse through one-dimensional photonic crystals that contain a dispersive and absorp-
tive defect layer doped with two-level atoms is discussed. The dynamical evolution of the pulse inside the
photonic crystal is presented. Superluminal negative group velocity~the peak appears at the exit end before it
reaches the input end! is discovered. Although the group velocity is larger thanc and even negative, the
velocity of energy propagation never exceeds the vacuum light speed. The appearance of the superluminal
advance or subluminal delay of the pulse peak inside the photonic crystal or at the exit end is due to the wave
interference from Bragg reflections.
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I. INTRODUCTION

Periodic dielectric media called photonic crystals have
tracted considerable attention in recent years@1#. The essen-
tial property of the photonic crystals is the band-gap str
ture. Multilayered medium is considered as a simple exam
of one-dimensional photonic crystals~1DPCs!. The electro-
magnetic field of frequency within the gap is evanesce
Since the evanescent field is analogous to the wave func
of an electron in a quantum barrier, the 1DPCs were use
an optical barrier to investigate the tunneling time@2–4#. The
tunneling time of an optical pulse through the optical barr
was proved to be superluminal.

The time delay of pulse propagation through dielect
media is defined astd5t0(c/vg21), wheret0 is the time
through the same vacuum distance, andvg is the group ve-
locity. The group velocity, according to the definition,vg

5dv(k)/dk, is dependent on the frequency-wave numb
dispersion relation. The dispersion of media originates fr
the interaction of light with matter. There are two kinds
resonant interaction. One is that the light frequency matc
a transition frequency of atoms or molecules. Around
resonant frequency the dielectric function or refractive ind
is frequency dependent. This kind of dispersion is usua
referred to as material dispersion. The other occurs when
light wavelength matches a characteristic length of the m
dia, for example, the size of a dielectric cell in the photo
crystals. In this case the Bragg reflection becomes strong
a result, a stop band or forbidden gap is created. Near
band edge, the dispersion relation is significantly modifi
This kind of dispersion is usually referred to as structu
dispersion.

The dispersion relationv(k) for infinite 1DPCs can be
derived from Bloch’s theorem@5#. For finite 1DPCs, the dis
persion behavior can be described by an effective refrac
index that is defined via the complex transmission coeffici
@6,7#, and the group velocity can be calculated from the
1063-651X/2002/65~4!/046607~8!/$20.00 65 0466
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fective refractive index. In the stop band the effective refra
tive index is anomalous. Therefore, the propagation of pu
in the stop band is superluminal. Near the band edge, h
ever, the effective refractive index has a positive steep sl
such that group velocity can be slowed@8,9#. Particularly, if
a periodic 1DPC is perturbed by a defect layer, the slope
the effective refractive index at the defect mode frequen
will become very steep, which causes a great group de
@6#.

The superluminal propagation has been an interes
subject in recent years@10#. Although the superluminal phe
nomena were observed experimentally, the mechanism
mains controversial@11#. It is generally explained as reshap
ing of pulses. Japha and Kurizki suggested a unive
mechanism for the superluminal time delays in nondissi
tive media @12#. They emphasized that phase coheren
played a key role in the tunneling, and demonstrated that
superluminal time delay is a result of predominantly destr
tive interference between accessible causal paths. In a fi
1DPC, the group velocityvg and the energy velocityvE are
not the same@13#. It is demonstrated that they satisfy@14#
vE5utu2vg .

In this paper, we consider the temporal-spatial evolut
of a pulse inside an 1DPC. The pulse is decomposed into
integral of all Fourier components. The behavior of ind
vidual components is determined by means of a transfer
trix method, while the temporal-spatial behavior of the pu
is calculated by integrating all Fourier components. The
vantage of this way is that it can deal with the case where
constituent materials themselves are dispersive. We cons
not only the case that the 1DPC is made up of nondisper
materials, but also the case that the periodic 1DPC contai
dispersive defect layer. The defect layer is doped with tw
level atoms that leads to a dispersion relation of Lore
type. The combination of the structural resonance of
multilayer geometry and the atomic resonance in the de
layer leads to a large negative group velocity.
©2002 The American Physical Society07-1
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II. TRANSFER MATRIX FORMALISM FOR PULSE
PROPAGATION

In an 1DPC, the propagation of an optical pulse is go
erned by the wave equation

]2

]z2
E~z,t !2

1

c2

]2

]t2
E~z,t !5

1

«0c2

]2

]t2
P~z,t !, ~1!

whereE(z,t) is the electric field andP(z,t) is the electric
polarization. Suppose that the pulse can be expressed a
integral of its Fourier components

E~z,t !5E E~z,v!e2 ivtdv, ~2!

and the Fourier component of the polarizationP(z,v)
5x(z,v)E(z,v) under linear response approximation. T
equation for the Fourier component of electric field can
written as

d2

dz2
E~z,v!1

v2

c2
e~z,v!E~z,v!50, ~3!

wheree(z,v)511x(z,v) is the dielectric function.
Our method is that we firstly solve Eq.~3! layer by layer,

then integrateE(z,v) by using Eq. ~2! to obtain the
temporal-spatial behavior of the pulse. The integral is a
herent superposition of all Fourier components including
forward waves and backward waves with complicated re
tions of phases.

We consider normal propagation inz direction ~layers in
x-y plane!. The electric field is polarized alongx direction. In
the j th layer the electric fieldEj (z,v) satisfies

d2

dz2
Ej~z,v!1

v2

c2
nj

2~v!Ej~z,v!

50,~zj 21,z,zj , j 51,2, . . . ,N!, ~4!
-
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wherenj (v)5Ae j (v) is the refractive index that is a con
stant in the same layer for a givenv. The general solution of
Eq. ~4! can be expressed as

Ej~z,v!5E1 j~v!expF i
v

c
nj~v!~z2zj 21!G

1E2 j~v!expF2 i
v

c
nj~v!~z2zj 21!G . ~5!

From“3E52(]/]t)BÄivB we can get the magnetic fiel

Bj~z,v!5
nj~v!

c H E1 j~v!expF i
v

c
nj~v!~z2zj 21!G

2E2 j~v!expF2 i
v

c
nj~v!~z2zj 21!G J , ~6!

which is polarized alongy axis. Define

c1 j~z,v!5Ej~z,v!, ~7!

c2 j~z,v!5 icBj~z,v!, ~8!

such that the electric componentc1(z,v) and the magnetic
componentc2(z,v) can be measured by the same unit. T
electromagnetic field then can be expressed by a t
component wave function vector,

C j~z,v!5S c1 j~z,v!

c2 j~z,v!
D . ~9!

From Eqs.~5! and ~6! we can obtain the transfer matri
relatingC j (z1Dz,v) to C j (z,v),

C j~z1Dz,v!5M j~Dz,v!C j~z,v!, ~10!

where
M j~Dz,v!5S cosFvc nj~v!DzG 1

nj~v!
sinFvc nj~v!DzG

2nj~v!sinFvc nj~v!DzG cosFvc nj~v!DzG D . ~11!
d
at
Becausec1(z,v) and c2(z,v) are proportional to the tan
gential components of the electric field and the magn
field, respectively, they are continuous function ofz across
the layer interfaces. At any positionz,C(z,v) connects with
C(z0 ,v) through a propagation matrix. For example, in t
j th layer (zj 21,z,zj ), the field atz5zj 211nz is

C~zj 211Dz,v!5Q~zj 211nz,v!C~z0 ,v!, ~12!
ic
where the propagation matrix

Q~zj 211nz,v!5M j~Dz,v!)
i 51

j 21

Mi~di ,v!. ~13!

From Eqs.~12! and ~13! we can calculate the electric fiel
and the magnetic filed at any position provided th
C(z0 ,v)5@c1(z0 ,v),c2(z0 ,v)#T is known.
7-2
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SUPERLUMINAL PULSE PROPAGATION THROUGH ONE- . . . PHYSICAL REVIEW E 65 046607
C(z0 ,v) can be determined by matching the bounda
condition. Assume the light is incident from the region ofz
,0. In this region the field is a superposition of forward fie
and backward field,

E~z,v!5Ei~z,v!eikz1Er~z,v!e2 ikz, ~14!

wherek5v/c. At the incident end we have

C~0,v!5S Ei~0,v!1Er~0,v!

i @Ei~0,v!2Er~0,v!#
D . ~15!

Generally, the forward~incident! field Ei(0,v) is given,
while the backward~reflection! field Er(0,v) is to be solved.
In order to solveEr(0,v), another boundary condition at th
exit endz5zN should be utilized. In the region ofz.zN ,
there is only forward~transmitted! field,

E~z!5Et~z,v!eik(z2zN). ~16!

Thus,

C~zN ,v!5S Et~zN ,v!

inSEt~zN ,v!
D , ~17!

where nS is the refractive index of the substrate. Suppo
that the matrix connecting the incident end and the exit
is XN(v), we have

C~zN ,v!5XN~v!C~0,v!, ~18!

where

XN~v!5)
j 51

N

M j~dj ,v!5S x11~v! x12~v!

x21~v! x22~v!
D . ~19!

Equation~18! may be rewritten in a form of

C~0,v!5XN
21~v!C~zN ,v!. ~20!

Because detM j (dj )51, we have detXN(v)51 and

XN
21~v!5S x22~v! 2x12~v!

2x21~v! x11~v!
D . ~21!

Substituting Eqs.~15!, ~17!, and~21! into Eq. ~20! yields

Er~0,v!5r ~v!Ei~0,v!, ~22!

Et~zN ,v!5t~v!Ei~0,v!, ~23!

wherer (v) is the reflection coefficient of a monochromat
plane wave of frequencyv that can be expressed in terms
the elements of the matrixXN(v),

r ~v!5
@x22~v!2nSx11~v!#2 i @nSx12~v!1x21~v!#

@x22~v!1nSx11~v!#2 i @nSx12~v!2x21~v!#
,

~24!

and t(v) is the transmission coefficient of the monochr
matic plane wave that can be written as
04660
y

e
d

t~v!5
2

@x22~v!1nSx11~v!#2 i @nSx12~v!2x21~v!#
.

~25!

Thus, we can express the electromagnetic field atz50 with
the incident fieldEi(v) as follows:

C~0,v!5Ei~0,v!S 11r ~v!

i @12r ~v!#
D . ~26!

With C(0,v) in hand, we are able to calculate th
temporal-spatial behavior of the pulse. By multiplying a tim
factor, e2 ivt, to each side of Eq.~12! and integrating all
frequency components, we have

c1~z,t !5E c1~z,v!e2 ivtdv

5E Ei~0,v!$@11r ~v!#Q11~z,v!

1 i @12r ~v!#Q12~z,v!%e2 ivtdv ~27!

and

c2~z,t !5E c2~z,v!e2 ivtdv

5E Ei~0,v!$@11r ~v!#Q21~z,v!

1 i @12r ~v!#Q22~z,v!%e2 ivtdv, ~28!

whereQi j (z,v) are the elements of the propagation mat
~13!. The electric displacementD(z,t) can be obtained
through

D~z,t !5e0c3~z,t !5e0E e~v!c1~z,v!e2 ivtdv, ~29!

wheree0 is the vacuum permittivity. The unit ofc3(z,t) is
the same asc1(z,t) andc2(z,t). Obviously, the field func-
tions given by Eqs.~27!, ~28!, and ~29! are the coheren
superposition of all frequency components including forwa
waves and backward waves. The waves enter the inte
have complicated relations of phases.

III. NUMERICAL RESULTS AND DISCUSSION

Suppose a Gaussian pulse is incident on the surfacez
50. The electric field of the Gaussian pulse at the surfac
expressed as

Ei~0,t !5E0e2t2/t2
, ~30!

and its Fourier spectrum is

Ei~0,v!5
tE0

2Ap
e2t2(v2vc)2/4, ~31!

wherevc is the carrier frequency of the pulse. By definin
7-3
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j5v2vc ~32!

andf1(z,t) through

c1~z,t !5E0f1~z,t !e2 ivct, ~33!

we can findf1(z,t) from Eq. ~27!:

f1~z,t !5
t

2Ap
E e2t2j2/4$@11r ~j1vc!#Q11~z,j1vc!

~34!

1 i @12r ~j1vc!#Q12~z,j1vc!%e
2 i jtdj, ~35!

which is the dimensionless slowly varying envelope of t
electric componentc1(z,t). The dimensionless slowly vary
ing envelope of the magnetic componentc2(z,t) is defined
through

c2~z,t !5E0f2~z,t !e2 ivct. ~36!

From Eq.~28!, we find

f2~z,t !5
t

2Ap
E e2t2j2/4$@11r ~j1vc!#Q21~z,j1vc!

~37!

1 i @12r ~j1vc!#Q22~z,j1vc!%e
2 i jtdj. ~38!

The dimensionless slowly varying envelope of electric d
placement is written as

f3~z,t !5
t

2Ap
E e~v!e2t2j2/4$@11r ~j1vc!#

3Q11~z,j1vc! ~39!

1 i @12r ~j1vc!#Q12~z,j1vc!%e
2 i jtdj. ~40!

The energy density for nonmagnetic materials is

U~z,t !5e0uE0u2u~z,t !, ~41!

where the dimensionless energy density

u~z,t !5
1

4
$Re@f1~z,t !f3* ~z,t !#1Re@f2~z,t !f2* ~z,t !#%.

~42!

The Poynting vector can be expressed as

S~z,t !5ce0uE0u2s~z,t !, ~43!

where the dimensionless Poynting vector

s~z,t !5
1

2
Re@ if1~z,t !f2* ~z,t !#. ~44!

A. Quarter stack of constant refractive indexes

We first consider a quarter wave stack where all layers
characterized by two constant refractive indexes. The par
04660
-

re
-

eters of the 1DPC is chosen as the same as those use
Steinberget al. @2#. The 1DPC has a structure of (AB)5A
with the refractive indexesnA52.22 andnB51.41. The op-
tical thickness of each layer isnAdA5nBdB5l0/4, where
l05692 nm is the midgap wavelength. The midgap fr
quency isv052pc/l0 and the corresponding optical perio
is t052p/v0. The total thickness of the sample is abo
1081 nm. When light through the same vacuum distance
the sample thickness, it takes a time of 3.6 fs.

Suppose the carrier frequency of the Gaussian puls
vc5v0, and the characterized time of the pulse ist530t0.
In Fig. 1~a! and ~b! we show the temporal-spatial evolutio
behaviors of the dimensionless slowly varying envelop
uf1(z,t)u anduf2(z,t)u, respectively. The time origin is tak
as the instant at which the peak of the incident Gauss
pulse arrives at the surface ofz50. It is shown that at any
spatial position, the temporal profiles of both electric fie
uf1(z,t)u and magnetic fielduf2(z,t)u are approximately a
Gaussian curve. Although the attenuated tendency from
incident end to the exit end foruf1(z,t)u anduf2(z,t)u is the
same, the details of them are quit different. The node p
tions of uf1(z,t)u are the antinode positions ofuf2(z,t)u.

From the temporal-spatial curves we are able to find
the time at which the electric field or magnetic field reach
its maximum at any position. The times corresponding to
maximumuf1(z,t)u and the maximumuf2(z,t)u at different
positions are shown in Fig. 2. In the first half part of th
1DPC, the field at the node position reaches the peak
aboutt5216.6 fs. While at most other positions, the fie
reaches the maximum in an interval of time from 0.7 fs
1.7 fs. Since the electric field and the magnetic field are
in phase, we cannot define the time delay by the peak
uf1(z,t)u or by the peak ofuf2(z,t)u. The time delay should
be defined by the peak of the density of energy. According
the definition of the density of energy, it depends on bo
electric field and magnetic field. Therefore, it should be c
culated by Eq.~42!. After calculating the density of energ
we are able to find out the timetM at which the density of
energy reaches the maximum. Suppose the density of en
at the positionz reaches the maximum at timetM , the time
delay can be determined bytd5tM2t0, wheret0 is the time
through the same vacuum distance. In Fig. 3 we plot the t
delay. It is shown that the time delay become negative w
z.200 nm. The maximum negative delaytd522.1 fs oc-
curs in the interior of the 1DPC. At the exit end, the tim
delay is td521.9 fs. The time delay at the exit end is
agreement with the stationary-phase prediction@11#, but it
differs slightly from the experimental measurement o
2(1.4760.21) fs@2#.

If we use the peak timetM to define the peak propagatio
velocity vM5z/tM , then we find that the maximumvM is
3.4c, as shown in Fig. 4~see the triangles!. The maximum
vM occurs in the interior, not at the exit end. In general, t
peak propagation velocity in homogeneous media is equa
the group velocity that is defined bydv(k)/dk. However, in
the case of finite 1DPCs, the peak propagation velocityvM
cannot be determined by an overall dispersion relationv(k).
The appearance of the peak is a result of coherent supe
7-4



ier
the
lse.
ing
n

y

y

the
the

C,
ect

en
t

SUPERLUMINAL PULSE PROPAGATION THROUGH ONE- . . . PHYSICAL REVIEW E 65 046607
FIG. 1. The temporal-spatial evolution behaviors of the dim
sionless slowly varying envelopes.~a! The electric componen
uf1(z,t)u; ~b! The magnetic componentuf2(z,t)u.

FIG. 2. The time at which the electric field~up triangle! or the
magnetic field~down triangle! reaches the maximum.
04660
sition of forward waves and backward waves of all Four
frequency components. It is the wave interference inside
1DPC that leads to the reshaping of the Gaussian pu
Since the evolution of the pulse in the 1DPCs is a reshap
processes, the peak velocityvM cannot be understood as a
ordinary group velocity.

The energy velocityvE should be defined by the densit
of energy and the Poynting vector vE(z,t)
5@s(z,t)/u(z,t)#c. It is found thatvE is quite different from
vM . In Fig. 4, we plot the energy velocityvE at the time
when the density of energy reaches its maximum~see the
squares!. From our calculation we find that the maximumvE
is equal to 0.49c. At any position and at any time the energ
velocity never exceeds the light speed in vacuumc.

B. Quarter stack with a dispersive defect layer

Now we consider the case that a quarter-wave layer at
center is replaced by a half-wave layer. The structure of
1DPC changes toABABADABABA, where D is a half-
wave defect withnDdD5l0/2 andnD5nB .

It is known that if a defect layer is placed into the 1DP
a defect mode will appear in the stop band. At the def

-

FIG. 3. The time delay inside the perfect quarter stack.

FIG. 4. The peak velocityvM5z/tM and the energy velocity
vE5S/U, whereU is the density of energy andS is the Poynting
vector.
7-5
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mode frequency we can see a resonant transmission p
The transmission peak is analogous to the narrow trans
sion peak in a complete absorption background of an e
tromagnetically induced transparency gas system, wh
leads to a steep dispersion curve with positive slope
causes to an extremely slow group velocity@15#. A calcula-
tion of effective refractive index showed that the reson
transmission peak in the band gap of 1DPC can as well
duce a steep dispersion of the effective refractive index@6#.
At the defect mode frequency the group delay is positive
extremely large. In Fig. 5 we show the transmission peak
the band gap by a dashed line for the 1DPC perturbed b
nondispersive half-wave defect layer.

The behavior of resonant transmission at band gap wil
changed if two-level atoms are doped into the defect la
We assume the linear susceptibility produced by the do
two-level atoms can be written as

x~v!52
G

v2v01 ig
, ~45!

whereG is proportional to the oscillator strength dependi
on the transition dipole moment and the density of the tw
level atoms, andg is the phenomenological linewidth. Th
transition frequency is assumed to be equal to the mid
frequency so that the Bragg resonance of the multilay
structure is strongly coupled with the atomic resonance.
resultant dielectric function of the doped layer is

e~v!5eB1x~v!, ~46!

which contains a nonresonant background contributioneB

5nB
2 in addition to the contribution of the dipole oscillator

The thin solid line in Fig. 5 indicates the transmission for t
case with doped two-level atoms, where the linewidth
taken asg50.01v0, and the oscillator strength is chose
such thatG50.01v0. The single peak is split into a doubl

FIG. 5. The transmission through an 1DPC with a half-wa
defect layer in the middle. Dashed line, the defect layer is non
perive ~without doped two-level atoms!; thin solid line, the defect
layer is doped with two-level atoms; heavy solid line, the real p
of the effective refractive index.
04660
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peaks due to the two-level atoms. The minimum transm
sion is approximately equal to 0.012, which is appro
mately equal to the transmission of the perfect quarter sta
We find that the double peaks are analogous to the cas
the double gain peaks of the three-level atoms used by W
et al. who got a gain-assisted superluminal~negative! group
velocity @16#.

In finite 1DPCs, the group delay through the whole stru
ture can be written astd5t0(ng21), whereng[c/vg is re-
ferred as to the group index. The group index can be de
mined by

ng~v!5n~v!1v
dn~v!

dv
, ~47!

wheren(v) is the real part of an effective refractive inde
ne f f(v)5n(v)1 ik(v) which is defined by the transmissio
coefficientt5ATeif. The real part ofne f f(v) is @6,7#

n~v!5
cf~v!

Lv
, ~48!

and its imaginary part is

k~v!52
c

2Lv
ln T~v!, ~49!

whereL is the total thickness. In Fig. 5 we plot the real pa
n(v) of the effective refractive index with the heavy sol
line. The dispersion of effective refractive index between
transmission peaks is anomalous, as the case betwee
gain peaks of the three-level in Ref.@16#. It is expected that
similar superluminal propagation will occur in the 1DP
doped with the two-level atoms.

We first compare the temporal-spatial evolution of t
fields for the cases with and without the doped two-le
atoms. The characterized time of the Gaussian pulse is ta
ast5100t0 so that the pulse has a narrow spectrum band
Fig. 6 we show the temporal-spatial behavior ofuf1(z,t)u
and uf2(z,t)u for the case without the doped atoms. In th
case the energy is centered around the defect layer.

The defect layer becomes dispersive and absorptive w
it is doped with two-level atoms. Due to the dispersion a
absorption in the defect layer, the evolution of the fields
changed. The temporal-spatial evolutions of electric fi
uf1(z,t)u, magnetic fielduf2(z,t)u, and electric displacemen
uf3(z,t)u are shown in Figs. 7~a!, 7~b!, and 7~c!, respec-
tively. The fields are no longer centered around the de
layer. They become attenuated fields, as the case in pe
quarter stack.

The effects of the two-level atoms on the time delay a
shown in Fig. 8. In the case that no two-level atoms exist,
pulse propagation is subluminal with a large positive tim
delay. The maximum delaytd523.8 fs occurs at aboutz
5500 nm, and the time delay at the exit end istd
522.5 fs. When the two-level atoms are doped, the sub
minal propagation changes to superluminal propagation w
large negative time delay. The negative delay can reactd
5230.5 fs at the exit end, which is much larger than t

s-

t
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delay td521.9 fs of perfect quarter stack. In the case
large negative time delay, the peak appears at the exit
before the incident peak reaches the input end, that is to
it corresponds to a negative group velocity if we consider
thickness of the sample divided by the time when the p
appears at the exit end as the group velocity.

Although the peak of energy density appears before
arrival of the pulse peak through vacuum, the energy velo
never exceeds the light speed in vacuum. In Fig. 9 we sh
the energy velocity as function ofz at the time when the
energy density reaches its peak for the cases with and w
out the two-level atoms. The maximumvE is approximately
equal to 0.67c. In the region behind the defect layer (z
.724 nm), the energy velocities are the same for b
cases. The minimum energy velocity is as slow as 0.09c.

IV. CONCLUSIONS

We have investigated the temporal-spatial evolution of
pulse propagation in the 1DPC. The time delay is determi

FIG. 6. The temporal-spatial evolution behaviors of the fie
for the case that the defect layer is nondisperive~without doped
two-level atoms!: ~a! The electric fielduf1(z,t)u; ~b! The magnetic
field uf2(z,t)u.
04660
f
nd
ay,
e
k

e
ty
w

h-

h

e
d

by the peak time at which the density of energy reaches
maximum. The time delay at the exit end is agreement w
the predication of stationary-phase method. In the stop ba
the propagation through perfect quarter-stack is superlu
nal. The superluminal propagation changes to sublum
propagation if a nondispersive half-wave defect layer
placed into the periodic structure. If the half-wave defe
layer is doped with two-level atoms such that the layer

s

FIG. 7. The temporal-spatial evolution behaviors of the fie
for the case that the defect layer is doped with two-level atoms:~a!
The electric fielduf1(z,t)u; ~b! The magnetic fielduf2(z,t)u; ~c!
The electric displacementuf3(z,t)u.
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comes dispersive and absorptive, the subluminal propaga
changes again to superluminal propagation with large ne
tive time delay. The occurrence of the large negative ti
delay is a result of the Bragg resonance coupled with
atomic resonance.

We emphasize that the appearance of the pulse peak i
1DPC before the pulse peak through the same vacuum
tance is a result of the coherent superposition of the forw
and backward waves for all Fourier frequency compone
with complicated relations of phases. It is a phenomenon
wave interference. Due to the interference, the pulse is
shaped inside the 1DPC. The peak velocity dose not re

FIG. 8. The time delay for the case that the defect layer
nondisperive~open diamond! and for the case that the defect lay
is doped with two-level atoms~solid circle!.
tt
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v
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k-

04660
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sent the velocity of energy propagation. The energy veloc
never exceeds the light speed in vacuum.
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s FIG. 9. The energy velocity for the case that the defect laye
nondisperive~open diamond! and for the case that the defect lay
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