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Orientational discrete breathers in hydrogen-bonded chains
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We consider rotational motion of protons within a hydrogen-bonded zig-zag chain. Each proton is subjected
to a Coulomb interaction from the three nearest heavy ions, as well as from the two neighboring protons. The
hydrogen bonding is modeled with an additional double-minimum on-site potential. The system admits discrete
breather solutions in the gap below the phonon band. The numerically exact procedure using an anticontinuum
limit is exploited to obtain these solutions, which appear to be asymmetric due to the asymmetry of the
interaction potential. Only single-well orbits are considered. A linear stability analysis is performed. The
discrete breather solutions are shown to be linearly stable provided the nonresonance condition is satisfied, and
they turn out to be unstable in the region of 2:3 parametric resonance. Phonon-breather solutions are found in
the 1:2 resonance region. Two kinds of two-site breather solutions are investigated.
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[. INTRODUCTION two ground states can be realized by means of igaiso
hopping or orientational(also bonding or Bjerrupndefects
Discrete breathers or time-periodic intrinsically localized[16]. The first one incorporates a proton hopping between
modes in translationally invariant lattices of nonlinear WO energy minima in intrabond with an interchange of co-
coupled oscillators were discovered as early as in 1970 by@/ent and hydrogen links, and the second one takes place

Ovchinnikov[1]. However, they gained much attention from hrough a molecule rotation as a whole with a break and

the physics community after their rediscovery by SieversSUccessive renovation of hydrogen bond. . .

et al.in 1988[2,3], when the phenomenon was realized to be A number of one- and two—cqmponent one—dlmenS|_onaI

of great generality in lattices. Intrinsic localized modes canmc’.deIS has been m_trodut.:ed to investigate the dynamics of
be found in any weakly coupled discrete nonlinear systenjo'¢ [17-21 and orientationa] 2224 or even both 25~

(see Ref[4] for a review provided nonresonance condition 8] of these soliton type excitations, which are believed to be
f great importance in the process of proton trangfér16|.

is satisfied. Both discreteness and nonlinearity are equall ) . .
important. Discreteness gives bounded character of phondd®WeVe the d|§crete breathers in hydrogen-bonded chains
ave been studied only for strong hydrogen bondi2g)]

spectrum, while nonlinearity is responsible for frequency de-

pendence of vibration amplitudes. The existence of discret@’Ith nolndlegen?rate %round §tat(|a.dTh|s c_aslf faII_sF|)nto aS?ore
breathers as time-periodic solutions of nonlinear lattice equad€"€ra! €/ass ol one-dimensiona latomic Fermi-Pasta-Ulam

tions under quite general conditions is proven by rigorou attices for which the discrete breather solutions of different
theoremg5,6], and numerical schemes for their explicit cal- SYMMetry can exis30-3§, in the frequency gap between

culation are developel]. Recently, discrete breathers were qptilczl agd acoustic phonon bands, as well as above the op-
experimentally observed in coupled optical Waveguide§ICa and. L

[8,9], in charge-density wave systeffi0], in magnetic sys- . As to th'e.weakly cqupled hydrogen-bondeq chains, in '.[he
tems[11], in arrays of coupled Josephson junctiéa, 13, limit of infinite heavy ion masses the properties of the dis-
and possibly in myoglobifi14]. Hydrogen-bonded systems crete breather solutions concerned with intrabond proton mo-
such as ice, quasi-one-dimensional hydrogen-bonded cry jons can be roug_hly understood with the help of the Klein-
tals, and one-dimensional hydrogen-bonded chaiss Ref. ~ 0rdon model with double-well potentidsee, e.g., Refs.

[15] for a review represent another type of condensed mattegg?"‘l"r‘]a)a vr;/here tge ((ijiS(_:rl’ﬁte dpreatherbs CaT] exist in the gap d
systems in which discrete breathers could possibly exist an elow the phonon band. The discrete breathers concentrate
could be detected experimentally. on rotational proton motion are somewhat different from the

A hydrogen-bonded chain can be considered as a Zig_zegevious ones becguse of another famamely, pe_riodicity
network of heavy ions intermediated with protons, each of! the proton on-site potential and more complicatadn-

the protons being linked to one of its neighbor heavy ion§1armonic) proton-proton interaction due. to a strong c'hange
with a (shortel covalent bond, and to another neighbor'n the system geometry upon reorientation of the chain mol-

heavy ion with a(longey hydrogen bond. Ground state of ecules. In the present paper we consider the simplest case of

such a system is usually doubly degenerate with respecte@rientational discrete breathers with single-well proton or-

the left or right covalent bond. A transition between thes its, the effect of on-site potential double-well character and
’ periodicity being kept for future investigations.

. - S Il. MODEL
*Email address: julia@nonlin.bitp.kiev.ua
fCorresponding author. We consider a network of protons in a two-dimensional
Email address: velgakis@terpsi.iceht.forth.gr zig-zag chain of infinitely massive heavy iofsee Fig. L
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(@) O whereq is the effective electric charge of the proton in the
chain moleculeR is the distance between neighbor heavy
, ions (see Fig. 1, andp=r/R is the reduced covalent bond
p s 7 s length.
5 ’, N For the numerical simulations we use the parameter val-
N ’ N ues given by Kryachko and Sokh482] for orientational
R a B ’ defect on ice:r=0.94 A, 2¢=109.5°, R=2.76 A, q

o /
~ /
\1/

e H =0.6e, and the barrier height for on-site dipole rotation
\.//e.n U®=7.68 Kcal/mol. Since the parameter0.3, we con-

sider the dipole-dipole approximation used in ReX3,24 to
be inapplicable to our case and therefore retain the general
O form of interaction(3),(4).
FIG. 1. A schematic representation of the system geometry. 1he parameteK for hydrogen bonding on-site potential is
Equilibrium proton positions are shown with open circles. Big filled chosen to give the valug$’ per site for simultaneous rota-
circles represent heavy ioriexygens. tion of all hydrogens by,=— . It gives

Each proton is coupled to one of the neighbor heavy ions
with a covalent bond with its length being fixed rmatThen u<BO>= K(1—cosa)?—K(cosB—cosa)?

the position of thenth proton is determined uniquely by the ,

angle 6, measured from the proton equilibrium position to q 1 2

the right from its heavy iorigiven with the angleg). +471-s0R J1+4p%—4p cosa B J1+p?—2p cosa
The Hamiltonian function for the protonic subsystem has

a form 1

- V1+4p?cos B—4p cosa cosp

I
H=20 | 560+ V(60) +Us(00) + Unl B, 60.0) [, (D) .

i V1+p?—2pcos(a—pB)

where the first term gives the kinetic energy of proton, and

| =mr? is the proton moment of inertia. To take into account 1

the double-well character of the on-site potential modeling + J1+p?—2pcoda+tB) ' ®)
hydrogen bonding, the second term in Et). was chosen in

the form

ThenK can be found as
V(6,)=K[cog B+ 6,) —cosal?, )

1
V1+4p?—4p cosa

where the angler is defined by the geometry of the heavy 0 q°
ion zig-zag backbonésee Fig. 1, and the parameté¢ gives K={u@- Ame-R
the barrier height for the on-site potential. The last two terms 0
in Eq. (1) describe the Coulomb interaction of théh proton 2

with its neighbor heavy ions and protons, respectively, —
V1+p?—2p cosa

2

q 1 1
Ui(On)=— 72—~ 5 -
oR[ J1+p*~2p coda— B~ 6,) J1+4p2co€B—4p cosa cosp
1 1
+ > : ) +
\/1+p _choqa‘f'ﬂ'f' Hn) \/1+p2_2p COS{a—,B)
and 1
+ /(1—2c03a—co§,8
Vi+p?—2pcoga+B)
9 .
U2(0n:0n+1):W{[Sma-"psm(ﬁ-i' Ons1)—p +2 cosa Cosp). ©)

X sin( B+ 6,)]%+[cosa—p cog B+ 6
B+ 6n) )+ [cosa—p ot B+ bna) The equilibrium angles is chosen to minimize the Hamil-
—pcog B+ 6,13 12, (4)  tonian(1) upon #,=0,
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J 6 — T T T T T T T T T T T T
ﬁ[V(ﬂ;O)JrUl(B:OHUz(ﬁ;O,O)]=0- (7

The approximate value g# can be found as

e {IV(B;0)+U1(B;0)+U,(B;0,01/9B} 5-,
{az[vw;0>+ul<ﬂ;0>+u2</3;o,0>]/aﬁz}ﬁ=aé8)

Potential energy (eV)

For our choice of potentiale),(3),(4) we get

{a[V(B:0)+U1(B:0)+Ux(B:0,01/9B} g0

B q? p(2p—1)sin 2«
4meoR | [1-4p(1-p)cod a]3?

in 2«
psin } ©

[1+ p2—2pcos 2a]%?

U,(6,,6,) (eV)

and

{P[V(B;0)+U4(B;0)+Ux(B;0,01/98% s
2 sirf a 0 q? 1
[1-4p(cosa—p)]H?

(1—cosa)? B 47meR

2 1
[1+p%—2pcosa]¥? [1—4p(1—p)cos a]?

FIG. 2. (a) The potential energy profiles for the different kinds
1 1 } of interaction. 1, hydrogen bonding energy#,); 2, Coulomb in-

+ + teractionU( #,) with neighboring oxygens; 3, the effective proton-
1-p [1+p%—2pcos2a]*?

proton interaction potentiaﬂ(zo)(ﬁn) for the anticontinuum limit; 4,
V(6,)+U1(6,); 5, V(6,)+U1(6,)+U%(6,). (b) The proton-
q? [ 3p%(2p—1)?sirt 2a proton interaction energy,(6,,,6,41). In this work all angles are

4meoR | [1—4p(1- p)coda]? measured in radians.
2p(2p cos 2a—cog @) P intr_oduce the_ anticontinuum limit into the system Hamil_—
+ tonian. Despite the resemblance of our system to the Klein-
[1-4p(1-p)cos a]¥* (1-p)? Gordon chain, it does not suffice simply to insert a factor of
, C (called a coupling constaninto the interaction ternt4)
B 3p?sinf 2a n p COS 2x because of the change of the proton equilibrium angle
[1+p2—2pcos2a]®? [1+p?—2pcos2u]®? ' Luckily, an idea of great help suggested for Fermi-Pasta-

Ulam chain[43] is to insert an additional on-site potential of
(10 the form (1—C)U,(6,,0) into the system Hamiltonian:

Equation (8) gives the approximate value of correctian

—B=~0.0294, while the exact difference isa—p

=0.023 747. The on-site potentig®) and(3) for this choice H™(C)=2,
of B are shown in Fig. @) with the curves 1 and 2, and the "
form of the interaction terng4) is presented in Fig.(®).

I
S50+ V(6y) + Ua(6) +(1-C)US ()

+CU2(9n’9n+1) . (11)

III. ANTICONTINUUM LIMIT AND PHONON BAND

To obtain numericallyf 7] the discrete breather solutions But in our case the effective on-site potenliéf)(an) has to
using the proof of existence by MacKay and AulpBj, we  be chosen to compensate the missing energy of interaction
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with the two[ (n—1)-th and 0+ 1)-th] neighboring protons 1.2 — 77—
rested at their equilibrium positions. Hence, - 11.128
1.0 11
US(8,)=U5(6,,0)+U2(0,6,) — U,(0,0 . .
, 08l ~0.853
_ o _ 9—1/2 RS 10.752
ZmegRl[SiMa+ (cosa—2pcosp)’] e 23 ]
5 “omnzaand 0.564
+({sina+ p[sinB—sin(B+ 6,1} I e 12
A lemezazzzziziIinII I 2:5 =
+{cosa— p[cosB—cog B+ 6,)]}%) 1?2 - i)
+({sina— p[sinB—sin(B+ 6,)]}2 2T I
_ _ 2\—1/ X . 1 . 1 R I N ) .
+{cosa— p[cosp—cod B+ 6,)1}) 7], %00 0.2 0.4 0.6 0.8 1.0
(12 c

the last term being added to keep the ground-state energy of FIG. 3. The dependence of phonon band frequencies on the
the system fixed with the change @ The form of this  coupling constan€ (upper two solid lines The regions of 1:2 and
effective on-site potential is represented in Fige) Dy curve  1:3 resonance with phonon band are also shown with solid lines.

3. The equations of motion to be solved are The regions of parametric resonance are given with dashed lines.
Regions of higher-order resonances in the lower part of the gap are
dv(e, duUi(e,) dU,(6,,0) not shown.
+ + +(1-C)|————
Vot 46, TTae, TN s,
n ‘9U2(O-0n) +c aU2(0n10n+1) (9U2(0n7119n) 0”+0n+CX(0n—1+0n+1):0- (16)
a6, a0, a0,

The phonon spectrum can be found with the help of the
=0. (13)  ansatz: 6,=Aexdi(wt—kn)]; substituted into Eq.(16) it
gives w?=1+2Cy cosk with the lower and higher band
It is obvious that for a coupling consta@t=0 with a result-  edges
ing on-site potential given by curve 5 in Figia, we have a

system of decoupled nonlinear oscillators, andG@er 1 we _ _
get the realistic systerfil) with a general interaction term ©min=V1=2C|x|,  @mac=V1+2C[x|. (17
(4.

The phonon band of the system can be found from thé-or our original systentl) we haveC=1 and
linearized Hamiltonian

2 wmin=0.852756, wna—=1.128187. (18

Ho=12> ;éﬁ"'QS%"'CQ%XHanH]a (14) _
n The dependence of the phonon band on the coupling constant
C is shown in Fig. 3(phonon band is labeled with 1:1 reso-
nancg. The regions of 1:2 and 1:3 resonance with phonon
band are shown with solid lines, and the regions of 2:3 and
2:5 parametric resonance are given by dashed lines. Higher-
order resonance regions are not shown. The stable discrete
0,=0 breather solutions are expected to be found in the gap below
the phonon band and above the 2:3 parametric resonance
region. All the frequencies below the 1:3 resonance region
have higher-order harmonics in the phonon spectrum.

with

o 1 P[V(6,)+U1(6,)+UL(6,)]
2_=
| 962

and

1 U0, 0n+1)

T2 90000p,, a0 (15

X
IV. NUMERICAL RESULTS

It is clearly seen that our choice of introducing anticon- The numerically exact time-reversible discrete breather
tinuum limit does not change equilibrium positions of pro- solutions considered in this section have been obtained from
tons. Moreover, the frequency of harmonic vibratidl§  the anticontinuum limit with the help of the Newton-
does not depend aB, so we have no problem with intersect- Raphson methofi7] with periodic boundary conditions im-
ing the dangerous resonance region when increa€iref  posed. In the most cases we have used a chain lévgih
constant value of breather frequen@f. Refs.[29,34,39). about 25 particles, unless stated otherwise. Since we are in-
Introducing the dimensionless time variable (4t, the lin-  terested in the discrete breather solutions to the sy$igm
earized equations of motion take the form only the results folC=1 are reported.
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FIG. 5. Evolution of Floquet eigenvalues for a discrete breather
solution from the middle of the gap between two resonance regions
(wp,=0.745). Note overlapping of two band imagesmat

Upon decreasing the breather frequengy the solution
remains stable down to some frequency for which a collision
of Floquet eigenvalues at 1 takes place. The exact value of
collision frequency slightly depends on the system $ize
For N=25 it is w,=0.751 37, and foN— it approaches
2wmad3=0.75212. Such a collision gives rise to some in-
stabilities, but does not prevent one from continuation of the
breather solution. Figure 5 represents a typical evolution of
the Flogquet eigenvalues on the unit circle upon increase of

®,=0.83 the coupling paramete® for the breather frequency just be-
0.0 - T - T - . - . . . low 2w, 4,{3. Overlapping with complex conjugate image of
00 D2 &t e 0:6 08 10 the band can be observed in the right upper corner of Figure

5 (only the eigenvalues with positive imaginary part are plot-

FIG. 4. (a) Time dependence of the discrete breather solution forted’ therefore, it looks like reflection af). For the frequen-
wy—0.83 just below the lower edge of the phonon barit) Evo- cies under consideration instabilities appear as a result of
lution of Floquet eigenvalues along the unit circle with the increas

of the couplingC.

collision of the Floquet eigenvalues of extended modes.
“These instabilities represent a finite size effg40] and
shrink with the growth of the chain length. On the other
hand, a finite chain length is the reason that for most of the
A. Single-site breather solutions frequencieswy, there are no coinciding Floquet eigenvalues
As mentioned above, discrete breather solutions ar@tC=1, and the discrete breather solution is stefaie for
proven to exist in weakly coupled systems provided nonresothe case ofv,=0.745 represented at Fig).5 _
nance condition is satisfied. The last condition means that The behavior of Floquet eigenvalues becomes more inter-
none of the higher-order harmonics of the breather frequenc§Sting after the breather frequency falls below 2/3, when the

o, is allowed to be in resonance with a phonon spectrumP@nd passes through1 atC=0. In this case the localized
Therefore, the frequency regiof®,i/n,wma./n] with n mode starts detaching from the band in the upward direction,
’ min 1 max

=1,2,3 ..., are to beexcluded from considerations. and meets its complex conjugate atl, yielding a period-

In the case of our system with the phonon band given b doubling bifurcation. Then the pair of Floquet eigenvalues

Eqg. (17) the nonresonance condition is satisfied for the fre%ave an excursion apart from 1 along a real axis and

quency range 0.564 ¥0wy<0.852 76 {o11/2< 0p< i) comes back to-1 at some value of. After that the pair of

eigenvalues moves along the unit circle and gives rise to
and 0.376 08w, <0.426 38 @mad3<wp<womif2). HOW- oot ike instability when it reaches the leading edge of the

ever, for the coupling .constam=1 the localized one—site_ phonon band. Such a behavior is illustrated in Fig)-6(b),
discrete breather solutions have been found only for the firsfhere the evolution of Floguet eigenvalues wihfor oy,
frequency range. . =0.62 is shown. Additional small instabilities observed in
Figure 4a) represents the form of discrete breather solu—Fig_ 6(b) are due to collision of extended modes.

tion for w,=0.83, which is close to the lower edge of the  Evolution of the initial breather profile with the decrease
phonon band, from which this solution bifurcates. The staof w, is presented in Fig. 7. The asymmetry of the single-site
bility analysis of this solution shows that all the Floquet discrete breather initial profile is clearly seen from Fitp)7
eigenvalues lie on the unit circle. The dependence of theiwhere the central part of the breather is shown. The ampli-
phases on the coupling parametis plotted in Fig. 4b). tude of oscillation of the left neighbor to the central particle
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FIG. 7. (8 The profiles of the discrete breather solutionsrat

FIG. 6. The stability analysis for the discrete breather solution—q (solid liney and 7= /w, (dashed linesfor three different

with w,=0.62: the phase@) and the absolute valuék) of Floquet

eigenvalues as a function of coupliy

frequenciesw,=0.57(squarel w,=0.745(circles, w,=0.83(tri-
angles. (b) The initial profiles of the discrete breather solutions in
semilogarithmic scale for the frequencieg,=0.59 (solid line),

is always higher than the amplitude of oscillation of the right,, =0.62 (dashed ling w,=0.745 (dotted ling, and w,=0.83
neighbor particle. We are not aware of the similar result for(dash-dotted ling N=90. The solution withw,=0.62 has the least
the Klein-Gordon chains with interaction of the form localization length, because its frequency is very close to the critical
W(6,.1— 6,). Therefore, we believe that this asymmetry is one w ~0.6325.

due to the more general form of interaction potential

U,(6,,6,.1) used here.

The exponential character of discrete breather solution lo- {1=
calization is proved with Fig. (b) (note a semilogarithmic
scalg. Two localization lengths are clearly seen for the fre-
guenciesw,<0.6 because of the tails oscillations at the fre-

qguency 2vy,.

Let us find the localization lengths for oscillations with

frequencies lw, (1=1,23...). An ansatz GE]')
=A/||"e'" !, being substituted into the E@16) with C
=1, gives

1202+ 1+ x(& 4 £) =0, (19)
so that

(1 1P0d) = J(1-1%wp)?— 4x?
| — 2X .

(20

For exponentially localized solutions we have to addpt
<1 asn— +x. Therefore, for the frequency range,,,,/2
<wp<wnpi, and for y=-0.136<0,

—(l-wp)t \/(1—a)§)2—4)(2>

5 0 (21)

4ot —1—(4wi—1)°—4x?
27— 2X

0. (22)

It is easy to check that ab.= 2/5~0.6325 both localiza-
tion lengths are equak(= — ¢»), and below this frequency
|£5|>]44] (see Fig. 8 This means that the first Fourier har-
monics decays faster than the second one, and at some dis-
tance from the breather center the oscillations become domi-
nated with the harmonics with the largest absolute valug of
[44] (I=2 for our casg resulting in antiphase character of
neighbor particle oscillations{(<0), what was the reason
for plotting absolute valug¢d,(0)| in Fig. 7(b). For the fre-
guencies close to, [w,=0.62 in Fig. 1b)] both localiza-

tion lengths are close to each other, therefore, domination of
the second harmonics is not very pronounced and can be
observed only for long chains. At these frequencies the dis-
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FIG. 8. The dependence of localization parametgrson the
breather frequencyy, .

crete breather solution is mostly localized because of the 301
minimum of overall decay factor max{,|Z,|) (see Fig. 8.

Figure 8 shows that for the breather frequeney ap-
proachingw,,,/2 the absolute valug,|— 1, and the second 204
harmonics tends to be delocalized, while the first harmonics$
oscillations remain localized witti;~0.2. As a result, upon & 15
decreasing the frequency below the valuewpf,/2 the dis- - =
crete breather solution evolves into the phonon-breather so 1.0 ——
lution with the central part oscillating at the frequensy, =
and the rest of the chain performing nondecaying, Dut- 051 =056 I
of-phase oscillationgsee Fig. 9. \

Phononbreather solution is unstable because of the Hopf 00 02 04 o8 _ o8 10
like instability from collision of localized mode with the C
phonon bandcf. Figs. Ga), 6(b)], but the main instability at
C=1 comes from the 1:2 resonance with the phonon band 103
The appearance of the last instability can be observed in the ] (c)
right lower corner of Fig. @) as a collision of the Floquet ] o'
eigenvalues corresponding to the extended modes with th 1 L'
time shift mode eigenvalue at1. An energy of the phonon- ] / '\l
breather solution diverges linearly with a system shte

Epnb(N)=Ep+«N. An out-of-phase character of phonon =3 1-g---E----------------:}h-------ll-llllllllllliii-
oscillations leads to a dependence of a breather Barn ] \
the parity of the system siZd. For example, for the case of 14

=0.55 we haveEdN?,(N)=0.488919 4 0.126 199 & 1w, - 0,=0.56
for odd N, and E;;*",(N)=0.5454805-0.126 199 & for 1 -
evenN.

The amplitudes of the central particle displacements anc ~ 0-1 y T y T " T y T y 1
the values of the breather energy for the whole frequency 0.0 0-2 04 cC 0.6 0.8 10
range (including obtained phononbreather solutiprere
summarized in Figs. 16), 10(b). It is clearly seen that the FIG. 9. Phonon-breather solution far,=0.56 (a) and its sta-
discrete breather solution originates from the lower edge objiity analysis(b,c).
the phonon band.

The single-site discrete breather solutions with the frequestion of existence of discrete breather solutions in this
quency from the lower allowed range wfa/3<w low-frequency region. Most probably, the answer is negative,
<wpmin/2) could not be continued up to the value of the because the abrupt decrease of the step in coupling parameter
coupling constanC=1. The reason is most probably the C has been observed in our simulations already @r
low computer precision for the Newton method to follow =0.1/0.2 for all nonresonant low frequencies. Remarkably,
single-well breather solution with the initigbr final, for that at this failure of the Newton method the isolated Floquet
=7/ wp) central particle displacement at the top of the po-eigenvalue corresponding to localized mode is located at the
tential barrier between two neighbor wells. Some modifica-unit circle and has the phase of about 0.2, so it is not the case
tion of computational technique is required to answer theof bifurcation associated with a collision at1.
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FIG. 10. (& The maximum positive displacements of the central C
particles of one-sitésquarey two-site in-phasécircles, and two- o _
site out-of-phasétriangle$ breather as a function of breather fre-  FIG. 11. A two-site in-phase discrete breather soluti@nand

quencywy, . For the two-site breathers the open symbols show thdts stability analysigb) for w,=0.76.

displacement of the left central particle, and the filled ones stand for

the right particle displacementb) The frequency dependence of

the energy of one-sitésquare} two-site in-phase(circles, and  that the main instability comes from the pair of Floquet ei-

two-site out-of-phasétriangles breather. Attention should be paid genvalues moving on the real axis frofil (we don't report

to the semilogarithmic scale. additional small instabilities foiv,<2w,a¢/3, Which have
the same nature as for the one-site discrete breathbe
bigger Floquet eigenvalue is always real and grows from

As a result of a finite precision of calculations, the solu-1.00 (the matter of precision of eigenvalue calculajiat
tions other than low-frequency single-well discrete breathetw,=0.85 to 9.12 aiw,=0.57.
solutions (double-frequency single-well solutions, solutions  Due to the asymmetry of the interaction potentigl the
with the central particle being trapped in the secondary poleft excited particle of a two-site in-phase breather solution
tential well or performing large-amplitude two-well oscilla- has a higher oscillation amplitude than the right one. There-
tions) could have been found f@ =1 depending on the sign fore, the initial profile for this two-site breather has a maxi-
of the central particle initial displacement@t=0. The ob- mum at only one of the chain sites, as in the case of the
tained double-well solutions are beyond of the scope of th@ne-site solution. The only difference is that the amplitude of
present paper and can be a subject for more detailed fututée right(this time excitedl neighbor to the central particle is
investigations. higher than the amplitude of the lefhonexcited one. The
frequency dependence of initial displacements for the two
central particles and of the breather energy are shown in
Figs. 1Ga) and 1@b), respectively.

Two kinds of two-site breather solutions were obtained in  The two-site out-of-phase breather solutions with origi-
the frequency range 0.5650,<0.85. The in-phase two-site nating coding sequence (.,0,0,-1,1,0,9...) were found
discrete breather solution originating from the coding seto exist atC=1 only in the frequency range 0.5%wy
quence (. ..,0,0,1,1,0,0...) [45] and shown in Fig. 1(B) =<0.6385 (at higher frequencies the solution could not be
was found to exist and to be unstable for all the frequenciesontinued toC=1 because of the collision with localized
from this range. The stability analydisee Fig. 1lb)] shows mode at+1). The form of the solution and its stability analy-

B. Multibreather solutions
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chain[43]). The initial profile for this breather has no defi-
nite symmetry. Nor the maximum positive displacements of
two central particles have definite ratio. Both the maximum
displacements are depicted in Fig.(40 The energy of this
breathef{depicted in Fig. 1()] is larger than the energy of
in-phase two-site breather.

V. SUMMARY AND OUTLOOK

In this paper we have investigated the rotational motion of
molecules in a zig-zag hydrogen-bonded chain. Using the
numerically exact procedure, we have obtained single-well
orientational discrete breather solutions starting from the an-
ticontinuum limit.

The one-component system considered is characterized by
nonlinear on-site potential and nonlinear interaction term,
dependent not only on the differencé, (. — 6,,), but also on
both angles. Although this system cannot be restricted to the
pure case of Klein-Gordon or Fermi-Pasta-Ulam chain, it
reveals the features of both. Therefore, we were urged to use
a proper modification of the two corresponding ways of in-
troducing the anticontinuum limit into the system Hamil-

S tonian.
o The system admits discrete breather solutions with the
1.0 frequencies in the gap between the phonon band and the
region of 1:2 resonance. These solutions bifurcate from the
b lower edge of the phonon band and have asymmetric profile
(b) due to the more general character of interaction potential.
0.0 " T " T y T " T g 1 They are stable down to the breather frequencies entering the
bt 0.2 0.4 0:6 B8 14 parametric 2:3 resonance region. A presence of two localiza-
tion lengths is clearly seen for discrete breather solutions
] with the second harmonics close to the upper edge of the
(c) — phonon band. Delocalization of the second harmonics near
1oy " the upper edge of 1:2 resonance region gives rise to phonon-
ol breather solutions obtained in that resonance region.
..--"' Both in-phase and out-of-phase two-site discrete breather
. solutions are found to have no symmetry and to be unstable
u u for all the frequencies the breathers exist. The region of in-
" '_““““““““I"“"“"I phase breathers existence coincides with the region of exis-
tence of single-site breather solutions, while out-of-phase
" breathers could be continued up to the coupl@w 1 (our

] "u, realistic systemonly for frequencies close to 1:2 resonance
01 ©=0.60 = region.

] The single-well discrete breather solutions with the sec-
00 02 04 06 08 10 ond harmonics below the phonon band have not been ob-
C tained in this study because of the numerical failure of the

Newton method. Some modification of computational tech-

FIG. 12. A two-site out-of-phase discrete breather solut@n nique is required to consider low-frequency periodic solu-

and its stability analysigb,c) for w,=0.60. tions with the trajectories of central particles close to the top
of the interwell potential barrier. A detailed study of discrete
breather solutions with two-well central particle oscillations,
sis are represented at Figs.(d2(c). The solution is un- which can be compared to the results for the Klein-Gordon
stable forC=1 for all frequencies it exists, the largest Flo- chain with double-well on-site potentigd1,42, as well as of
quet eigenvalue ranging from 4.29@$=0.6385 to 39.30 at multiwell rotobreather solutions, would be a promising top-
w,=0.57. But this solution can be stable at the small valuesdcs for future investigations.
of the coupling parametet, as it is illustrated by Fig.12c As a final remark, we have to note that all the results of
(cf. the stability of out-of-phase two-site breather in Klein- existence and stability properties of one- and two-site dis-
Gordon chain with the soft potentig§B9] and instability of  crete breathers reported in the present paper have been ob-
antisymmetric mode centered on heavy particle JoFPU  tained using the specific parameter values of ice. For the

1.5+

Phase

0.5 - ©,=0.60

Al
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materials with other parameter valu@sir model is sensible ACKNOWLEDGMENTS
to zig-zag angle &, reduced covalent bond lengih and

reduced on-site dipole rotation barrier  height ) . .
4we0RU§°)/q2) the linear phonon spectrum may admit no suggestions. This work has been supported in parts by the

discrete breather solutions with the frequencies below thg%esearch Commission, University of Patras, Gran.t C. Cara-
band, or the stability properties of some discrete breatheiheodory No. 1911/98, and by the INTAS Foundation under
solutions may be reversed. Grant INTAS 97-0368.

We thank A. V. Zolotaryuk for valuable discussions and

[1] A.A. Ovchinnikov, Zh. Eksp. Teor. Fiz57, 263 (1967 [Sov. [25] A.V. Zolotaryuk and St. Pnevmatikos, Phys. Lett1A3 233

Phys. JETRB0, 147 (1970]. (1990.
[2] AJ. Sievers and S. Takeno, Phys. Rev. Létt. 970 (1988. [26] S. Pnevmatikos, A.V. Savin, A.V. Zolotaryuk, Yu.S. Kivshar,
[3] S. Takeno and A.J. Sievers, Solid State Comnif. 1023 and M.J. Velgakis, Phys. Rev. 43, 5518(1991); S. Pnevma-
(1988 tikos, Yu.S. Kivshar, M.J. Velgakis, and A.V. Zolotaryuk, Phys.

Lett. A 173 43(1993.

) . 27] A. Zolotaryuk and St. Pnevmatikos, Proceedings of the In-
[5] R.S. MacKay a_nd S. Aubry, Nonlinearify 1623 (1994. 27 ternationafConference on Singular Behaviour%nd Nonlinear
[6] S. Aubry, Physica DL03 201 (1997). Physics edited by St. Pnevmatikos, T. Bountis, and Sp. Pnev-
[7]J.L. Marn and S. Aubry, Nonlinearit$, 1501(1996. matikos (World Scientific, Singapore, 1988Vol. 2, p. 384.

[8] H.S. Eisenberg, Y. Silberberg, R. Morandotti, A.R. Boyd, and[2g] B. Zhou and J.Z. Xu, Phys. Lett. 236, 322 (1997.

J.S. Aitchison, Phys. Rev. Le®1, 3383(1998. [29] A.V. Zolotaryuk, P. Maniadis, and G.P. Tsironis, Physica B
[9] R. Morandotti, U. Peschel, J.S. Aitchison, H.S. Eisenberg, and 296, 251 (2001).

Y. Silberberg, Phys. Rev. Let83, 2726(1999. [30] Y.S. Kivshar and N. Flytzanis, Phys. Rev.48, 7972(1992.
[10] B.I. Swanson, J.A. Brozik, S.P. Love, G.F. Strouse, A.P.[31] M. Aoki, S. Takeno, and A.J. Sievers, J. Phys. Soc. &2).

Shreve, A.R. Bishop, W.-Z. Wang, and M.l. Salkola, Phys. 4295(1993. ]

Rev. Lett.82, 3288(1999. [32] O.A. Chubykalo and Y.S. Kivshar, Phys. Rev. 48, 4128

: . (1993; 49, 5906(1994.
[11] géTé 2;:‘;”9"";; L.Q. English, and A.J. Sievers, Phys. Rev. Lett; .y ¢z Kiselev, S.R. Bickham, and A.J. Sievers, Phys. Re8B

. 13 508(1993; 50, 9135(1994.
[12] E. Trias, J.J. Mazo, and T.P. Orlando, Phys. Rev. 18#t.741 [34] T. Cretegny, R. Livi, and M. Spicci, PhysicaT19, 88 (1998.

[4] S. Flach and C.R. Willis, Phys. Rep95, 181 (1998.

(2000. [35] G. Huang and B. Hu, Phys. Rev. &, 5746 (1998.
[13] P. Binder, D. Abraimov, A.V. Ustinov, S. Flach, and Y. Zolo- [36] N. Flytzanis, B.A. Malomed, and A. Neuper, Physicall3,
taryuk, Phys. Rev. Let84, 745(2000. 191(1998.
[14] A. Xie, L. van der Meer, W. Hoff, and R.H. Austin, Phys. Rev. [37] A.S. Kovalev, O.V. Usatenko, and A.V. Gorbatch, Phys. Rev. E
Lett. 84, 5435(2000. 60, 2309(1999.
[15] J.F. Nagle and S. Tristam-Nagle, J. Membr. Bitd4, 1 (1983. [38] M. Hornquist, E. Lennholm, and C. Basu, PhysicalB6 93
[16] G.A. Jeffrey, An Introduction to Hydrogen Bondin@xford (2000.
University Press, New York, 1997 [39] J.L. Marn, S. Aubry, and L.M. Floria, Physica 013 283
[17] V.Ya. Antonchenko, A.S. Davydov, and A.V. Zolotariuk, Phys. (1998.
Status Solidi B115, 631 (1983. [40] J.L. Marn and S. Aubry, Physica @19, 163(1998.
[18] A.V. Zolotariuk, K.H. Spatschek, and E.W. Laedke, Phys. Lett.[41] S. Neusss and R. Schilling, Phys. Rev.@, 6128(1999.
101A, 517(1984. [42] E. Coquet, M. Remoissenet, and P. TchofoDinda, Phys. Rev. E
[19] J. Halding and P.S. Lomdahl, Phys. Rev3A 2608(1988. 62, 5767(2000.
[20] J.Z. Xu and J.N. Huang, Phys. Lett.1®7, 127 (1995. [43] P. Maniadis, A.V. Zolotaryuk, and G.P. Tsiror(isnpublishegl
[21] G. Kalosakas, A.V. Zolotaryuk, G.P. Tsironis, and E.N. Econo-[44] T. Cretegny, S. Aubry, and S. Flach, PhysicaT® 73(1998.
mou, Phys. Rev. 56, 1088(1997. [45] Referring to the geometry in Fig. 1, there is no difference
[22] E.S. Kryachko and V.P. Sokhan, ifroton Transfer in between the breathers with excitas~1,n) or (n,n+1) sites
Hydrogen-Bonded Systemsdited by T. Bountis(Plenum because of the system symmetry. Upon a turn of our two-
Press, New York, 1992p. 105. dimensional chain upside down we get the same system, but a
[23] A.V. Savin and Y. Zolotaryuk, Phys. Lett. 201, 213(1995. local geometry of a pairn(—1,n) turns into fi,n+1) geom-
[24] B. Zhou and J.Z. Xu, Chaos, Solitons Fractd|s$t29 (1997. etry.

046604-10



