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Transition between ground state and metastable states in classical two-dimensional atoms
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Structural and static properties of a classical two-dimensional system consisting of a finite number of
charged particles that are laterally confined by a parabolic potential are investigated by Monte Carlo simula-
tions and the Newton optimization technique. This system is the classical analog of the well-known quantum
dot problem. The energies and configurations of the ground and all metastable states are obtained. In order to
investigate the barriers and the transitions between the ground and all metastable states we first locate the
saddle points between them, then by walking downhill from the saddle point to the different minima, we find
the path in configurational space from the ground state to the metastable states, from which the geometric
properties of the energy landscape are obtained. The sensitivity of the ground-state configuration on the
functional form of the interparticle interaction and on the confinement potential is also investigated.
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[. INTRODUCTION where classical particles exhibit Wigner crystallizat{@®].
Very recently, macroscopic 2D Wigner islands, consisting of
Wigner suggested in 1934 that a liquid to solid phasecharged metallic balls above a plane conductor were studied
transition should occur in a three-dimensiotidD) Fermi  and ground state, metastable states, and saddle point configu-
system at low densitidd]. The quest for the observation of rations were found experimentall26].
such a Wigner crystal has been the object of very intense and In a finite system there is a competition between the bulk
continuous work. After the first discovery of Wigner crystal- triangular lattice and the circular confinement potential that
lization of electrons on the surface of liquid helili], there  tries to force the particles into a ringlike configuration. Those
has been considerable theoretical and experimental progressnfigurations were systematically investigated in R27]
in the study of the mesoscopic system consisting of a finiteand a Mendeleev-type of table for these classical atomlike
number of charged particles, which are laterally confined bystructures was constructed. The spectral properties of the
a parabolic potential and repel each other through a Coulomyround-state configurations were presented in H&®&,29
potential. This system is the classical analog of the well-and generalized to screened Coulof86,31] and logarith-
known quantum dot problem. These quantum dots are atonmic [30,32—34 interparticle interactions.
like structures that have interesting optical properties and In the present paper we want to go one major step further
may be of interest for single-electron devices. These systemend calculate not only all the different metastable states but
and their configurations have been observed experimentallglso the saddle points between those local energy minima
and are important in solid-state physics, plasma physics asnd the path followed by the particles to transit between
well as in atomic physics. The classical approach is valid fothose energy minima. The present work is motivated by re-
quantum dots in high magnetic fields where the kinetic encent experimental work26] where it was found that(i)
ergy of the electrons is quenched, or for other classical syssome of the configurations did not agree with the previous
tems, such as laser cooled ions in a ffapthat are realized theoretical published one, arid) they were able to observe
by electric and magnetic fields, trapped ions cooled by lasesome of the saddle points that are the key configurations for
techniques[4], ions in a radio-frequencyRF) trap (Paul transition between different stablground or metastable
trap) [5,6] or a Penning trafp7—9] that can also serve as an states. Therefore, we also investigated the stability of the
illustration of 3D Coulomb clusterigl0,11]. Very large Cou-  ground-state configurations against the functional form of the
lomb clusters have been created recently in strongly coupledonfinement potential and the exact form of the interparticle
RF dusty plasmagl2—14 that are like a two-dimensional interaction potential.
(2D) layered system. Examples of 2D Coulomb clusters are The present paper is organized as follows. In Sec. I, we
electrons on the surface of liquid helium5] and electrons  describe the model system. In Sec. Ill, our numerical tech-
in quantum dotg16]. The vortex clusters in an isotropic nique, used to obtain the ground and metastable states, is
superfluid[17], vortices in superfluid H&[18,19, vortices in  outlined. The technique we used to find the saddle point is
a Bose-Einstein condensate stirred with a laser bE20h  similar to the Cerjan-Miller algorithnh35]. After the saddle
and in superconducting graif2l] have many common fea- points are found, we connect the saddle point to the global
tures with those of 2D charged particlg2?]. Colloidal par-  minimum or a local minimum by the “walking downhill”
ticles dissolved in watef23,24 and placed between two method. Section IV is devoted to the structural and static
glass plates are another example of an experimental systepnoperties of the ground and metastable statesNerl
~40. The configurations are analyzed and compared with
available experimental data and the results of previous theo-
*Email address: peeters@uia.ua.ac.be retical approaches. The dependence of the ground-state con-
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figuration [26] on the functional form of the confinement stable states. To circumvent this problem we employ the nu-
potential and the interparticle interaction is calculated for 9merical technique of Newton optimization that was outlined
and 16 particles. These dependences may be responsible famd compared with the standard Monte Carlo technique in
the discrepancies between some of the experimentally foungef. [28]. In this way, we are able to obtain not only the
configurations and the earlier theoretical results. The discugground state but also metastable states. It also yields the
sion on the saddle point is presented in Sec. V, and the coreigenfrequencies and the eigenmodes of the ground-state
necting path from the ground state to the metastable states é®nfiguration. Now only a small number of calculation steps
found, and we investigate the completely geometric properis needed to obtain the same accuracy. Moreover, using the
ties of the energy landscape. Our conclusions are presentedodified Newton approach, we can explore the stability of
in Sec. VI. the system in its ground-state configuration through its spec-
trum.
Il. MODEL SYSTEM By studying the characteristics of the energy landscape
) _ ) ~and the energy barrier between the different local minima,
~ The model system consists of identically charged particlegve are able to find the saddle point configurations that are
interacting through a Coulomb repulsive interaction andyery important and are the key configurations for transition
moving in a 2D plane where they are confined by a paraboligetween different stable states. The technique we used to find
potential the saddle point is explained in more detail in H&fZ], and
is similar to the Cerjan-Miller algorithn{35]. After the
2 1 saddle points are found, we connect the saddle point to the
H= a > — > V(r)). (1)  9lobal minimum or a local minimum by the “walking down-
& =] ri—ry| T hill” method. In this algorithm the direction of the steepest
gradient is followed to force the system to transit from the
The confinement potentiad(r) = m* w?r? is taken circular ~ saddle point state to the local minimum state. Which mini-
symmetric and parabolic, whera* is the effective mass of mum is finally reached depends on the initial step, therefore,
the particlesq is the particle chargey, is the radial con- Wwe repeat this procedure several times to determine both
finement frequency, and is the dielectric constant of the minima that the saddle point state connects. Thus the con-
medium the particles are moving in. Note that for the quanfecting path followed by the particles to transit between
tum dot problem an additional term appears in @, which ~ those energy minima is found, from which the geometric
is the kinetic energy of the particles, which is absent in ourproperties of the energy landscape are obtained.
statical classical problem. Here the motion of the particles is
restricted to the X,y) plane. To exhibit the scaling of the
system, we introduce the characteristic scales in the problem:
ro=(2g%mewj)* for the length andE,=(mwiq*/2¢%)2 In Table I, we list forN=1,2, . .. 40 theenergy per par-
for the energy. After the scaling transformations ( ticle E/N in the ground state and in the metastable states,
—rlrg,E—E/Eg), the Hamiltonian can be rewritten in a where we also list the energy difference with the ground state
simple dimensionless form as AE/N. The configuration is indicated by the number of par-
ticles in the different rings, the position of the center of the
ring and the radius of the different rings, the width of the
H=S — 1 —+ S V() 7 ring that is defined as the difference of the maximum radius
= |ri_rj| i v and minimum radius in the same ring, and the energy of the
lowest three normal mode frequencies of the ground state are
with V(r)=x%+y? and which only depends on the number also given in Table I. This table is rather exhaustive and
of particles N. The numerical values for the parametersshould be compared with a similar one published in R2S]

wo,Fo,Eo for some typical experimental systems were givenfor & logarithmic interacting system. _
in Ref.[27]. For different values ofN there exist different possible

values forE/N that are nothing else than the metastable
states. The difference in energy between the metastable and
the ground state is given in the third column and the corre-
Due to the presence of the confinement energy and thgponding configuration in the fourth column. Note that with
electron-electron Coulombic interaction, a complete descripincreasingN the number of metastable configurations in-
tion of the cluster system is complicated and can't be ob<reases and in generébut not always the widths of the
tained analytically. Therefore, we used the Monte Carlorings for metastable configurations are larger and the central
simulation techniqué36] that is relatively simple and rap- ring/particle is not exactly located in the center of the para-
idly convergent and provides a reliable estimation of the totabolic potential well. For sufficiently largsl, the simple ring
energy of the system in cases when relatively small numbestructure gradually disappears in the center and the triangular
of Metropolis steps is sufficient. However, the accuracy ofWigner lattice appears. There is a competition between two
this method in calculating the explicit states is poor in certaintypes of ordering: ordering into a triangular-lattice structure
cases. It becomes more difficult for clusters with a large(Wigner lattice and ordering into a shell structure, which
number of particles, which have significantly more meta-leads to clusters with interesting self-organized patterns that

IV. GROUND STATE AND METASTABLE STATE

IIl. NUMERICAL APPROACH
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TABLE |. The ground state and the metastable statedlifed, . . ., 40Coulombic particles confined in a 2D parabolic well. We give the
energies E/N), AE/N, the shell structureN,,N,, .. .), theradius and width of the shell, and the lowest three normal mode frequencies
of the ground-state configuration. The energy is in unitEgfthe coordinate is in units afy, and the frequency is in units @folﬁ.

N E/N A EN Configuration Radius Width of
(Emetastable = of the ring ring Lowest Eigenfrequency
Egroundstate)/ N
1 2 3
1 - - 1 - -
2 0.75000 - 2 0.50000 0 1.41421 | 2.44949
3 1.31037 - 3 0.66090 0 141421 | 1.73205 | 244949
4 1.83545 - 4 0.78219 0 1.25189 | 1.41421 | 1.86483
5 2.33845 - 5 0.88288 0 1.02886 | 1.41421 | 1.94009
2.36556 0.02711 14 0 ’
0.99280 0
6 2.80456 - 1,5 0 091889 | 141421 | 1.72935
. 1.05916 0
2.82476 0.02020 6 0.96968 0.07205
7 3.23897 - 1,6 0 1.09890 | 1.41421 | 1.45239
1.12232 0
8 3.66890 - 1,7 0 1.10688 | 1.22689 | 1.41421
1.18223 0
9 408812 - 2,7 0.43211 0.02724 | 0.12681 | 0.77540 | 0.91669
1.30184 0.16201
4.09426 0.00614 1,8 0
1.23909 0
10 | 448494 - 2,8 0.42649 0 0.08910 | 0.97483 | 0.98520
1.34879 0.17677
448816 0.00322 37 0.56774 0.05311
1.41293 0.14064
11 | 4.86467 - 38 0.56042 0.00270 | 0.02451 | 0.73727 | 0.83817
1.45220 0.14305
12 | 5.238%4 - 39 0.55937 0 0.53084 | 0.89022 | 1.15011
1.48975 0.14650
5.24204 0.00310 48 0.66623 0
1.54800 0.10544
13 | 560114 - 49 0.66200 0.00176 | 6.002E-4 | 0.75236 | 0.75546
1.58123 0.11547
14 | 595898 - 410 0.65950 0.01385 | 0.04940 | 0.79446 | 0.84578
1.61368 0.13137
5.96269 0.00371 59 0.75410 0.00947
1.66586 0.07368
15 | 6.30758 - 510 0.75105 0 0.45989 | 0.68255 | 0.75956
1.69402 0.09015
6.31554 0.00796 1,59 0.02923
091617 0.04167
1.74361 0.11835
16 | 6.64990 - 1,510 0 0.49237 | 0.66241 | 0.92179
0.91101 0
. 1.76825 0.14050
6.65235 0.00245 5,11 0.74717 0.00441
1.72320 0.12766
6.65619 0.00629 1,69 0
: 0.97881 0.06197
1.81945 0.03724
17 | 6.98290 - 1,6,10 0 0.05416 | 0.54796 | 0.55927
0.96956 0.00552
1.84176 0.07609
6.98433 0.00143 1,511 0.00536
0.90549 0.00657
1.79481 0.16168
18 | 7.30814 - 1,6,11 0.00300 0.00614 | 0.65492 | 0.67820
0.96447 0.00653
1.86476 0.10514
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TABLE I. (Continued.

7.31522 0.00708 1,7,10 0
1.02998 0.06694
1.90946 0.02564

19 | 7.63193 - 1,6,12 0 0.66759 | 0.70531 | 1.09892
0.96261 0
1.88679 0.13692
7.63280 8.7E4 1,7,11 1.12602E-4

1.02314 0.00329
1.93083 0.05476
20 | 7.94961 - 1,7,12 0 1.031E4 | 0.62728 | 0.69260
1.01819 0.00619
1.95219 0.07245
7.95623 0.00662 1,6,13 0.01041
0.95822 0.00777
1.91011 0.21495
21 | 8.26588 - 1,7,13 0.00142 0.00317 | 0.63738 | 0.71452
1.01487 0.01000
1.97328 0.13711
8.26645 57E4 2,712 0.39273 0.03627
1.12744 0.19935
201192 0.15137
8.26756 0.00168 1,8,12 0
1.07321 0.18661
2.01156 0.11052
22 | 857418 - 28,12 0.39458 0 0.20341 | 0.40180 | 0.55690
1.17613 0.27077
2.06959 0.10297
8.57568 0.00150 27,13 0.38900 0
1.12400 0.19724
2.03144 0.18137
23 | 8.87758 - 28,13 0.38885 0.00118 | 0.12867 | 0.40830 | 0.58505
1.16958 0.24227
2.08895 0.14446
8.87859 0.00101 38,12 0.50794 0.05120
127214 0.26208
2.12689 0.12204
24 | 917590 - 38,13 0.50417 0.00326 | 0.02762 | 0.40652 | 0.55310
1.26512 0.19163
214415 0.14418
9.17756 0.00166 39,12 0.51335 0
1.31367 0.22226
2.17908 0.09571
9.17987 0.00397 2,814 0.38911 0
1.16535 0.24188
210691 0.16950
25 | 947079 - 39,13 0.50710 0.01278 | 0.11377 | 050320 | 0.52713
1.30505 0.19944
2.19669 011122
9.47292 0.00213 38,14 0.50283 0.00983
1.26038 0.17317
216111 0.15226
9.47485 0.00405 4,813 0.60037 0.02163
1.35438 0.15541
219750 0.13994
26 | 9.76273 - 39,14 0.50452 0.00244 | 0.10409 | 0.56681 | 0.61503
1.29914 0.18436
) 221296 0.12611
9.76383 0.00110 49,13 0.59791 0.03559
1.39030 0.15296
2.24911 0.05624
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TABLE I. (Continued.

27 | 10.05086 - 49,14 0.59494 0.01026 | 0.01311 | 0.37880 | 0.56307
1.38378 0.13764
2.26391 0.12630

10.05273 0.00187 4,10,13 0.59876 0.06133
1.42670 0.17691
2.29743 0.10036
10.05382 0.00296 39,15 0.50456 0
1.29489 0.19007
. 222843 0.14683
28 | 10.33562 - 410,14 0.59556 0.02917 | 0.05682 | 0.17410 | 0.47678
1.41936 0.16578
231219 0.07189
10.33778 0.0022 49,15 0.59259 0.01374
1.37843 0.12710
2.27922 0.12678
29 | 10.61807 - 4,10,15 0.59296 0.02873 | 0.03911 | 0.12706 | 0.57988
1.41346 0.15640
2.32654 0.12364
10.61926 0.00119 510,14 0.67955 0.05418
1.49439 0.14576
2.35987 0.08672
10.6204 0.00236 411,14 0.60235 0.01961
1.45375 0.34364
2357156 0.20754
30 | 10.89732 - 5,10,15 0.67715 0 0.29745 | 0.48458 | 0.56208
1.48825 0.11070
2.37299 0.10212
10.89852 0.00121 411,15 0.60536 0.05952
1.44557 047214
2.36996 0.31619
10.89999 0.00268 1,5,10,14 0.02842
0.82995 0.04494
1.56500 0.19679
240474 0.12020
31 | 11.17388 - 511,15 0.67540 0.03417 | 0.02351 | 0.11182 | 0.27895
1.52072 0.13067
241797 0.09374
11.17433 4.52E-04 1,5,10,15 0
0.82568 0
1.55780 0.16498
241745 0.13735
11.17541 0.00153 1511,14 0.13069
0.84077 0.31263
1.60637 0.63425
243703 0.13594
11.17559 0.00171 5,10,16 0.67428 0.01149
1.48265 0.12077
2.38703 0.12035
32 | 11.44658 - 1511,15 0.01272 0.02971 | 0.18804 | 0.45106
- 0.82275 0.00963
1.58794 0.18210
246152 0.13245
11.44793 0.00135 511,16 0.67326 0.01889
151515 0.13987
243064 0.11569
33 | 11.71564 - 1,6,11,15 0.00316 0.06805 | 0.21724 | 041934
0.87730 0.02335
1.65369 0.13683
2.50507 0.08796
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TABLE I. (Continued.

11.71703 0.00139 1,5,11,16 0.00620
0.81977 0.01483
1.68187 0.17523
2.47350 0.14325
11.71864 0.00300 1,6,10,16 0
0.87529 0.00187
1.62032 0.11129
247485 0.12766
34 | 11.98262 - 1,6,12,15 0 023793 | 0.35495 | 0.78177
0.87864 0.02189
1.68144 0.17867
2.54493 0.09451
11.98289 0.00027 1,6,11,16 0.00556
0.87354 0.00939
1.64704 0.13013
2.51654 0.12010
11.98558 0.00296 1,7,11,15 0.00468
0.93261 0.06001
1.71734 0.12580
2.54667 0.01855
11.98727 0.00465 1,5,11,17 0.01113
0.81719 0.00832
1.57679 0.18416
248571 0.15459
35 | 12.24693 - 1,6,12,16 0 0.06585 | 0.46277 | 0.47916
0.87504 0.00112
1.67373 0.16105
255657 0.10515
12.24981 0.00288 1,6,11,17 0.00451
0.87146 0.01293
1.64141 0.14624
252794 0.13569
12.25002 0.00309 1,7,11,16 0.00420
0.92801 0.02655
1.70941 0.09325
2.55834 0.09193
12.25101 0.00408 1,6,13,15 0.01461
0.87903 0.10204
1.71046 0.32812
2.58316 0.12484
36 | 1251081 - 1,6,12,17 0.00184 0.00895 | 0.52837 | 0.53908
0.87232 0.00155
1.66764 0.16141
2.56767 0.12828
1251106 0.00025 1,7,12,16 0.00410
0.92629 0.02221
1.73496 0.10248
259790 0.06247
12.51242 0.00161 1,6,13,16 0.00514
0.87411 0.03819
1.70182 0.23524
2.59536 0.13364
12.51353 0.00272 1,7,13,15 0.04708
0.93104 0.11122
1.77162 0.29709
2.62285 0.09392
37 | 1277190 - 1,7,1217 6.69934E-5 0.00321 | 0.26342 | 04995
0.92319 0.01460
1.72858 0.09282
2.60841 0.09598
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TABLE I. (Continued.

12.77237 0.00047 1,7,13,16 0.00222
0.92651 0.03263
1.76093 0.16786
2.63574 0.08191
1277322 0.00132 1,6,13,17 0.01850
0.87539 0.09154
1.69396 0.43213
2.60500 0.31271
38 | 13.03045 - 1,7,13,17 0.00193 0.00613 | 0.16459 | 0.46835
0.92338 0.01505
1.75392 0.14065
2.64616 0.09887
13.03251 0.00206 2,7,13,16 0.39101 0.29219
1.03060 0.28147
1.81565 0.46806
267072 0.29041
13.03283 0.00238 271217 0.38939 0.36450
1.02573 0.26924
1.78253 0.37577
2.64551 0.27405
13.03310 0.00265 1,7,14,16 0.00104
0.92882 0.04978
1.78630 0.28209
267136 0.13476
13.03330 0.00285 1,8,1217 0.04854
0.97547 0.29342
1.78442 0.18298
2.64648 0.14053
39 | 13.28790 - 2,7,1317 0.38350 029403 | 0.22264 | 0.31318 | 0.36571
1.02814 0.23971
1.80664 0.45865
268158 0.34537
13.28822 0.00032 1,7,13,18 0.00341
0.92117 0.02846
1.74784 0.19498
2.65621 0.15742
13.28847 0.00057 17,1417 5.51205E-4
0.92531 0.02216
1.77850 0.24325
2.68185 0.15440
13.28943 0.00153 2,7,14,16 0.36469 0.00384
1.03296 0.25912
1.84277 0.40141
2.70610 0.14410
40 | 1354192 - 281317 0.36712 0.04211 | 0.12420 | 0.23757 | 0.31601
1.06839 0.29836
1.86379 0.26452
2.72046 0.11180
13.54228 0.00036 2,8,14,16 0.38177 0

1.07381 0.35609
1.89825 0.37389
2.74124 0.12705
1354313 0.00121 2,7,13,18 0.36081 0

1.02386 0.22699
1.80203 0.29722
2.69285 0.23060
13.54359 0.00167 12,8,14,17 0.29641
0.61782 0.19559
1.08838 0.20627
1.82482 0.56223
2.71541 0.3553
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FIG. 1. The lowest eigenfrequency aAd/N as function of the exponent of the confinement potential (n)
number of particles.

. FIG. 3. The phase diagram for the ground state of nine particles.
show concentric shells at small and hexagonal cores sur- the dependence on the form of the confinement potential and the
rounded by circular outer shells at larje interparticle interaction is shown.

The lowest nonzero normal mode frequency is a measure
for the stability of the ground state, it tells us how easy ory
difficult it is to deform this state. Therefore, intuitively we

W(l)ulddexpect/that Lhe value ofdt?s frequet?cy WOUIdhbefCO “always, the outer ring has the largest width. The width of the
related toAE/N, the energy difference between the first rings increases with increasing and at the same time the

metastable and the ground state. Those values are plotted Wdest fing becomes often the next to outer ring

Fig. 1 as function oN. Notice that there exist such a corre- \ye compare our ground-state configuration with available
lation in general, but that this is not true for Blivalues, €.9., gy nerimental datf26] and the results of previous theoretical
for N:1.2’18’19’20121’30 there IS No cqrrelatlon.' . approachef27,30,32,33 For very small number of particles
_The rings sometimes have a finite width that is shown inN_16) " all theoretical and experimental results for the
Fig. 2 as a function ofN. Notice that the widths fall into ground-state configurations are the same except\fer9
and 15 whatever kind of interparticle interaction. The experi-
o mental observatiof26] for the ground state of nine particles
1L A is (1,8 and for 15 particles it ig4,11), which compares to
: . ] our result(2,7) and (5,10, respectively. For 18 N< 30, the
oom o™ O' ooegﬁégog%émg‘o‘ém ] experimental result and all the calculated patterns present
] three shells. Our result differs from the experimental data of
LI Ref.[26] for N=16, 17, 20, 22, 24, 25, 27-30. Because of
the discrepancy between some of the experimental configu-
01 3 rations and the “numerical exact” theoretical ground-state
- ] configurations it is possible that experimentally the interpar-
" o ] ticle interaction is not exactly a Coulombic potential and the
am T confinement potential is not purely quadratic. Therefore, we
. = . investigated the effect of such deviations of these potentials
mEn . on the ground-state configuration. As an example, we took
0.01 | . E N=9 and use confinement potentials-r" and for the in-
first rin ] terparticle interaction/~r~™. The resulting phase diagram
g ] . - . ;
second ring . is shown in Fig. 3. Notice that_, depgndmg on the values of
third ring - . 1 and m, the system can be either in t&,8 or the (2,7)
| ] . . . . .
fourth ring [t b L L configuration. For the harmonic confined Coulomb interact-
N ing system, i.e.,if,m)=(2,1) the system is in the,7) con-
figuration but from the phase diagram it is clear that if we
FIG. 2. The width of the different shellogarithmic scalpas  change the confinement potential slightly and make it more
function of the number of particles. steep up ton=2.2 the configuration(1,8) becomes the

hree bands(i) width <0.003, which is practically a perfect
ring, (i) width ~0.02, and(ii) width ~0.5. Usually, but not

Width of Ring (logarithmic scale)

4pOon
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5 1.5 |- - % |
5
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8_ ® saddle point
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0.5 1 1 1 1 1 12 A R S N NS R
1.6 2.0 2.4 2.8 3.2 3.6 4.0 ’ 1.2 0.8 0.4 0.0 0.4 0.8 1.2
exponent of the confinement potential (n) yir

FIG. 4. The phase diagram for the ground state of 16 particles. FIG. 5. The trajectories of the particles making a transition from

The dep_end(_ance on th? form of the confinement potential and thg, ground state to the metastable state and the saddle point con-
interparticle interaction is shown. necting them for five particles

gcr)?#igir:':izgr?.f(;hringxgaerr!igzgtsvlgs oilg)et[ezrg ined ground-statgaddle point configurations are also obtained, and the energy

. : . . landscape is shown schematically in Fig. 6. Similar results
There is also a difference with the experimental data an or theN=6 energy landscape were found earfiég]. There
our results folN=16 particles. Therefore, we did the same gy P o

) I . I .~ are two saddle points for this case, one of them is very close
investigation and present the phase diagram in Fig. 4. Notic . , .

; i . . . To the metastable state in both energy and configuration, and
that the harmonic confined Coulomb interacting system, i.e

) . 'Wwill therefore be hard to see experimentdl®6]. In Fig. 6,
(n,m)=(2,1) is again close to the phase boundary betwee . : g
the configuration(1,5,10 and (5,1. This is probably the the insets show the arrangement of the particles for the dif

; . : : ferent states. Using the “walking downhill method,” we
explanation why the experimental configurati@®] differs . ) .
) . . L ound the central particle slowly moving to the periphery of
from our simulation results, since it is hard to guarantee th

(n.m) is exactly(2,1) during the experiment e cluster. We would like to stress that the configuration
7Notice that ]%r t;oth\l=9gandN=I)16 the ﬁetastable con- with six particles on a perfect ring is a saddle point state in

figuration has an energy very close to the one of the grounéomraSt to the claim made in R¢B9]. This can be under-

. ; t from the following simple m | calculation: if thr
state, the difference is less than 0.2%. These metastable co&-fr?igl eso aret pe; a((:)eg on%scircpl)eewitmzd;lasg?] ?hg c ornterse €
figurations correspond indeed with the experimentally Ob'of an equilateral triangle, and the other three particles on

s_erved ones. Consequen_tly, an_alternative explqnation for thaenother equilateral triangle’s corners with radBisotated
difference with the experiment is that the experimental con-

figuration got stuck in the metastable configuration. over 60°, the energy is

V. SADDLE POINTS 2/3

9/1+c%\ 3 1 1+c 2
Between metastable states a_nd the ground state there are E(c)= 21 36 1+c + J3c + JI-c+c2
potential barriers. The system will prefer to transfer over the 3)

lowest potential barrier, which is the saddle point configura-
tion between these energy minima, in order to transit from
one stable configuration to the other. We plot in Fig. 5 thewherec=A/B. This function is shown in Fig. 7. It is clear
trajectories of the particles for thd=5 system making a that the perfect circle configuration, i.c=A/B=1 is a
transition from the ground staté) to the metastable state saddle point, and that the minimum is obtained if three par-
(1,4 and the saddle point connecting them. The trajectoriesicles move a bit to the center, and the other three particles
of the particles can also be obtained by moving one of thenove away from the centdsee the insets in Fig.).7Both
particles to the center of the system. shown metastable states are connected by a rotation over
For six particles, the ground state 5 and the metastable 120°. The two minima in Fig. 7 correspond to the same
state(6), corresponding to the hexagonal configuration, areconfiguration in which inner and outer ring are interchanged.
obtained. Moreover, the unstable equilibria associated wittComparing our results with Fig. 2N(=6: ground state,
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i [ ]
N=
2835 N=6 . e . AL‘
5 ° B
© (]
2.830 ° .
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| E/E0-2‘.826895 E/E ~2.824766
— ®
ur 2825 . 7 N
m] I « E/E,~2.824760 E/E =2.824760
~ FIG. 6. The energy landscape
S 2.820F * ° o ;Lo ° i—o and transition between the ground
T
@ I E/E =2.804556 5 state to the metastable states for
c 0 le) [e) B . .
w six particles.
2.8151- o © o °
A/B=0.94 A/B=1.07
2810 ® ground state
L © saddle point-1
® saddle point-2
2,805k O metastable state
Path

saddle point configuration, and the hexagonal metastablereasing the number of particles, more saddle point states are

statg of Ref.[26], we see that the other saddle point is ob-obtained and the energy landscape gets more complicated.

served experimentally. For example, for nine particles, we obtain three saddle points
A list of the saddle point energies up to 20 particles isand one metastable state. The results for the trajectories and

given in Table Il. From this table, we notice that there is onlyenergy landscape are shown in Fig. 9. Again, the ground-

one saddle point state fod=3,4,5 particles. But, on the state configurations corresponding with the black and the

other hand it is well-known that there ar&<1) saddle white dot are connected by a simple rotation, i.e., a symme-

points when there arke minima. ForN=3 and 4 one saddle try operation.

point is found, although there is no metastable configuration.

The reason is that the saddle_pomt state connects two equi- VI. CONCLUSION

lateral ground-state configurations that can be obtained from

each other by a simple rotation. For the simple case of three We presented the results of a numerical calculation of the

particles, we show the energy surface and the correspondir@nfigurations of the ground and all metastable states and

configurations schematically in Fig. 8. Notice that there areheir energies, for a system consisting of classical 2D

always more saddle points than minima fér~6. With in-  charged particles that are confined in a parabolic confinement

2.82484 - —
i N=6
2.82482 |- -
2.82480 |- metastable state metastable state _
)
ui : D,
w FIG. 7. Part of the energy
. 2.82478 - 7 landscape and corresponding con-
g 5 ABo004 figurations near the metastable
ch state for six particles.
2.82476 - —
Saddle point
2.82474 |- ’ -
i ABSY
2 82472 1 1 1 " 1 1 1 1 1 1 1 1 1 1

08 090 0985 100 105 110 115
C=A/B
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TABLE Il. The energies of the ground state, the metastable states, and the saddle point

TRANSITION BETWEEN GROUND STATE AND . ..

states for different number of particleBl).

PHYSICAL REVIEW B5 046602

Number of Particles

(N)

Energy of
Ground state

Energy of
Metastable state

Energy of
Saddle point

0.75000

1.31037

1.46201

1.83545

1.92064

2.33845

2.36556

2.36829

|||~

2.80456

2.82476

2.82477
2.82689

~

3.23897

3.27913
3.28592

3.66890

3.68738
3.68957

4.08812

4.09426

4.08813
4.09530
4.10628

10

4.48494

4.48816

4.48495
4.48817
4.48940

11

4.86467

4.87829
4.87876
4.88110

12

5.23894

5.24204

5.23955
5.24209
5.24368

13

5.60114

5.61202
5.61529

14

5.95898

5.96269

5.96335
5.97235

15

6.30758

6.31554

6.30832
6.31534
6.31577
6.31617
6.31689
6.31702
6.31769
6.32205

6.64990

6.65235
6.65619

6.65117
6.65490
6.65547
6.65620
6.65648
6.65706

6.98290

6.98433

6.98614
6.98978
6.98979
6.99129
6.99373
6.99417
6.99441

7.30814

7.31522

7.31522
7.31535
7.31700
7.32046
7.32095
7.32154
7.32390

19

7.63193

7.63280

7.63358
7.63516
7.64155
7.64258
7.64266
7.64563

20

7.94961

7.95623

7.95637
7.95638
7.95639
7.95640
7.95641
7.95654
7.95693
7.95695
7.95709
7.95725
7.95739
7.95817
7.96316
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FIG. 8. Schematic view of the energy surface and projection of  FIG. 9. The energy landscape and transition from ground state
the energy and the corresponding configurations for three particlese metastable states for nine particles.

potential forN=1, ...,40. These artificial atoms undergo explanation why some of the recently found experimental

configurational changes when the system transits from theonfigurationd 26] differ from our simulation results.

ground state to the different metastable states, or between the

different metastable states. Such transitions move thro_ugh ACKNOWLEDGMENTS
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