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Canonical Hamiltonian formulation of the nonlinear Schrodinger equation in a one-dimensional,
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A canonical Hamiltonian formulation of the nonlinear Safirmer equation has been derived in this paper.
This formulation governs the dynamics of pulse propagation in a one-dimensional, periodic Kerr medium when
the frequency content of the pulse is sufficiently narrow relative to a carrier frequency, and sufficiently far
removed from a photonic band gap of the medium. Our Hamiltonian is numerically equal to the energy, and our
fields obey canonical commutation relations, so the theory can easily be quantized. We clarify the nature of the
conserved quantities associated with simple symmetries.
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[. INTRODUCTION Hamiltonian can be used to derive the exact equations of
motion using the canonical commutation relaticensd that it
The investigation of optical pulse propagation in nonlin-is numerically equal to the energy of tkeonlineay electro-
ear Kerr media often proceedsa the slowly varying enve- magnetic field. In Sec. Ill we specialize our formulation to
lope function approximatioil—3], wherein the frequency consider an effective field that varies slowly relative to the
content of an optical pulse is considered to be narrowly cenunderlying Bloch functions of the periodic mediydi]. Use

tered around a given carrier frequenay This approxima- of the;e BIOCh functions means that our re'sultln'g gquatlons
tion allows one to separate the pulse dynamics, contained A vaI|_d n the_p_re_sence of a strong periodic variation in the
' Hielectric permittivity of the medium. We then generate a

the slpwly varying envelope functions, from the pha;e aCCliaguced canonical Hamiltonian in terms of this effective
mulation due to the carrier frequency. When applied to

) i , - Field. The dynamical equation governed by this reduced
homoggnous, Isotropic med|um, this ap_prpach has begn us?—&xmiltonian is the familiar NLSE. In Sec. IV we discuss the
to derive the familiar nonlinear Schimger equation relationship between our effective fields, and an alternate
(NLSE) [1] as the dynamical equations for the envelopeapproach in which the fields of interest are considered slowly
function; when applied to a periodic structure, the approaclyarying functions that modulate a given Bloch function. In
has been used to derive both a NL$ES] and a set of Sec. v we use the reduced Hamiltonian, which, within our
nonlinear coupled mode equatiof@ME) [2,5]. In the pres-  approximations, is conserved and equal to the energy, to
ence of birefringence, a set of coupled NLSEs have beefentify two more conserved quantities: the momentum, as-
derived for a homogeneous mediy8l; for a periodic me-  sociated with space-translation symmetry; and a conserved
dium, both a set of coupled NLSEs and a set of nonlineacharge, associated with phase-translation symmetry.

CMEs have been derived6]. The dynamics of these In Sec. VI we discuss the use of the dual field and com-
envelope-function equations have often been studied by compare it with other fields used in the literature to derive the
structing a Hamiltonian formulation of the dynamical equa-NLSE in periodic media. Although we have concentrated on
tions[7-11. From such a Hamiltonian two conserved quan-deriving a NLSE, our method can be used to construct re-
tities can easily be identified, one energylike, and oneduced canonical Hamiltonians associated with the nonlinear
momentumlike. But the Hamiltonian itself is not equal to thecoupled mode equations in both isotropic and birefringent,
energylike quantity, leading to a certain confusion in the lit-periodic media. Furthermore, the dual field is generalizable
erature[12,13. One would naively expect that a nonlinear to two and three dimension45], so it can likely be used to
optical system would have two conserved quantities—energgerive equations in higher-dimensional photonic band gap
and momentum. Since the Hamiltonian itself is also con-materials.

served, however, the optical system hhsee conserved

quantities, and the interpretation of this third conserved || CANONICAL FORMULATION OF MAXWELL'S

quantity has presented some difficultig§8,12. A correct EQUATIONS

understanding of these three conserved quantities is the goal o . ) ) ,

of this paper. We begin with Maxwell’s equations in a one-dimensional,

In Sec. Il of this paper we construct a canonical Hamil-nonmagnetic medium
tonian formulation of Maxwell’'s equations in a one- _
dimensional, periodic medium with a Kerr nonlinearity, us- IE(2,0)= = podiH(z,Y), @)
ing a dual field first proposed by Hillery and Mlodind/A4]; JH(z,t)=—aD(zt)
see alsd15,16; although we here only consider classical o R
fields we formally replace the canonical Poisson bracketg/here
with the associated commutators, with a view towards even-
tually quantizing the theory. Bganonicalwe mean that our D=¢goE+P, (2
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P is the full polarizationg, is the permittivity of free space, A. Linear, periodic medium

and u, is the permeability of free space. To construct a ca- For a linear, periodic medium

nonical formulation of these dynamical equations, we intro-

duce a dual field\ [16], which satisfies % 1 A§
H=H = f dz( )

il 20

200" 26(2) y

d,A=D, €©)]
where ¢(z)=¢(z+d) is the dielectric permittivity, with
A =—H. D(z,t)=¢(2)E(zt), and whered is the periodicity of the
lattice. Using the equations of motid®) we find a linear

The dual field will serve as the canonical coordinate field.wave equation that must satisfy
We then define a Hamiltonian dens[ty6]

10e2(2) Iy =£(2) d,,A — I\ 0,6(2). (12

1
_ 2
H(z,0)= 205" +U(AY), (4 To determine the Bloch functions of E4L2), we use the
usual ansatf19]

where we have introduced the conjugate momentum field ot
p(z,t), and where A(z,t)<0,(2)e" '~ +c.C., (13

D where c.c. stands for “complex conjugate.” Substitution of
U(D)=f EdD. (5) Eg. (13) in the wave equatiofil2) gives an equation for the
0 Bloch functionsé,,

The canonical equations of motion that follow from this 1
Hamiltonian density are Eazﬁ dfle(2)]; 0,=— ,u,owib‘lu . (14
ap=— ﬁ + i &H}, (6) Because the operator in the equation is self-adjoint, it admits
N 9z|dA, real eigenvalues and orthogonal eigenfunctions.
From Bloch’s theorenh19], we can write our Bloch func-
IH tions in terms of a discrete band index and a reduced
A= wave numbek (— /d<k=m/d), S0 that6,— Oy, With
_ ik
which, using Eqs(3) and (4) are found to be precisely Eq. Om(Z) =Um(2)e™, (15
(1). Alternately, one can recovét) by using the equal-time o )
commutatorg16] where theu,, have the periodicity of the latticeyy(z)
=Uni(z+d). We note thatw = wm—k) , SO We can choose
[A(z1),p(Z/,t)]=ihd(z—2") (7)  our Bloch functions such thay(2) = 67, - We normal-
ize the Bloch functionvia
with equations of motiof16] Lo
ap f_ leﬁﬁ]k(z) 0mrkr(Z)dZ: Némm/ 5kk’ y (16)
ifi—-=[p.H], ®)

whereL is a normalization length, and where we have cho-
aA sen the normalization constaNt=L/d, which is then iden-
ih— =[A,H], tified as the number of unit cells in the normalization length.
at This choice of normalization means that our wave numbers
) o take on only discrete values, and that the difference between
where the associated Hamiltonian two adjacent wave numbers isz2L. The Bloch functions
also satisfy
H f_wH(z,t)dz 9) f"/z 0028l (2)

—, 2
-Li2 £(2) dz= powmNommw Sk (17)

is numerically equal t¢16,18
where 6, =dé,,/dz this follows by using Eqs(16) and

&= fw Hop2, JDEd D) dz, (100  (14). Atypical dispersion relation in this reduced-wave num-
—=| 2 0 ber scheme is sketched in Fig. 1; this dispersion relation is
exactly equivalent to the dispersion relation associated with
the energy in the electromagnetic field. the more familiar electric field Bloch functions.
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whereH, is defined abovéll) andHy, is the portion of the
full Hamiltonian responsible for the nonlinearity in the dy-
1.5 1 namics of the electromagnetic field. The expressi2f),
when used as a Hamiltonian with equations of motiép
o leads to the correct equation of motion fdr within the
g approximation(19) of a weak nonlinearity
5 1.0
E MOSZ(Z)F)HA:S(Z)ﬁzzA_[azA][azg(z)]
§ XPA(2)A;
—E0 | T a4 (21
E 051 9z{  e%(2)
Z
This expression can, of course, be verified by usingdi-
rectly in Maxwell's equations.
It will be useful to expres#d in terms of the classical
0.0 AT _6 . 60 0'5 0 analog of the raising and lowering operators associated with
' ’ ] | ’ the Bloch modes. To do so, we first expandz,t) and
Normalized Wave number p(z,t) in terms of the Bloch modes of the periodic medium.
FIG. 1. Sketch of a dispersion relation for a one-dimensional,We let
linear, periodic medium in the reduced wave number scheme. The w ld
wave numbers are normalized tdd. The frequencies are normal-
ized to the center frequency of the first photgnic band gap. Note that P(zt)= Z k=z,, Pmi(t) fmi( 2), (22)

the introduction of the normalization lengthmeans that the wave
numbers are discretized with adjacent wave numbers separated by
2#/L. The solid band in the diagram represents the frequency con- AzD=2 2 Apd)Omd2).
tent of a forward-propagating pulse whose dynamics are well de- m=1 k=—/d

scribed by the theory in this paper. The frequencies are confined tg
a narrow range so that third- and higher-order dispersion can b&N€ reality ofp and A requires thatpiy = Pm(—1y and A,

ignored. If the frequency content is brought closer to the photonic™ Am( ky» SO WE can express _the four complex quantities
band gap, then the range of frequencies must be made more narrolinks Amks Pm(-k)» and A,y in terms of two complex
since near the gap the curvature of the dispersion relation is quitBhode amplitudesiy,(t) andam, ) (t)

high. ;
Apdt)=\/z—A(a +al , 23
B. Periodic medium with a Kerr nonlinearity mi(0) ZNMmek( mict 8m(—i) 23
We now turn to a periodic, Kerr nonlinear medium. At -

frequencies far below any resonances in the medium, for our )= — i) 0Omk oy  al )

. . N ) Pkl ZIN (@mk—@m(—k))>
one-dimensional geometry, the constitutive relation takes the
form [1 . :

(4 and correspondlngly forA m(—y and pm—iy . Using the

D=¢(2)E+eox®(2)E®, (18 anm(t), the expansiori22) becomes

o - : ” [ &
where we assume that the nonlinearity coefficigt(z) is Azt)= D D \Jz==—amt) n(2) +c.cl,
periodic with periodd, x®)(z+d) = x®)(z). To construct the m=1 "k 2Npowme
Hamiltonian we first invert Eq(18) to get (24)

>* (19 p(zt)= "E > MO ~onTam() i) —c.C1.

o mld

D 3
E= (Z) 80)(( )(Z) (Z)
We note that sincé (z,t) andp(z,t) are written in terms of
where we have assumed th@f’E3<E. This assumption of Bloch functions that are normalized in the regier./2<z
a weak nonlinearity is justified on physical grounds: we only<L/2, they will become periodic with period. This has no
want to discuss third-order nonlinear effects, but if the aseffect on the underlying physics, because we can always con-
sumption of a wealg(®) were not valid, then we would have sider the limit whereL—o. However, it does mean that
no justification for not including fifth or higher order nonlin- when evaluating the Hamiltonig20) in terms of theA (z,t)

ear effects in Eq(18). Using Eq.(19) in Eq. (5) we find andp(z,t) given by Eq.(24), we must restrict the integration
to the region—L/2<z<L/2; and when evaluating the equal-
2 e ®(2)AY2) time commutation relation&7) betweenA (z,t) and p(z’,t)
H=H, +Hy =H — f dzo—z, (200  We must restrict botlz andz’ to be within = L/2. Adhering
—L2 4e4(2) to these restrictions, we find that using Eg4) in Eq. (20),
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and applying the orthogonality relatioi$6) to the portion  our Hamiltonian. We examine the situation where the terms
of the Hamiltonian that generates the linear dynamics, thé¢hat are related to the group velocity of the pulse @(ey),

full Hamiltonian becomes and the terms that are related to the Kerr nonlinearity and the
group velocity dispersion of the pulse are b@k7?) rela-
HZE fi o a2 tive to the largest terms in the Hamiltonian. Higher-order
mk nonlinear effects, and higher-order dispersion are not consid-
) ered, because both are assumed t@ke?). We denote the
h2eq (L2 O (z) 4 (amiki 9miki+C-C-) resulting Hamiltonian the “reduced Hamiltonian” since it is
- 2 2f vy H - | equal to the energy of the electromagnetic fieldtpz?).
16N“up -2 £7(z) [i=1 mik ©Omik Although our model formally includes third harmonic gen-
(25) eration, we ignore its effects in the following. We are justi-
fied in doing so by physical considerations. We have as-
Adopting commutation relations sumed that the underlying material is nondispersive, and
N while this may be valid for frequencies neatqg, it will
[amK(t), @m0 (1) ]= Smny Sk » (26)  likely not be valid for frequency ranges extending do
=3wmx; furthermore, the assumption of no absorption at
[amk(t),amk (1)]=0 w=3wmy Will likely be in error. We expect, on physical

grounds, that in many cases the actual material dispersion
and absorption will make any buildup of the third harmonic
Lfnlikely, so that our model will be adequate.

oF e start by using the,,(t) to define an effective field

Om(z,t) that is centered around the wave numkerk,

guarantees the commutation relations betwadaz,t) and
p(z',t) (7) for zandz' within the normalization length. In
terms of the mode amplitudes, the canonical equations
motion (8) become 18,20

.damk

1
'TZg[amk,Hl (27)

1 -
Om(z,t)= \/Ezk amk(t)el(kik)z,

which, using Eq(25) for H, give

1 .
i ! = — iKz
damk=—iw Lt iieq (L2 dZHka(s) \[L; Im(t) e, (29)
de ANz ) e o

where we have introduced the detuning
ﬁ (amiki er’niki+c.c.)

i=1 miki wmiki

X , (28) K=k—k (30)

where we have suppressed thedependence o), (z), and the mode amplitudes

x®)(2) and £(z), and the time dependence of thg,(t).

This Eq.(28) is equivalent to Eqg.1) and(2) with Eq. (19). Gmi( 1) =amict 1) (V) 31

Ultimately we seek to describe the evolution of our field

IIl. REDUCED HAMILTONIAN AND THE NLSE A(z,t), which we assume is a smoothly varying function of

In this section we recast our Hamiltonian in a form moreZ &S We move from a pointin a unit cell to the corresponding
suitable to the study of pulse propagation. We build effective?Cint in @ neighboring unit cell. The functiag,(z,t) will be
fields g(z,t), as a Fourier superposition of tte,,, and ©Né such smoothly varying function afonly if the a,(t)

assume that the effective fields are centred at a given wa/&€ Smoothly varying functions ok To ensure that the
number k. which corresponds to a frequenay, . The an(t) vary smoothly ink, one must choose the Bloch func-
1 mk-

Om(z,t) can be used to rewrite the Hamiltoni&b) without tions to vary SWOOtth ik Whlch In practice can be done,
any loss of generality. for ex_ample, using zk-_p expansior{5,21] a_boutk. _
This effective field approach is most valuable when the USing Eq.(26), we find that the equal-time commutation
spread in the frequency content of the field is narrow relativéelations for thegm(z,t) are
to a central frequencyqy that lies in bandn=m with wave Ty e ,
numberk. We assume thabmy is far from a photonic band [9m(2.0),9p (2",D)1= Oy 82 = 27), (32
gap, gnd thgt Fhe freoEency content of the pulse is entlrel¥0r zandz' both in our normalization length,
contained within banan. Because the frequency content of ..o~ yelta functions(z—z') in Eq. (32) strictl
our effective fields is narrowly centered aroungl;, we can
expand a frequency k) in a Taylor series, which will
involve the local group velocity and group velocity disper-

. . . L/2
sion. We use a smallness parameigrwhich we quantify i i) (1) = LJ dzg,(z,t)e 'z, (33)
below, to characterize the strength of the resulting terms in JLJ -1

where the
y appears
only in theL—c limit. By inverting Eq. (29) we find
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Using Eq.(33), the Hamiltonian25) can be written in terms o o'
Of the gm(Z,t) n= :,ZW! n= Z:NZW' (37)
In the following we restrict ourselves to consideration of w w

electromagnetic fields for which &t 0 the wave numbers of

the pulse are contained entirely in bame- m, and narrowly ~ Wherez, is an appropriate measure of the width of the pulse.
centered arounti, so that, replacing thepc. «)(t) with the As discussed, the third- and higher-order dispersion terms

gmi(1), and restricting the summation in the Hamiltonian are considered to b®(7°). The values ok’ and »” wil
(25) to one band, we find a reduced Hamiltonian depend on the dispersion relation itself; a variety of tech-
nigues exist to determine the dispersion relation of a one-

dimensional, periodic systefi9].

2 (3)
HR=" fiwmic: K| Omk| 2~ ﬂfﬂz A (2) Turning to the portion of the reduced Hamiltoni&dy)
K 16N%ug) -1z e4(z) that generates the nonlinear dynamics of the fields, we first
, recall that we are dealing with a weak nonlineafi#ge note

4 (9K, s k) T€:C) following Eq. (19)]. We quantify the weakness of this non-
X H 2 — ' (34) linearity by asserting that the ratio of the largest nonlinear

=1 K V @m(k+Kj) term to the largest linear term &(7?). Because we are only

keeping terms irHR to O(#?), this means that we can re-

where theK; are wave number detunings. Since we are CONpjace 9(’@}0 with eéeiKz’ and the small error that it intro-

sidering only one bandn=m, we drop them subscript in  qyces will enter at the next level in the perturbation. Simi-
the remainder of the paper. We stress that the Hamlltoma&rly’ we replacen i, <) With w. The value ofy set above

(34) is still exactly equal to the energy in the systemtat determines the strength of the nonlinear term that can be

=0. At later times th? nonlinear Interaction will generate  omodated by this theory. For a stronger nonlinear term
new frequencies, but in the following we ignore third har-q(%

. . : either through a largey(®), or through a higher intensity in
monic generation, as discussed, so that for reasonable pro e pulse, more complicated nonlinear effects must be in-
gation times and pulse intensities the_new frequencies th%tluded. V\’Ie find
are generated will still lie in banch=m, and the reduced
Hamiltonian will still represent the exact energy in the sys- 52 Lo 3)
tem. Furthermore, we assume thattatO only forward- HR = 80_f zX (2)
traveling waves are present, so that at later times there will NG 16N2,u3w2 -2 g%2)
be no interaction with any backward-traveling waves.

We first consider the linear portion of the reduced Hamil-

4
iKiZ '
tonian (34). We expand the frequenay i« as X iﬂl % 19¢;© QE(ZHC'C'}] (38)
w(@K):Z%— Ko’ + %KZZ’H— e (35 An integral that will be important iri-lﬁL is
_ _ _ L2 _
where  w=wy, o'=doiikdKlk=o and " I1234=f dzexpi(K;—Ky+Ksz—Ky,)z}
— 92, — 2 P : H H —L/2
=00 k) /IK |k=o. Substituting this expression for
w(k+k) and the expression for the effective fiel@®9) into Y3(2)
the reduced Hamiltonia(84), we find that the portion of the x| ———| 9&(2)4_ (39
reduced Hamiltonian associated with the linear dynamics of e%(z)
the field is
- The portion in the square brackets contains only periodic
S— Vs , o ; quantities, with periodl, and can be expanded as a Fourier
HL:ﬁwf dz| [g]*+ 5 =(99.9"—c.c) series
—L/2 w
10" MO
+3 :|ﬁzg|2) : (36) Slodt=2 pmeiznm, (40)
w & n=0
The exact Hamiltonian that generates the linear dynamics igith
given by
HL: HR+ O( 7]3) IB(H): ddzﬁ|6’_|4e—i2nﬂ'2/d (41)
L ’ 0 84 k L]

where 7 is the smallness parameter used to characterize the
relative strength of terms in the reduced Hamiltonian. Wewhere the integration proceeds over the lergjthf one unit
can quantifyzn by setting it to be the larger of cell. Using the expansio®0) in the integral(39) we find
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L/2 [ “n
l120= 2 B(“’J_ dzexpli(Ky Kot Ka= Ky HR<z,t>=ﬁE|g|2+iﬁT“’(gang—c.c.H ﬁTwwzglz
+2nw/d)z}. (42 a
—5lal (48)
The integral will be zero unless KG—K,+Kz—K,

+2n7/d)=0. But we have previously stipulated that all our where we have suppressed thedependence aj(z,t). The
detunings are</d, solg ., only has a value fon=0.  Heisenberg equations of motion follow from E&7)

This means

1
i0g(z,t)= g[g(z,t),HR(Z,t)], (49

L2
|1234:B(0)f dzexpli(Ki—Ky+K3—Ky)zp (43
—L/2 so that, using the commutation relatioi3®), the differential

equation that governs the dynamics of ti(g,t) field is

and
i0g(z,t)= wg(z t)—iw' a,9(z,t)— w”azzg(z t)
L/2
> 9K19§29K3Q&4|1234:,30f dzg(z,t)[*. —alg(z1)|*g(z.1). (50
K1K2K3Ky —L/2
(44 IV. EFFECTIVE FIELDS AND ENVELOPE FUNCTIONS
In writing down |,,3, we are only considering the inte- In our treatment of the NLSE, we have constructed an

grals that will arise in Eq(38) that contain terms with two effective field as a Fourier superposition of the mode ampli-
complex conjugates. Terms with zero or four complex contudes in the Hamiltonian. This differs from previous deriva-
jugates lead to third harmonic generation, which, as distions of the NLSE in a periodic medium, in which the physi-
cussed, is ignored here. Terms with one or three complegal field of interes{often the electric fieldwas expanded as

conjugates vanish for the following reason. The expansior slowly varying envelope function that modulated a Bloch

(40) could be made because te&? portions of the Bloch function at a given wave numbérand band indexn [5,6].

function [see Eq(15)] cancel out. If, on the other hand, we The derived NLSE then gave the dynamics of the slowly

consider terms where either one or three of the Bloch funcvarying envelope function. In this section we relate our ef-

tions are conjugated, then the expansion corresponding tiective fields to the envelope functions that would emerge if

Eq. (40) would be multiplied by a prefactae'??, The in- we used the dual field in the approach of previous deriva-

tegral corresponding to E¢42) would then be nonzero only tions of the NLSE.

if (Ky— Ko+ Kg— K4+2n7-r/d+2k) 0 which, since the de- We start by noting that an arbitrany,,(z) can be written

tunings are all small, can never occur, which, since the de2S

tunings are all small, cannot occur unldss0 or k= 7/d. _

We defer a discussion of the;e latter cases to a later paper. Un(2)= 2, anlzﬂ K)ucqz), (51
From Eq.(38), there are six ways to generate terms in- ¢

\s/iczjl\e”rggt]i(:\gg v?/gnf]iﬁlgx conjugates so including counting Cor]_where the detunings are defined in E80), and where the

value of the connectlonsm(k+K) can be determined using

1 (L2 “k-p” theory [5,21]. Using this expansion for thae,, we
HR =— Eaf_L/Zdz|g(z,t)|4, (45  find "

where, to simplify the expressions, we have defined the non- Omk= 2 Ym(k+ K) e, (52
linear coefficient

and, using Eq(52) in Eq. (24), we find

3 #h%, (d X(?’)(
=Z 2 2_2f |0_( )|4 (46)
N?u2w?lo &* A(zt)=2, fo(z,t)0:d2) +c.c., (53)
[
Collecting our result36) and (45), we find a reduced where
Hamiltonian
L/2 fo(z,t)= E yCI* amic k(1) ezt (54
HRZJ dZ}'{(Z,t) (47) c K m(k+K) m( )
~L/2
The f.(z,t), which are envelope functions that modulate
with a reduced Hamiltonian density Bloch functions ak, are related to they,, K)e”‘Z via the
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connections. Previous derivations of the NLSE would re-Because our effective fields are constructed as Fourier super-
quire the fieldA(z,t) to be separated as follows: positions of mode amplitudes that modulate Bloch functions,
the boundary conditions may appear difficult to apply, since
they would have to be applied to eakhpoint in a pulse.
However, we have shown in this section that, to first order,
the value ofg(z,t) is equal tof ;;(z,t), where the latter field
where |f.(z,t)|<|fm(z,1)|, since the frequency content of modulates only the Bloch functiofy,(z). Therefore, to first

the field is assumed to be narrowly centered arowpg.  order, the boundary conditions can be applied as though
The f..(z,t) are typically called “companion” terms, 9(zt) modulated onlyf(2z), which is a straightforward
while f(z,t) is called the “principal” term. Using a method operation. We note that because we are considering a one-
presented elsewhei&] it can be shown that the principal dimensional system, where the fields are transverse, the con-
term f(z,t) obeys a dynamical equation analgous to Eqlinuity conditions that concern the normal component of the
(50). However, we have verified that the Hamiltonian from D andB fields are not relevant.

which the dynamical equation of tHe,(z,t) can be derived

is not equal to the energy in the electromagnetic field to the v. CONSERVED QUANTITIES OF THE HAMILTONIAN

required order in perturbation theory.

We can use Eq(54) to relate the envelope function We are now prepared to discuss the conserved quantities
f—(z,t) to the effective fieldg(z t). We start by recognizing associated with the reduced Hamiltonian system described

y Eqg. (47). We first use Eq(29) to exhibit the reduced
that, usingk-p theory, the7' mk , can be expanded as a Taylor Hamlltonlan(47) in terms of the Fourier modes of the effec-

Az =Fr(z) Omd2)+ 2, fo(z1) bd2) +c.c., (55)

c#m

series tive fields

Jmk_ mk @) 20K @)y ... 1w

V= 1+ K i) D+ 5 K2 i) @ HR=fw > [gKgK-i- L Kaxgl+cc)

K 2 w
(56)

Using this, and recalling that sinc_e the frequency content " } w:”Kzg ol (58)
of the pulse is confined to the bamd, so thata, )(t) 2 o KK
=0 if p#m, we find

1
R __ = T T
k. o7g(z t) HNL= ZaKl%KS Ik, 9K, 9K 9(K, Kyt Kg—Ky) -

We rewrite this reduced Hamiltonian in terms of the new

‘mk_ (2)329(21) e 5 coordinate and momentum variables, which in this problem
(7m(k+K)) 972 ’ (57) are real and can be written in terms of thandg’ as
where for envelope functions that vary slowly in space, the B ho
first term on the right-hand side of this equation will be much ="\ ;=(9c T k) (59)

larger than the other terms.
Both the envelope functiofy,(z,t) and the effective field —
g(z,t) can be used to examine the evolution of the electro- /
magnetic field in a periodic medium. However, a derivation K= (9x— 9
of the propagation equation based on the effective field has
the advantage that it extracts the linear pulse propagatioSubstituting these into E@¢47) the reduced Hamiltonian be-
parameters directly from the dispersion relation. Thecomes
envelope-function technique generates complicated overlap
integrals, which can subsequently be related to the linear o Wﬁ)
bat+ —
w

7TK1 i7TK2
Maxwell boundary conditions apply to our theory. The 82 K KoKs - © P, ©
theory in this paper assumes an infinite periodic medium.

_ 1
pulse propagation parameters taken from the dispersion rela- HR= > ; (w+ o' K+ Ew”K2>
Were the periodic medium not infinite, then one would have P, T (K~ Ky + Ky
¢K3 ¢(Kl KptKg) ™ 7 — |

2
We close this section with a brief discussion on how the _@w D

clearer and simpler to use. —
( K,

tion. We feel that this makes the effective field approach
to apply the usual Maxwell boundary conditions, which, in a =
one-dimensional system, assert the continuityeoénd H @

across the interface between the periodic medium and an (60)
adjacent medium. In the absence of nonlinearity, this is

equivalent to asserting the continuity &f,/(£on?) andA,.  with equations of motion
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aHR dHR — (2
hpx=——, amk=——"—. 61 =hw dz,
1Pk ey s Ik (61 Q _L/2|g|
From Eq.(59) it is clear that the reduced Hamiltonian is L

[ iant under the two infinitesimal transformations _l,e t_ gt
invarian P=gf~] (999 ~9'3.0)dz

gk—9ke'’, (62)

) The reduced Hamiltonian can be written in terms of the con-

gk— ke, served charge

where it is assumed that and vK are infinitesimal quanti- HR=Q+H’ (64)

ties. If we convert back to real space, we can identify the first
transformation as expressing the phase invariance of our rggjth
duced Hamiltonian, and the second expressing the transla-
tional invariance. We note that the system itself does not L2 7o
possess full translational invariance. However, at the level of H'Ef dz(—(gang—c.c.)
the effective fields, the periodicity of the underlying structure -Lr2 2
has been captured in the dispersion relation, and the effective
fields do possess translational invariance. In terms of the real _ E N 2_ 1 4

. arance. h"|3,9|° = algl*], (69
coordinates¢x and mx, the two infinitesimal transforma- 2 2
tions correspond to

whereH’ is obviously also conserved.
1 To understand the nature of these conserved quantities, we
b= bk —p=mk, (63)  consider the differential equation satisfied by ghiéeld (50).

@ In the absence of group velocity, group velocity dispersion or
nonlinearity (@'=w"=a=0), the solution to the differen-
tial equation(50) is g(z,t)=g(z,0)e '“!. Whenw' =0, it is
where p is either o or vK. We use the invariance of the clear thatP=0. Furthermore, the phase accumulat@®n®!
reduced Hamiltonian to construct the conserved quantitieis directly related to the increase in timeso that the accu-
associated with these infinitesimal transformations. Under eimulation of the time and phase are proportional. This means
ther transformation that the reduced Hamiltonian® is identical to the charg®,

and we effectively have only one independent conserved

T— TR+ PPy,

R R R — —
H™—H"+ 6H", quantity. If we allow group velocityw’#0, but keepw”

SHR JHR =a=0, then the equation of motiofb0) describes a pulse

SHR=Y" [—5¢K+ —577,(} that propagates at a speed, and does not distort its shape.
K Ik dmy We can solve the equations of motion a$z,t)=g(z

14 —Z’t,O)e*i‘”t, from which it is clear that an increase in the
K —J Pk . . . . . .
= 2 p‘ =——mg+ w—qu} time variable is equivalent to a displacement in space plus an
K w ot Jt increase in the phase. That is, only two of the three displace-
) ments (time, space and phasare independent and hence
at ] -0

required to fully describe the effective field dynamics. Asso-
ciated with this, one of the conserved quantities can be ex-
pressed in terms of the other twdR= Q-+ cP, which means
where we have used the equations of mot@®1), and where that only two of our three conserved quantities are indepen-
we setsHR=0 since the reduced Hamiltonian is invariant. dent. Finally, if we place no restrictions on the coefficients in
We find two conserved quantities. The first, associated witHEq. (50) then there are no simple solutions to the equation of
phase invariance, we call the char@e The second, associ- motion, and we find that the time, space, and phase displace-
ated with translational invariance, we call the momenfdtm ments must be treated independently; and the three con-
In Fourier space, the two conserved quantities have the valugerved quantitiesHR,Q,P are independent. The indepen-
dence of these quantities is forced upon us by the

1 _
S p{=wﬁ+w¢i

(O]

—

1 — introduction of either the group velocity dispersion or the
Q:ﬁQK: [=7Tﬁ+ wd’ﬁ] Iﬁ@ QKQL’ Kerr nonlinearity, so the linear Schiimger equation ¢

@ =0) will also have three independent conserved quantities

— 1 — associated with 'Fime, space, and phase i.nvariancc.e.
P:hw— 2 K[=Wﬁ+w¢ﬁ] :ﬁ“’_ 2 KQKQTK- To connect with Fhe Ilterqture on nonlinear optical pulse
C K ) c K propagation, we write oug field as the product of a new
effective fieldr(z,t), which varies slowly in time as well as
Converting back to real space we find space, and a carrier frequency,
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9(zt)=r(z t)e—iZt (66) We point out the difference between these two approaches,
’ ’ ’ and show the advantages of using the dual field.
then To construct their NLSE, de Sterket al. introduced a
formal vector field
L2 i
H’zf dz(—w(r&ZrT—c.c.) AT
-Li2 2 A=l -
A
1 — 1 .
—Eﬁw"|<9zr|2—§a|f|4), (67)  with
A*(2,1)= 2D | E(2.0) £ 2 H
[r(zt),r'(z',1)]=8(z—2"), (68 wheren(z) is the index of refraction andy= o/ is the

impedance of the free space. In a Kerr nonlinear, periodic

which leads to medium, the fieldA was shown to satisfy

ior=—iw d,f — " d,x —alr|?r. (69) 9 1n']
. . 9z 2n 3)
Although H' correctly determines the dynamics of the n(z)%z ) . _EX (2) 9
fields, it is clearly not equal to the energy in the electromag- at B } n i 2 n?(z) dt
netic field. In previous discussions, the nonlinear Sehro 2n 9Jz J

dinger equation69) has been derived directly from Max-
well's equations, and the fields—effective fields that vary
slowly in spaceand time—have been the primary fields of
interest[1-3,5. It was observed that the quantity/ could
be used in a Hamiltonian formulation, such that the correcwheren’(z)=dn(z)/dz. One can readily construct a quan-
equations of motiori69) were derived8,12); but the quan-  tity EA(A™,A™), which is equal to the energy in the electro-
tity H' was clearly not equal to the energy of the systemmagnetic(e.m) field. However, the construction of a canoni-
However, to comprehensively compare the approach in thisal Hamiltonian in terms of the mode amplitudes of the
paper to the approach in the literat§iBz12] would require a  field appears impossible. To show this, we first imagine that
somewhat lengthy discussion about the relationship betweepne has constructed such a Hamiltonlag(ay), whereay

the effective fields used in this paper, and the envelope funare the appropriate mode amplitudes of héeld, with ca-
tions used elsewheif®,12]. We defer such a discussion to a nonical commutation relations. One would then apply the

(70

1]
X{[AT+A ]2 1

future paper. Heisenberg equations of motion to find

Although we have discussed these conserved quantities in
the context of the NLSE, the concepts behind this extend to idi‘k: E[a Hal (71)
other nonlinear systems of interest. The coupled NLSEs rel- dt A tTkTAT

evant to birefringent systems are often derived from a Hamil-
tonian that is not equal to the enerf;10], as are the non- The portion on the right-hand side will be some complicated
linear coupled mode equations that describe periodic, Kerfombination of modea . Unfortunately, the second term on
media(both isotropic and birefringeri7]). These equations the right-hand side of Eq(70) makes clear that the time
can all be derived using the methodology in this paper; &lerivatives of the modea, must be expressed in terms of
Hamiltonian can be identified that is both equal to the energgombinations of modes and their time derivatives. Thus,
in the system, and which can be used to derive the corre@quations of motion of the forrtv1) cannot be exact, at least
equations of motion. if there is the usual kind of linear expansion of the fields in
terms of mode amplitudes. Nevertheless, if the nonlinearity
itself is weak, then the nonlinear contribution to the time
derivative, 9A/dt will also be weak. Then, in the spirit of
The reduced Hamiltonia47), used in conjuction with perturbation, we could replace the time derivatives of the
the commutation relation@2) and the equations of motion nonlinear portion of Eq(70) by their linear value. This strat-
(49), gives a NLSE that describes pulse propagation in agy allows the construction of a Hamiltonian formulation of
periodic medium, under the restriction pointed out at the beMaxwell’s equations in the presence of a weak nonlinearity.
ginning of Sec. Ill. A similar equation was derived by de We have verified that such a Hamiltonian can, indeed, be
Sterkeet al. [5]. The advantage of the formulation in this constructed, but we do not present the results here.
paper is that the reduced Hamiltonian is presented in a form The Hamiltonian generated by the use of théeld is of
ready for quantization. However, since both papers arrived as much practical value as that generated by the use of the
the NLSE, it might be asked whether one could construct alual field A. The advantage of the dual field formulation is
canonical Hamiltonian using the formalism of de Sterkethat once a form of the functiob (D) is chosen, no further
et al. rather than introducing the dual field. In this section  approximations need to be made. Thus, for the investigation

VI. ON THE USE OF THE DUAL FIELD
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of the formal properties of the Hamiltonian system the dualexplore the connection between this conserved charge and
field approach is more useful, while for the calculation ofthe “energy” given in other papers in the literature. A clari-

experimental quantities either approach will work. fication of the energy of the system is necessary for the pur-
pose of canonical quantization. To underscore the use of our
VIl. CONCLUSION Hamiltonian formulation in quantization of the fields, we

) o ~ have presented Hamilton’s equation of motion in terms of
We have constructed a canonical Hamiltonian formulationcanonical commutation relations, although we stress that the
for light in a nonlinear, periodic Kerr medium, with the ap- resylts in this paper are purely classical. In a future work we

propriate frequency content such that the NLSE is the relyj return to the quantization of the e.m. field in a periodic,
evant equation of motion. To do so, we have introduced &err-nonlinear medium.

reduced Hamiltonian that is equal to the energy in the elec-
tromagnetic field to the required order in perturbation theory.
Using the reduced Hamiltonian we investigated the con-
served quantities of the system. In addition to the familiar
energy and momentum, we identified a conserved charge as- This work was supported by the Natural Sciences and
sociated with phase invariance. In a future paper we wilEngineering Research Council of Canada.
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