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Dynamics of self-trapped singular beams in an underdense plasma
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Dynamics of an intense short laser pulse with a phase singularity, propagating in an underdense cold plasma,
is investigated. Such a pulse can propagate as a vortex soliton in a self-created channel. It is shown that
vortices with the topological chargem51,2 ~and a corresponding angular momentum! are unstable against
symmetry-breaking perturbations; the breakup of the original vortex leads to the formation of stable spatial
solitons that steadily fly away tangentially from the initial ring of vortex distribution.
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I. INTRODUCTION

The dynamics of laser beams with phase singularities~or
wave-front dislocations! is being intensely studied@1# for its
possible application to all-optical signal processing a
logic. The branch-point phase singularities in electrom
netic ~em! field, discovered by Nye and Berry@2#, appear
whenever both the real and imaginary parts of the field
come zero, i.e., at the singularity the phase becomes ind
minate while the field amplitude is strictly zero. The pha
singularity associated with a screw dislocation~a vortex
characterized by a helical wave front! is particularly interest-
ing because the corresponding beams can be readily ge
ated by available techniques@3#. The singular beams demon
strate unusual properties even in free-space propagation@4#;
the vortices are robust with respect to perturbations. Si
the laser fields with screw phase singularities carry ang
momentum, these can rotate dielectric particles trappe
the vortex core@5#. The dynamics of the singular beams
nonlinear optical media is usually described by a generali
nonlinear Schro¨dinger equation~NSE! with a local nonlin-
earity. The NSE with a defocusing nonlinearity admits sta
vortex soliton solutions, which are the most fundamen
two-dimensional soliton solutions of NSE with an angu
2p phase ramp, and appear as local dark minima in an
erwise bright background. The vortex soliton solutions
NSE, first suggested by Pitaevskii@6# as topological excita-
tions in an imperfect Bose gas in the superfluids, excite c
siderable interest because of the recent experimental dem
strations of Bose-Einstein condensation of dilute gases
traps@7#. Thus, the laser beam with nested vortices can a
be used to model the dynamical behavior of vortices in
Bose gases. Self-focusing media also support localized
ton solutions with phase dislocations surrounded by one
many bright rings. These solutions are unstable aga
symmetry-breaking perturbations that can cause the brea
of rings into filaments. In saturating nonlinear media the
filaments form stable bright solitons, which, similar to fr
Newtonian particles, fly off tangentially to the initial ring
conserving total angular momentum@8#.

To the best of our knowledge the nonlinear dynamics
singular beams in plasmas has not yet been seriously in
tigated, although there are several studies reported for op
1063-651X/2002/65~4!/046415~6!/$20.00 65 0464
d
-

-
er-
e

er-

e
ar
in

d

e
l

r
h-
f

n-
n-

in
o
e
li-
or
st
up
e

f
s-
al

media @9#. The dynamics of ultrastrong laser pulses
plasma, however, represents an important area of rese
both from fundamental physics point of view as well as f
the practical realization of novel concepts such as part
acceleration and the ‘‘fast ignitor’’ projects@10#. It should be
realized that the nonsingular solutions form a very limited
of the total solutions available to the NSE, for example.
investigation of the broad class of angular momentum ca
ing solutions is essential to the full exploitation of the po
sibilities contained in the model. The importance of this p
gram is further enhanceda posteriori by the discovery that
the singular beams turn out to be rather robust and con
lable.

II. SELF-TRAPPED STATIONARY BEAMS AND THEIR
STABILITY

In the present work we deal with the propagation of
relativistically strong singular laser beam~carrying a screw
type of dislocation! in an underdense cold plasma. Our p
mary goal is to examine the possibility of beam se
trapping, and of the formation of two-dimensional stab
solitonic structures. Though the interaction of relativistica
strong lasers with plasmas is relatively complex, it is po
sible under certain conditions~Ref. @11#! to describe it by a
generic NSE with both local and nonlocal nonlinearities. T
pulse duration (Tl) is chosen to be short enough that ions
not respond, and long enough that Langmuir waves are
excited@v i

21@Tl@ve
21#. Then the dynamics of a beam wit

a narrow cross section@L i(;cTl)@L' , whereL' and L i
are, respectively, the characteristic transverse and longit
nal spatial dimensions of the beam# is governed, in the co-
moving variables (t5t2z/vg andz85z), by the generalized
NSE, which in dimensionless form reads

i
]A

]z
1¹'

2 A1S 12
n

g DA50. ~1!

HereA, normalized tomec
2/e, is the slowly varying ampli-

tude of the vector potential of a circularly polarized las
beam:A5 1

2 ( x̂1 i ŷ)A exp@i(kz2vt)#1c.c., wherex̂ andŷ are
unit vectors,v and k are, respectively, the mean frequen
and wave number of the laser beam,g5A11uAu2 is the
©2002 The American Physical Society15-1
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relativistic factor associated with the high-frequency elect
motion. The transverse lengths are measured in units ofc/ve
while the length in the propagation directionz is normalized
by vvg/2ve

2 , where vg is the group velocityvg5kc2/v
5c(12ve

2/v2)1/2 ('c if v@ve , i.e., in the underdens
plasma!. The operator¹'

2 is the Laplacian in the (x,y) plane.
The electron densityn is normalized by the equilibrium den
sity n0,

n511¹'
2 g. ~2!

Two effects that contribute to the nonlinearity in Eq.~1!
are ~i! the electron mass increase in the field of strong la
radiation and~ii ! the electron density variation caused by t
high-frequency pressure of the field. For the latter effect,
~2! indicates that at high intensity or for strongly localize
~in x-y plane! beams the electron density may become z
or even negative. Zero density or the complete expulsion
electrons~electron cavitation! is possible in the region of the
strong field because the charge separation electric field
not oppose the ponderomotive force of the laser field. In
current model~widely exploited for the problem of relativis
tic self-focusing of the laser beams!, however, the occurrenc
of nonphysical negative values for the electron density c
not be prevented. This failure of the cold hydrodynami
plasma model@used for deriving Eqs.~1! and ~2!# is gener-
ally corrected by puttingn50 in the entire spatial region
wheren,0 @11,12#. In this paper, for the vortex soliton so
lution described below we consider the domain of para
eters when the condition (11¹'

2 g).0 holds, i.e., the elec
tron cavitation does not take place.

Let us now consider the solitary wave solutions carry
vortices. On assuming that solutions in polar coordinates
of the form A5Â(r )exp(imu1ibz), wherer 5Ax21y2 and
u is the polar angle, Eqs.~1! and ~2! reduce to an ordinary
differential equation for the real valued amplitudeÂ,

d2Â

dr2
1

1

r

dÂ

dr
2bÂ2

m2

r 2
Â1ÂS 12

n

A11Â2
D 50, ~3!

where, forn.0, we have

n511S d2

dr2
1

1

r

d

dr DA11Â2. ~4!

Here b is a propagation constant andm(Þ0) is an integer
known as the topological charge of the vortex. Note that
total phase of the field isc5(k1b)z2vt1mu. The wave
front forms a helicoidal surface given bymu1(k1b)z
5const, rotating in time with angular frequencyv/m, thus,
justifying the terminology—the screw-type dislocation.

We are looking for localized solutions of Eq.~3! with
boundary conditionsÂ→0 for r→(0,̀ ). The localized so-
lution of Eq. ~3! can exist if b.0 with the following
asymptotic behavior: Âr→0→A0r umu and Âr→`

→A`exp(2rAb)/Ar , whereA0 andA` are constants.
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Multiplying Eq. ~3! by Â* , and making simple manipula
tions, we derive the inequality

2E dr u“'Au2.@b2max~12n/A11uAu2!#N, ~5!

whereN5*dr uAu2 is the so-called ‘‘photon number’’ or the
beam power. Taking into account Eq.~2! and the condition
that n.0 one can conclude that the propagation constan
the eigenvalueb,1; it lies between zero and unity.

We have used numerical methods to determine the lo
ized solutions of Eq.~3!. It is possible to map the equation i
the (Â,Âr) plane~phase plane!, and show~through the anal-
ogy between the resulting equation with that of the nonc
servative motion! that for the eigenvalue lying in the rang
0,b,1, Eq. ~3! admits an infinity of discrete bound state
Âj (r ) ( j 51,2, . . . ) wherej denotes the finiter zeros of the
eigenfunction. In what follows we consider only the lowes
order ~lowest radial eigenmode! solution of Eq.~3! ( j 51).
For nonzerom, the ‘‘ground state’’ solution is positive, has
node at the originr 50, reaches a maximum, and then mon
tonically decreases with increasingr. A shooting code was
employed to numerically solve Eq.~3! for m51. The results
of the simulation are shown in Fig. 1 where we displayA0

~the measure of the slope ofÂ at the origin! and the field
amplitudeAm ~normalized for convenience to 2! versus the
propagation constantb. One can see that forb→0 the soli-
tary wave amplitude is nonrelativistic, but quickly becom
ultrarelativistic (Am.1) asb becomes larger. In Fig. 2~a! we
display a typical eigenmodeÂ(r ) along with the correspond
ing electron densityn(r ). In this plot the propagation con
stantb50.1. Thus, the radial profile of the stationary mo
corresponds to a bright ring of field, which may be viewed
the ‘‘compact support’’ of the vortex. As the propagatio
constant increases the field amplitude becomes larger,
for b.bc'0.24 the electron cavitation takes place. Thu
noncavitating vortex solitary waves exist in the range 0,b
,bc . The plot in Fig. 2~b!, similar to Fig. 2~a!, but for b
50.2 clearly shows that the electron density is considera
reduced in the large amplitude region a little away from t
vortex core.

The laser beam powerN trapped in the solitary mode i
a fast growing function ofb (dN/db.0). For b→0,
N→Ncr'97.5. Thus, the necessary condition to form t
vortex soliton is that the laser beam power must exceedNcr ,

FIG. 1. The spatial derivative of the field at the originA0 and
the normalized amplitudeAm/2 versus the propagation constantb
for m51.
5-2
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DYNAMICS OF SELF-TRAPPED SINGULAR BEAMS IN . . . PHYSICAL REVIEW E65 046415
which for them51 case is a few times larger than the cri
cal powerNcr

0 523.4 needed for the fundamentalm50 soli-
tons@11# that do not carry any topological charge. Note th
the critical power for the fundamental soliton in dimension
units reads asNcr

0 '1.631010(v/ve)
2 W. The higher power

requirement is quite understandable, because the confi
power has to contend against the centrifugal barrier pre
for all solitons carrying angular momentum.

Are these solitonlike solutions stable? We begin answ
ing this question by first performing a linear stability ana
sis. The total electric field amplitude of the laser beam m
be split as

A5@Â~r !1a1~z,r !exp~ i l u!1a2~z,r !exp~2 i l u!#

3exp~ ibz1 imu!, ~6!

where the complex valued amplitude of the perturbation
small Â@ua6(z,r )u, and l is an integer. Substituting Eq.~6!
into Eqs.~1! and~2! and linearizing, we obtain two couple
differential equations in terms ofa1 anda2 ,

F ]

]z
1 i

1

r

]

]r S rM
]

]r D1 iR2 i
~m6 l !2

r 2 Ga6

52 i F1

r

]

]r S ~M21!
]

]r D1WGa7* . ~7!

Here M5(12Â2/2g0
2), g05(11Â2)1/2, and the operators

W andR are defined by

W5
1

2 F Â2

g0
3

1
Â2D rr g0

g0
3

2
Â

g0
D rr S Â

g0
D 1

Â2l 2

g0
2r 2G , ~8!

R5F12
1

g0
2

D rr g0

g0
G1W, ~9!

with D rr 5(1/r )@] r(r ] r)# introduced for convenience.

FIG. 2. Stationary vortex solutions forb50.1 ~a! and for b
50.2 ~b!.
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The preceding complicated set of equations is solved
merically using standard procedure~see, for instance, Ref
@8#!. The functionsa6 are chosen to vanish atr 50 and r
→`. After we integrate Eqs.~7! alongz until the perturba-
tion growth rate G5uuauu21]uuauu/]z @where uuauu
5*0

r dr(ua1u21ua2u2)# becomes stationary.
Thoughl appearing in Eqs.~7! is an integer, we will treat

it as an arbitrary positive number as was done in Ref.@8#. In
Fig. 3 we plot the normalized growth rateG/b as a function
of l for m51 and for different values of the propagatio
constant. We further follow Ref.@8# in averaging the growth
rate overz for small l for which it tends to be oscillatory. One
can see that the growth rates vanish forl 50 and attain their
maximum value somewhere betweenl 52 and l 53. The
vortex solitons are, thus, stable against radial perturba
while they are unstable against azimuthal, symmet
breaking perturbation. We also find that for larger propa
tion constant instability development is slower. It is natu
to expect that azimuthal modulation instability will break th
solitons into several filaments.

Subsequently, highly nonlinear stage of instability can
studied by direct simulations of Eqs.~1! and ~2!. Some in-
sight into the problem can, however, be gained by analyz
the integrals of motion of the system. It has been shown
Ref. @12# that forn.0, the system, in addition to the photo
number, conserves the Hamiltonian as

H5E @ u“'Au22~g21!22~“'g!2#dr' . ~10!

Any initial field distributions must conserve these integra
during their evolution. From the work of Zakharovet al.
@13#, it follows that if the Hamiltonian is negative there is n
diffraction, since the maximum value of the field intensi
has a (z-independent! lower bounduAumax

2 .4uHu/N. For H
,0 the laser beam can be trapped in a self-created w
guide. Due to the ‘‘saturating character’’ of nonlinearity~re-
lated to the possibility of electron cavitation as well as to t
fact that at high intensity the electrons become heavier
cannot respond to the field! the development of wave col
lapse is prevented in this model@12#.

For the laser field that carries a nonzero topologi
charge, the system of Eqs.~1! and ~2! admits one more,
important integral of motion, the angular momentum

FIG. 3. Normalized growth rateG/b as a function ofl for dif-
ferent values of propagation constantb andm51.
5-3
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M5
i

2E dr'FxS A*
]A

]y
2c.c.D2yS A*

]A

]x
2c.c.D G .

~11!

Equation~11! for the angular momentum is the paraxial a
proximation for the orbital angular momentumM5*dr'@r
3(E3B)#z , of the laser field. One can easily show that f
steady state solutions, the angular momentum is determ
by the topological charge and the photon number,M5mN.

For the solitonic solutions of Eq.~3! the Hamiltonian is
negative for the entire allowed range of the propagation c
stant (0,b,bc) insuring that the solitons are in the se
trapped regime. Consequently, neither the azimuthal nor
radial modulation instability can lead to either diffraction
collapse. However, the modulation instability may cause
beam to break into multiple filaments. In order to conse
the total angular momentumM5mN, these filaments~for-
bidden to fuse or join together for topological reasons! can
eventually spiral about each other or fly off tangentially
the initial ring generating bright solitonic structures simil
to what was found for the index saturation nonlinearity@8#.
Our time-dependent numerical simulations give evidence
a quickly developing instability. We solve the system of E
~1! and~2! using finite difference methods. Initial input is th
solution of Eq.~3! for different b,bc . This choice guaran-
tees that the initial profile is not augmented by electron ca
tation. The beam breaks into filaments running away tang
tially without spiraling. Thus, the mutual interaction betwe
filaments does not lead to their stable spiraling; the ra
force in the present problem is repulsive~at the center the
field is always zero, and the effective refractive index of t
plasma is minimal!. This is to be contrasted with the stab
spiraling reported in Ref.@14# where the effective force is
attractive. During evolution the amplitude of the filamen
grows till cavitation takes place in the regions of filame
localization. To prevent the appearance of negative den
we, following Refs.@11,12,15#, replacen by zero.

Subsequently, the filaments steadily go apart from o
another. All filaments carry zero topological charge and
main stable. In Figs. 4~a1!–4~c1! we present the results of
typical simulations for which the initial condition corre
sponds to the stationary solution forb50.1. The weakly
relativistic initial field with Am'0.8, grows as it propagate
to ultrarelativistic filament amplitudes (Am'1.5). Note that
the splitting takes place aboutzs'60 while the correspond
ing diffraction length iszD'(Dr')2'b21510 yielding the
ratio zs /zD'6, that is, the vortex solitary wave decays af
covering six diffraction lengths. However, for largerb ~for
relativistic amplitudes of the vortex solitary wave! the split-
ting distance can be larger, for instance, ifb'0.2 the ratio
zs /zD'13. Thus, for a high amplitude solution, the instab
ity develops slowly allowing a lifetime spanning tens of
periods. This fact can be explained by the considerable
duction of plasma density at the solitary wave’s field ma
mum. Indeed, we can see from Fig. 2~b! that in the spatial
region where the field maximum is localized,n→0; the de-
termining equation~1! becomes linear, thus, partially sup
pressing the development of the azimuthal instability. N
also that due to the mutual attraction of the filaments,
04641
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complete breakup of the vortex soliton is remarkably delay
in comparison with the estimates, which follows from th
results of linear stability analysis.

Subsequently dynamics of the filaments is stabilized
cavitation. However, our model equations~1! and~2! do not
conserve all of the integrals of motion afterz.zc , wherezc
is the distance when cavitation takes place in any of
filaments. Note thatzc.zs ; for the case presented in Fig.
(m51,b50.1), zc'78. Our numerical methods faithfully
reproduce the invariants of the differential equation, the p
ton number, the momentum, and the Hamiltonian bef
cavitation and only the first two after cavitation.

It is expected that thermal effects will eliminate the no
physical region associated with negative density. We are
the process of deriving and solving the system that will
valid for relativistically high temperatures. The qualitativ
nature of the results presented in this paper, however, is
likely to change~see, for instance, Ref.@16#!.

We would like to emphasize that the vortices have a
pological sense as the branch points, where both the real
imaginary parts of the field become strictly zero, and t
topological charge represents the number of intersec

FIG. 4. Contours of constant intensity~a!–~c!, and the lines on
which ReA and ImA are zero~d! for m51 andm52 structures. In
~d1!,~d2!, the region aroundr 50 is expanded. The topological sin
gularity lies where the lines intersect (r 50). The topological
charge is determined by the number of intersecting line pairs.
5-4
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DYNAMICS OF SELF-TRAPPED SINGULAR BEAMS IN . . . PHYSICAL REVIEW E65 046415
pairs of zero lines of the real and imaginary parts of the fi
A @17#. Applying the Madelung transformationA
5Ar exp(ic) to Eq. ~1! we can convert it to a set of fluid
hydrodynamic equations with a fluid ‘‘density’’r and fluid
‘‘velocity’’ v5“'c. According to Kelvin’s theorem the ve
locity circulation is conserved along the closed path mov
with the local fluid velocity. The velocity circulationrvdl
52pm, where the integration path encloses the bran
point. As a consequence of the topological conservation
the frozen-in law, the vortex nested in the EM beam can
disappear even when the EM beam undergoes a struc
change.@This simple argument is valid despite the concr
~but physical! model equations describing the plasma dens
response.# To illustrate this statement we plot in Fig. 4~d1!
the zero lines of the EM field distribution atz585 after the
field has undergone splitting. One can see that the zero l
of the field’s real and imaginary parts~one pair form51)
still intersect at the center implying that the vortex has s
vived structural changes of the field, and remains at the c
ter of structure.

Though in this paper we mainly concentrated on the E
singular beam withm51, it is natural to expect that the EM
beam with higher topological charge will exhibit simila
properties. Indeed in Figs. 4~a2!–4~c2! we present the break
ing of the EM vortex solitary wave withm52. The beam
intensity distribution, indeed follows a path similar to that
m51. In Fig. 5 we plot the instability growth rate versusl
for the vortex soliton withm52 and b50.2. The growth
rate reaches its maximum atl 54. Thus, the beam breaks u
in accordance with the linear stability analysis into four fi
ments that run away tangentially to the initial field-intens
distribution ring. At a certain stage, the collapse of the fi
into filaments is stabilized by electron cavitation, and t

FIG. 5. The growth rate versusl for m52 andb50.2.
04641
d

g

h
of
t

ral
e
y

es

r-
n-

e

formation of steady moving solitonic structures take pla
The vortex position still remains unaffected@see Fig. 4~d2!#.
We would like to inform the reader that our linear stabili
analysis leaves out the possibility of an algebraic~secular!
instability. We have, however, tested the topologically
lowed possibility of the multicharged vortices breaking in
single charged ones; in our simulations we did not obse
any such breakup. We believe that, though the multichar
vortex is topologically unstable, the breaking up may be
very slow process and special care will have to be taken
observe this effect in practice.

III. CONCLUSION

In conclusion, we have shown that the azimuthal pert
bations that break up a moderately relativistic vortex solit
wave become considerably less menacing for the waves
attain ultrarelativistic amplitudes; the cavitation~expulsion
of electrons! in the high field region strongly suppresses t
instability growth rate allowing the localized structures
live for many periods. The dynamics of the filaments is rul
by the conservation of angular momentum~topological
charge! forcing the filaments to form stable bright soliton
which fly off tangentially to the initial rings conserving tota
angular momentum. The vortex, nested in the beam, app
to be robust and survives and can reach the target as an
zero of the field-intensity distribution even though the be
itself undergoes dramatic structural changes.

It seems reasonable to conclude that, in contrast to
nonsingular beams, the filament dynamics for singular bea
with nonzero topological charge~angular momentum! is
much more robust and predictable. These moderately sta
long-lived, and compact bundles of ultrahigh electroma
netic fields must be seriously considered in delineating
dynamics of plasmas in ultrastrong laser fields, for instan
in the laser target interaction experiments. In particular,
singular beam can be used to produce multiple locali
beams with controllable positions at the target.
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