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Dynamics of self-trapped singular beams in an underdense plasma
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Dynamics of an intense short laser pulse with a phase singularity, propagating in an underdense cold plasma,
is investigated. Such a pulse can propagate as a vortex soliton in a self-created channel. It is shown that
vortices with the topological charge=1,2 (and a corresponding angular momenjusine unstable against
symmetry-breaking perturbations; the breakup of the original vortex leads to the formation of stable spatial
solitons that steadily fly away tangentially from the initial ring of vortex distribution.
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[. INTRODUCTION media [9]. The dynamics of ultrastrong laser pulses in
plasma, however, represents an important area of research
The dynamics of laser beams with phase singulariges both from fundamental physics point of view as well as for
wave-front dislocationsis being intensely studigfd] for its ~ the practical realization of novel concepts such as particle
possible application to all-optical signal processing andacceleration and the “fast ignitor” projecf&0]. It should be
logic. The branch-point phase singularities in electromagrealized that the nonsingular solutions form a very limited set
netic (em) field, discovered by Nye and Beriy2], appear Of the total solutions available to the NSE, for example. An
whenever both the real and imaginary parts of the field belnvestigation of the broad class of angular momentum carry-
come zero, i.e., at the singularity the phase becomes indetdg solutions is essential to the full exploitation of the pos-
minate while the field amplitude is strictly zero. The phasesibilities contained in the model. The importance of this pro-
singularity associated with a screw dislocatiée vortex gram is further enhanceal posterioriby the discovery that
characterized by a helical wave froig particularly interest-  the singular beams turn out to be rather robust and control-
ing because the corresponding beams can be readily genéable.
ated by available techniqué3]. The singular beams demon-
strate unusual properties even in free-space propagatipn Il. SELF-TRAPPED STATIONARY BEAMS AND THEIR
the vortices are robust with respect to perturbations. Since STABILITY
the laser fields with screw phase singularities carry angular . .
momentum, these can rotate dielectric particles trapped in In' t_hg present WOI‘K we deal with the propagation of a
the vortex corg5]. The dynamics of the singular beams in relat|V|st|9aIIy strong singular laser beawarrying a screw .
nonlinear optical media is usually described by a generalize/P€ ©f dislocationin an underdense cold plasma. Our pri-
nonlinear Schidinger equationNSE) with a local nonlin-  Mary goal is to examine the possibility of beam self-
earity. The NSE with a defocusing nonlinearity admits stable"aPPIng, and of the formation .Of twojdlmensmn.all ;table
vortex soliton solutions, which are the most fundamentalSOIItonlc structures, Though Fhe Interaction of relat|y|§t|cally
two-dimensional soliton solutions of NSE with an anguIarSFrong lasers W't.h p'aS"?"?‘S is relatively complgx, .'t IS pos-
27 phase ramp, and appear as local dark minima in an oths—Ible l_Jnder certain condition®ef. [11]) to desc_rlbe |_t_by a
erwise bright background. The vortex soliton solutions ofdeneric NSE with both local and nonlocal nonlinearities. The

NSE, first suggested by Pitaevské] as topological excita- pulse durationT;) is chosen to be short enou.gh that ions do
tions in an imperfect Bose gas in the superfluids, excite con ot _resporj(z, and IO['? enough that La”gm“” waves are not
siderable interest because of the recent experimental demof¥Citedl@; ">T>w, “]. Then the dynamics of a beam with
strations of Bose-Einstein condensation of dilute gases if N&rrow cross sectiopl (~cT)>L, , whereL, andlL;
traps[7]. Thus, the laser beam with nested vortices can als@'®: respectively, the characteristic transverse and longitudi-
be used to model the dynamical behavior of vortices in thd1al spatial dimensions of the beqs governed, in the co-
Bose gases. Self-focusing media also support localized sol'0Ving variables t=t—z/v 4 andz’ =2z), by the generalized
ton solutions with phase dislocations surrounded by one oNSE, which in dimensionless form reads
many bright rings. These solutions are unstable against
symmetry-breaking perturbations that can cause the breakup i%+v2 A+
of rings into filaments. In saturating nonlinear media these gzt
filaments form stable bright solitons, which, similar to free ) A _ )
Newtonian particles, fly off tangentially to the initial rings HereA, normalized tom.c®/e, is the slowly varying ampli-
conserving total angular momentuisi. tude of the yectAor potential of a circularly pPIarlzgd laser
To the best of our knowledge the nonlinear dynamics ofoeam:A= $(x+iy)A exdi(kz—wt)]+c.c., wherex andy are
singular beams in plasmas has not yet been seriously invesnit vectors,w andk are, respectively, the mean frequency
tigated, although there are several studies reported for opticand wave number of the laser beawys 1+|A[? is the
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relativistic factor associated with the high-frequency electron 1.0
motion. The transverse lengths are measured in unité«f osf
while the length in the propagation directiaris normalized 06
by wvg4/2w, wherev, is the group velocityv g=kc/ “t
=c(1- w2 0?)? (=c if w>w,, ie., in the underdense 0.4
plasma. The operatolvf is the Laplacian in thex,y) plane. 02F |
The electron density is normalized by the equilibrium den- ook B
sity N, 0.0 0.05 0.1 0.15 0.2
2 FIG. 1. The spatial derivative of the field at the orighg and
n=1+Viy. (2 the normalized amplitudé.,/2 versus the propagation constgt
for m=1.

Two effects that contribute to the nonlinearity in Ed)
are(i) the electron mass increase in the field of strong laser L ~ s . . .
radiation and(ii) the electron density variation caused by thetior':/slm\t:/%lﬂg?iviqt.rf?irt:g Aua,"?nd making simple manipula-
high-frequency pressure of the field. For the latter effect, Eq. ' q y
(2) indicates that at high intensity or for strongly localized
(in x-y plang beams the electron density may become zero _J dr|V, Al2>[B—max1-n/V1+[|A[D)IN, (5
or even negative. Zero density or the complete expulsion of
electrongelectron cavitatiohis possible in the region of the
strong field because the charge separation electric field caihereN= fdr|A|? is the so-called “photon number” or the
not oppose the ponderomotive force of the laser field. In thébeam power. Taking into account E@) and the condition
current modelwidely exploited for the problem of relativis- thatn>0 one can conclude that the propagation constant or
tic self-focusing of the laser beaméowever, the occurrence the eigenvalugg<1; it lies between zero and unity.
of nonphysical negative values for the electron density can- We have used numerical methods to determine the local-
not be prevented. This failure of the cold hydrodynamicalized solutions of Eq(3). It is possible to map the equation in
plasma modeused for deriving Eqs(1) and(2)] is gener-  the (A,A,) plane(phase plane and show(through the anal-
ally corrected by putting=0 in the entire spatial region ogy between the resulting equation with that of the noncon-
wheren<0 [11,12. In this paper, for the vortex soliton so- servative motiohthat for the eigenvalue lying in the range
lution described below we consider the domain of paramQ<g<1, Eq.(3) admits an infinity of discrete bound states
eters when the condition (4V7)>0 holds, i.e., the elec- Aj(r) (j=1,2,...)wherej denotes the finite zeros of the
tron cavitation does not take place. eigenfunction. In what follows we consider only the lowest-

Let us now consider the solitary wave solutions carryingorder (lowest radial eigenmodesolution of Eq.(3) (j=1).
vortices. On aSSUming that solutions in pOlaI’ coordinates arﬁor nonzeram, the “ground state” So|uti0n iS positive, haS a
of the form A=A(r)exp(mé+iBz), wherer =x?+yZ and  node at the origim=0, reaches a maximum, and then mono-
0 is the polar angle, Eqgl) and (2) reduce to an ordinary tonically decreases with increasimgA shooting code was

differential equation for the real valued amplitude employed to numerically solve E() for m=1. The results
of the simulation are shown in Fig. 1 where we dispksy

d2A 1dA _ m?. n (the measure of the slope &f at the origin and the field
—+ —-——-BA— —A+A| 1- =0, (3 amplitudeA,,, (normalized for convenience to 2ersus the
drz 1 dr re V1+A? propagation constam®. One can see that fg8—0 the soli-
tary wave amplitude is nonrelativistic, but quickly becomes
where, forn>0, we have ultrarelativistic A,>1) aspB becomes larger. In Fig(2 we
display a typical eigenmod&(r) along with the correspond-
d? d =, ing electron densityn(r). In this plot the propagation con-
n=1+ 7+ Tar) VITAS (49 stantp=0.1. Thus, the radial profile of the stationary mode

corresponds to a bright ring of field, which may be viewed as
the “compact support” of the vortex. As the propagation
constant increases the field amplitude becomes larger, and
Sor B> B.~0.24 the electron cavitation takes place. Thus,
noncavitating vortex solitary waves exist in the range ®
<B.. The plot in Fig. 2Zb), similar to Fig. Za), but for 8
AT . ; : =0.2 clearly shows that the electron density is considerably
justifying the termlnology—t_he screw-type dlslocanon_. reduced in the large amplitude region a little away from the
We are looking for localized solutions of E¢3) with vortex core.
boundary condition#A—0 for r—(0,°). The localized so- The laser beam powe\ trapped in the solitary mode is
lution of Eg. (3) can exist if B3>0 with the following 5 fast growing function ofg (dN/dg>0). For —0,
asymptotic  behavior: A, ,—Agr'™ and A,_. N—N,~97.5. Thus, the necessary condition to form the
—A..exp(—ryB)/\r, whereA, andA.. are constants. vortex soliton is that the laser beam power must exdegd

Here B is a propagation constant amda(#0) is an integer
known as the topological charge of the vortex. Note that th
total phase of the field ig=(k+ 8)z— wt+mé. The wave
front forms a helicoidal surface given bmé+(k+B)z
=const, rotating in time with angular frequenaym, thus,
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FIG. 3. Normalized growth rat€/g as a function of for dif-
ferent values of propagation constghtandm=1.

The preceding complicated set of equations is solved nu-
] merically using standard procedu¢eee, for instance, Ref.
o 5 10 15 20 [8]). The functionsa.. are chosen to vanish a&=0 andr

) ) —oo, After we integrate Eqs.7) along z until the perturba-

FIG. 2. Stationary vortex solutions fgg=0.1 (a) and for 8 tion growth rate I'=||a||"%d||a||/9z [where ||a]|
=0.2(b). =[odr(la,|?>+]a_|?)] becomes stationary.

Thoughl appearing in Eq4.7) is an integer, we will treat
it as an arbitrary positive number as was done in R&f.In
, Fig. 3 we plot the normalized growth rat& 8 as a function
tons[11] that do not carry any topological charge. Note thatos| for m=1 and for different values of the propagation
the critical power for the fundamental soliton in dimensional .5 stant. We further follow Ref8] in averaging the growth

: 0 __ 0, 2 H i ) . .
units reads ablg,~1.6x 10'(w/we)? W. The higher power  rate overz for smalll for which it tends to be oscillatory. One
requirement is quite understandable, because the confiningy see that the growth rates vanishlferd and attain their
power has to contend against the centrifugal barrier presepfaximum value somewhere betwees?2 and|=3. The
for all solitons carrying angular momentum. _ vortex solitons are, thus, stable against radial perturbation

Are these solitonlike solutions stable? We begin answerypile they are unstable against azimuthal, symmetry-
ing this question by first performing a linear stability analy- preaking perturbation. We also find that for larger propaga-
sis. The total electric field amplitude of the laser beam mayjony constant instability development is slower. It is natural

which for them=1 case is a few times larger than the criti-
cal powerN?, = 23.4 needed for the fundamentak=0 soli-

be split as to expect that azimuthal modulation instability will break the
. _ _ solitons into several filaments.
A=[A(r)+a.(zr)expil ) +a_(z,r)exp—il )] Subsequently, highly nonlinear stage of instability can be

. . studied by direct simulations of Eqg€l) and (2). Some in-

X explifz+imo), © sight into the problem can, however, be gained by analyzing

where the complex valued amplitude of the perturbation idn€ integrals of motion of the system. It has been shown in
IA>|a (zr)|, andl is an integer. Substituting EG6) Ref.[12] that forn>0, the system, in addition to the photon

sma =\ D . Integer. . 9 number, conserves the Hamiltonian as

into Egs.(1) and(2) and linearizing, we obtain two coupled

differential equations in terms @&f, anda_,

g 14 g\ . (m=xl)? Hzf[|VLA|2—(y—1)2—(Vl7)2]dri. (10)
—+i——|rM —|+iIR—I a.
az  roar ar r
- li (M —1)i T wla* 7) Any initial field distributions must conserve these integrals
ror ar = during their evolution. From the work of Zakharat al.

[13], it follows that if the Hamiltonian is negative there is no
Here |\/|=(1—A2/2y(2)), vo=(1+A?'2 and the operators diffraction, since the maximum value of the field intensity
W andR are defined by has a g¢-independentlower bound|A|3_,>4/H|/N. For H

<0 the laser beam can be trapped in a self-created wave-

1[A2 A%A,y, A Al A?2 guide. Due to the “saturating character” of nonlinearite-

=5l 3t T T Al e (8)  lated to the possibility of electron cavitation as well as to the
Yo Yo Yo Aol wer fact that at high intensity the electrons become heavier and

cannot respond to the fieldhe development of wave col-

Rz[l— 1 Arr?’o} W ) lapse is prevented in this moddl2].

Yo Yo ' For the laser field that carries a nonzero topological

charge, the system of Eg¢l) and (2) admits one more,

with A, =(1/r)[d,(rd,)] introduced for convenience. important integral of motion, the angular momentum
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m=1 B=0.1 m=2 p=0.2

' z=0 @n| |[z=0 (@2)
(11)

*%_ _ *%_
x| A ay c.c.l—ylA X c.c.

i
Mzifer_

Equation(11) for the angular momentum is the paraxial ap-
proximation for the orbital angular momentukh= fdr  [r

X (EXB)],, of the laser field. One can easily show that for
steady state solutions, the angular momentum is determined
by the topological charge and the photon numihés mN.

For the solitonic solutions of Eq3) the Hamiltonian is z=60 (b1)]  |z=20 (b2)
negative for the entire allowed range of the propagation con-
stant (0<B<fB.) insuring that the solitons are in the self-
trapped regime. Consequently, neither the azimuthal nor the
radial modulation instability can lead to either diffraction or
collapse. However, the modulation instability may cause the
beam to break into multiple filaments. In order to conserve
the total angular momenturil = mN, these filamentgfor- z=85 (c1) 7=60 (c2)
bidden to fuse or join together for topological reasocan ® Ll
eventually spiral about each other or fly off tangentially to
the initial ring generating bright solitonic structures similar ®
to what was found for the index saturation nonlineafRy. .

Our time-dependent numerical simulations give evidence of ®
a quickly developing instability. We solve the system of Egs.
(1) and(2) using finite difference methods. Initial input is the
solution of Eq.(3) for different 3<3.. This choice guaran-
tees that the initial profile is not augmented by electron cavi-
tation. The beam breaks into filaments running away tangen-
tially without spiraling. Thus, the mutual interaction between =

filaments does not lead to their stable spiraling; the radial Im
force in the present problem is repulsi@ the center the Im Re
field is always zero, and the effective refractive index of the
plasma is minimal This is to be contrasted with the stable ] ] ]
spiraling reported in Refi14] where the effective force is FIG. 4. Contours of constant intensit®)—(c), and the lines on
attractive. During evolution the amplitude of the filamentsWhich ReA and ImA are zerd(d) for m=1 andm=2 structures. In
grows till cavitation takes place in the regions of filament(d1:(d2). the region around=0 is expanded. The topological sin-
localization. To prevent the appearance of negative densitgﬁﬁnty. “?js twhgre dﬂ:oe tllhnes mtg rsec;r':étO). Tthe tlgpolog|cal

we, following Refs[11,12,18, replacen by zero. ge is determined by the number of intersecting line pairs.

Subsequently, the filaments steadily go apart from ongomplete breakup of the vortex soliton is remarkably delayed
another. All filaments carry zero topological charge and rein comparison with the estimates, which follows from the
main stable. In Figs. (@1)—4(c1) we present the results of a results of linear stability analysis.
typical simulations for which the initial condition corre- Subsequently dynamics of the filaments is stabilized by
sponds to the stationary solution f@=0.1. The weakly cavitation. However, our model equatiofid and(2) do not
relativistic initial field with A,~0.8, grows as it propagates conserve all of the integrals of motion after z., wherez,
to ultrarelativistic filament amplitudesA¢,~1.5). Note that s the distance when cavitation takes place in any of the
the splitting takes place abom§~60 while the correspond- filaments. Note that,>z; for the case presented in Fig. 4
ing diffraction length iszp~(Ar,)*~p~*=10 yielding the (m=1,8=0.1), z,~78. Our numerical methods faithfully
ratio z;/zp~6, that is, the vortex solitary wave decays afterreproduce the invariants of the differential equation, the pho-
covering six diffraction lengths. However, for larggr (for ton number, the momentum, and the Hamiltonian before
relativistic amplitudes of the vortex solitary wavihe split-  cavitation and only the first two after cavitation.
ting distance can be larger, for instanceB#=0.2 the ratio It is expected that thermal effects will eliminate the non-
zs/z5~13. Thus, for a high amplitude solution, the instabil- physical region associated with negative density. We are in
ity develops slowly allowing a lifetime spanning tens of its the process of deriving and solving the system that will be
periods. This fact can be explained by the considerable revalid for relativistically high temperatures. The qualitative
duction of plasma density at the solitary wave’s field maxi-nature of the results presented in this paper, however, is not
mum. Indeed, we can see from FigbRthat in the spatial likely to change(see, for instance, Reff16)).
region where the field maximum is localizeu-0; the de- We would like to emphasize that the vortices have a to-
termining equation(1) becomes linear, thus, partially sup- pological sense as the branch points, where both the real and
pressing the development of the azimuthal instability. Notdmaginary parts of the field become strictly zero, and the
also that due to the mutual attraction of the filaments, theopological charge represents the number of intersecting

7=85 (d1) 7=60 (d2)

046415-4



DYNAMICS OF SELF-TRAPPED SINGULAR BEAMS IN . .. PHYSICAL REVIEW B5 046415

formation of steady moving solitonic structures take place.
12 p-0.2 1 The vortex position still remains unaffectgsee Fig. 4d2)].
o8 We would like to inform the reader that our linear stability
e ] F analysis leaves out the possibility of an algebra@eculay
~ ok ] instability. We have, however, tested the topologically al-
E ] lowed possibility of the multicharged vortices breaking into
0.0 single charged ones; in our simulations we did not observe

2.0 3.0 4.0 5.0 6.0 any such breakup. We believe that, though the multicharged

| vortex is topologically unstable, the breaking up may be a
very slow process and special care will have to be taken to
observe this effect in practice.

pairs of zero lines of the real and imaginary parts of the field

A [17]. Applying the Madelung transformationA [ll. CONCLUSION
=\pexpliy) to Eq. (1) we can convert it to a set of fluid
hydrodynamic equations with a fluid “density and fluid
“velocity” v=V 4. According to Kelvin's theorem the ve-

locity circulation is conserved along the closed path MOVING, ttain ultrarelativistic amplitudes; the cavitatigexpulsion

with the local fluid velocity. The velocity circulatiogivdl of electrons in the high field region strongly suppresses the

:2.7”"’ where the integration path e"?C'OSGS the brancq stability growth rate allowing the localized structures to
point. As a consequence of the topological conservation oL

FIG. 5. The growth rate versusfor m=2 and3=0.2.

In conclusion, we have shown that the azimuthal pertur-
bations that break up a moderately relativistic vortex solitary
wave become considerably less menacing for the waves that

the frozen-in law, the vortex nested in the EM beam canno ive for many periods. The dynamics of the filaments is ruled

. the conservation of angular momentu¢topological
disappear even when the EM _bea"_‘ under_goes a structur arge forcing the filaments to form stable bright solitons,
change[This simple argument is valid despite the concrete, |

. . o ..-which fly off tangentially to the initial rings conserving total
(but physical 'T“Ode' equqtlons describing the p.'aS”.‘a denSItyangular momentum. The vortex, nested in the beam, appears
responsg.To illustrate this statement we plot in Fig(dd)

. i o to be robust and survives and can reach the target as an exact
t_he zero lines of the EM 1_‘|eld distribution at=85 after the . zero of the field-intensity distribution even though the beam
field has undergone splitting. One can see that the zero lin

Stself i | ch .
of the field’s real and imaginary partene pair form=1) e undergoes dramatic structural changes

il int t at th ter implving that th tex h It seems reasonable to conclude that, in contrast to the
st intersect at the center implying that the vortex has Sur'nonsingular beams, the filament dynamics for singular beams
vived structural changes of the field, and remains at the ce

MWith nonzero topological chargéangular momentuinis
ter of structure.. _ much more robust and predictable. These moderately stable,
. Though in th|§ Paper we mainly concentrated on the EIv'long—lived, and compact bundles of ultrahigh electromag-
singular _bea”? witm=1, it IS natural to expect th.aF th? E.M netic fields must be seriously considered in delineating the
beam with higher topological charge will exhibit similar

. o dynamics of plasmas in ultrastrong laser fields, for instance,
propemes. Indeed in F|gs_(m)—4(c2) we present the break- in the laser target interaction experiments. In particular, the
ing of the EM vortex solitary wave wittm=2. The beam

) o e singular beam can be used to produce multiple localized
intensity distribution, indeed follows a path similar to that of beams with controllable positions at the target.

m=1. In Fig. 5 we plot the instability growth rate versus
for the vortex soliton withm=2 and 8=0.2. The growth
rate reaches its maximum lat 4. Thus, the beam breaks up,
in accordance with the linear stability analysis into four fila- The work of S.M.M. was supported by the U.S. Depart-
ments that run away tangentially to the initial field-intensity ment of Energy Contract No. DE-FG03-96ER-54346. The
distribution ring. At a certain stage, the collapse of the fieldwork of Z.Y. was partially supported by the Toray Science
into filaments is stabilized by electron cavitation, and theFoundation.
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