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Spheromak as a relaxed state with minimum dissipation
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The principle of minimum dissipation of energy is utilized to obtain the spheromak configuration as a
relaxed state. The Euler-Lagrange equation for the minimum dissipative relaxed state is solved in terms of
Chandrasekhar-Kendall eigenfunctions analytically generalized in the complex domain. This state is non-force-
free and further shows the nonconstancy of the ratio of parallel current to the magnetic field.
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I. INTRODUCTION tures. The current interest in spheromak as a potential fusion
reactor—which would necessarily confine a high beta
The spheromak is an axisymmetric compact toroidal magplasma—motivates development of an appropriate theory for
netic confinement system, where the toroidal field is generthe spheromak that would predict the observed experimental
ated primarily by internal plasma currents. It is characterizedeatures such as finite pressure gradient, nonconstant radial
by the presence of both toroidal and poloidal fields of nearlyprofile of J,/B, etc., at least qualitatively.
equal strength. The analogy of spheromaks can be found in A small amount of resistivity, ingrained in any realistic
the classical “Hill's vortex” solutions of fluid dynamics. plasma, is essential to allow reconnective processes leading
The spheromak equilibrium configuration was characterto relaxation. In fact, dissipation, along with nonlinearity, is
ized by Rosenbluth and Bussgl as a Taylor relaxed state. ubiquitous in systems evolving towards self-organized states
Taylor’s relaxation mode[2] conjectured that the magnetic and we believe that dissipation plays a decisive role in the
field in a plasma relaxes towards a state of minimum energgelf-organization of a system. In a search for the existence of
subject to the constraint of constant magnetic helicity. In aa relaxed state that would support a finite pressure gradient,
closed system, the minimum-energy equilibrium satisfies theve invoke the principle of minimum dissipation. This is
force-free equatiorV X B=\B with A =const. Many theo- closely related to the principle of minimum entropy produc-
retical studies on spheromak equilibria and stability havetion of irreversible thermodynamics. The rationale behind
been undertaken on the basis of this Taylor state predictinthis principle is as follows. An isolated system with dissipa-
relaxed states with constad{/B profile and zero pressure tion does not have a true minimum-energy state except for
gradient. Apart from this relaxation model, the spheromakhe trivial case of zero field. An absolutely stable relaxed
equilibrium has also been shown to result from the numericastate of the plasma dictated by a minimum-energy principle
solutions [3] of Grad-Shafranov equation with or without is, therefore, of little practical interest. On the other hand, a
pressure gradient. The formation, sustainment, and decay &dirly long-lived state can be observed in practice if the rate
spheromaks has also been extensively stufiedl through  of dissipation is kept at minimum. A real turbulent plasma
numerical simulation of nonlinear equations of resistivewith dissipation can indeed “relax” to such a state if small-
magnetohydrodynamics. scale fluctuations stabilize within the resistive time scale.
Recently, a number of interesting experimental worksThe rate of energy dissipation is sensitive to the hidher-
[6—11] on spheromaks have revealed that with their com-modes in the spectrum of turbulence and if dissipation leads
pact, robust, and simple structures, the spheromaks have the suppression of largk-modes, the local field distribution
potential to develop into attractive fusion reactors. Severabecomes nearly stable with minimum dissipation rate. Thus
experimental projects like SSX in Swarthmore, SSPX inin the relaxation process, small scale fluctuations are stabi-
LLNL and others have been undertaken to explore this poslized first leading to relatively stablgong-lived states.
sibility. Earlier investigation§CTX in LANL ) have demon- The principle of minimum dissipation, first utilized by
strated good confinement and achieveg=400 eV [8,9] Montgomery and Phillip§16], has been applied successfully
and peak electron beta20% [10,11]. Experimental mea- to show that plasma can relax to a state other than force free
surements on spheromak configurations sh@®,13 non-  and these classes of relaxed states can support a nonzero
constant J;/B profiles, which imply a deviation from pressure gradientl7], together with the field reversal for
minimum-energy state. These features of spherofeads., reversed field pinches.

nonzero pressure gradient, nonconstant valuek /&, etc) In this work, we propose to identify the observed state of
are studied by solving the Grad-Shafranov equaftich-16 plasma in the actual “decaying” spheromak experiments
and also through numerical simulation methods. with precisely this kind of a minimum dissipation state. We

The theoretical approach to the spheromak has, so faderive the spheromak configuration from the equation de-
been largely based on the view that the spheromak is esseseribing the relaxed state of a magnetized plasma with mini-
tially a Taylor state. The Taylor state, being force free, ismum dissipation so that it can be described as a “minimum
devoid of pressure gradient and essential confinement fealissipation constant helicity{MDCH) state, rather than a
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“minimum energy constant helicity” state. The spheromak netic fieldB, being a solenoidal field can be decomposed into
when viewed as MDCH state, turns out to be a non-forceits toroidal and poloidal components,

free state supporting a significant fraction of perpendicular
component of current and is closer to the present day experi- B=Bt+Bp. (4)

mental results. i o . .
The toroidal magnetic field and the poloidal magnetic

Il. EULER LAGRANGE EQUATION FOR MINIMUM field Bp are of the following form:

DISSIPATION STATE Bi=—VX(r¥), Bp=—VXVX(rd), ©)

The ohmic dissipation rat¢l6] for a magnetofluid is

given by wherer is a position vectord and® are any scalar func-

tions of position. In generaly and® are distinct and will be
related to the toroidal and poloidal flux functions, respec-

R= ﬂf Jadr, (1) tively. It can be shown that iB, satisfies the equation for
force-free fields, then

where 7 is the plasma resistivity and the integral is over the
entire confinement region. Herg is considered to be inde-
pendent of space. The magnetic helid€y= fA-Bdr is an
invariant of motion in ideal magnetohydrodynamit4HD).

If the turbulence is sufficiently lowK still serves as a con- (V2N Ty=0, Po=V,/\. (7)
straint[18] as it decays at a slower rate compare®tdf the

energy dissipation rate given by E¢Ll) is minimized by In spherical coordinates (0, ¢), V¥, is obtained as
including helicity as a constraint on the minimization

through the use of Lagrange’s multipliar, the following
variational equation is obtained:

Bo=—V><(I"I’0)—V><V><(I’CD0), (6)

and the following relations must hold:

jm(NF)Ph(cosf)e?, )

wherej,(\r) is the spherical Bessel functioRy,(cos6) is

_ an associated Legendre function. The classical spheromak
5f (n3?+\A-B)d7=0. (2)  equilibrium solution, obtained by Rosenbluth and Bugddc

is given byn=0m=1 state together with the boundary con-

On simplification, this leads to ditions By-n=0 at the plasma surface. This yieldsa
=4.493, whera is the radius. The lines of constant poloidal

A magnetic field are described by the poloidal flux functign

f (VXVXJ—-AB)- SAdV— 3(; VxJ—EA) given by
9P
X SA+JIX VX SA|-dS=0, Xo=rsing—. €)

where the last term is a surface integra| over the p|asm;hUS for a force-free state, the toroidal flux function and the

boundary. The surface integrals vanish on considering varig?oloidal flux function can be obtained from a single scalar
tions SA that are zero at the bounding surface. The solutiorfunction. However, this may not be the most general situa-

of this variational problem is obtained as tion. _ _ _ _
The solution of Eq(3) can be written as a linear combi-
VXVXVXB=AB, (3 nation of the solutions for the force-free equation corre-

- sponding to complex eigenvalues
whereA = —\/# is a constant.

3
B=> B, (10
I1l. SPHEROMAK SOLUTIONS OF VXVXVXB=AB i=0

The spheromak solutions of the equation Characterizir_‘gvhere a; are constants to be fixed by boundary conditions
the relaxed state of a magnetoplasma controlled by the pring,q B; obey the following equations:

ciple of minimum dissipation, can be construcfdd] as a
linear combination of the solutions of the force-free equation VXB=\w'B;, (11)
analytically generalized to the complex domain. Finite beta
spheromak equilibria has also been shd®] to result from  where w is the complex cube root of unity. Following Eqg.
the solutions of the static MHD equilibrium equation by a (6), B; can be expressed as
method involving the superposition of eigenfunctions of the
force-free equation belonging to real eigenvalues.

A general solution of the force-free equation can be given
in terms of the Chandrasekhar and Kend@&lK) eigenfunc-
tions [20] that can be constructed by noting that any mag-where¥; are solutions of

2i
Bi:_vxrqfi—wTVxVx(r\Ifi), (12
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(V%+ )\2w2i)\pi:o, (13 spherically symmetric solutions with=0. This feature is
consistent with the classical spheromak solutions obtained in
Following the above, the solution given in EQ0) can be Ref.[1]. The boundary conditions given by E@.9) can be
expressed as realized with three different choices, listed below.
(i) We choosea;,a, to be complex. In order that the
B=—VX(I¥)-VXVX(ro), 19 fields may be real, this leads to the choieg= « , where
with the asterisk refers to complex conjugate. In this case, the two
boundary conditions are utilized to obtain the eigenvalae
2 and also fix the complex ratio partly, say the real or the
2 ;. (15  imaginary part. We are then left with a choice for fixing the
=0 other component of the ratio; this amounts to choosing a
suitable mixture of the non-force-free part, consistent with
the prescribed boundary conditions.
(i) We can havexy; to be purely imaginary. In this situa-
\Ifi=jm()\wir)P21(cose)ei”¢’. (16) tion, the boundary conditions determine the eigenvalae
and the coefficients for the non-force-free part unambigu-
The expression foB given by Eq.(10) then satisfies Eq3)  ously and it also leads ta,= («4)*. The imaginary part of
for A=\3. The spheromak solutions of E() are given by  «; is given by
them=0,n=1 state as in the earlier case.
The corresponding flux functiog is given by

>’||—\

2
=E oV
=0

¥, are the generalization in complex domain of the expres=
sion given in Eq(8) and are given by

__Bor
2ImBq ]

ay

Im (20)

2 @

x(r,0)=r smagz— = E ;02 j (No'r)sir? 6.
i= 1 The lowest eigenvalue for this case is obtained \as
a7 =2.58.
(iii) As a third choice, we take; as real. This leads to
a1= a, in order that all fields are real. In this case also the
boundary conditions fix the eigenvald@ and the amplitude

In terms of the poloidal flux functioly, B can be written as

v
B=(VyxXVg¢)+r sma V¢ of the non-force-free part completely. We get
The different magnetic field components are obtained as jl()\a)+2% R w?j,(Awa)]=0,
0
-2
B, = E a;0?j,(Aw'r)cosé, a
=0 jl()\a)+2a—oRe[jl()\wa)]:O. (21)
12
va 2 @ w? [I’j 1(\w'r)]sing, (18 The above equations when solved simultaneously lead to the

=)

lowest eigenvaluaa=6.09 and
2

. L B
By=—2, aiji(Nw'r)sing “a___ Por
¢ . i)1 ' . (22
=0 @y 2RdBy]| _,
and are shown to lead to spheromak type solutions under
appropriate boundary conditions. B. Location of magnetic axis andq values
The poloidal magnetic field of the spherom&, is given
A. Boundary conditions by
The boundary conditions are necessary to determine the
eigenvaluena and for fixing the amplitudes of the non- Bo— 1 ‘9_X B 1 a—Xe
Taylor part in the solution. Since it is known that the lowest P r2sing 905 Tsing ar

eigenvalue corresponds to states with minimum dissipation,
we shall determine the lowest eigenvalue from the boundaryhe poloidal field has a neutral point at
conditions,

B-n=0, J-n=0 at r=a, (19 <9_X:0 3_)(:0
a0 or '
where a is the boundary of the spheromak. These are the
boundary conditions relevant to an insulating boundary at th&ubstituting fory from Eg. (17), the magnetic axis of this
edge of the spheromak. Also, the conditibm=0 atr=ais  configuration is described by the circle=7/2 andr=r,,
also equivalent t,=0 atr=a as we are considering the wherer is the solution of
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2

r'Zo aijl()\wir)

J-o.

dr

The safety factog(y) has an important role in the stability

theory of plasmas and is defined by

27 ) sinéB,

_ 1 [ 1By

2 (9)(/drd0'

qlx)=

In the following, we use EQq(23) in order to obtain they

(23
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values of aspheromak configuration at the magnetic axis and

the edge.

1. q at the magnetic axis#*r,

At the magnetic axisgy/dr=0 as seen from the defini-
tion of magnetic axis. So in order to obtainvalue at this

FIG. 1. The spheromak.

2

iEO aij1(Nw'ro)

NVXrr X060 '

Jo=Tro (26)

point we expandy about the magnetic axis in a Taylor's

series[21]

("_ro)2 52)(

2 g2

(60— 00)% *x

2 907

X=Xxot

(24)

The values ofa; as fixed by the boundary conditions are
used to obtain the value af, for different values oha.

2. q on the last flux surface, i.ex=0

The value ofg at the edge denoted ly, is obtained by

wherey, is the value ofy at the magnetic axis and the terms numerically integrating the following:

containing first derivatives vanish.
From the above, we can write

(92)(
=119

dr

r=rg.0=16y

2(x— xo0)
(r_rO)er:\/erXHf)\/(XX—WXO_(G_HO)Zv (25

where

(92)(
Xo6= "5
" 562

_ X
er_ﬁ’

With these substitutiong), is obtained as

2
roY, @w?j;(\a'rg)
1 i=0

Qo=——
VXrr X606

ko

3m/2 sing

. "
w2 N2(x— Xx0) X 99— (06— 6p)

2
oY, ao’j;(\a'rg)
1 i=o

Qo=——
NXrr X606

T

(60— 6o)

[2(x— x0)
X

00

sin

-1

Finally, the value ofg at the magnetic axis is given by

1

By
9= o

SinfB

B
¢
rsinaB,dr'

o |

Substituting forB,, ,B, from Egs.(18), we obtain

2

> aiji(Ne'r)

)
cos6Y, ajw?j(Nw'r)
=)

dr. (27

We note that the last flux surface is given lgy=0, and
consists of two branches.

(i) On the first branch, which is the semicircle at
=a, r is constant and the contribution to the above integral
vanishes.

(i) On the second branch, which is the diameter of the
semicircle passing through the origin-0, cos6=0,m, the
above integral can be numerically evaluated for different val-
ues of\a using appropriate boundary conditions.

IV. RESULTS AND DISCUSSIONS

First, we implement the boundary conditions by choosing
the ratio @, /@y as complex. As stated earlier, for a given
eigenvalueha, the real part of the complex ratio can be
uniquely fixed and there is a flexibility in choosing the
imaginary part(or vice versa For the eigenvaluaa=4.0,
the boundary conditions are satisfied with [Re/aq]
=0.02, IMa1/ag]=0.03. In this situation, the magnetic
axis lies atr/a=0.66. Most interesting features about the
spheromak configuration shown in Fig. 1 are the following:
the profile of u=J-B/B?, as plotted in Fig. 2, shows non-
constant behavior with peaks lying outside the magnetic axis.
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1.81 Aa=4.0
o, /ct,=0.02+0.03i
1.6
1.44
1.2
3
1.0
081 FIG. 4. The double spheromak configuration.
0.61 L . .
tion is similar to the one obtained in the casexa=4.0.
10 05 0.0 05 10 Profiles for u=J-B/B? are also similar with more pro-
r/a r/a nounced peaks, i.e., the profiles show a nonconstant behavior
¢=n 4=0 of A profile with peaks closer to the magnetic axis that lies at

_ ) r/a=0.7. The values 0§y andq, obtained from Eqs(26)
_FIG. 2. Aplot of J;/B and against/a in the z(=r cos6)=0  and(27) are given by 0.143 and 0.142 showing an almost flat
midplane forna=4.0. q profile.

] o ) o A very remarkable feature of the spheromak configuration
From the figure, it is evident that the characteristics of thegptained from this theory is the existence of a double toroi-

profiles obtained from the theory are more realistic andya| configuration whenw; for i=1,2 are chosen real. This
qualitatively closer to the experimentally observed profiles Oftype of configuration was earlier described by Morikai8h
these quantitief12]. The corresponding profiles of the po- \who obtained this from the solutions of a Grad-Shafranov
loidal (B,) and toroidal B,) magnetic field components in equation by choosing a linearly varying pressure profile with
thez(=r cos)=0 midplane are shown in Fig. 3. The q val- fyx function. For reala;, i=1,2 the boundary conditions
ues range from 0.58 at the magnetic axis to 0.51 at the edggjye the eigenvaluaa as 6.02, andy, = o, = —0.012. Here
showing essentially, as expected, the distinctive low-sheafe have two magnetic axis locations, oner &=0.44 and
feature of the configuration. the other ar/a=0.8. This gives rise to a double spheromak

If we take the coefficients;, i=1,2 as pure imaginary, configuration as shown in Fig. 4. The valuet the first
the boundary conditions lead to = (a,)* and both the ei-  magnetic axis is 0.91 and at the edge=0.69.

genvalue andy; are determined uniquely. In this case, we A relaxation model based on the principle of minimum
obtain the eigenvaluena=2.58, and Reai/ao]=0, rate of energy dissipation is set up leading to an Euler-
Im[a;/ag]=0.33. The corresponding spheromak configura_ agrange equation that supports non-force-free magnetic
fields. The solutions are obtained through an analytic gener-
084 alization of the CK eigenfunctions to the complex domain. A
B suitable choice of boundary conditions consistent with ex-
perimental observations leads to solutions that represent a
spheromak configuration. The boundary conditions fix the
» eigenvaluera and the amplitude of the non-Taylor part of
0.4 the solution, when the amplitude is completely real or imagi-
nary. However, for complex values of the amplitude, these
boundary conditions fix the eigenvalue and allow a free
0.2+ choice of one of the components of the complex amplitude.
The Euler-Lagrange equation describing the minimum
dissipation-constant helicity relaxed state is essentially
10 ) 05 ) a ) 05 ) o solved in terms of force-free solutions expressed in the form
of CK eigenfunctions generalized to the complex domain.

0.6

q:/jn 0.2 r/_ao However, a final non-force-free state results owing to super-
9= position of the force-free solutions belonging to different ei-
B genvalues. Static MHD equilibria supporting finite pressure
-04+ ¢ profiles can also be formgd 9] by summing the orthonor-
mal basis functions of the force-free equation belonging to
o5 real eigenvalues. These finite beta spheromak equilibria

show departure from a single mode spectrum identified with
FIG. 3. The profiles oB,( . ..) andB,( ...) against/ainthe  the Taylor state as pressure increases. The spheromak con-
z=0 midplane forna=4. figuration obtained in this work is shown to result from a
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relaxation mechanism based on minimum dissipation rat@ted current profiles have a nonvanishingx (JX B),
principle. In analogy with Morse’s work19], the Euler-  theJx B force tends to be balanced by a tensorial pressure or
Lagrange equation obtained by us has both force-free angortical flows. The plasma configuration considered here cor-
non-force-free solutions as each of the force-free solutionsesponds to that of a closed system in the absence of any
represented by Eq$ll) is also a solution of Eq(3). While  external drive. Such an isolated system with dissipation re-
the force-free solutions do not give rise to pressure profiledaxes to a fairly long-lived state when small-scale fluctua-
non-force-free states are capable of supporting a finite beti#ons stabilize on the resistive dissipation scale. However, an
or flows containing nonzero vorticity. While it is true that exact representation of equilibrium in terms of flows or pres-
superposition almost always leads to non-force-free statesure through the use of stationary MHD equations may not
the average beta obtained in the case of non-force-free statbe valid as in the case of sustained equilibrium in driven
depends strongly on the nature of superposifib®. From  systems.
this perspective of the nature of pressure or flow profiles, it The spheromak solutions obtained here also give rise to
may be said that the minimum dissipation rate principle prononconstant =J- B/B? profiles. Many of the works trying
vides a means of choosing the solutions to superpose artd model spheromak configuration in the framework of Tay-
also has a definite influence on these profiles. Besides, tHer’s theory assume an arbitrary variationofwith the flux
self-organization mechanism based on the minimum dissipaunction . We emphasize that this is mathematically incon-
tion rate principle automatically leads to the necessity ofsistent, as\, introduced in the theory as a “Lagrange unde-
finding such a superposed solution and is also representativermined multiplier” in the variational calculation, is as-
of the physical processes occurring in the magnetized plasmsumed to be a constant. The relaxed states obtained here can
in presence of small but finite resistivity. support a finite value of beta and hence will be more suitable
The spheromak configuration obtained here is a nonto describe future spheromak experiments that are supposed
force-free relaxed state unlike Taylor’s force-free spheromako operate at higher beta and hence will exhibit significant
and hence supports a perpendicular component of currenpressure profiles that modify the equilibrium magnetic flux
Since the magnetic fields given by E@&8) and the associ- functions.
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