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Self-consistent kinetic theory of a plasma sheath
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A fully kinetic theory model of the sheath of a dc glow discharge is presented. This model includes a direct
numerical solution of Boltzmann equations for the spatial and velocity dependence of the electron and Ar1

distribution functions with a self-consistent electric field calculated from the Poisson equation. The solution is
obtained using a collocation method that employs Legendre quadrature points for both angular and spatial
variables, and nonclassical speed quadrature points for velocity. The results of the steady state direct numerical
solution are compared with a particle-in-cell Monte Carlo simulation. As anticipated, it is found that the space-
and energy-dependent ion distribution function varies strongly with a decrease in the ratio of the Debye length
to the ion mean free path.
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I. INTRODUCTION

In the study of electron and ion transport in dischar
devices, an important consideration is the nonequilibrium
havior of ions and electrons close to an electrode. This
gion is referred to as the sheath, and is not rigorously
fined. The motion of electrons in the sheath region
strongly coupled with that of ions. The plasma sheath pot
tial is not knowna priori but must be found self-consistentl
Understanding the basic properties of plasma sheath is a
nificant problem in discharge physics, plasma chemistry, g
eous laser physics, and especially in plasma processin
this paper, we treat an idealized system consisting of a
lection of Ar1, Ar, ande2, bounded at the spatial origin (r
50) by an absorbing electrode. The physical situation
depicted in Fig. 1 of@1#. In addition, fluxes of electron an
ions are specified atr→0, and there is no ionization consid
ered.

Far from the electrode in the bulk plasma, a macrosco
fluid description based on the differential fluid dynam
equations for the fluid variables such as the density, fl
velocity, and temperature is valid. This fluid description c
be derived from the kinetic description, and is a simpler
proach in that there is a reduction in the dimensionality
the variables involved. Close to the surface, the hydro
namic approach is no longer valid and amicroscopicdescrip-
tion based on kinetic theory that involves a determination
the system distribution functions from the Boltzmann eq
tion must be used. An understanding of nonequilibrium p
nomena in plasma sheaths is a fundamental problem.
problem overlaps many other problems in science and e
neering, which include boundary layers that occur in la
physics, fusion devices, aeronautics, space science, a
physics, chemically reactive systems, radiation physics,
This paper addresses a fundamental problem involving
development of kinetic theory methods for the description
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plasma sheaths and the assessment of the validity of
dynamic models.

The study of plasma sheaths has a very long history.
first important studies are the classic works by Tonks a
Langmuir @2# and by Self@3,4#. Recent papers@5–9# have
provided brief historical accounts of the previous theoreti
work. Recent~analytic! models have been presented by Ril
@10,11#, by Metzeet al. @12#, and by Lieberman@13#. Rie-
mann@14,15# has given a very detailed and comprehens
review of sheath formation and the Bohm criterion. The ge
eralized Bohm criterion is used as a boundary condition
the plasma-sheath interface. Sheridan and Goree@16# have
studied the effects of collisionality on the plasma sheath w
a two-fluid model. Procassiniet al. @8# have considered a
particle-in-cell ~PIC! model of a collisionless plasma tha
contacts a floating absorbing boundary. They studied the
fect of different source distributions and their model does
involve the usual assumption of the Boltzmann relation
electrons. Scheuer and Emmert@9# reported on a kinetic ap
proach based on the Boltzmann equation but with a sim
Bhatnagar-Gross-Krook~BGK! model of the collision opera-
tor. This is a poor model for ion-ion collisions for which
Fokker-Planck collision term should be used. Koch a
Hitchon @17# considered a computer simulation of the effec
of collisions on the plasma presheath with a Green’s funct
approach. They studied the effect of charge exchange c
sions and different source functions as did Scheuer
Emmert @9#. Hong and Emmert@18# employed a two-
dimensional fluid theory for cold collisionless ions coupl
to the Poisson equation. They considered time depen
sheaths, which has important applications to plasma so
ion implantation process. Van den Berget al. @7# considered
a collisionless Boltzmann equation with a source term. Th
main objective was to study the Bohm criterion and t
sheath edge field singularity. The choice of source term
made to permit an analytical evaluation of the results.

Valentini and co-workers@19,20# have applied a two-fluid
model to a positive column in cylindrical geometry. The
emphasized the importance of properly treating bound
sheaths for several technical applications. In particular, t
mention that a proper understanding of sheath phenom
requires a kinetic theory treatment but they employ a hyd

,
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ALEKSEY V. VASENKOV AND BERNIE D. SHIZGAL PHYSICAL REVIEW E65 046404
dynamic approach. They use multiscale theories and spe
matching conditions together with the Bohm criterion to d
termine the sheath edge. Nitschke and Graves@21# have also
considered a matching of a sheath model with a fluid b
plasma model. They mention that fully resolving the she
can be computationally expensive due to the different len
scales of the sheath and the bulk plasma. They emphasiz
arbitrariness of these matching procedures. Godyak
Sternberg@22,23# again emphasize that there is an urge
need to consider the sheath and the bulk plasma togeth
one system. Dalvieet al. @24# reported Monte Carlo~MC!
simulations with a self-consistent electric field obtained fro
the solution of the Poisson equation. These authors
formed MC simulations with the use of constant collisi
cross sections. The use of this unrealistic collisional mo
allows for a very simple MC algorithm. The present wo
employs realistic cross sections in a fully kinetic theory tre
ment coupled to the Poisson equation, whereas many o
previous models are fully or partially based on hydr
dynamics.

In Sec. II, we present our kinetic model of the sheath. T
direct numerical solution~DNS! of the Boltzmann equation
for electron and ion distribution functions with a se
consistent electric field obtained from the Poisson equatio
described in detail. A brief summary of our PIC-MC meth
is also presented in this section. In Sec. III, the results
calculations are presented for the sheath region in a DC g
discharge in Ar.

II. SELF-CONSISTENT KINETIC THEORY
OF A PLASMA SHEATH

A. Direct numerical solution

The self-consistent model of electron and ion transpor
a boundary layer between the plasma and an electrode
quires the solution of the Boltzmann equations for the dis
bution functions of electrons,f̃ e(r ,v,t), and ions f̃ i(r ,v,t),
and is coupled to the Poisson equation for the self-consis
field. We consider a one-dimensional discharge such tha
spatial dependence is only in ther axis. We consider a sys
tem of electrons and ions dilutely dispersed in background
atoms considered at equilibrium. The Boltzmann equati
for the electron and ion distribution functions are given b

] f̃ e

] t̃
1mv

] f̃ e

]r
2m

eẼ

me

] f̃ e

]v
5ngJ̃e@ f̃ e#, ~1!

] f̃ i

] t̃
1mv

] f̃ i

]r
1m

eẼ

Mi

] f̃ i

]v
5ngJ̃i@ f̃ i #, ~2!

wherem5cosu, andu is the angle relative to ther axis; me
andMi are the electron and ion masses, respectively; andng
is the neutral gas density. We have written the tim
dependent forms of the Boltzmann equations, although
the steady distributions that are desired. The electric fieldE,
in Eq. ~1! is determined from the Poisson equation,
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5

e

«0
~ ñi2ñe!, ~3!

wheree is the electron charge ande0 is the vacuum permit-
tivity. The electric field is derivable from the scalar potenti
w, that is,

Ẽ52
]w̃

]r
, ~4!

where the steady electron and ion densities,ne(r ) and ions
ni(r ), respectively, are determined by

ñe~r !5E f̃ e~r ,v,m!dv, ~5!

ñi~r !5E f̃ i~r ,v,m!dv. ~6!

We have suppressed the time variable as it is the ste
distribution functions sought. The linear collision operat
for electron-neutral interactions,J̃e , is given by the Lorentz-
Fokker-Planck form@25,26#

J̃e@ f̃ #5
me

M

1

v2

]

]v H Fsm~v !v4S 11
kT1

mev
]

]v D G f̃ e~r ,v,m!J
1

sm~v !v
2

]

]m H ~12m2!
]

]m
@ f̃ e~r ,v,m!#J , ~7!

wheresm(v) is the momentum transfer cross section,M and
T1 are the atom mass and the temperature of backgro
medium, respectively. The first term in curly brackets in E
~7! is the isotropic portion of the operator whereas the sec
term is the anisotropic part that describes pitch-angle sca
ing.

We assume that the major process for ion-neutral collis
is the charge exchange process for which the collision op
tor, J̃i , is of the form

J̃i@ f̃ i~r ,v,m!#5 f̃ i
M~v !E f̃ i~r ,v8,m!sex~g!gdv8

2 f̃ i~r ,v,m!E f̃ i
M~v8!sex~g!gdv8, ~8!

where sex(v) is the charge exchange cros
section,g5uv2v8u is the relative velocity. In Eq.~8!, the
Maxwellian distribution is defined by, f̃ i

M(v)
5(Mi /2pkT1)3/2exp(2Miv

2/2KT1). When written explic-
itly in terms of spherical velocity components, this opera
for charge exchange collisions of ions with neutrals is giv
by
4-2
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J̃i@ f̃ i #5~Mi /2pkT1!3/2exp~2Miv
2/2kT1!

3E
0

`E
21

1 E
0

2p

sex~g!g f̃ i~r ,v8,m!

3v82dv8dmdf

2~Mi /2pkT1!3/2f̃ i~r ,v,m!E
0

`E
21

1 E
0

2p

sex~g!g

3exp~2Miv82/2kT1!v82dv8dmdf. ~9!

We introduce the ion mean free path,Li51/ngs i and the
reference density given byn05 j 0 /Dangs0 with the flux j 0
51 cm22 s21. Heres051 Å, Da is the ambipolar dif-
fusion coefficient, ands i is the charge exchange cross se
tion calculated at energy corresponding to the ion temp
ture Ti chosen far from the electrode. We also introdu
dimensionless spatial variable defined asx5r /Li and dimen-
sionless velocity variables for electrons,p5v/ve , and ions,
P5v/v i where ve5(2kTe /me)

1/2 and v i5(2kTi /Mi)
1/2.

Similarly, we define dimensionless times for electrons a
ions, te5 t̃ve /Li , t i5 t̃v i /Li , respectively. Although the
definition of dimensionless variables is not unique and ot
definitions could be used, this definition is conventional. T
distribution functions, densities, collision operators a
fields can thus be written in dimensionless for
and we have that,f e5 f̃ eve

3/n0 , f i5 f̃ iv i
3/n0 , ne5ñe /n0 ,

ni5ñi /n0 , Je@ f #5 J̃e@ f̃ #/(s ive), Ji@ f #5 J̃i@ f̃ #/(s iv i) E

5eẼLi /kTe , w5ew̃/kTe . With the transformation to thes
dimensionless variables, Eqs.~1!–~3! can be rewritten as the
system of equations

] f e

]te
1mp

] f e

]x
2

mE

2

] f e

]p
5Je@ f e#, ~10!

] f i

]t i
1mP

] f i

]x
1

mE

2

Te

Ti

] f i

]P
5Ji@ f i #, ~11!

ne~x!5E f e~p,x,m!dp, ~12!

ni~x!5E f i~P,x,m!dP, ~13!

]E

]x
5«22~ni2ne!, ~14!

E52
]w

]x
, ~15!

where«5lD /Li and lD is the Debye length given bylD
5(«0kTe /n0e2)1/2. The ratio of the electron temperature
ion temperature appears in Eq.~11! becauseTi is used to
04640
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introduce the dimensionless ion velocity, whereas elec
field is divided byTe . The parameter« controls the spatial
variation of the electric field and indirectly, owing to th
coupling of the Poisson equation with the Boltzmann eq
tions, the other variables: distribution function, density, te
perature, etc. As«→0, the problem is then a two scale pro
lem with variation of system properties on anLi length scale
as well as alD length scale. In the extreme limit, asymptot
methods are used@15#.

The steady distributions for both electrons and ions
determined from the time-dependent Eqs.~10! and ~11!, re-
spectively. The time derivatives in Eqs.~10! and ~11! are
reduced to algebraic form with an explicit finite differenc
method, that is,

f e
n115 f e

n2BeDte , ~16!

f i
n115 f i

n2BiDt i , ~17!

wheren11 andn denote successive times separated byDt.
The quantitiesBe andBi are evaluated at time denoted byn
and are defined by,

Be5pm
] f e

]x
2

mE

2

] f e

]p
2Je@ f e#, ~18!

Bi5Pm
] f i

]x
1

mE

2

Te

Ti

] f i

]P
2Ji@ f i #. ~19!

Equations~18! and ~19! are discretized with a collocation
method that employs Legendre quadrature points for both
m and x variables, and the nonclassical speed quadra
points forp andP. The derivative operators inx, p, andP in
Eqs.~18! and~19! are replaced with their matrix represent
tives as discussed by Shizgal@27#, and Blackmore and Shiz
gal @28#. The discretization is based on a discrete mat
derivative operator defined such that

dF~x!

dx U
x5xi

5(
j 51

N

Di j F~xj !. ~20!

This algorithm permits the reduction to algebraic form
differential operators as occurs explicitly in Eqs.~18! and
~19!. The electron collision operator is in the form of a di
ferential Fokker-Planck operator in Eq.~8! can also be writ-
ten in terms of first and second order derivative operat
@26#. Equation~18! is thus written in discrete form as give
by
4-3
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Be~xk ,pn ,m l !5pnm l (
j 51

Nx

Dk j
L f e~xj ,pn ,m l !

2
m lEk

2 (
j 51

Np

Dn j
S f e~xk ,pj ,m l !

2
me

M

1

pn
2 (

j 51

Np

Dn j
S sm~pj !

s i
pj

4F f e~xk ,pj ,m l !

1
1

2pj
(
i 51

Np

D ji
S f e~xk ,pi ,m l !G

2
sm~pn!

2s i
(
j 51

Nm

Dl j
L ~12m j

2!

3(
i 51

Nm

D ji
L f e~xk ,pn ,m i !, ~21!

where Dk j
L and Dn j

S are the derivative matrix operators fo
Legendre and speed quadratures, respectively. The qu
ties,Nx , Np , andNm are the number of discrete quadratu
points in thex, p, andm variables. The first two terms in Eq
~21! correspond to the derivative terms in Eq.~18!. The third
term involving the square brackets is the isotropic portion
the electron-atom collision operator whereas the last t
involving the derivatives inm arise from the anisotropic par
of the collision operator. The ion-neutral charge exchan
integral operator can be evaluated using the quadrature
mula for the speed weight function@27,28#. The discrete
form of Eq.~19! follows similarly except that the ion-neutra
charge exchange collision operator is an integral oper
and evaluated with the speed quadrature formula, that is

Bi~xk ,Pn ,m l !5Pnm l (
j 51

Nx

Dk j
L f i~xj ,Pn ,m l !

1
m lEk

2

Te

Ti
(
j 51

Np

Dn j
S f i~xk ,Pj ,m l !

2
2

p3/2
exp~2Pn

2!(
j 51

Np

wj
S exp~Pj

2!

3(
i 51

Nm

(
m51

Nm

wi
Lwm

L Vjnilm

~12mm
2 !

sex~V!

s i

3 f i~xk ,Pj ,m i !1
2

p3/2
f i~xk ,Pn ,m l !

3(
j 51

NP

(
i 51

Nm

(
m51

Nm

wj
Swi

Lwm
L Vjnilm

~12mm
2 !

sex~V!

s i
,

~22!

where Vjnilm5Pj
21Pn

222PnPjm i lm , m i lm5m lm i2@(1
04640
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2)#1/2mm . The electric field at thej th collocation
position was found from a solution of the Poisson equat
given by

E~xj !5(
k

Dk j
21«22@ni~xj !2ne~xj !#. ~23!

The electric field asx→` is calculated from the requiremen
that the motion of electrons and ions is described by
ambipolar diffusion@29#,

E~x!ux→`5
Di2Da

Di

1

x
,

where the ambipolar diffusion coefficient is given by@29#

Da5
Dem i1Dime

me1m i
.

HereDe ,Di , andme ,m i are the electron and ion coefficien
of diffusion and mobility, respectively.

The method of solution follows earlier treatments of t
Milne problem@1,26,28#. The distribution function,f i

0 , and
electron distribution function,f e

0 , far from the boundary at
x50 given by

f e
0~xk ,pn ,m l !5 f i

0~xk ,pn ,m l !

52 j 0 /Daf M~pn!@qa1xk2m lU~pn!#

~24!

serve as asymptotic boundary conditions. The coefficienqa
is the extrapolation length@1,26#. These distribution func-
tions are the asymptotic forms consistent with the Chapm
Enskog type solution of the diffusion of ions or electro
through the background neutral gas at equilibrium. The d
tribution functions are close to Maxwellians with a sma
perturbation owing to the finite drift of electrons and ion
The perturbation is of the form@1#

m lU~pn!5 (
n50

N

dncn1~pn ,m l !,

where the basis functionscnl(pn ,m l) are the Laguerre-
spherical harmonic basis functions.

The extrapolation lengthqa , and the expansion coeffi
cients dn ~which describe ambipolar transport of electro
and ions far from the electrode! are calculated from the so
lution of the Boltzmann equation@1,26# with the collision
operatorI equal to

I 5
Te

Te1Ti
S Je@ f #1

Ti

Te
Ji@ f # D . ~25!

This choice for the collision operatorI reduces the system o
equations~10!–~15! to one equation. The temperature facto
in Eq. ~25! occur becauseTi andTe are used to introduce th
dimensionless velocities in Boltzmann equations for ion a
electron distribution functions, respectively.
4-4
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SELF-CONSISTENT KINETIC THEORY OF A PLASMA . . . PHYSICAL REVIEW E65 046404
The numerical solution of system of equations~16!–~23!
is obtained as given by the iterations in Eqs.~16! and ~17!.
The initial distribution functions for electrons and ions in th
time-dependent approach to steady state are chosen ac
ing to the distribution represented by Eq.~24!. The algorithm
includes cycles, each of which involves the direct numeri
solution of the Boltzmann equations for electron and
distribution functions, subject to the Marshak boundary c
ditions @26#, and the Poisson equation for the self-consist
electric field. The electron and ion distribution functions
the timetn are given by Eqs.~18! and~19!, respectively. The
electric field, used in Eqs.~18! and ~19!, is calculated by
solving Eq.~23! that employs the electron and ion densiti
obtained attn21. This procedure is repeated until the stea
state solution of Eqs.~18! and ~19! is obtained.

B. The stochastic simulation

A PIC simulation is a widely used alternative approach
the direct solution of the system of equations~1!–~3!. In the
PIC method, a group of electrons~or ions! is represented by
a single simulation particle. It is usually assumed that t
particle has only short-range interactions with a gas a
that correspond to collisions. The statistical Monte Carlo c
lision technique is used to simulate these collisions. In
PIC-MC method, each particle moves in the electric fie
according to Newton’s law. The self-consistent field is calc
lated from the solution of the Poisson equation with the d
sity of electrons and ions obtained from the particle simu
tion.

In this study, we use the PIC-MC algorithm to study t
steady space- and energy-dependent ion and electron d
butions in the sheath region. The algorithm includes a Mo
Carlo simulation of charged particle transport in a se
consistent electric field calculated using the Poisson eq
tion. Ensembles of electrons and ions with Maxwellian spe
distributions are incident on the gas medium of finite ext
in the r direction. The Monte Carlo simulation of particl
collisions, neglecting Coulomb collisions, with a velocity d
pendent collision cross section is made tractable by the n
collision technique. This is accomplished by adding an ad
tional fictitious process referred to as null collisions such t
the total collision frequency is constant at the valuenm

l

5ngg@snull
l (g)1s l(g)#, wherel is eithere for electrons or

i for ions andg is the relative velocity. The real cross sectio
is s l(g) is and n(g)5nggs l(g) is the total collision fre-
quency for real collisions. This technique was developed
Skullerud @30# and discussed by others@31,32#. The prob-
abilities of real and null collisions are then given by

Preal
l ~g!5n~g!/nm

l , ~26!

Pnull
l ~g!5@nm

l 2n~g!#/nm
l . ~27!

The simulation domain is divided into cells, sufficient
small, so that there no appreciable change in the electric
within a cell. The trajectory of a charged particle in fre
flight in a cell is described with the Newton’s equation
motion and energy conservation. With the null collision tec
04640
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nique, the time between collisions,t l , is calculated witht l

52 ln(R)/n m
l , whereR is a random number. In contrast t

the usual PIC-MC simulation, we have thatte.t i , so that
ions usually do not traverse more than one cell in timet i ,
while electrons often cross several cells in timete . The tra-
jectory of each particle is characterized by a succession
free flights interrupted by collisions. In the case of null co
lisions, a particle emerges with no change in velocity.

Electron-neutral collisions are treated with an isotrop
momentum transfer cross section with no energy transfer
curring owing to the small electron mass. The approach u
for ion-neutral charge exchange collisions involves sampl
the velocity of the neutrals from a Maxwellian distributio
The probability of a charge exchange collision is then de
mined with Eq.~26!. If an ion experiences a charge exchan
collision then it is replaced by a newly created ion. T
velocity of the new ion is determined by treating a charg
transfer collision as a head-on collision with a scatter
angle ofp.

The core of our algorithm consists of three primary pr
cedures: the simulation of collisions, indexing, and cross
erencing of particles, and the simulation of particle motio
At the end of third procedure, spatial distributions of ele
trons and ions are obtained using the spatial coordinates
velocity components of simulation particles,

ns~r !5

(
k

ns
k~r ,p!

Dr
, ~28!

where the subscripts represents the kind of particle (e for
electrons andi for ions!, ns

k(r ,p) is the space- and velocity
dependent distribution function. The summation in Eq.~28!
is over all particles in the spatial intervalDr centered atr.
The Poisson equation is solved with the quadrature disc
zation method, which permits the reduction of the differe
tial operator to the algebraic form. The details of solution a
given in the preceding subsection. These procedures ar
peated until the steady state distributions of ions and e
trons are obtained.

The present model is used to determine the space
energy dependent ion and electron distribution functions

f s~r ,E!5

(
k

ns
k~r ,p!

DrDE
, ~29!

where the summation is over all particles existing in t
spatial intervalDr centered atr, and also, in the energy
interval DE centered atE.

III. RESULTS AND DISCUSSION

The main objective of this paper is to determine spa
and velocity-dependent distribution functions of electro
and ions near an electrode. Both direct numerical soluti
of Eqs.~16!–~23! and PIC-MC simulation were considere
The momentum transfer cross section for the electron
elastic collisions was taken from Ref.@33#, whereas the
charge-exchange cross section for Ar1-Ar interactions was
obtained using the results from Ref.@34#. The electron and
4-5
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ion velocity distribution functions far from the electrod
were chosen to be Maxwellian distributions for electrons a
ions withTe53000 K andTi5300 K. The background ga
temperature was equal to 300 K.

The distribution function of ions~or electrons! far from
the electrode, given by Eq.~24!, is presented in Fig. 1. The
distribution function,f i

0(x,p,m), denoted byf i(x,P' ,Pi) is
shown as function of dimensionless perpendicular,P'

5PA12m2, and parallel,Pi5Pm, velocities. We see tha
the distribution shown in Fig. 1 is slightly anisotropic. Th
position of the maximum is also slightly shifted from th
origin due to the drift of ions towards to the electrode.

We obtain the steady ion and electron distribution fun
tions, which are the primary objectives, by solving the tim
dependent Boltzmann equations, Eqs.~16!–~19!. The distri-
bution functions in Eq.~24!, shown in Fig. 1, are the same a
the ion and electron initial distributions for the time
dependent calculations. The time evolution of the ion dis
bution, f i(x,P' ,Pi ,t) , in the region close to the electrod
obtained using the direct numerical solution described
Sec. II, is shown in Figs. 2~A! and 2~B! for x50.124 and
x50.681, respectively, at reduced timest i equal to 0.08~a!,
0.23 ~b!, 0.77 ~c!. We see in Fig. 2~A! that the angular dis-
tribution of ions calculated att i50.08 is rather anisotropic
and this distribution includes a few ions with negativePi .
This is because of the absorbing boundary condition at
electrode used in the solution of the Boltzmann equati
The angular distributions, calculated att i50.23 and t i
50.77, show that degree of anisotropy decays with an
crease in time, owing to ion-neutral charge exchange co
sions. The time evolution of the ion angular distribution
x50.681 is show in Fig. 2~B!. In this case, the angular dis
tribution of ions relaxes to an almost isotropic steady dis
bution in c.

The steady distributionsf i(x,P' ,Pi) and f e(x,p' ,pi)
calculated at different positions from the electrode, are co
pared in Figs. 3~A! and 3~B!, respectively, at reduced dis
tancesx from the electrode equal to 0~a!, 0.124 ~b!, and
0.681 ~c!. The angular distribution of electrons is slight
more anisotropic than that for ions forx50. The differences
between the ion and electron angular distributions beco
considerable away from the electrode~b!. The degree of an-
isotropy in both f i(x,P' ,Pi) and f e(x,p' ,pi) decreases
with an increase of distance. In the region close to the e
trode, the anisotropy inf i(x,P' ,Pi) decays because o
charge-exchange collisions, while the degree of anisotrop

FIG. 1. Ion distribution function f i(x,P' ,Pi) in units of
1022n0 /v i

3 is shown as a function of dimensionless perpendicu
(P') and parallel (Pi) velocities,x577.35.
04640
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f e(x,p' ,pi) decreases basically due to the influence of s
consistent electric field. Distributions obtained for electro
and ions atx50.681 are rather isotropic and relatively sim
lar. This suggests that the anisotropy inf e(x,p' ,pi) decays
faster than the anisotropy inf i(x,P' ,Pi).

r

FIG. 2. Time evolution of ion distribution function
f i(x,P' ,Pi ,t) in units of 1022n0 /v i

3 for two distances from the
electrode@~A!, x50.124,~B!, x50.681# is shown for timest i equal
to ~a! 0.08, ~b! 0.23, ~c! 0.77,«52.32.
4-6
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The isotropic ion energy distribution function,f i(x,E),
averaged overm, calculated at different distances from th
electrode is shown in Fig. 4~A!. Solid curves show the DNS
calculations, dashed curves represent the PIC-MC res
and dot-dashed curves display Maxwellian distributions. T

FIG. 3. Steady angular distributions of ions~A! in units of
1022n0 /v i

3 and electrons~B! in units of 1022n0 /ve
3 are shown at

different distancesx from the electrode:~a! 0, ~b! 0.124,~c! 0.681,
«52.32.
04640
ts,
e

different curvesa–c are for decreasing distance to the ele
trode. The departure off i(x,E) from a Maxwellian distribu-
tion is rather small. This suggests that ions do not experie
significant heating at large«.

The corresponding electron energy distribution functi
f e(x,E) is shown in Fig. 4~B!. The results of the direct nu
merical solution shown by solid curves are in agreement w

FIG. 4. Steady space- and energy-dependent distribution
ions ~A! in units of n0 /v i

3 and electrons~B! in units of n0 /ve
3 are

shown at different distancesx from the electrode:~a! 23.21, ~b!
7.74, ~c! 0, «52.32. Solid and dashed curves show results of
direct numerical solution and the PIC-MC simulation, respective
The Maxwellian distribution is shown by the dot-dashed curve.

FIG. 5. Electron densityne(x) and ion densityni(x), in units of
n0 versusx for «52.32. Solid lines show the DNS results, while th
dashed line represents Eq.~29!.
4-7
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ALEKSEY V. VASENKOV AND BERNIE D. SHIZGAL PHYSICAL REVIEW E65 046404
the PIC-MC simulations represented by dashed curves.
see that there is a slight departure off e(x,E), obtained using
both PIC-MC and DNS approaches, from the Maxwelli
distribution for x50. We checked that this departure do
not play a significant role in the calculation of the electr
density.

All plasma sheath models based on the solution of
hydrodynamic equations use the assumption that the elec
density follows the Boltzmann relation. This relation can
obtained from the continuity equation for the electron fl
neglecting frictional and inertial forces of electrons@22#. The
same relation can be derived from the Boltzmann equa
for the electron distribution function as follows. The electr
Boltzmann equation~10! can be rewritten in the case of th
steady state electron distribution functionf e(x,p) as

p
] f e~x,p…

]x
1

1

2

]w~x!

]x

] f e~x,p!

]p
50, ~30!

where we have neglected the first collisional term in Eq.~28!
becauseme /M!1 and the second collisional term owing

FIG. 6. Space- and energy-dependent ion distribution func
f i(x,E) normalized to the maximumf m . The positionsx are equal
to ~b! 1.1, ~c! 0.8, ~d! 0.5 for «5831023. The Maxwellian distri-
bution is shown by curvea.

FIG. 7. The dependence of ion energy versus distance from
electrode for«5831023. The solid line represents free-fall mode
while symbols correspond to the energies of the second peaks o
curves in Fig. 6.
04640
e

e
on

n

sm /s i!1. Let us average~30! over m and also assume tha
f e(x,p)5* f e(x,p…dm is a local Maxwellian distribution, so
that f e(x,p)5ne(x)exp(2p2). Then, one can obtain usin
Eq. ~28! the Boltzmann relation for the electron density,

ne~x!5n0 exp@w~x!#, ~31!

wheren0 is the electron density atw(x)50.
We compare in Fig. 5 the electron density obtained us

the Boltzmann relation@Eq. ~29!# with the electron density
obtained from the solution of Eqs.~16!–~23!. Solid lines
show the results of the direct solution, while dashed l
represents Eq.~31!. We can see a small difference betwe
electron density, obtained using the direct numerical solut
and that calculated from the Boltzmann relation. This diff
ence arises because of the departure of electron distribu
function from the local Maxwellian distribution. Additiona
PIC-MC calculations show that the difference between
calculated electron density and that obtained using the B
zmann relation quickly decreases as« drops. It suggests tha
at sufficiently small«, a large number of low-energy elec
trons could not overcome a sheath potential barrier, and, c
sequently, they are repelled to the bulk plasma. It is a

n

he

the

FIG. 8. Space- and energy-dependent ion distribution func
f i(x,E) normalized to the maximumf m for two distances to the
electrode@~A!, x50.5, ~B!, x51.1# is shown for« equal to ~b!
0.773,~c! 0.024,~d! 0.014,~e! 0.008. The Maxwellian source dis
tribution is shown by curvea.
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SELF-CONSISTENT KINETIC THEORY OF A PLASMA . . . PHYSICAL REVIEW E65 046404
important to note that the ion density does not follow t
Boltzmann relation. The reason for this is that the se
consistent electric field acts differently on electron moti
and ion motion. This field forces electrons out of the she
to the bulk plasma, and, consequently, thermalizes th
Whereas, ions are dragged by the electric field from the b
plasma to the electrode. Hence, ions are never in ther
equilibrium with the self-consistent electric field.

The distribution function of ions is shown in Fig. 6 fo
several distances from the electrode. The low-energy p
corresponds to the contribution from the thermal io
whereas the high-energy peak arises because ions are h
as they move in the self-consistent electric field. The mot
of high-energy ions in the sheath region is almost collisio
less. This was verified by calculating the dependence of
energy versus distance. This dependence was obtained
the ion energy conservation equation~collisionless free-fall
model!. The results of this calculation are shown in Fig. 7
the solid line, and the symbols correspond to the energie
which the second peaks of curves occur in Fig. 6.

The dependence of ion energy distribution function on«
is shown in Figs. 8~A! and 8~B! for x50.5 andx51.1, re-
spectively. The different curvesa–e are for decreasing«.
id

id
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The distributionf i(x,p,«) calculated for«50.773~curveb!
is close to the Maxwellian distribution~curve a!. This indi-
cates that in this case ions do not experience significant h
ing in the sheath region. We can see two peaks in the
energy distribution function for«50.024~curvec!. Results,
obtained for smaller« ~curves d and e! show that the position
of the second peak moves further from the origin as« drops.
This is because the electric field in the sheath increases
a decrease of«. Hence, ions are more strongly heated
smaller«. The distributionf i(x,p,«), calculated atx51.1, is
shown in Fig. 8~B!. In this casef i(x,p,«) changes less dra
matically with the decrease of«. This is because ions ar
unable to gain significant energy at this distance from
electrode.
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