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Self-consistent kinetic theory of a plasma sheath
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A fully kinetic theory model of the sheath of a dc glow discharge is presented. This model includes a direct
numerical solution of Boltzmann equations for the spatial and velocity dependence of the electron"and Ar
distribution functions with a self-consistent electric field calculated from the Poisson equation. The solution is
obtained using a collocation method that employs Legendre quadrature points for both angular and spatial
variables, and nonclassical speed quadrature points for velocity. The results of the steady state direct numerical
solution are compared with a particle-in-cell Monte Carlo simulation. As anticipated, it is found that the space-
and energy-dependent ion distribution function varies strongly with a decrease in the ratio of the Debye length
to the ion mean free path.
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[. INTRODUCTION plasma sheaths and the assessment of the validity of fluid
dynamic models.

In the study of electron and ion transport in discharge The study of plasma sheaths has a very long history. The
devices, an important consideration is the nonequilibrium befirst important studies are the classic works by Tonks and
havior of ions and electrons close to an electrode. This retangmuir[2] and by Self[3,4]. Recent paperf5—9] have
gion is referred to as the sheath, and is not rigorously deprovided brief historical accounts of the previous theoretical
fined. The motion of electrons in the sheath region iswork. Recentanalytio models have been presented by Riley
strongly coupled with that of ions. The plasma sheath potenf10,11], by Metzeet al. [12], and by Liebermarni13]. Rie-
tial is not knowna priori but must be found self-consistently. mann[14,15 has given a very detailed and comprehensive
Understanding the basic properties of plasma sheath is a sigeview of sheath formation and the Bohm criterion. The gen-
nificant problem in discharge physics, plasma chemistry, gaseralized Bohm criterion is used as a boundary condition at
eous laser physics, and especially in plasma processing. the plasma-sheath interface. Sheridan and Gftéghave
this paper, we treat an idealized system consisting of a coktudied the effects of collisionality on the plasma sheath with
lection of Ar", Ar, ande™, bounded at the spatial origim ( a two-fluid model. Procassirgt al. [8] have considered a
=0) by an absorbing electrode. The physical situation igparticle-in-cell (PIC) model of a collisionless plasma that
depicted in Fig. 1 of1]. In addition, fluxes of electron and contacts a floating absorbing boundary. They studied the ef-
ions are specified at—0, and there is no ionization consid- fect of different source distributions and their model does not
ered. involve the usual assumption of the Boltzmann relation for

Far from the electrode in the bulk plasma, a macroscopi@lectrons. Scheuer and EmmE3{ reported on a kinetic ap-
fluid description based on the differential fluid dynamic proach based on the Boltzmann equation but with a simple
equations for the fluid variables such as the density, flonBhatnagar-Gross-KroolBGK) model of the collision opera-
velocity, and temperature is valid. This fluid description cantor. This is a poor model for ion-ion collisions for which a
be derived from the kinetic description, and is a simpler ap+okker-Planck collision term should be used. Koch and
proach in that there is a reduction in the dimensionality ofHitchon[17] considered a computer simulation of the effects
the variables involved. Close to the surface, the hydrodyef collisions on the plasma presheath with a Green'’s function
namic approach is no longer valid andnécroscopicdescrip-  approach. They studied the effect of charge exchange colli-
tion based on kinetic theory that involves a determination okions and different source functions as did Scheuer and
the system distribution functions from the Boltzmann equaEmmert [9]. Hong and Emmert{18] employed a two-
tion must be used. An understanding of nonequilibrium phedimensional fluid theory for cold collisionless ions coupled
nomena in plasma sheaths is a fundamental problem. The the Poisson equation. They considered time dependent
problem overlaps many other problems in science and engisheaths, which has important applications to plasma source
neering, which include boundary layers that occur in laseion implantation process. Van den Begtjal.[7] considered
physics, fusion devices, aeronautics, space science, astra-<ollisionless Boltzmann equation with a source term. Their
physics, chemically reactive systems, radiation physics, etanain objective was to study the Bohm criterion and the
This paper addresses a fundamental problem involving theheath edge field singularity. The choice of source term is
development of kinetic theory methods for the description ofmade to permit an analytical evaluation of the results.

Valentini and co-workergl9,20 have applied a two-fluid
model to a positive column in cylindrical geometry. They
*Mailing address: Institute of Thermophysics, Novosibirsk, emphasized the importance of properly treating boundary
630090, Russia. Email address: vasenkov@theory.chem.ubc.ca sheaths for several technical applications. In particular, they
"Email address: shizgal@theory.chem.ubc.ca; URL: mention that a proper understanding of sheath phenomena
http://www.chem.ubc.ca/personnel/faculty/shizgal/ requires a kinetic theory treatment but they employ a hydro-
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dynamic approach. They use multiscale theories and special JE e _ _
matching conditions together with the Bohm criterion to de- —=—(Nn;—ny), 3
termine the sheath edge. Nitschke and Gr42d$have also ar  £o
considered a matching of a sheath model with a fluid bulk
plasma model. They mention that fully resolving the sheattwheree is the electron charge arg is the vacuum permit-
can be computationally expensive due to the different lengthivity. The electric field is derivable from the scalar potential,
scales of the sheath and the bulk plasma. They emphasize the that is,
arbitrariness of these matching procedures. Godyak and
Sternberg[22,23 again emphasize that there is an urgent g
need to consider the sheath and the bulk plasma together as E=— _(p, (4
one system. Dalviet al. [24] reported Monte CarldMC) ar
simulations with a self-consistent electric field obtained from
the solution of the Poisson equation. These authors pewhere the steady electron and ion densitiegs) and ions
formed MC simulations with the use of constant collisionn(r), respectively, are determined by
cross sections. The use of this unrealistic collisional model
allows for a very simple MC algorithm. The present work
employs realistic cross sections in a fully kinetic theory treat- Ne(r)= f"f‘e(r 20, p)dv, (5)
ment coupled to the Poisson equation, whereas many of the
previous models are fully or partially based on hydro-
dynamics. ~ ~

In Sec. II, we present our kinetic model of the sheath. The ni(r):J fi(r,v,p)dv. (6)
direct numerical solutioflDNS) of the Boltzmann equations
for electron and ion distribution functions with a self- . : L
consistent electric field obtained from the Poisson equation i)é\_/e _hav_e suppre_ssed the time var!able as It Is the steady
described in detail. A brief summary of our PIC-MC method istribution functions sought.~The linear collision operator
is also presented in this section. In Sec. lII, the results ofor electron-neutral interactionde, is given by the Lorentz-
calculations are presented for the sheath region in a DC gloWwokker-Planck forn{25,26
discharge in Ar.

R A RS} N
=M 29, U rl ]
Il. SELF-CONSISTENT KINETIC THEORY e M p2av || 7m0 me dv)| e U
OF A PLASMA SHEATH
. _ _ on(v)v 4 1- 2 J T 7
A. Direct numerical solution 7 i (T )r?,u[ e(ryo, )i, @)

The self-consistent model of electron and ion transport in
a t_)oundary Iay_er between the plasma and an electrO(_je .rﬁiherecrm(v) is the momentum transfer cross sectitvhand
quires the solution of the Boltzmann equations for the dlstrl-T are the atom mass and the temperature of background
. . ~ . ~ 1
bution functions of electrond,e(r,v,t), and ionsfi(r,v.t),  medjum, respectively. The first term in curly brackets in Eq.
and is coupled to the Poisson equation for the self-consisteny) js the isotropic portion of the operator whereas the second
field. We consider a one-dimensional discharge such that th@m is the anisotropic part that describes pitch-angle scatter-
spatial dependence is only in theaxis. We consider a sys- ing.
tem of electrons and ions dilutely dispersed in background of “\we assume that the major process for ion-neutral collision

atoms considered at equilibrium. The Boltzmann equationgs the charge exchange process for which the collision opera-
for the electron and ion distribution functions are given by ~
tor, J;, is of the form

it e fe eEdfe o~ -
TG T Hm qe  Nedelel O 4 ™Moo [Tr o :
at e Jilfi(r,o,w)]=1"(v) | fi(r,v’",u)oe9)gav
ot af,  eE df — —T-(r,v,u)f?.“"(v')a (g)gdv’, (8)
(9_—{'+Mvﬁ_rl+ﬂ“m&_v|:ng‘]i[ ils (2 I ' &
I

where og(v) is the charge exchange cross

where=cosé, andd is the angle relative to theaxis;m,  Section,g=|v—V’| is the relative velocity. In Eq(8), the
andM; are the electron and ion masses, respectively;gnd Maxwellian  distribution is  defined by, fi""(v)

is the neutral gas density. We have written the time-=(M;/27kT;)¥?exp(—M;v2/2KT,). When written explic-
dependent forms of the Boltzmann equations, although it igtly in terms of spherical velocity components, this operator
the steady distributions that are desired. The electric figld, for charge exchange collisions of ions with neutrals is given
in Eq. (1) is determined from the Poisson equation, by
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Ji[Fi1= (M 27k T,) 2 exp — M0 2/2kT,) intrOQch Fhe dimensionless ion velocity, whereas elgctric
field is divided byT,. The parametet controls the spatial
* (1 (27 ~ , variation of the electric field and indirectly, owing to the
X fo fflfo Ted9)gfi(r,v’, ) coupling of the Poisson equation with the Boltzmann equa-
tions, the other variables: distribution function, density, tem-
Xv'"?dv'dude perature, etc. As— 0, the problem is then a two scale prob-
lem with variation of system properties on Bplength scale
as well as ap length scale. In the extreme limit, asymptotic
methods are us€d?5].

The steady distributions for both electrons and ions are
determined from the time-dependent E(E)) and (11), re-
spectively. The time derivatives in Eq6l0) and (11) are
reduced to algebraic form with an explicit finite difference
method, that is,

o (1 2m
— M2kt (o | [ [ Touorg
X exp(— Mo 212k T,)v " 2dv’ dud . 9)

We introduce the ion mean free path=1/nyo; and the
reference density given by,=jo/Dngoo with the flux jo
=1 cm ? s 1. Hereop=1 A, D, is the ambipolar dif-
fusion coefficient, andr; is the charge exchange cross sec-
tion calculated at energy corresponding to the ion tempera-
ture T; chosen far from the electrode. We also introduce
dimensionless spatial variable definedkasr/L; and dimen-
sionless velocity variables for electrons=v/v,, and ions,
P=uv/v; where v,=(2kT./mg)? and v;=(2kT,/M;)2
Similarly, we define dimensionless times for electrons and
ions, te=tv./L;, t;=tv;/L;, respectively. Although the
definition of dimensionless variables is not unique and othewheren+1 andn denote successive times separated\by
definitions could be used, this definition is conventional. TheThe quantitiesB. andB; are evaluated at time denoted by
distribution functions, densities, collision operators andand are defined by,
fields can thus be written in dimensionless form

and we have thatf,=fw3/ng, fi=Tv/ng, ne=ng/no,
ni=ni/no, JLf1=3e[TUl(owe), ILFI=T[Fli(ow) E dfe  KHE ITe

O l=f0—B.At,, (16)

f1Hl=f"—BAt;, (17)

2 - Be=pu— — 5 —— —Jdfel, (18)
=eEL;/kT., ¢=e@/kT,. With the transformation to these ¢ 2 2 op T%F
dimensionless variables, Eq4)—(3) can be rewritten as the
system of equations
Bopy ot METeN ;o 19
Mo oo #ETe 0 10 TR T
gte MPax T2 gp  vellel
Equations(18) and (19) are discretized with a collocation
07_fi . f?_fi E E ﬂ_fi_J f 11 method that employs Legendre quadrature points for both the
at; HEox T2 T, 0P iLfil, (1D m and x variables, and the nonclassical speed quadrature
points forp andP. The derivative operators i p, andP in
Egs.(18) and(19) are replaced with their matrix representa-
ne(X):J fo(p,x, )dp, (12) tives as discuss_ed by Sh_izdﬁ_l?], and Blackmor_e and Shiz-_
gal [28]. The discretization is based on a discrete matrix
derivative operator defined such that
00~ [ 1i(Px, P, 13
dF(x N
S DijF (x)). (20
JE dx | =2
X € (ni—nyg), (14
This algorithm permits the reduction to algebraic form of
_ do differential operators as occurs explicitly in Eq48) and
E=—-— (15 o o .
ax’ (19). The electron collision operator is in the form of a dif-

wheree=A\p/L; and\p is the Debye length given by

ferential Fokker-Planck operator in E@) can also be writ-
ten in terms of first and second order derivative operators

=(gokTo/npe?) Y2 The ratio of the electron temperature to [26]. Equation(18) is thus written in discrete form as given

ion temperature appears in E@.1) becauseT; is used to

by
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NX
L
Be(Xk,Pn,Ml):pnMjZl Dijfe(Xj,Pnsm1)

MlEk
2 Dn]fe(xk p] lul)

N
me 1 & g (IO,) o
- Vp_ﬁj:l Dyj fe(Xi, Py, 1)
1
+_2 J| e(Xk pI!MI)
Pji=1
O'm(pn)
20.| JZ D|](1 M)
NM
X 2, Dji fel(Xi,Pn, ), (1)

where ij and DS are the derivative matrix operators for

Legendre and speed quadratures, respectively. The quanti-,
are the number of discrete quadrature

ties,Ny, N, andN,,
points in thex, p, andu variables. The first two terms in Eq.

(21) correspond to the derivative terms in E#8). The third

term involving the square brackets is the isotropic portion of
the electron-atom collision operator whereas the last term

involving the derivatives inu arise from the anisotropic part

PHYSICAL REVIEW E65 046404

— 21— u?)M?um. The electric field at théth collocation

position was found from a solution of the Poisson equation
given by

E(xJ-):; Dyjte 2[mi(x)) —ne(x))1. (23)

The electric field ag—« is calculated from the requirement
that the motion of electrons and ions is described by the
ambipolar diffusion29],

E(X)|x—e=—5—

where the ambipolar diffusion coefficient is given [29]

=De/~’«i+Di,UJe
Met pi

a

HereD.,D;, andu.,u; are the electron and ion coefficients
of diffusion and mobility, respectively.

The method of solution follows earlier treatments of the
Milne problem[1,26,2§. The distribution functlon;‘ and
electron distribution funcuonf , far from the boundary at
x=0 given by

fg(xk vpn wul): fio(xkvpn Ylu‘|)

= _jO/Dan(pn)[Qa+Xk_Mlu(pn)]

of the collision operator. The ion-neutral charge exchange

integral operator can be evaluated using the quadrature for-

mula for the speed weight functiof27,28. The discrete
form of Eq.(19) follows similarly except that the ion-neutral
charge exchange collision operator is an integral operatof
and evaluated with the speed quadrature formula, that is,

NX
Bi(X¢,Pn,u1) = anzl Diifi(X;.Pn. 1)

ME Te Np
TT_E nJ i ka j’M')

2
ﬂ_mexp( P )E w} exp(P?)

=z

o

Jnllm gex(V)
(1 /Jvm)

N
i=1 mEZI g

2
X Fi(Xg qul)+ 3/2f( K Prom)

N
5 anilm gex(V)

Li,L
m=

1 (1-ug) o

P>

j=1i=1

(22

where  Vijnim=P/+Pi=2P\Pisiim,  im= mimi—[(1

(24)

serve as asymptotic boundary conditions. The coeffigignt
is the extrapolation lengthl,26]. These distribution func-
tions are the asymptotic forms consistent with the Chapman-
Enskog type solution of the diffusion of ions or electrons
through the background neutral gas at equilibrium. The dis-
tribution functions are close to Maxwellians with a small
perturbation owing to the finite drift of electrons and ions.
The perturbation is of the forrfi]

N

MIU(pn):nZO dntn1(Pn i),

where the basis functiong,,(p,,«;) are the Laguerre-
spherical harmonic basis functions.

The extrapolation lengtly,, and the expansion coeffi-
cientsd, (which describe ambipolar transport of electrons
and ions far from the electrogiare calculated from the so-
lution of the Boltzmann equatiofil,26] with the collision
operatorl equal to

( Je[ f]+ = J[f]) (25

e
T+T,
This choice for the collision operatbreduces the system of
equationg10)—(15) to one equation. The temperature factors
in Eq. (25) occur becaus&; andT, are used to introduce the
dimensionless velocities in Boltzmann equations for ion and
electron distribution functions, respectively.
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The numerical solution of system of equatidd$)—(23)  nique, the time between collisions,, is calculated withr
is obtained as given by the iterations in EGES) and(17). = _|n(R)/»!,, whereR is a random number. In contrast to
The initial distribution functions for electrons and ions in this the ysual PIC-MC simulation, we have that> 7, , so that
time-dependent approach to steady state are chosen accofgns usually do not traverse more than one cell in time
ing to the distribution represented by Eg4). The algorithm  yhile electrons often cross several cells in time The tra-
includes cycles, each of which involves the direct numericajectory of each particle is characterized by a succession of
solution of the Boltzmann equations for electron and ionfree flights interrupted by collisions. In the case of null col-
distribution functions, subject to the Marshak boundary coniisions, a particle emerges with no change in velocity.
ditions[26], and the Poisson equation for the self-consistent Electron-neutral collisions are treated with an isotropic
electric field. The electron and ion distribution functions atmomentum transfer cross section with no energy transfer oc-
the timet,, are given by Eqs(18) and(19), respectively. The curring owing to the small electron mass. The approach used
electric field, used in Eqs(18) and (19), is calculated by for ion-neutral charge exchange collisions involves sampling
solving Eg.(23) that employs the electron and ion densitiesthe velocity of the neutrals from a Maxwellian distribution.
obtained at,_,. This procedure is repeated until the steadyThe probability of a charge exchange collision is then deter-

collision then it is replaced by a newly created ion. The

velocity of the new ion is determined by treating a charge-

B. The stochastic simulation transfer collision as a head-on collision with a scattering
A PIC simulation is a widely used alternative approach toangle ofar. . _ .
the direct solution of the system of equatidg—(3). In the The core of our algorithm consists of three primary pro-

PIC method, a group of electronsr iong is represented by ~cedures: the simulation of collisions, indexing, and cross ref-
a single simulation particle. It is usually assumed that thi€€réncing of particles, and the simulation of particle motion.

particle has only short-range interactions with a gas atorft the end of third procedure, spatial distributions of elec-
that correspond to collisions. The statistical Monte Carlo col{rons and ions are obtained using the spatial coordinates and

lision technique is used to simulate these collisions. In thé’eloClty components of simulation particles,
PIC-MC method, each particle moves in the electric field

according to Newton’s law. The self-consistent field is calcu- % ”'s((fyp)

lated from the solution of the Poisson equation with the den- ny(r)= ' (28)
sity of electrons and ions obtained from the particle simula- Ar

tion. where the subscrips represents the kind of particles for

In this study, we use the PIC-MC algorithm to study the gjacirons and for ions), nk(r,p) is the space- and velocity-
steady space- and energy-dependent ion and electron distfaengent distribution function. The summation in E2)
butions in the sheath region. The algorithm includes a Montgs oyer all particles in the spatial intervalr centered at.
Carlo simulation of charged particle transport in a self-The pojsson equation is solved with the quadrature discreti-
consistent electric field calculated using the Poisson equaration method, which permits the reduction of the differen-
tion. Ensembles of electrons and ions with Maxwellian speegial operator to the algebraic form. The details of solution are
distributions are incident on the gas medium of finite eXtenbiven in the preceding subsection. These procedures are re-
in the r direction. The Monte Carlo simulation of particle peated until the steady state distributions of ions and elec-
collisions, neglecting Coulomb collisions, with a velocity de- trons are obtained.
pendent collision cross section is made tractable by the null- The present model is used to determine the space and

collision technique. This is accomplished by adding an addienergy dependent ion and electron distribution functions,
tional fictitious process referred to as null collisions such that

the total collision frequency is constant at the valdg S nk

_ | | f f nS(rvp)

=ng9[on,(9) +0(9)], wherel is eithere for electrons or

i for ions andg is the relative velocity. The real cross section fs(r.E)= ATAE (29

is o'(g) is and ¥(g)=nygo’'(9) is the total collision fre-

quency for real collisions. This technique was developed byvhere the summation is over all particles existing in the
Skullerud[30] and discussed by othef81,32. The prob- spatial intervalAr centered atr, and also, in the energy
abilities of real and null collisions are then given by interval AE centered aE.

Plea(9)=v(g)/ v, (26) IIl. RESULTS AND DISCUSSION

| | | The main objective of this paper is to determine space-
Poun(@)=Lvn—v(9) 1/ vy,. (27)  and velocity-dependent distribution functions of electrons
and ions near an electrode. Both direct numerical solutions
The simulation domain is divided into cells, sufficiently of Egs.(16)—(23) and PIC-MC simulation were considered.
small, so that there no appreciable change in the electric fieldhe momentum transfer cross section for the electron-Ar
within a cell. The trajectory of a charged patrticle in free elastic collisions was taken from Ref33], whereas the
flight in a cell is described with the Newton’s equation of charge-exchange cross section for' Adr interactions was
motion and energy conservation. With the null collision tech-obtained using the results from Ré84]. The electron and
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FIG. 1. lon distribution functionf;(x,P, ,P;) in units of
10’2n0/ui‘°’ is shown as a function of dimensionless perpendicular P L
(P,) and parallel P)) velocities,x=77.35.

ion velocity distribution functions far from the electrode
were chosen to be Maxwellian distributions for electrons and 0
ions withT,=3000 K andT;=300 K. The background gas 2
temperature was equal to 300 K.

The distribution function of iongor electrong far from
the electrode, given by E@24), is presented in Fig. 1. The p
distribution function,fio(x,p,,u), denoted byfi(x,P, ,P)) is
shown as function of dimensionless perpendiculBr,
=P\1-4? and parallel,P =P, velocities. We see that
the distribution shown in Fig. 1 is slightly anisotropic. The

position of the maximum is also slightly shifted from the A
origin due to the drift of ions towards to the electrode. 2 r , r
We obtain the steady ion and electron distribution func- a
tions, which are the primary objectives, by solving the time- P I
dependent Boltzmann equations, EG)—(19). The distri- p i 7/ TN |
1

bution functions in Eq(24), shown in Fig. 1, are the same as // SN0\
the ion and electron initial distributions for the time- {m\ \
dependent calculations. The time evolution of the ion distri- : ﬁ \\\ \\
bution, f;(x,P, ,P|,t) , in the region close to the electrode, S 2
obtained using the direct numerical solution described in '
Sec. Il, is shown in Figs. () and 2B) for x=0.124 and
x=0.681, respectively, at reduced timgsqual to 0.08a),
0.23(b), 0.77 (c). We see in Fig. @) that the angular dis- P 1t
tribution of ions calculated &t =0.08 is rather anisotropic,
and this distribution includes a few ions with negativg.
This is because of the absorbing boundary condition at the
electrode used in the solution of the Boltzmann equation. 2
The angular distributions, calculated &t=0.23 andt;
=0.77, show that degree of anisotropy decays with an in-
crease in time, owing to ion-neutral charge exchange colli- P 1
sions. The time evolution of the ion angular distribution at
x=0.681 is show in Fig. @B). In this case, the angular dis-
tribution of ions relaxes to an almost isotropic steady distri-
bution in c. -2
The steady distributions;(x,P, ,P)) and f¢(x,p, ,p)) B
calculated at different positions from the electrode, are com- ) . . o )
pared in Figs. ) and 3B), respectively, at reduced dis- FIG. 2. '_I'|me_ evolutlozn of3 ion dlst_rlbutlon function
tancesx from the electrode equal to (8), 0.124 (b), and fi(x,P, ,P”,t) in units of 10 “nq/v; fgr two dlstanpes from the
0.681 (c). The angular distribution of electrons is slightly &'€Clrodel(A), x=0.124,(8), x=0.681is shown for times; equal
more anisotropic than that for ions fae=0. The differences t0 (2 0.08,(b) 0.23,(c) 0.77,2 =2.32.
between the ion and electron angular distributions become
considerable away from the electrod®. The degree of an- fe(X,p, ,p|) decreases basically due to the influence of self-
isotropy in both f;(x,P, ,P)) and f¢(x,p, ,p;) decreases consistent electric field. Distributions obtained for electrons
with an increase of distance. In the region close to the elecand ions ak=0.681 are rather isotropic and relatively simi-
trode, the anisotropy inf;j(x,P, ,P|) decays because of lar. This suggests that the anisotropyfufx,p, ,pj) decays
charge-exchange collisions, while the degree of anisotropy ifester than the anisotropy (x,P, ,P)).

046404-6



SELF-CONSISTENT KINETIC THEORY OF A PLASMA . .. PHYSICAL REVIEW B5 046404
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FIG. 4. Steady space- and energy-dependent distributions of
ions (A) in units of ny/v?> and electrongB) in units of ny/v2 are
shown at different distances from the electrode(a) 23.21, (b)
7.74,(c) 0, £=2.32. Solid and dashed curves show results of the

:
4

(S

direct numerical solution and the PIC-MC simulation, respectively.
The Maxwellian distribution is shown by the dot-dashed curve.

different curvesa—c are for decreasing distance to the elec-
trode. The departure df(x,E) from a Maxwellian distribu-

nl tion is rather small. This suggests that ions do not experience
significant heating at large.
The corresponding electron energy distribution function
fo(X,E) is shown in Fig. 4B). The results of the direct nu-
2 ' merical solution shown by solid curves are in agreement with
0.3
p I
* v
o>/ Dlalp m 0.2
) -1 0 1 2
B Py =

FIG. 3. Steady angular distributions of iorid) in units of
10 2n,/v? and electrongB) in units of 10 2n,/v3 are shown at 0.1
different distances from the electrodefa) 0, (b) 0.124,(c) 0.681,
e=2.32.

| | | |
The isotropic ion energy distribution functior,(x,E), 0 3 6 9 12 15

averaged ovej, calculated at different distances from the
electrode is shown in Fig.(A). Solid curves show the DNS FIG. 5. Electron density.(x) and ion density;(x), in units of
calculations, dashed curves represent the PIC-MC results, versusx for e =2.32. Solid lines show the DNS results, while the
and dot-dashed curves display Maxwellian distributions. Thelashed line represents EQ9).
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1.00

0.10 —

f(x, E)/fp

0.01 _

a b ¢ | d

|
0 2 4 6

E (eV)

FIG. 6. Space- and energy-dependent ion distribution function
fi(x,E) normalized to the maximurfi,,. The positions< are equal
to (b) 1.1, (c) 0.8, (d) 0.5 fore=8x 10 2. The Maxwellian distri-
bution is shown by curva.

the PIC-MC simulations represented by dashed curves. We
see that there is a slight departuref gfx,E), obtained using
both PIC-MC and DNS approaches, from the Maxwellian
distribution forx=0. We checked that this departure does
not play a significant role in the calculation of the electron
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density.

All plasma sheath models based on the solution of the
hydrodynamic equations use the assumption that the electron
density follows the Boltzmann relation. This relation can be
obtained from the continuity equation for the electron flux
neglecting frictional and inertial forces of electrdi2®]. The

0.0 0.3 0.6 0.9 1.2 15
B E (eV)

same relation can be derived from the Boltzmann equation FIG. 8. Space- and energy-dependent ion distribution function
for the electron distribution function as follows. The electronfi(x,E) normalized to the maximunfi,, for two distances to the
Boltzmann equatioti10) can be rewritten in the case of the €lectrode[(A), x=0.5, (B), x=1.1] is shown fore equal to(b)

steady state electron distribution functibg(x,p) as

5fe(X,p) 1 &(P(X) ﬁfe(x!p)
p — =

X 2 X

8

p

where we have neglected the first collisional term in 28)
becausan./M <1 and the second collisional term owing to

01

0 |

0.0 0.4

X

0.8

1.2

0.773,(c) 0.024,(d) 0.014,(e) 0.008. The Maxwellian source dis-
tribution is shown by curve.

omlo;<1. Let us averag€30) over u and also assume that
fo(X,p)=Jfe(X,p)du is a local Maxwellian distribution, so
that f.(x,p) =ne(x)exp(—p?. Then, one can obtain using
Eq. (28) the Boltzmann relation for the electron density,

Ne(X) =no exf ¢(X)], (31)

whereng is the electron density ag(x)=0.

We compare in Fig. 5 the electron density obtained using
the Boltzmann relatiofEg. (29)] with the electron density
obtained from the solution of Eq$16)—(23). Solid lines
show the results of the direct solution, while dashed line
represents Eq31). We can see a small difference between
electron density, obtained using the direct numerical solution
and that calculated from the Boltzmann relation. This differ-
ence arises because of the departure of electron distribution
function from the local Maxwellian distribution. Additional
PIC-MC calculations show that the difference between the
calculated electron density and that obtained using the Bolt-

FIG. 7. The dependence of ion energy versus distance from thdmann relation quickly decreaseszasrops. It suggests that
electrode for: =8x 102, The solid line represents free-fall model, at sufficiently smalle, a large number of low-energy elec-
while symbols correspond to the energies of the second peaks of tieons could not overcome a sheath potential barrier, and, con-

curves in Fig. 6.

sequently, they are repelled to the bulk plasma. It is also
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important to note that the ion density does not follow theThe distributionf;(x,p,e) calculated fore =0.773(curveb)
Boltzmann relation. The reason for this is that the self-is ¢jose to the Maxwellian distributiofcurve . This indi-
consistent electric field acts differently on electron motioncates that in this case ions do not experience significant heat-
and ion motion. This field forces electrons out of the sheathng| in the sheath region. We can see two peaks in the ion
to the bulk plasma, and, consequently, thermalizes themynergy distribution function fos = 0.024(curvec). Results,
Whereas, ions are dragged by the _electrlc field fron_"l the bulkstained for smalles (curves d andeshow that the position
plasma to the electrode. Hence, ions are never in thermgj the second peak moves further from the origiratrops.
equilibrium with the self-consistent electric field. This is because the electric field in the sheath increases with
The distribution function of ions is shown in Fig. 6 for 5 yecrease of. Hence. ions are more strongly heated at

several distances from the electrode. The low-energy peakmgajiere. The distributionf;(x,p,s), calculated ak=1.1, is
corresponds to the contribution from the thermal ions

whereas the high-energy peak arises because ions are heafﬁhé)wn in Fig. &). In this casef;(x,p, ) changes less dra-

as they move in the self-consistent electric field. The motio tically with the decrease of. This is because ions are
ey . ; U ) . nable to gain significant energy at this distance from the
of high-energy ions in the sheath region is almost collision-

less. This was verified by calculating the dependence of ior?IECtrOde'

energy versus distance. This dependence was obtained using
the ion energy conservation equati@ollisionless free-fall
mode). The results of this calculation are shown in Fig. 7 by  This research was supported by a grant to B.D.S. from the
the solid line, and the symbols correspond to the energies &latural Sciences and Engineering Research Council of
which the second peaks of curves occur in Fig. 6. Canada. Acknowledgment is also made of the Donors of the

The dependence of ion energy distribution functionson Petroleum Research Fund administered by the American
is shown in Figs. 8A) and 8B) for x=0.5 andx=1.1, re- Chemical Society for support of this resear®PRF No.
spectively. The different curvea—e are for decreasing. 34689-ACSH.
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