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Discrete lattice effects on the forcing term in the lattice Boltzmann method

Zhaoli Guo! Chuguang Zhen§and Baochang Shi
INational Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
2 Department of Mathematics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
(Received 13 September 2001; published 10 April 2002

We show that discrete lattice effects must be considered in the introduction of a force into the lattice
Boltzmann equation. A representation of the forcing term is then proposed. With the representation, the
Navier-Stokes equation is derived from the lattice Boltzmann equation through the Chapman-Enskog expan-
sion. Several other existing force treatments are also examined.
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The rapidly developing lattice Boltzmann meth@dBM),  with wy=4/9, w;=1/9 for i=1-4, and w;=1/36 for i
a technique for modeling complex fluid systems, has at=5-8.c.=c/+/3 is the sound speed of the model. A two-
tracted much attention in a variety of fielfs2]. There is a  scale analysis in time will lead to the Navier-Stokes equa-
wide range of fluid problems in which an external or internaltion.
force is involved, such as water waves and multiphase or In the presence of a body force dendfty: pg, whereg is
multicomponent fluids. To design lattice Boltzmann modelsthe acceleration due 16, the LBE must be modified to ac-
for these systems, the force must be treated appropriately igount for the force. We do this by adding an additional term
order to obtain the correct hydrodynamics. In this paper ao the LBE:
representation of the forcing term is proposed in which dis-
crete lattice effects are considered. Several other existing

1
methods are also examined. fi(x+eAt,t+A)—fi(x,t)=—=[f;(x,t)— fV(x,1)]
The lattice Boltzmann equatidhBE) without a force can T
be expressed as +AtF;, (4)

1 where the EDF(®9 is defined by
fi(xreAtt+ Ay —fi(x) == ~[fi(x )~ {*xD)],

@) fEI=E(p,u*) with pu*=> ef+mFAt. (5
I

where f;(x,t) is the distribution function(DF) for particles
with velocity e at positionx and timet, andAt is the time
increment. f¢? is the equilibrium distribution function
(EDF) andr is the nondimensional relaxation time. The fluid
densityp and velocityu are determined by the DF,

Herem is a constant to be determined.
The forcing termF, can be written in a power series in the
particle velocity[4],

Fi = ) (6)

. ((ee—c?l
wi{A+Bf+C(%4CS )
cs 2cg
p=2> fi, pu=2 ef;. 2
! ! whereA, B, andC are functions ofF to be determined by
requiring that the moments &f; are consistent with the hy-
The EDFfi(e‘CI) in Eq. (1) must be chosen such that the massdrodynamic equations. After some calculation, we can obtain
and momentum are conserved and some symmetry requiréle zeroth to second moments fef,
ments are satisfied in order that the resulting macroscopic
equations describe the correct hydrodynamics of the quiE 1
being simulated. For example, in the D2Q® model, the 2 Fi=A, > eFi=B, > egF=c?Al+ SC+ CT].
particle velocities are defined bg,=(0,0), e=(cog (i ' ' '

7
—1)/2],siM@(i—1)/2])c for i=1-4, and e=2(cogni @
—912)/2),sin{m(i—9/2)/2))c for i=5-8. Herec=Ax/At, The macrodynamic behavior arising from the LE& can
andAx((g)the lattice spacing. The EDFs of D2Q9 are choserhe found from a multiscaling analysis using an expansion
to befi""=E;(p,u), where parametefe, which is proportional to the ratio of the lattice

spacing to a characteristic macroscopic length. To do this, the

5 following expansions are introducéf]:

E.(p.U) 14 e~u+uu:(e,a—csl)
. ,u = W; —_— —_—
itp ip Cé 202

: 3
] 9 fi=fO+efWt 2D+ ... (8a)
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0 + €2 i V=€V 8b
Ao T A, =€V, (8b)
F:6F1, A:EAl, BIGB]_, C:EC1. (80)

Expandingf;(x+gAt,t+At) in Eqg. (4) aboutx andt,

and applying the above multiscaling expansions to the result- ap
ing continuous equation, we can obtain the following equa-

tions in consecutive order of the parameter

O(e%: fO=fd (9a
1. ) 1.
0(6 ) Dlifi :_mfi +F1i! (gb)
O(€éd):
9t(® 1 1 At
_ lp.fW—_ _— s@_Zp E.
7 +| 1= 5| Duf] i 5> D1iFui. (90)

whereDq;=d/dt;+€-V;.

Taking moments of Eq9b), we can obtain the following
macroscopic equations on the= et time scale anc; = ex
space scale:

ap N
_+Vl(pu ):Alr

i, (109

d(pu*)
oty

+V,-TIO= (10b)

e
n;l,

where we assume th&;=nF;, andn is a constant to be
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ity and the force are modified due to discrete lattice effects.
These corrections are from thg= €t time scale.

The macroscopic equations on the= €%t time scale are
derived by taking moments of E¢Rc). With the aid of Egs.
(10) and(11), the final equations can be written as

1
EZAt(m— E)Vl'Flv (136)

where the stress tenser; is now given by

1 ) At
Oro=— 1_2_7 Vl'Haﬁ_Z(Claﬁ"‘Clﬁa)

2

1
T— —) CoAtp(V U%+ V1 5u%)

+At

1 T
T— E) (UgFiptugFi,)— E(Claﬁ_l— Ciga) |-
(14

Clearly, there are additional contributions to the viscous
stress due to the discrete lattice effects and the presence of
the body force. It is well known that the artifact due to the
lattice effect can be absorbed into a redefined viscosity,

1) >
v=| 71— E)CSAI' (15

determinedI1¢®) is the zeroth-order momentum flux tensor e contribution to the stress due to the force can also be

given byHgngZiqaqﬂffo)zc§p5a5+pu§u§. To recover
the Euler equations from Eq6L0), we must choose

m
A=0, n+—=1. (12)

The first-order momentum fluk(V=3,ggf{*) can be sim-
plified using Eq(10) with the constraint Eq.11). After some
standard algebra, we obtain that

Hglgz — 1At (UZ F1B+ Uz Fi.)t Cgp(vlauz + Vlﬁuz)

(12

1
- z(claﬁ"' Ciga)

where the terms of orde®(u®) or higher have been ne-

glected. If we takeC=2uF; or C=uF;+ F4u, then the mo-

canceled by choosing a proper definition@f One suitable
choice is taking

1 1
— - * — o * *
C (1 2T)Zu F or C (1 27_)(u F+Fu*).
(16)

Equations(13) also indicate that the spatial and temporal
derivatives influence the density and momentum changes,
respectively, on the&, time scale. To eliminate these unex-
pected effects, one must take

_1
m=3

At
or pu*=2 e,fi+7F. a7
I

Combining the results on thig andt, time scales, Egs.
(10) and(11) together with Eqs(11), (16), and(17), we now

mentum flux reduces to the Navier-Stokes expression for thebtain the final macroscopic equations:

viscous  stresses, i.(_e.l'[fyll_3= Orop= v(Vlau;:VlguZ)_,
where the kinematic viscosity is given byv=cgrAt. This
is the expression fo€ given in Refs[6—-8|, and the kine-

(183

matic viscosity is the same as in the solution of the continu-
ous Boltzmann equation. For the LBE, however, the viscosand
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d T fluid velocity v are defined bypv=pu*=3,ef;. In this
S (P FV - (pW)==Vp+ 2V [p(Vv+(VV) )]+F, treatment, the contribution of the external force to the mo-
(18p  Mentum flux is considered. Unfortunately, the discrete lattice
effect is not taken into account. The corresponding macro-
Wherep:cgp is the pressure, the shear viscositys given  scopic equations are
by Eq.(15), andv is the fluid velocity defined by

At Py (v=-ty.E 22
pv=">, efi+ - F. (19 o TV (=5 VF, (223
I

As seen, Eqs(18) are just the Navier-Stokes equations with a(pv)
a body force. it
From the above discussions, we can conclude that in order
to match the correct Navier-Stokes equations, the forcing At OF
term should satisfy the constraints Eq41) and (16) to- R
gether with Eq(17), which gives !

+V-(pw)=—Vp+vV-[p(Vv+(VV)T)]+F

At
+ 7V~(VF+ Fv). (22b

1 v (e-v) The additional terms in Eq$22) are similar to those in Egs.
Fi= ( 1— _) i Q_z + & —&l|F (20) (21), and the arguments for method 1 also apply to method 2.
27 Cs < Two improved versions of method 2 were proposed by

Ladd and Verberd4]. The first improvementmethod 2a
and the equilibrium velocity* and the fluid velocityv  yses a redefined, C=(1—-1/27)(Fu* +u*F), and the
should be given by Eqs17) and(19), respectively. other parameters and the definitionaiéfandv are the same

Now we examine some other existing treatments for theys in method 2. With this redefinei the contribution to the
body force in the LBM. The usually used meth@dferred to  momentum flux due to the body force, i.e., the term relative
as method 1L[9] takesm=0, A=0, B=F, andC=0, i.e., o u*F+Fu*, is canceled. However, the influences of spatial
Fi=wie-F/c, and the equilibrium velocitw* and fluid  and temporal variations of the force are still not considered.
velocity v are defined bypv=pu*=Z2;ef;. This method |n fact, Ladd and Verberg assumed that the fdfcis time
satisfies the constraint Eq411), and thus obeys the Euler independent, and th&tis spatial uniform or the acceleration

equations on the,; time scale. However, neither the contri- g is uniform[4]. The macroscopic equations of this method
butions to the momentum due to the body force, nor theyre

influences on the density and momentum due to the spatial
and temporal variations of the force, are considered in this

treatment. The final macroscopic equations corresponding to ‘7_P ) _ ﬂ )
this method are at V(o) 2 v-F, (233
LR 219 a(pu*)
—_— . V = — — . y
at P 2 Z—t+V-(pu*u*)=—Vp+vV-[p(Vu*+(Vu*)T)]
d(pv) At oF
+V-(pwW)=—Vp+ vV [p(VVv+(VV))]+F +F— —e—. (23b
ot 2 oty
At oF 1 _ _
— 7GI+ =5 AtV - (VF+Fv). Clearly, errors in the momentum equation due to the pres-
1

ence of an external force are efficiently reduced. In fadg, if
(21b  is a constant, Eq$23) will match the correct hydrodynamic

) ) equations.
As can be seen, to match the Navier-Stokes equations, the angther improved version proposed by Ladd and Verberg

spatial and temporal changes of the body fdfahould vary  (method 2b uses the same representatiorFofand the defi-
slightly, and the last term in Eq18b) must be negligible. In  phition of u* as used in method 2, but the fluid velocity is
practical applications, this method is mainly useq for flows e qefined apv=_Sef;+ (At/2)F. In this treatment the in-
exposed to a constant body force. However, this last termjyence on the density due to the spatial variation of the force
may not be small ag is a nonzero constant due 10 the js considered, but the discrete lattice effects on the momen-

velocity gradient. _ _ tum flux are ignored. As a result, the macroscopic equations
A recent representation of the forcing term was proposeg¢ecome
by two groups independently starting from kinetic equations
(referred to as method) 26—8], which usesm=0, A=0,
B=F, and C=2Fu*, namely, F;=w(g—u*)/c2 ap
o . —+V. =0, 24
+(g-U*)g /c;‘] -F, and the equilibrium velocityu* and at (pV) (243
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05
Obviously, this work takes account of the fact that in order to
obtain the correct hydrodynamic equations a redefinition of
0

the present method for the Poiseuille fldgy, presentg, , others.

f 1 1 L
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the fluid velocity is needed to take account of the spatial and
temporal variations of the body force. The discrete lattice
effects are also considered in this treatment. Unfortunately,

FIG. 1. Relative error differences between other methods andhe contributions of the force to the momentum flux are not

d(pv)
at

+V-(pwW)=—Vp+vV-[p(Vv+(VV))]+F

considered, and the momentum equation differs from the true
Navier-Stokes equation by an additional term of order
AtV - (u*F+Fu*). This result is different from what has
been obtained 5], and it should be pointed out that the
momentum equation derived in R¢§] is incorrect.

At _9gF 3At? From the discussion above, we can see that none of the
+ ?Ezg— 7V (p99 five related methods considered can model the general
2 Navier-Stokes equations correctly. Method 1, method 2, and

At method 2a lead to a continuity equation with an additional

zvv'[P(Vg+(Vg)T)]- (24b)

term of orderAtV - F, and although method 2b and method 3
both give the correct continuity equation, neither produces
the true momentum equation. It is demonstrated that in order

As seen, the continuity equation is already correct. But somey obtain the correct continuity equation, the fluid velocity
additional terms still appear in the momentum equation. Thenust be defined such that the effect of the external force is
term (At/2)e?9F/dt, is negligible sincee andAt are small  included, and to obtain the correct momentum equation, the
parameters. But the terms of ordeXxt’V-(pgg) and  contributions of the force to the momentum flux must be
AtV -(pVg) may be large for spatially varying forces. canceled. The method proposed in this paper matches both
The last methodmethod 3 considered in this paper was conditions, and gives the correct equations of hydrodynam-
proposed by Buick and Great¢8l]; it uses the same param- jcs.
eters and definitions of and u* as used in the method |t is noted that there exist some other methods in which
proposed in this work except for taking=0, i.e., Fi  the body force is not included into the LBM by adding a
=wi(1—1/27)(q~F)/c§. The resulting macroscopic equa- forcing term into the LBE. The recent woil6] reviewed
tions derived from this method are several such methods. It is also noticed that in the method
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a ss - - - ary conditions. The pressure gradient and the body force are
— (E-EJ/E, set to be equal, 06,=G,=G/2. The lattice size is fixed at
sn . |- (E,-Eg)E, NxXNy=34X18. A set of runs is carried out with different

--- (By-E)/Ey values ofG. In each case, the flow reaches its steady state

25 . . .
after a number of iterations. The relative global errors are

measured at the steady state between the LBM solution and
the analytical solution given by E26); the error is defined

J by

VS (u-u,?

0.5] ‘\f " : i i Vi, AR E=——"7—"— (27)
- - VS v

L 1 L 1 s L 1 L 1
100 200 300 400 500 600 700 800 900 1000

Error difference
&

where u is the numerical solution, and the summation is
taken over the entire system. It is found that the numerical
results of the present forcing term are the most accurate in all
— (E__EJE. cases considered. In Fig. 1, the relative differences between
8r . (EZEE ())/E ° ] the errors of the other five methods and that of the present
3 000 method, E,—E,)/E,, are plotted against the total accelera-
tion G. HereE, represents the error of the present method,
andE, represents the error of any one of the other five meth-
. ods. One can observe that the errors produced by methods
1-3 are more or less larger than that of the present method.
More specifically, method 1, method 2, and method 2a,
. which do not satisfy the continuity equation, demonstrate
similar behaviors and always produce larger errors than the
other two methods, in which the continuity equation is satis-
1 fied. It is also noted that the differences increaseGam-
creases. This is because whénis small the macroscopic
| equations of these six methods are nearly identical. B@ as
% 1w 20 a0 400 500 &0 700 80 900 1000 becomes larger, the discrete lattice effects cannot be ne-
t glected any more.
) . A simulation for unsteady flow where the force depends
FIG. 3. Relative error differences between other methods an%n both space and time was also carried out. The test prob-
the present method for the Taylor vortex floffo, presentEyx, 1o is the two-dimensional Taylor vortex flow in a square
others. box, which has the following analytical solution:

0.8

Error differeence

0.6

04

02

proposed by Het al.[10] the force is explicitly included in i 5 2
the EDF, and a forcing term is added into the LBE without U= —Ugcog kyx)sin(kpy)exd — v(ki+k3)t],
rigorous proof. However, both the redefined EDF and the
forcing term contain terms of orderP, which is inconsistent ky . 5 i
with the whole system. va=Ug k_zsm( kix)cogkpy)exd — v(ki+k3)t], (28)

To verify the arguments mentioned above, we first applied
the present method and the other five methods to steady Pqind the body force F=(F,,F,) is given by F,=
seuille flow driven by a pressure gradiesp/dx=—pG, —(ple/Z)sin(2<1x)exp[—2v(k§+ké)t], Fyz—(pka/
together with a bo_dy f(_)rcer, yvhereGl andG, are two 2k,) sin(Zoy)exd —2u(ke+3)t], whereG=uZ is the ampli-
constants. The Poiseuille flow in a channel of width Bas  ,ge of the force. In simulation, the flow is confined in the
the following steady analytical solution: domain — w/2<x,y=< /2, which is covered by a lattice of
size NxX Ny= 65X 65. The wave numbers are set to lbe
=k,=1.0, and the amplitude of the force is chosen to be
G=0.001 so that the compressibility of the fluid is negli-
gible. The shear viscosity is set to be 0.005. The flow is
whereuy=GL?/2v is the peak velocity, anG=G;+G, is initialized by evaluating the analytical solution tat 0, and
the total acceleration. the extrapolation schemd1] is again applied to the four

In simulations, the extrapolation scheird] is applied to  boundaries for velocity boundary conditions. Numerical so-
the upper and bottom walls of the channel for no-slip boundiutions att=t. andt=2t. are plotted in Fig. 2 together with
ary conditions, and to the inlet and exit for pressure boundthe analytical solutions, whetg=In 2/[v(k§+k§)] is the time

y2
UaZUo(l—P), v=0, (26)
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when the amplitude of vortex is halved. One can see that thmethod 2, and method 2a demonstrate similar behaviors for
agreement between the numerical and analytical solutions iis flow, and produce larger errors than the other two meth-
excellent. ods (method 2b and method) 3vhich satisfy the continuity

We also applied the other five methods to Taylor vortexequation. From these observations, we can see that discrete
flow under the same conditions. The relative global errors irattice effects do have influences on the behavior of the
velocity field produced by each method were measured antBM, and should be considered in modeling fluids involving

compared with that by the present method. Here the relativeXternal or internal forces. _
global error is defined by In summary, we have presented a method to include the

body force into the LBM, in which the discrete lattice effect

\/ and the contributions of the body force to the momentum
Ut = U (D124 (1) — v (1) 12 flux are both considered. The LBE with the proposed forcing
E [u(O) = ua(O 1+ [o () ~va(V)] term can lead to the exact Navier-Stokes equations. Some
E(t)= (29) related methods were also examined. It is found that none of
\/2 [u(t)—uy(t) T2 these methods match the Navier-Stokes equations in the gen-

eral case. Therefore, the present work should be of benefit in

o . designing lattice Boltzmann models for fluids exposed to ex-
where the summation is taken over the whole system. In Figenal and/or internal forces.

3, the relative differences between the error obtained by each

of the five methods and that by the present method are plot- This work was subsidized by the Special Funds for Major
ted as time proceeds. It is seen that the present method is ti$tate Basic Research Proje@&ant No. G199902220and
most accurate for this unsteady flow where the force changeabe National Natural Science Fundation of Chi@ant No.

in both space and time. It is again observed that method 15073044.
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