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Scaling hypothesis leading to generalized extended self-similarity in turbulence
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A scaling hypothesis leading to generalized extended self-simil@iBSS for velocity structure functions,
valid for intermediate scales in isotropic, homogeneous turbulence, is proposed. By introducing an effective
scaler, monotonically depending on the physical scalewith the use of the large deviation theory, the
asymptotic forms of the probability densities for the velocity differengeand for the coarse-grained energy-
dissipation rate fluctuations, , compatible with this GESS, are proposed. The probability density fas
shown to have the form®,(€)~ e~ 1(r/L)S@ () with z;(€) =In(e/e )/In(LIF), whereL and e, are the stirring
scale and the coarse-grained energy-dissipation rate over thelLscEbe concave functiois;(z), the spec-
trum, plays the central role of the present approach. Comparing the results with numerical and experimental
data, we explicitly obtain the fluctuation spec8dz).
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|. INTRODUCTION mined by the Reynolds number Re, L/v with the charac-
teristic velocityu, of the fluid at the outer scale and the
One of the main topics of studies on developed turbulenc&inematic viscosityv,
is about velocity structure functions in isotropic, homoge-
neous turbulence that are believed to show universal statis- L
tics in small scales in between the Kolmogorov microscale —~Re¥. (1.9
(viscous scale# and the stirring(energy injection scalelL K

[1]. The velocity structure function is defined as The similarity hypothesis of Kolmogorolg], using dimen-

SN =(ud(x), (1.1) sional arguments, gives

wnere fa =5 a5

ur()=|vi(r+x)—=vi(x)|, r=Jrl, 1.2

The derivation of this formula is based on the assumption

is the difference of the longitudinal velocity components at Y . .
9 Y P that the energy-dissipation rate is a scale independent con-

two points separated by the distancand the angular brack- . o) e
ets oFI)enote thg ensemb)I/e average. Statistical h%mogeneity apgnt in the mertlafl srll,lbrang@SRgl. Its V"."“d'ty \]fva; ques-

isotropy of turbulence imply that its statistics depends on'pr".ad because of the strong fluctuations of the energy-
neither the positiorx nor the direction vector/r, provided Q|SS|pz_at|on rate in space _and time. This is palled _the
that the positions andx+r are far from the boundary of the intermittency problem and is one of the most interesting

. : . ) problems in turbulencgl].
fluid container. Itis believed that the structure functiyr) Introducing the coarse-grained energy-dissipation rate
obeys the power layl,2]

&(x) by

Sy(r)~ré@, (1.3
in the so-called inertial subrange<r<L, provided it is &(x)= (47”3/3)flyl<,6'oca'(y+x)dy’ (1.6
sufficiently wide. The width of the inertial subrange is deter-

with the local energy-dissipation rate per mass
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3\ 113 The aim of the present paper is to extend that. We formulate
= (1.8)  ESS and GESS by applying the large deviation theory, and

u, ( €
u \e/ \L art >
- - we also calculate the relevant statistical quantities by analyz-

up to a statistically irrelevant numerical factor. Heeg ~ ng numerical and experimental data.

=u3/L is the energy-dissipation rate averaged over the larg- 1h€ Paper is organized as follows. In Sec. Il, we briefly
est available scale. the outer schleassumed to show no "€View ESS and GESS, and discuss the general forms of the

fluctuations. If we define the coarse-grained ener velocity structu_re functions anq of the energy-dissipation rate
dissipation rate structure functiosg(r) ang assume thgystructurg functions th_at prlam ESS ‘?‘”d G.ES.S..In Sec. lll,
asymptotic law[2] pqstulatmg a genera!lzgthn of the refined S|m|lar|ty hypot'h-
esis, we propose a similarity theory of the energy-dissipation
SE(r)=( (X)) ~r @ (1.9 rate fluctuations by applying the large deviation theory. We
q ' ' show that the asymptotic statistics of the velocity difference
in the inertial subrange, the combination of E3), (1.9), fluctuations and of the energy-dissipation rate fluctuations, as
and (1.9 yields determined by the functiorf{r) andg,(r), turn out to agree
with the experimentally found ESS and GESS. In Sec. IV,
q q utilizing data from numerical simulations of Navier-Stokes
(@)= §+ 3 (1.10 flows and from experiments in jet flows, these functions are
explicitly determined. Furthermore, the experimentally ob-
The dissipation rate scaling exponent functicig) thus de- tained fluctuation spectrun;(z) is compared with that
scribes the deviation from the Kolmogorov scalifigy1(q) based on existing phenomenological theories. Finally, discus-
=q/3, see Eq(1.5, and it is determined by the fluctuation sion and remarks are given in Sec. V.
statistics ofe,(x). We have

Il. ESS AND GESS
7(0)=0, 7(1)=0, and7(2)=—pu. (1.11
In 1993, Benziet al. empirically found that even if be-
The first equation is trivial, the second reflects the structureause of small or moderate Reynolds numbers the inertial
equation, which giveg(3)=1 (and is related to the statisti- subrange with its power law behavior is not sufficiently ex-
cal homogeneity of the turbulent figldThe third equation is tended, the following relation holds in anrange, which is

the definition of the intermittency exponent (with «>0), larger than in a plot osg(r) VST,
which is one of the parameters characterizing the fluctuations
of (). Sa(r)~[Sp(r)]=®. 2.

One of the fundamental problems of the statistical theory
of turbulence is to determine the velocity scaling exponent he exponent(q|p) is a unique function depending only on
functionsZ(q) and 7(q). Although many studies have been d andp. This relation was reported for various moment or-
carried out about(q) both experimentally and theoretically, dersq,p and for numerical simulations as well as for experi-
we still have no conclusive experimental results and no solidnental measurements. Since, in the inertial subrange, rela-
theoretical basis abod{q) [2]. The experimental difficulties tion (2.1) has to be compatible with E@1.3), one obtains
are the limited statistics and/or the limited Reynolds num-
bers. The theoretical problem is the nonlinearity of the :@
Nav ; a(dlp) : (2.2

avier-Stokes equation. Z(p)

In 1993 Benziet al. [6] noticed a surprising and interest-
ing fact about the velocity structure functios(r). These Therefore, if one exponei(p) is known, e.g.£(3)=1, the
authors pointed out that even if the Reynolds number is noprecise observation of(q|p) yields {(q). This fact is
sufficiently large and, therefore, the power l&w3) is not ~ known as ESS.
distinctly developed, still power law relations hold over a  The relation(2.1) implies thatSy(r) generally takes the
wider range, namely, between different order velocity struc-form [10,12
ture functionssg(r) and Sg(r) for arbitrary pairsg and p.
This discovery, called the extended self-similafiB89, en- SY(r)~ud
ables us to measure the functigig) more precisely than q -
with Eq. (1.3 [7,8]. Furthermore, in 1996 Benet al.[9,10] B
discovered an even more generalized form of ESS, whickvhereg,(r) is a dimensionless function of which is inde-
seems to hold in an even widerrange than ESS. They pendent of the moment ordgr Inversely, Eq(2.3) leads to
called it the generalized extended self-similafBESS. Af- Eq. (2.2). Although originally ESS was thought to hold in a
ter these discoveries, numerous experimental or numericahnge extending the ISR toward smaller scales, i.e., into the
analyses of structure functions based on ESS and GESS haviscous subrang@/SR), detailed numerical analyses showed
been published11]. Although ESS and GESS are experi- that instead it extended toward largeiscales, i.e., beyond
mentally quite effective to analyze data, their theoretical bathe crossover region between the inertial and the stirring sub-
sis remained unsatisfactorily clarified. In REf2], we pro- rangeq13]. In addition, it has been reported that the broader
posed a phenomenological derivation of the ESS formulasextension toward large scales can also be observed in two-

()
, 2.3

r-
Egl(r)
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dimensional magnetohydrodynamic turbuleridéd]. There- (i) £(q) can be determined already from turbulent flow
fore, it seems quite natural to assume that the dimensionslessth only moderate Re.

function g,(r) depends on in terms of the outer scale (i) The structure functions of the velocity differences and
(instead ofy, the inner, viscous, Kolmogorov scile of the coarse-grained dissipation rates obey the scaling laws

(2.5 and (2.9 with a single functiong(x), which may be

~ universal
gl(r)=g(t). 2.4 (iii) ESS is valid in the crossover region from the inertial
(ISR) to the stirring(SSR subranges.
The scaling functiomy(x) is expected to be universal, i.e.,to ~ Some years ago, Benat al. [10] furthermore found
be the same for different moment ordersind different ex- experimentally that the compensated velocity structure

periments. This assumption gives functions G 5(r) satisfy G 3(r)~[Gqr 3(r)]Pea” with
e Po.q=[£(a)—a/3/[£(a') —q'/3], where
ueey g4l gl —
Sa(n)~ufl 7ol ¢ (2.9 ()
__
o . _ . Gap(N)= - (2.12
This will be checked numerically and experimentally in Sec. (Sp(r))*P
IV, with a g(x) satisfying g(x)=1 for x<1 and g(x)
=x"1for x>1. This suggests that a generalization, denoted as GESS,
In the previous paperl2] we extended the refined simi-
larity hypothesis(1.8) by introducing a scaling exponent Gq'p(r)~[Gq,,p,(r)]y(q'p‘q"p'), (2.13
[15] by
_ might hold for a wider range even if a power law, cf. EqQ.
ro(r\| = 26 (1.3), is not yet developed. Herg(q,p|q’,p’) is considered
eI ' (26 as independent af and as a unique function of the moment
- ordersq, p, q', andp’. Since Eq.(2.13 holds in particular
r/r)1@3)a-z) in the inertial subrange, Wheﬁg(r) has the power law de-
Ur~up [9<E” 2.7 pendence€l1.3) onr, one expects the relation
F th tulate€.6) and (2. i diately deri q q (p q
rom the postulate€.6) and(2.7) one immediately derives 2 ro)— 2(q) 9. _)_T(_)
(1/3) (113) - P p\3 3
i~(3> [Lg(i 28 ¥(a,plq ,p)=q, “y ol Ja
uo tes ILTL ' —{(p") =L@ —T<_)_T(_>
p' p’ 3 3
This extends, cf. Refs[10,12, the similarity hypothesis (2.19

(1.8) of Kolmogorov and Obukhov. We there fore call it the
extended refined similarity hypothegiERSH. One should Here we used the relatiofl.10. Thus with GESS one may
note that Eq(2.8) is to be understood in a statistical sense. Ifdirectly measure the relative ratio of the excess exponent
r can be chosen sufficiently smaller thanbut still suffi-  7(q). For further details on the compensated plotssgﬂ’r)
ciently larger thany, Eq. (2.8) reduces to Eq(1.6), because see Refs[13,16,17.

hereg(x)=1. However, the dependence becomes visible, The observatiorf2.13 implies that the velocity structure

if either there exists no broad ISR because of an only modfunctions S;(r) take the even more general form than Eq.
erate Reynolds number oriifis chosen near the outer scale (2.3), namely,
L. Evaluatingsg from Eq. (1.1) by combining Eqs(2.8),

(2.3, and(1.10, one finds

r. {(a)
Sy ~uf[f(r) ]q[—gl(r)} ; (2.19
r r 7(q)
Sy(r)~ € Eg(E” . (2.9 B B

wheref(r) andg,(r) are dimensionless functions of and

Therefore, we can conclude that ERSH leads to ESS for th@'® independent of the moment ordgrin fact, it is easily
energy-dissipation rate structure function too, shown that Eq(2.13 holds for any choice of the functions

f(r) andg,(r), if only these do not depend an The func-
SN ~[Sp(n)1AaP, (210 tionsT(r) andrg,(r) in Eq. (2.15 correspond respectively

to [F(r)/G(r)]*® andG(r) in Eq. (52) of Ref.[10].

where in this case The structure function§g(r) must have the asymptotic

forms
7(q)
Alalp) =5 (2.1
P . rd (r<ly, )
The characteristics of ESS may be summarized as follows. Sa(f)~ ESS scaling(2.5 (r>1). 2.19
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Herel denotes the inner crossover scale of the turbulent flowrere(r) andg,(r) are arbitrary, dimensionless functions of
above which the inertial subrange staftis a multiple of the | “Ag il pe shown later, they coincide with the functichs

Kolmogorov lengthy, andg; in the preceding sectiog, is assumed to be a random
l=az, (2.17)  Vvariable, whose statistics, which expresseseiife) and the
u,(x) statistics, will be defined later. Equatior(3.2) and
the parametea being about 1018]. The first asymptotics in  (3.3) give
Eq.(2.16 must hold because the velocity differengein the
viscous subrange is proportional to the saaitself. In order Uy ( €r

to meet Eq.(2.16), the dimensionless function&r) and ug
0:(r) must satisfy

1/3

7(f)[£§1(r)

1/3

(3.9

Equations(3.2), (3.3), and (3.4), generalizing Eqs(2.6),

r (2.7, and (2.8), will be called the generalized extended re-
T2l T (r<l), fined similarity hypothese6GERSH. They are expected to
(N= be valid for all scales, including those abolkeas well as
c, (r>1), those belowl. The scaling hypothese@.2) and (3.3) to-
. (2.189  gether with the large deviation theory of probability theory
cs r (r<h, [21-23 will play the central role in deriving the GESS for-
~ mula (2.15.
9:(r)= r First we introduce an effective scaleby
g E) (r=1),
r(r)=rga(r), (3.9

where c,,C,,C3 are positive constants of order unity, and R
g(x) is the same as in E@2.4). For the VSR-ISR crossover where r(r) is assumed to be a monotonously increasing
statistics, see Ref19]. The characteristic features of GESS fynction ofr, r’(r)>0. This implies that Eq(3.5) is a one-

may be summaglz%d as fqllogvs. . d b to-one transformation betweenandr. The transformation
(i) £(q) can be determined even in moderate Re num e@enerally is nonlinear.

turbulence. ; .
Then, let us define discrete scales b
(ii) The scaling lawg2.13 and (2.15 are characterized y
by two functionsf(r) andg,(r), which may be universal. P

(i) GESS is the bridging formula for all three subranges,
the viscous, the inertial, and the stirring subranges.

In the following section, we will derive GESS from a . . oo
phenomenological ansatz in a generalized way as was prev‘f‘-’hereb with b>1 is an arbitrarily chosen number.
ously done for ESS, see Ré¢il.2].

Efgl(rn)=b_”, n=0,12... N, (3.6

N=—log, Ealm} (3.7

IIl. GENERALIZED EXTENDED REFINED SIMILARITY
HYPOTHESIS AND GENERALIZED EXTENDED

SELE-SIMILARITY is associated with the finiteness of the microscajeand is

assumed to be sufficiently large.
The Navier-Stokes equations are invariant under the trans- Introduce now exponentz, by
formation[20,2,13

— — e_rn-#l
— —p(1/3)(1- —p(1/3)(2+ =ph™%n = ... N. .
t'=br, u,=bMAA-Dy =t =pI@2y . b~*, n=0,1,...N (3.9
— p(23)(1-2) —h-Z 1 — p(13)(4-2) : . .
pr=b@Ap e, =b%, »'=pIIEDy, The properties of the sefz,} will characterize the self-

3.9 similarity of the energy-dissipation rate fluctuations. It is un-

where p, is the characteristic pressure difference over thederStOOd that the,, obey the same statistics for alland do

: ; . o S . not have an istical anomali .g., divergent vari-
linear scaler, v is the kinematic viscosityp is an arbitrary ot have any statistical anomalies, as, e.g., divergent va

. — . L ~ances or the like, for &n<N. This is considered as the
positive constant, and an arbitrary exponent. This invari- gplicit mathematical expression of self-similarity that holds
ance might suggest to introduce the scaling hypotheses

in the range of scalds<r<L. Equation(3.8) can be solved
to yield

€ €L

| (32

& =e b . 3.9

3.3 Here ¢, describes then=0 dissipation rate, anan is the

r (13)(1-2)
} coarse-grained exponent defined by

u,~uﬁ(r>{[§1<r>
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s

(3.19

1 n—1 e ! r
___ ) _ _n
Zy=+ ,Z‘o z. (3.10 Pr () - ( :

The combination of Egs.(3.9 and (3.6) gives &, rn

~eL[(rn/L)_§1(rn)]‘Zn, and therefore the exponertscon-
incide with z in Egs.(3.2) and(3.3). The important point is

One arrives at

that the variableg, are defined in terms of a set of random € r
variables{z;} with j independent statistics. Incidentally, this
condition can be generalized in such a way that the correla- In—
tion along the series of successivg is finite and much r
smaller than the step under consideration. This fact enables

us to apply the large deviation theoretical analysis in evaluwith

ating the statistics oé,n. We can, for largen, introduce the

characteristic function(q) via In £
L
Zz(e)=——. (3.17

S (z(e))
) : (3.1

Si(rn)=(€ (x))=(elb "9y = el "7, (3.13)

Use has been made of the approximation thathas no

fluctuations. Eliminatind™" via Eq. (3.6) leads to The probability densityP,(u)[=|de/du|P,(e)] for u, is

7(q) straightforwardly given from Eq(3.16 and the assumption
(3.12 (3.4 as

I~
Si(r) =€l £91(r)

u

This in turn together with the assumpti@d.4) implies Eq. P.(u)~

(2.19 including the exponent relatiofl1.10), and also L
In:

q/3 r
Sgalr). (3.13

-1 F S;(1+3z;(u))
I o

L

sir)~[T(r))e

r-
Egl(r)
where

the exponent being given by E@.11). Therefore, we can
conclude that Eq(2.10 holds not only in the range where
ESS is valid but also in the broader range where GESS
holds. u

One should note that, sineg, is given as the sum of u () 1
statistically equal random variables, the large deviation Z(U)=——=— §[1—z;(e)]. (3.20
theory[21-23 of probability theory implies that the prob- In—
ability densitiesQ,(z)=(5(z,—z)) for z, asymptotically in r
n obey

Eliminating g;(r) in terms of Sg(r), we obtain Eq.(2.10), 13 AEE
€ ~
u=u,_(—) f(r)(t) , (3.19

Appendix A offers a derivation of the asymptotic fo(3116)
F Sn(2) from a point of view slightly different from the one above,
Qn(2)~ \/ﬁb’sn(z)”= \/ﬁ T , (3.19 which is based on the self-similarity of the energy-
dissipation rate fluctuations.
As also discussed in Appendix A, the fluctuation spectrum
only n is much larger than the correlation width of tae. ¢ 0 F SRS R 8 e e e & lnear
The exponenS;n(z)[ESn(z)] 's called the Cramer function, _function ofz. However, as shown in Sec. IV, numerical and

also the rate function, or the fluctuatipn_ spectrum, and '%xperimental analyses show no feasibility of the second type

plays the central role of the large deviation theoretical apy,¢ soyytion, So, we hereafter assume that the fluctuation

proach. The prefacton is becauses; (z) has a parabolic spectrumS(2) is a concave function o.

form near its unique minimum. Although the large deviation  The exponent function(q) and the fluctuation spectrum

theory asserts thé,(z) is independent of for n—c pro-  S(z) are related22,23,12 by

vided this limit can be taken, we here retainritslependence

for later discussion. N 7(q)=S(z(q))—qz(q), (3.21
Abbreviating e,=e b "=¢ (r,/L)’=e¢, ie. z,

=In(e,/€)/In(L/r)=z, the probability density Prn(e)

(=Qn(2)|dz/de]) for € is asymptotically given by z(q)=—7'(q), S'(z(q))=qa. (3.22

where S,(z) is a concave function of, i.e., S}(z)>0, if

where
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These quantities, in principle, havedependences, which, should hold, where;(u) is the same as that in E¢3.20.
however, we omitted in Eqs3.21) and (3.22. If the dissi-  Particularly, one getzé“)(u)zz;(u) in the ISR. The relation
pation rate exponent functior(q) is known, the above Leg- (3 251 will be tested with experimental data in the following
endre transformation enables us to obtain the fluctuatioggction.
spectrum. On the other hand, one can directly meaS{zg
LUz the ssyplt (e 10 o1 (33 for e d
RS ' _ DETERMINATION OF THE FUNCTIONS

The functlonsf(r),gl(r), or S}(Z) may thus describe the CHARACTERIZING ESS AND GESS
asymptotic statistical characteristics of isotropic, homoge-
neous turbulent flow despite moderate Reynolds numbers. If In the present section, we compare the results of the phe-
the Reynolds number is sufficiently large such that the scalgomenological theory obtained in the preceding sections
r can be chosen well within the ISR<r<L, the above With those of numerical flow simulations by Fukayasteal.
formulas reduce to those in developed turbulence. In the foland with those of laboratory experiments done by Kat-
lowing section, we shall determine these functions by anasuyamaet al.
lyzing data from numerical simulations and from experi- Data A Direct numerical simulationgFukayamaet al.
ment. [24]). Fukayamaet al. [24] carried out direct numerical

So far the asymptotic form of the probability density Simulation (DNS) of the three-dimensional Navier-Stokes
P,(u) for velocity difference fluctuations was discussed byequations. The data we will use are RUN 5 for forced turbu-
assuming the GERSH. With this assumption it is determinedence in their paper. The numerical procedure is as follows.
by the fluctuation spectrunt;(z;(e)) for the energy- The number of mesh points is 53.2As initial condition a
dissipation rate fluctuation. The validity of GERSH is, how- Gaussian random velocity field with an energy spectrum
ever, not obvious. Without the use of the GERSH, one carE(k,0)=c(k/ko)* ex] —2(k/kp)’] with ko=3 is used. The
derive the asymptotic probability densify,(u), assuming €nergy is permanently injected with a statistically homoge-
the self-similarity of velocity difference fluctuations. This is heous, isotropic, and Gaussian white random force limited to
done by applying the procedure similar to the above forthe band 2k=3. The parameter values of the simulations
energy-dissipation rate fluctuations. are estimated as

Let us define the exponer}") via [22]
r~0.00135, ¢ ~=~0.492, 75~0.00843, L~1.56,

u
%:b,zy, n=012... N, (3.23 Re ~125, a~10.8. (4.2)
rI']
€. was obtained from its definitiofl.6), i.e., by using the
wherer , andb are the same as defined in E§.6), andzﬁ“) spatial derivatives of the velocity fiel&; together withy
is assumed to be statistically steadynirand to have a suf- then impliesy. The numbeia is defined bya=1/7, see Eq.
ficiently short correlation step. This is solved to yield (2.17); we estimated the crossover scale between the viscous

=u,_b‘”;(nu) with E(“)=n‘12”;§z(”) . Applying the large de- and |,nert|al subranges to the=0.0910 byflt_tlng Fukayama
L n 1=07] L . et al's data to the Batchelor parametrizati2v,18,
viation theory, one can define the characteristic function

7(q) via (b‘“qz(wu))=b‘“2(q> and the fluctuation spectrum ) & ,
S(z"), with which the probability density is found to take ()= 15,7
the asymptotic form

21-1+£(2)/2

r

1+|

4.2)

The estimate of (2), done by using the ESS analysis, led to

o u £(2)/£(3)=0.692.Since, in these DNS data, there does not
ul [t S (z; (W) |”u_ exist a sufficiently extended power law regime, one cannot
O L ici i =
P.(u)~ <_> . z2%(u)=—. measurel(3) sufficiently precise. We thus assurig8)=1
L\L ' | L and get{(2)=0.692.
|”? n? Data B. Jet flow experimentKatsuyamaet al. [25,26))

(3.24 Katsuyameet al's data[25,26 were measured in an air-in-

: air jet flow 6.5 m downstream from a square nozzle of size
o~ . 0.4 mx0.4 m. The axial velocity of the flow was measured at
The function{(q) is assumed to depend only ap If the  gigcrete timeg;=jAt, j=1,2,3,..., whereAt=10 us is
GERSH is applicable, the relations the time interval between neighboring sampling times. The

~ velocity just behind the nozzle was 30 m's The probe’s
nf(r) 3,95 diameter is 5um and its hot wire length 70@m. The output

L’ (3.253 signal was high-pass filtered at the frequency 0.1 kHz. The
'”? smallest eddies time scale=(LO+\/v/€) is 4 ms, 400 times
larger than the resolution. The number of data points is 6
u,_(u) ) A X 10°. The mean velocity) (=u, ) at the measuring position
Sz (U)=§(1+3z(u) (325D was 14.4 ms?, and the root mean square of the velocity

Z%u)(U):Z}(U)-‘r
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fluctuations was),ne=2.9 m s *; this value was calculated 2.50 .
according to the definitiom = \/<(vj—U)2>, wherev; is (a) A i
the measured velocity at timg. Other parameters were B e
evaluated as follows. First we defined the local energy- 2.00 - -
dissipation rateg; by
2
Vj+k—Uj 1.50 + E
61'—151/( KUAT ) , 4.3 =
&
where we puk=6, corresponding to about 11 times one 1.00 - 1
of the viscous range scales to evaluate dheerivative; av-
erage values for smaller ones turned out to approximately P
give the same values as that for 6. Experimental analysis 0.50 / .
shows that the time differenceAd is not too short to evalu-
ate the local energy-dissipation rate. So we did not use the
low pass filter of velocity fluctuations. The mean dissipation 0.00 . . . . . . .
rate ¢ was obtained with the formula €. 00 10 20 30 40 50 60 70 80
=150((dvy/dx)?); we approximated ((dv,/dx)?) by q
((vj+k—v))?)/(AX)? with Ax=kUAt, k=6. The Kolmog- 0.05 :
orov microscalen, the Taylor length\, and the stirring scale
L were csfilculated. usingy=(v%/ €)', N=\15m2 Je, _ 0.00 ¥5 ®) |
and L=v;,J€e . Finally, the Taylor-Reynolds number is
Re =v,m\/v. The parameter values thus obtained are 0.05 |
AN
v=15 mnts !, e ~84 n?s 3 7p~80 um, AN
-0.10 Y +
L~0.28 m, Rg~900, a~15. (4.9 .
-0.15 A {Bgq + LN T
B: . wg) x
The parametea again was calculated via fit of the data to gf g‘lgjl e
the Batchelor parametrizatiod.2) with {(2)=0.70Xx{(3) 020 - e A
=0.70%x0.97=0.68 to determine the crossover scdle .
this turned out to bé=1.2 mm. Furthermore, the coarse- -0.25 A
grained energy-dissipation rate was determined ag,
= m‘lE]m:lej with r=mUAt. The probability density, (€) .0.30 ! . !
will be calculated with the ensemble fey defined in this 0 0.5 1 1.5 2
way. The spatial resolution={UAt) is 140 um, which q
turns out to be almost twice the Kolmogorov scale. A
Figure 1 shows the exponent functiogéq)/¢(3) and FIG. 1. () The exponent functiog(q)=¢(q)/¢(3) for dataA

7(q) = £(39)/¢(3) — q for both dataA andB. Here the maxi- andB. (b) The functions{(3q) —a, {(39) —q, and7(q) for dataA
mum valueq,.,=4 for q in Fig. 1 is chosen after estimating andB. Lines except forr(q) are drawn with spline functions.
the statistical scatter in the relevant tail region of the prob- - ! ¢ o3 1— 2 N TP 2(P)]

ability density for the velocity differences, , using a stan- F(r) ~{Sq(r)[Sp(r)]~ SV EtPHIATPEAILP

dard method, see, e.g., REZA]: The functionZ(q) for.each = {[SU(r)EP[SY(r)]~ <@ Varpia)=pr(ai3)]

data set was determined using the ESS pibl) with p q P ’

=3. While for the dataA one cannot determiné(3) too (4.6)
precisely, and we therefore assum#@8)=1, for the dateB . .
one can measuré(3)~0.97. Hereafter, the values of the ex_cept fgr ”“me”c"f" factors. The Iast_exBresslo_n was ob-

structure functions. The scaling relatié®.15 can be rear- universal, as we expect and have assumed, the rhs of Eq.
ranged to give (4.6) has to be independent of and p. In a similar way,
inserting Eq.(4.6) into Eq.(2.15, we get

- r- ¢(a)
[S;(r)]«q)/ap)wuE[g(q)/apn[f(r)]pmq)/z(p)l[tgl(r)}

r-
Egl(r)N{[Sg(r)]l/q[sg(r)]—1/p}1/[§(q)/q—§(p)/p]

(4.9 N )
={[SE(r)JP[Sk(r)] 9}~ YIareR)-pr(ad)],

Eliminating g,(r) from Egs.(2.15 and(4.5) leads to 4.7
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The last expression was also obtained with the relation 1.6 - - -
(1.10. Again, if g,(r) exists as a universal scaling function, @
the rhs of Eq.(4.7) must be independent af and p, too. 14 T

From these equationg.6) and (4.7) we then can numeri-

cally determinéf (r) andg,(r) as functions of either/L or
of

r*=

r
—. 4.9
7

(rIL)g.(r)

At first we determine the functiog,(r), which characterizes
ESS, cf. Eq(2.4). Figure 2 displays plots gfSy(r)/uf]*4®
according to Eq(2.3) for (a) the dataA and(b) the dataB,

both vsr/L. The data should lie on one curve irrespective of
g, provided that there exists a universal scaling function
91(r) in Eq. (2.3. The curves for different indeed nearly
coincide. The slighty dependence at large seems to be
compatible with the statistical scatter, since one cannot see a

systematicq dependence. In a previous pap#&2] we used 16 . . . .
the assumption thaty,(r) is monotonously increasing with b)
r; this property clearly is fulfilled with the data of both sets. 14k

We now consider the scaling functidifr), relevant for
the crossover from the viscous to the inertial subranges. Fig- 12L
ure 3 shows the plots of the rhs of E@.6), representing
F(r). Here we used the expression in termg () andZ(p) 10 F -
as experimentally observed. There is a systenmtilepen- S /
dence in the viscous subrange in the numerical simulation ¥% o4 | ‘ _
data, cf. Fig. 82). We kept fixedp=3, because we did not =4 y
observe sensitivity to the varioup values, which we N 06 L i
checked. In the jet datédataB) the functionf(r) show 4
statistical fluctuations for* =10, but no apparerdg depen- 04 | ‘ 4
dence. But again we note systematic deviations in the small
scale range* <10. Thus a universal scaling functioh&r) 02 | 4
seems to only approximately exist. Incidentally, it is a mo-
notonously increasing function of which also satisfies the 0.0 . . . .
expected asymptotid®.18. The considerable scatter in the 0.0 0.5 1.0 15 2.0 25
data forr* <5 in Fig. 3b) may be due to statistical errors in r/L

h mpling of th f the short tim I ~
the sampling of the data because of the short time scales FIG. 2. Check of universality afj;(r) in the ESS formuld2.3)

related with thgse small Spatl_al scales. ~ with () dataA and (b) dataB. Plotted is[ S;(r)/uf]*(® vs r/L

~ The numerical and experimental results #@y(r) s  from Eq.(2.3) for several values of the moment ordgrNo appar-
given by Eq.(4.7) are shown in Fig. 4. Here we used the gntq dependence is observed in the graphs.
expression in terms af(q) and{(p) as experimentally ob-
served. One can distinguish three characteristianges, present data, the conclusion that there does not exist a uni-
which we naturally identify with the viscous, the inertial, and versality in the VSR. The deviations at the large scales may

rri H H *

the stirring subrangesi) First the VSR forr* <10, where g influenced by finite size effects, e.g., by the shape depen-
we expect thatg,(r) approaches a constant as the scale  dence of the flow container.
decreased.(ii) An intermediate range, whereg;(r) is Next we determine the probability densiy(e) from the
roughly proportional tor. (iii) The larger range, where data . Then the fluctuation spectru#n(z) can be calculated

rg,(r) again approaches a constant as the scale is increasd@® from Eq.(3.16 as

Although the jet result¢dataB) contain considerable statis-

tical fluctuations, it seems that they do not systematically In[ VIn(L/T)eP,(€)]
depend org except again toward the viscous subrange. Be- r(2)= = +
cause theg dependences in the small scale regions in both In(r/L)
Figs. 4a) and 4b) can be spoiled by insufficient data sam- o A
pling in the numerical simulation and in the jet experimentHerer=rg,(r) andz=In(e/¢)/In(L/r), see Eq(3.17). Fig-
due to the short time scales, one cannot safely draw, from there 5a) shows the fluctuation spectrug(z) for the dataB

const. (4.9
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FIG. 3. Plots of the rhs of Eq4.6) for p=3 and variousy as
functions ofr* =r/#, normalized by its value at* =a=1/7. (a)

The DNS, data, (b) the jet measurements, ddBa

(jet) calculated with Eq. (4.9, where the functionr
rg.(r)/L
=[G, 4(r) M@~ 2B3)3 was usedjcf. Eq. (2.12] and in-
serting(2.195. Ther values were all chosen to be in the ISR;
therefore, thes&;(z) characterize the fluctuations in the in-
ertial subrange. Figure (B) offers the fluctuation spectra
S/(z) calculated withr instead off in Egs.(4.9) and(3.16
in the same range as in Fig. @), i.e., calculated by assum-

obtained from G, 4(r) as

:rﬁl(r),

ing

el 1) S@e
e

100000

(4.10
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10 |

rg(nng ()
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10 |

18.(ryig,()
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rin
FIG. 4. Plots of the GESS representati@n?) of the function

01(r) vs r* =r/z, for different moment orderg and fixedp=3.

As before(a) dataA and(b) dataB, and also normalized by their
values at the viscous inertial crossowet |/ 7.

€
In—
€L

zr(e)ET_ (411)

In—
;

If the inertial subrange is sufficiently extended, we expect
that Figs. %a) and %b) coincide. However, one observes a
weak disagreement of both, particularly on the left sides of
the curves. Furthermore, the scatter in the data on the left
sides of the curves in Fig(B) is more significant than that in
Fig. 5@. We conclude from this observation that the
asymptotic formg3.16 and(3.17) with r are more favorable
than that fitted as in Eq94.10 and (4.11) with r. This
means that;(z) is more fundamental tha§,(z) to discuss
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25 . . . . 25 — . . .

FIG. 5. Fluctuation spectra
S;(z) calculated in the inertial
subrange with the same datiata
B) but in two different ways(a)
With Eq. (4.9), equivalent to Eq.
(3.16: r was calculated with
G, 3(r). (b) With Egs. (4.10 and
(4.11) based orr.

S#(z)
S r(Z )

1.0

the ISR scaling. In the next paragraph we shall check this ieft side branches of the fluctuation spectra, while the right
a more precise analysis by studying the differences of flucside branches seem to be robust against changirig
tuation spectra for two scales. smaller scales. The more significant scatter on the left side
In order to study to which extent the fluctuation spectrawing in Fig. 7b) as compared with that in Fig.(d again
S;(2) andS;(z) depend on the scale we consider various supports the greater feasibility of the effective scalén
differences A; : S(2)=$.(2)—=S,(2) and A; [ S(2) comparison ta itself. Furthermore it seems that the left side
=S, (2)—S..(2) as functions of for some pairs of different Pranch ofS;(2) in Fig. 7(a) becomes smaller as the scale
.2 . . becomes smaller, which implies that the probability densities
scalesri' =ri/7, see Fig. 6. In Fig. @) the scales are de- o p for the case of negativeandr in the viscous range
scribed byr, while in Fig. 6b) r is used. The pretty irregular [cf. Fig. 7(a)] are larger than in the inertial subrangé. Fig.
scatter of the differences around zero seems to indicate thata)]. This fact coincides with an observation reported in
on average there is no significandependence of the fluc- Ref.[28] in the study of the GOY shell model.
tuation spectre5;(z). It therefore makes sense to speak of To analyze the scale dependence in the crossover range
the spectrumS(z) in the inertial subrange. Of course, the we once more consider the spectra differendes; S(z)
differencesAS(z) are smaller in the vicinity of the minima andA, , S(z). Herer, is kept fixed ar,= 173y in the ISR,
of Si(2) and S,(2) than for larger|z|, because the corre- hile r, is stepwise reduced from 16idown to 9.03;. As
spondingS values themselves are smaller or larger there. pefore, Figs. 8) and &b) differ in being based on E¢3.16)
_Acloser inspection of Fig. 6 shows that in FigbBthe  yith t and on Eq.(4.10 with r, respectively. In Figs. @)
differences on the left wing seem to have a systematic non;nq gq) the corresponding curves have been smoothened
zero trend, in contrast to the right wing, but in particular in\yith Bezier curves in the data-plotting tool, the gnuplot. It
contrast to the symmetric scatter around zero in Hig@.&e  pecomes apparent that the smaller the scale is, the more
conclude that(z) is less scale dependent tha(z), i.e., S (z) deviates fromS,;3,(z). We have to conclude that the
Eq. (3.16 is more appropriate than E.10. fluctuation spectra in the VSR with decreasingradually
Figures Ta) and 1b) show the fluctuation spectra in the deviate from those in the ISR. Particularly their left branch
crossover range between the inertial and the viscous sulbends to decrease as the scale becomes smaller. This obser-
ranges calculated with Eq$3.16 and (4.10, respectively. vation is less pronounced B;(e) is taken, Fig. &), than
One again observes a considerable statistical scatter in theith P,(e), see Fig. &).

04 : ; . ; 04 T T T T
(b)
02 02| FIG. 6. Differences
A, 7, 8(9=5,(2-S() and
00 | 00 Arl’rZS(Z):Srl(Z)—SrZ(Z) of the
> @ fluctuation spectra vz for four
“Q ! e scale differences within the iner-
ﬁ: 02 F & <’f 02 ! tial subrange(a) and(b) were cal-
343173 —— culated with Eq.(3.16), referring
04l 343173 —— & 04} Lop S — ] tor, and Eq.(4.10, referring tor
gg:gj;g T 101178 —o itself, respectively. The scales
101-173 —a— r,/n=34.3,70.5,84.9, and 101
08 1 08y 1 are compared with,/7=173.
1.5 10 0.5 0.0 0.5 1.0 15 1.0 0.5 0.0 0.5 1.0
z z
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20 20 T T T .

FIG. 7. Fluctuation spectra in
the crossover region between the
viscous and the inertial subranges.
(a) is calculated with Eq(3.16),
i.e., parametrized with, and (b)
with Eq. (4.10, based onr di-
rectly. The scatter of the data in
(a) seems weaker than ib). In

(@), r(r) was calculated with
Ga,3(r).

15

0.5

0.0
15 -1.0 -05 0.0 05 1.0

Figure 9 displays the comparison of the measured fluctuature at minimumpP = S"(z,). Both parameterg, andD are
tion spectra with three analytical approximation formulas.independent. This approximation corresponds to the qua-
Scalesr in the lower ISR are considered. The jet dBtare  dratic excess exponent
taken. The first analytical approximation is the parabolic fit

2
P) [2,23], _
(P) [2.23 Q)= 200~ 55 (413
S(z)= 2(2* z0)2. (4.12  The second analytic expressiok§2) is obtained from Kol-

mogorov and Obukhov’s log normal theof,5], which
again turns out to be quadratic mand gq. But since here
Z, is the minimum positionS’ (z,) =0, andD is the curva- 7(1)=0 is taken into accour(toncluded from the structure

03 T T T T 03 y T T T
0z 1 02} 4
o1} E 01} 4
0.0 | - 00} 4
D 01} 1 ~ 0.1 ]
& =
< 02 | 1 o 0.2 1
a‘ N
03} o1 < o3 9.03-173 —— -
04} ?.03172 — . 04 4 FIG. 8. (a) and (b) show dif-
05| 231&1;3 e ] 05 Zg.g—};g - ferences A;l ;ZS(z) and
b 101-173 - e-- A, . S(2) of the fluctuation spec-
-06 | - 06 | J 172 i . .
tra for various scales in the vis-
-o.71 s 1'0 0'5 0'0 0'5 1o -o.71 . oS 0'5 o'o 0'5 o cous and in the inertial subranges
’ ’ L ’ ) o o e z ) ’ from S; (2) with r,=1737. (8
03 . . . . 03 and (b) were calculated with Egs.
. (3.16, (3.19 and with Egs.
0z r © i 02r 1 (4.10, (4.11), respectively(c) and
o1} . o1 f 4 (d) show the curves corresponding
oo | | 00 to those in (@) and (b), but
' : smoothened with the Bezier
ol 1 = o1t 1 method.
S 2 ! S’
o0z %2 903173 —— § {1 9 02} |
he) AW 19.9173 - e
ﬁ 03 | i L < .03} i
04} 1 04} 1
05 | 84.9-173 -~-omne i 05 L i
101-173 ~-a-— 0.5
06 1 06 4
07 . . . . 07 ) \ . A
-15 -1.0 05 0.0 05 1.0 15 -1.0 05 0.0 05 1.0
4 z
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2-5 T 2-5 T T T T T
20} 4 20 .
1o S, 1/ =343 —— '
705 il
145
15 e, o 28
—~ S%, rin =34,
&N S 70.5
< A 145
%) 10
1.0 |
05 05
0.0 2
0.0 40 30 20 1.0 00 10 20

-1.5 -1.0 -0.5 z

) ) ) FIG. 10. Comparison of the fluctuation spectra obtained from
FIG. 9. Comparison of the fluctuation spectra obtained from thep (¢) andP, (u). One observes that they are globally different from

dataB with the analytical approximation formulaB. is the para-  gach other. In particular, the difference is remarkable in a negative
bolic fit with D=3.35 andzy,=-0.161[Eq. (4.12], K62 indi- region. For details, see the text.

cates Kolmogorov and Obukhov's log normal theory with
=0.30[Eq. (4.19], and SL denotes the She-Leveque mdd.
(4.196]. 3\ -1
S”(zo)z(z In2§> ~3.04. (4.18b

equation, z, andD are related, and only one parameter is
left. As this we takeu=— 7(2), theintermittency exponent,
and obtain

As mentioned, the comparison of the measured spectra with
the three analytical models is presented in Fig. 9.
Let us discuss the probability densitiBs(e) and P, (u).
The comparison ofr(q) from energy-dissipation rate fluc-
7(q)= ﬁ‘1(1—(4), (4.14  tuations with that obtained by assumifig10 from velocity
2 structure functions for datB is given in Fig. 1b). One ob-
serves a remarkable difference. This may suggest the inap-
thus plicability of the GERSH in a rigorous sense. However, if the
characteristic functiord(q)/(3) is used instead af(q) it-
self, the result approximately coincides with the curq).
This implies that the relatiofil.10 holds for smallg in the
range shown in Fig. (b). Furthermore, the fluctuation spec-
The third analytical expression comes from She-Leveque'#a S;(z) calculated withP,(€) and P,(u) are compared in
log-Poisson moddl29,23,31,30) Fig. 10. If the GERSH holds, they collapse on a same curve
at least approximately. Clearly, one observes a remarkable

2
7
z+ =

5 (4.15

1
S(Z)Z ﬂ

1 /2 1 difference of the spectra on the left side of the curves. A
S(2)=2+—3|3-2 In 3 (§—Z . (416  small value of the exponemt corresponds to a small value
|nE 2e|nE of u, or ¢, . The probability density?,(u) does not vanish

for small value ofu. On the other hand, the probability den-
sity P,(€) practically vanishes for small value ef This is
the reason why the characteristic Sf(z) and S;(z) ob-
served withP,(€) is different. However, in addition, the

The intermittency excess exponerfq) is given by[29]
(4.17) curves on the right side are different from each other. For a
small value ofg, as shown in Fig. (b), no clear difference of

2\da
-2
the characteristic functio(q) calculated withP,(u) and
Equation(4.16 implies the minimum position and the cur- P () for g in the range in Fig. (b) is observed. It is ex-
vature, pected that the difference of tl§¢q) calculated in two ways,
will be enhanced ag is increased, reflecting the difference
of S;(z) and S?(z) and S;(z). One thus concludes that the
fluctuation spectrun®; is more sensitive than the character-

2
(@) =—3q+2

2 3
zo=5—2In5~—0.144, (4.183
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S:(z") implies that the GERSH is not valid in a rigorous (5.9

sense. Therefore, E§3.13 only holds for smallg. Never-
theless, the asymptotic fornG3.16) and(3.24) hold indepen-
dently. On the other hand, the functian(r) depends on bothand
L. Since there appears no characteristic scale except these

two scalesg,(r) may be written as

istic function £(q) itself. The difference ofS;(z) and ~ (r)
f(r)y=f|~+].
I

V. CONCLUDING REMARKS

In the present paper, we presented the derivation of the ~ rr
generalized extended self-similarity formulas, GESS, of tur- gl(r):gl(l_at) (5.2
bulent flow structure functions. This GESS is supposed to
bridge the statistical behavior in the viscous, the inertial, and ] ) )
the stirring subranges. The approach is based ork@g  With & unique functiorg,(x,y) of x andy. The scaling func-
similarity theory of developed turbulen¢d]. The main dif-  tons f and g, have the asymptotic f(irlmfs(x):clx for x
ferences between the present derivation of GESS and ths L @ndcs for x>1, andgy(x,y) =csx™ " for x<y<1 and

K62 theorv are first to carry out the self-similarit Vsi g(y) for y>x>1, wherecy, Cy, ar_ldc3 are numerical con-
ory are irs carry out the sef-simriarity anaySIsstants ofO(1), cf. Eq.(2.18. Using the direct numerical

not for the physical scaleitself but for the effective scale, simulation data by Fukayanet al. [24] and the experimen-
defined in Eq(3.5), and second to apply the large deviation 5| gata by Katsuyamat al. [25,26, we determined the

theory instead of the cgntral limit theorem. m,"?‘dd't'on’.wefunctions?' and@l. Numerical analysis suggests thénde-
proposed the asymptotic form of the probability densities

) ! pendent, universal existence of such functions. Although we
P:(€) and P(u), for which the fluctuation spectr&(z)  gnajyzed two data sets, it still is considered as insufficient to
play the most important role, compatible with GESS. Thegay a firm conclusion on the universality of the functions
peculiarities of the ol:_)talned probability densities are that f(x) and gy(x,y). It still remains an attractive problem to
they take the generalized form of tH&2 log normal theory,  ¢jarify and confirm their universality. Further numerical and
and (ii) there appears an effective scaleinstead of the experimental studies are highly desired. Possible forms of
physical scale. Furthermore, using Katsuyaneh al’s data  f(x) andg,(x,y) in connection with the Batchelor and the
[25,26, measured in an air-in-air jet flow, we constructed the_ ohse and Miller-Groeling parametrizations foBy(r) are
fluctuation spectr&;(z), see Eq(3.16), also consistent with  proposed in Appendix B.
GESS. We evaluated the fluctuation spectrgitz()) with The functionS(z) is simply related to the multifractal
the probability densityP,(u) from Katsuyama’s data, and spectrumh(z) [20], whereh(z) is defined as the fractal di-
found a remarkable difference betwe&(z) and Sf(z(”)). mension of the support whem takes the value [2,31,13,
This fact implies the breakdown of the GERSH in a rigorousas
sense although the characteristic functiarf{s|)) for small
values ofq calculated with the ESS processing seem to co- h(z)=3—S(2) (5.3
incide with each other. One should study the applicability of ' '
the RSH, the ERSH, and the GERSH more carefully.

Our analyses of two data sets do not sufficiently confirmit is worthy to note thah(z) can be negative. In contrast to
the validity of our approach toward the viscous scales. HowmeasuringS(z), it is not possible to directly observe the
ever, they also do not indicate its inapplicability toward themultifractal spectrumh(z), which has been determined by
viscous range since the experimental data have limited prassing the Legendre transform of the exponent functica) .
cision for the small scales: In dafa the ration/Ax withthe  The presen8(z) can be directly measured as shown in Sec.
grid sizeAx used in DNS i2.03/27~1/3. IndataB, the V. In this sense, the present approach is more convenient
smallest eddies time scalg(=10yv/€_) is 4 ms, which than the multifractal picture in analyzing turbulent flow.
should be compared with the sampling tilhé=10 us. Al-
though 7 is 400 times larger thadt, the spatial resolution
(=UAt=140 um) is twice the Kolmogorov scalen( ACKNOWLEDGMENTS
=80 um). One needs, therefore, more and more accurate
experiments to finally confirm the validity of the present ap-,,
proach as well as the applicability of GESS also toward tth

VSR.
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APPENDIX A: SELF-CONSISTENT EQUATION FOR THE .

- €;
PROBABILITY DENSITY OF ¢, ri=rie’ ", x= Ine—’, (AS5)
L

Let L and » be the energy injection scale and the Kol- R
mogorov viscous lengtly=(v°/¢ )% Three scales;, r,,  Wherer_ ande_ are reference values of the effective scale
andr 3 are chosen such thgt<r;<r,<r;<L.We introduce and the coarse-grained energy-dissipation rate, respectively.

an effective scalé=r(r) for later conveniencei(r) is as-  Inserting Eq.(A2) with Eq. (A5) into Eq. (A1) yields

sumed to be a monotonous functionrofi.e.,r’(r)>0, but [{ —Xy
ex —S(

at present not specified further. -
—

Let P(¢; ,r,-|ek,rk), rj<ry, be the conditional probability

)(n3—n1)

density that the coarse-grained energy-dissipation rate aver- w X3— Xy
aged over the scalg takes the valug; under the condition ~J ex;{ — S( )(n3— n,)
. L — nz—n;
that the coarse-grained energy-dissipation rate averaged over
the scaler, takes the value, . In order to mathematically Xo—Xq
formulate the self-similar characteristics of large Reynolds —S(n = (ny—ny) [dX,. (AB)
2— 1

number turbulence, we assume that the following self-

consistent ansatz for the conditional probability densitiesHere we neglected the prefactor in E42), because it con-

holds: tributes only logarithmically to the asymptotic form of the

probability density. In saddle point approximation, corre-

P(€3:r3|€1,r1):f P(es,rsl€2,r2)P(ez,r5|€1,r1)des. sponding to the condition
(A1) —y* * _
S’(X3 XZ):S'(XZ Xl), (A7)

This equation expresses first, that the probability density for Nz—N2 N2—My
the scales; andr, propagates into that far; andr;. Sec- L
ond, the self-similarity hypothesis for the energy-dissipationEq' (AG) implies
rate fluctuations states that the propagator should be equal to XX Xam XE ¥ —x
the conditional probability density for the scalesandr . gl =3 1)(n3—n1)=8 3 2>(n3—n2)+8 2 1)
Ansatz(A1) looks like the Chapman-Kolmogorov type equa- N3—M N3—Ny =Ny
tion for the velocity probability density proposed in Ref. X(Ny—Ny), (A8)

[32].

Next, we turn to solving the self-consistent equatiél) oy the functions. Herex; is the value of, that maximizes
for large Re, i.e., for a sufficiently extended inertial sub-, o integrand of Eq.(A6), and is determined by x4
range. Consider the case that the effective distances satis x5)/(Ng—Ng) = (X% _Xl)(r;Z_nl) becaus&(z) is a con-

the relations 3<r ,<r ;. In this case, Eq(A1) has two types cave function.

of asymptotic, large Re solutions. Let us now evaluate the moments of the energy-
The first type solution takes the form dissipation rate fluctuationge®). Assuming that the energy-
~ dissipation rate at scale does not fluctuate, the order
r
In(rk)
T

1 moments ofe, for r<L,
j

—-1/2 Fk *S(Z(Ej ,rj\ek,rk))
P(ej.rilex.r)~ ( )

rj
(A2) (e?)=f €IP(e,r|e ,L)de, (A9)

for rj<<ry with are governed by the fluctuation statistics of the scalkess

thanL. From Eq.(Al), we find

€
In—,
z(e,f|e',?’)=—f, (A3) <f?3>:f fegP(e3,r3|62,r2)de3 P(e2.15] € ,L)de;.
In— (A10)
r
Substituting the asymptotic probability dens{$2) into Eq.
whereS(z) is a non-negative and concave function, (A10), the factorf - - - ] is evaluated with steepest descent as
S(2)=0, S'(z)>0. (Ad) P —S(In(e3/€x)/IN(r /7 3))
[~-~]~f€§e3l<r) des
Is

The prefactor in Eq(A2) comes from the normalization con-

dition fP(ej,rj|ek,rk)dej=1 and is irrelevant for the 7\ 9z=s@ ~ \ —(q)
asymptotic form of the probability density. This can be ~eqf <A—2 dz~e§<A—2> . (Al
shown below. Let us put rs ]
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where we defined

7(q)=min[S(z) —qz]. (A12)

The momentgA9) are thus written as

~ \ —7(q)
<eﬁ3>~(f—2) (),

rs

which implies the asymptotic form
P ()
<6?>~€E( E) :

Here we used the boundary conditionrat L and noticed
again that the fluctuations ef over the scalé. are zero(or
at least sufficiently small

The second type solution to EEAL) is the power law

(A13)

P(ej.rilec.r)~

A
e
E—J) . MNaconstant. (Al4)
k

If Eq. (A14) is written in the form of Eq(A2), we find that
S(z) depends linearly og,

S(z)=(N+1)z+const. (A15)

PHYSICAL REVIEW B5 046307

Batchelor [27] proposed a parametrization fd8,(r)
bridging behaviors for <| andr>1. The Batchelor param-
etrization[27,1§ is given in Eq.(4.2) and rewritten here as

r\ 21227 42)
i)

p\21-v2 2| |
Lo |

r1+
T

s;<r>~[

|
(B4)

expected to hold for alt<L including the crossover region

between the viscous and the inertial subranges. Comparing

this with the scaling relatiori2.15 for q=2 with the as-
sumption(B3), one obtains

X

f(x)= Newah (B5a)
J1+x2
9:(x,0)=— X . (B5b)

In Ref.[12], we proposed the extended form of the Lohse
and Muler-Groeling parametrizatiof33] that now bridges

all three ranges, the viscous, the inertial, and the stirring

subranges. The proposed form is

2
a
However, we do not observe this type of behavior in our S‘z’(r)zﬁ(em)z’e’

numerical and experimental analyses in Sec. V.

APPENDIX B: POSSIBLE FORMS OF SCALING
FUNCTIONS f AND g,

ol

r\ o« [2—2(2)]/k r\ AL 2(2) K
In fully developed turbulence, if the scateis chosen 1+ 1 } 1+ L }

within a sufficiently broad range betweenandL, no effects 5 1l 1 22)
from the stirring and the viscous subranges are significant, r 14 r HE
and we can put I r I

- ~ o R T rT [r\e]ls

= = r Lr r LR
r(ry=rgy(r)=r. (B1) 1+(|_) } ' 1+(E) }

In the case of ESS, as proposed in Rdf], the function
r(r) takes the form,

N r

r(r)=rg<—). (B2)
L

Figure 2 numerically and experimentally pr0\?é$r)>0. In

the case of GESS, the effective scalmay be written in the

scaling form,

rr

F(r>=r91(|—,f : (B3)

whereg;(X,y) is supposed to be a unique functionxoand
y. Figure 4 demonstrates the monotony propertyr @f),
namely,r’(r)>0, except for*<10. The data in Fig. @)

show a systematic deviation fromi(r)>0. One possible
explanation may be statistical errors in the sampling of the

(B6)

with positive x; and x| . If we put k=« =2, the interpo-
lation formula(B6) specializes to that of Lohse and Nar-
Groeling. EquationB6) suggests that the scaling functions
in Egs.(5.1) and(5.2) should be chosen as

f(x)= m (B7a)
(1+XK|)1/K|
9100Y) = e (Lt y )t (B7b)
and, therefore,
g(y)=9a(,y) (B8)

- (1+yKL)l/KL ’

data, because the time scales on these small spatial scales are
quite short. One has to reexamine the statistics on theddote that Eqs(B7a and(B7b) give Egs.(B5a and (B5b),

scales with additional, other data.

respectively, fork, =« =2.
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