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Energy-conserving low-order models for three-dimensional Rayleigh-Beard convection
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Constructing hydrodynamic low-order models in the form of coupled gyrostats eliminates the possibility of
certain unphysical behaviors, such as solutions diverging to infinity, that often appear in models resulting from
ad hoctruncations of Galerkin approximations. In this paper, a simple low-order model in a gyrostatic form
that conserves energy in the dissipationless liidiodel I) is constructed for three-dimensior{8D) Rayleigh-

Benard convection. It can be considered an energy-conserving extension of the modeldiyaDfBhys. Rev.

E 62, R3051(2000] (Model II) that does not conserve energy and possesses solutions diverging to infinity.
Also studied here is a smaller but energy-conserving subsystem of Model | that has the form of two coupled
gyrostatdModel IIl). This new system is the 3D analog of the celebrated Lorenz niddatmos. Sci20, 130

(1963)]. Stability diagrams and heat transport behavior are calculated and compared for the three models.
Model | has improved qualitative agreement with experimental observations compared to that of Model Il and

Model IlI.
DOI: 10.1103/PhysReVvE.65.046306 PACS nunierd7.20.Ky, 05.45--a, 47.20.Bp, 47.54:r
I. INTRODUCTION pative regimeg11]. The Volterra gyrostate.g.,[12]),
Low-order modelgLOMs) are low-dimensional dynami- blzpvzvs+ bvz—cuv,,

cal systems, composed of ordinary differential equations, ]
that are used to qualitatively investigate an underlying sys- v2=(QuavytCu—avs, (1)
tem of partial differential equatiori4,2]. In theoretical fluid ]
dynamics, LOMs have repeatedly shown their merit, as they v3=rvivytav,—bvy,

have been usetfor example to demonstrate the possibility
of chaos[3] and the spontaneous development of shearing’herea, b, ¢, p, g, andr are constants such thattq-+r
instabilities [4] in thermal convection. A more recent ex- =0, andvy, vy, andvg are state variables that describe the
ample is the use of LOMs to understand a self-sustaininglynamics of the system, can be thought of as a rigid body
process in wall-bounded shear flois]. LOMs known as containing a rotor revolving with a constant angular velocity
shell models are used to investigate turbulent cascade pr@Pout an axis fixed in the carrier. Damping and forcing terms
cesse$6]. may be added to the system. The gyrostats that appear in
LOMs are Common|y obtained by imp|ementing a Spec-LOMS are Usua”y not of the general forﬁh) but rather one
tral Galerkin approximation. The hydrodynamic fields are©f its special cases. For instance, the widely known Lorenz
expanded in infinite series of time-independent, orthogonahodel[3] has the form of Eq(1) but withr =b=c=0 and
eigenfunctions that satisfy the boundary conditions. The sewith additional friction and forcing terms, as can be seen
ries are then truncated and the remaining finite set of timeafter a linear change of variabl¢s1]. This version of the
dependent “Fourier” coefficients satisfy a set of coupled,dyrostat will be referred to as theorenz gyrostatAnother
nonlinear ordinary differential equationghe LOM). This  gyrostat commonly encountered in LOMs is tieler gyro-
methodology has been pioneered by, e.g., Saltziigrio-  Scope wherea=b=c=0 so that only the three nonlinear
renz[1,3,8, and Obukho\{9]. Although the use of LOMs terms are present. For a thorough discussion of Eds.
has a number of limitations, when carefully employed theyincluding the relationships between the fluid dynamical and
continue to be successful in providing insights for hydrody-rigid bodies interpretations of the gyrostat, $&8].
namic problems. Coupled gyrostats possess a number of features, shared
One limitation is that the modes retained in the trunca-With the underlying Navier-Stokes equatiord3] that
tions are often chosen in aad hocway, resulting in the Obukhov [9] and Lorenz[3,8] considered desirable for
possibility of unphysical behavior10]. General principles LOMSs: (i) they are quadratically nonlinea(ij) in the dissi-
for physically motivated choices are required. One proposapationless limit, they have at least one quadratic integral of
is to choose truncations resulting in LOMs that are formallymotion; they also conserve state space volufsece
equivalent to equations for coupled three-mode systems,;dv;/v;=0, which implies a Liouville theorejn (iii ) their
known in mechanics agolterra gyrostatsin a forced, dissi- solutions are bounde@ven when there is linear viscous fric-
tion and constant forcingIn the rigid body interpretation of
Egs. (1), there are two quadratic invariants corresponding to
*Electronic address: aglu@purdue.edu kinetic energy and squared angular momentum. In coupled
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gyrostatic LOMs for fluid dynamical problems, quadratic in- has periodic solutions involving “asymmetric squares,”
tegrals of motion may be interpreted as some sort of energgnalogous to those found in Model[RB2], but the heat trans-
in three-dimensional3D) problems(Sec. Il Q or as the en- port behavior for this solution in Model | is more consistent
ergy and the enstrophy in 2D problertesg.,[14]). Mean-  With experimental results than it is in Model II. Conclusions
while, the Liouville equation is known to be a general prop-are presented in Sec. IV.
erty of dissipationless hydrodynamic systefs].

Moreover, LOMs in the form of coupled gyrostats possess Il. THE MODELS
a modular structure, with gyrostats as elementary “building
blocks.” In other words, adding more physical effects in the
fluid model, e.g., rotation, topography, and magnetic field, Consider a layer of fluid confined between two stress-free
results in adding linear gyrostatic terms to existing gyrostatdiorizontal surfaces at altitudes=0,h. (The unit vectorsx,
[13,16, while increasing the order of approximation addsy, z are associated with the spatial coordinatgs z, respec-
additional gyrostats. In the usuatl hocapproach, it is usu- tively.) Horizontal periodic boundary conditions, with peri-
ally unclear how to increase the order of approximationodicity 2L, are assumed; define the aspect ratioh/L. The
while preserving the conservation and boundedness propetemperaturel is uniform on thez=0 surface with valud,
ties indicated above. However, these properties are alwayand uniform on thez=h surface with valueTy,— 6T, 6T
preserved if the LOM is extended by modifying and/or add->0. The Oberbeck-Boussinesq equatif@s] for the hydro-
ing gyrostat “building blocks” to the system. dynamic fieldsv (velocity), p (pressurg andT are as fol-

In this paper we develop LOMs in the form of coupled lows:
gyrostats fotthree-dimensionaRayleigh-Baard convection.
This classical problem considers the buoyancy-driven circu- V-v=0, 2
lation in a shallow layer of fluid contained between two hori-
zontal, isothermal surfacéghe lower one kept at higher tem-
perature than the upper onm the presence of a constant
vertical gravitational fielde.g.[17,18)). One of the earliest
LOMs for Rayleigh-Beard convection was that of Saltzman JT
[7], which directly led to the Lorenz mod¢B]. Similar to EJF(V-V)T:KVZT, (4)
nearly all subsequent studies, both authors assutwed
dimensionaflow. There have also been several LOM studie
of 3D convection19-22. However, except fof20], these
studies did not explicitly implement the principle that total
energy should be conserved by a LOM in the dissipationles
limit (in this paper, “energy conservation” will always mean
“energy conservation in the dissipationless limit"This
principle has been advocated by several investiga@is,
[9-11,13,23,2h and is usually implemented in shell models
[6].

In Sec. Il, a LOM in the form of coupled gyrostats for the
problem of 3D Rayleigh-Beard convectioriModel I) is de-

A. Model |: Derivation

ov Vp -
—+(v-V)v=———[1-a(T-To)lgz+vV?, (3
at Po

Swheret is time and the following quantities are assumed
constant:v, the kinematic viscosityk, the thermal diffusiv-

ity; «, the thermal expansion coefficiemt; the gravitational
ﬁeld; and pgy, the mass density af=T,. These equations
represent the balances of mass, momentum, and thermal en-
ergy, respectively. Lefi/ 7w be the temperature deviation from
the conductive steady-state profile. Also define the Rayleigh
number asR=agsTh%/ kv and the Prandtl number as
=wvlk. The Nusselt number, which characterizes the heat
transport efficiency in a convecting fluid, is

rived. It contains, as a subsystem, an interesting LOM h /a0
(Model Il) recently introduced by Dast al.[22] to study 3D Nu=1-— —<— > ; (5)
convection. It is shown, however, that Model Il does not méT | oz z=0h

have the coupled gyrostats structure and, consequently, does

not, in general, conserve energy. Another subsystem odihere the angle brackets denote a horizontal area average.

Model | is thesimplest_OM for 3D convection(Model 11l), ~ The evaluation of the partial derivative at=0 andz=h

the 3D analog of the Lorenz model. It is composed of twoshould give the same result, unless there is a heat source or

coupled Lorenz models, each representing motion in eacink within the layer, not just at the boundaries.

horizontal direction, and similar to the original Lorenz ~ The equations in a dimensionless form are obtained by

model, it conserves energy. We also refer to Model 11l as thdransformation$10]: x, y, andz are normalized by/#, T is

“3D Lorenz model.” normalized bydST, and time is normalized by the fluid's
The dynamics of the models is analyzed in Sec. lll. LackBrunt-Vasda period 7=\h/(gaéT). Finally, pressure is

of energy conservation in Model Il results in unphysical so-normalized bypoh?/7?7? and the kinematic viscosity and

lutions diverging to infinity. As systems of coupled gyrostats,thermal diffusivity are both normalized by*/ #?r. The re-

Model I and Model IlI, in contrast, do not have such unde-sulting nondimensional equatioris vorticity form) are as

sirable behavior. Model Il has multiple, neutrally stable, follows:

steady-state solutions in the same parameter region. On the

other hand, Model’s | stability regime diagram is more con- V.v=0, (6)
sistent with experimental results than that for Model Ill. Be-
yond the threshold for stable steady-state solutions, Model | VXv=¢(, (7)

046306-2



ENERGY-CONSERVING LOW-ORDER MODELS FOR.. .. MSICAL REVIEW E 65 046306

g ) a0 J0 : 5 a
E:(?V)V—(V'V)ﬁ‘ vVeg+ Xw_ya_x , (8 0o1= —k(1l+a )9011_33/1—3)/19002_Zallle-
(11f)
a0 5
—=—Vv-VO+uv,+«V°0, 9
at . a a
Oo02= — 4K Ozt 5 br0X1t 5 Oo11Y1, (119
with the Rayleigh and Prandtl numbers, respectively, 2 IO TP
4
R: —, 0': —_. . 2 a a
VK K 01122 - 2K(2+ a )0112_ a.W1+ E 0011X1+ E 010]y1
The stress-free boundary conditions at the top and bottom of
-2 11h
the layer(now z=0,7) are as follows: 200N, (11h
: a )
| _ &vx . &vy _ 0| _ O 0004: - 16K 0004+ E 0112\/\11 . (11|)
Uzlz=07n— 9z Z=07T_ 9z z=077_ z=07— Y-

Horizontal periodic boundary conditions, with periodz, ~ 1MiS model has three parameteas:the aspect ratioy, the

are also assumed. nondimensional kinematic viscosity; and the nondimen-
Consider the following expansions {truncatedl Fourier sional thermal diffusivity. The critical Rayleigh number at
series: which the conductioritrivial) solution loses stability is
vx=x1(t)sm(ax)cos{z)+wl(t)sm(ax)coqay)cos{ZZib 4(1+a2)3
(103 Re=— (12)
a
vy=Yyi(t)sin(ay)cog z) +w;(t)cogax)sin(ay)cog2z),
(10b) ~
and the normalized Rayleigh number is defined ras
v,= —axy(t)cogax)sin(z)—ay,(t)cogay)sin(z) =R/R;. Finally, the Nusselt number for the model becomes
—aw;(t)cogax)coqay)sin(2z), (109
0= 0,0,(t)cOg ax)sin(z) + 6o;,(t)cog ay)sin(z) Nu= 1_<E Z_Ow> = 120002~ 46004 (13
+ oA 1)SIN(22) + 011 t)cogax)cogay)sin(2z)
+ Boo(1)SIN(42). (10d) B. Model I: Coupled gyrostats structure

) ) ) ) Consider the linear transformation of Mode{1l1) based
This choice retains a set of Loref@| modes for each hori- oy the following change of variables:

zontal direction, plus one interaction mode each for velocity

w; and temperaturé,,,, and an additional mode,,, whose a a?

role will be explained shortly. These expansions result in a X=—=X1, 0=——=——-bi01,
low-order model with the following equations: V2 \/§(1+a )

. ) a a a 22
x1=—v(l+a)x = —— b~ zWiya, (118 VA G — —— ¢
l+a \/Eylv 3 2(1+a2) 011,
y1=—v(1+a? 2 2 11b
Y= T v g fonm g Wea, (11 we /2+a2W ) a? - 1+2a?
2 V1422 7 1482 ™ 200+a))°
. 2u(248d) a_ 1+a? (14
wi=—2p(2+a%)w;— —— a——X1Y1,
1 1T e e s Y1
(119 a? 1+2a? a?
01= 002 v Os=— ———= 0>
. 2 2 2
0101= — k(1+a?) O101—axX, — aX; Ogoz (119 1+a 1+a 2(1+a%)
_a 0 (118 In the new variables, modéll) exhibits the structure of six
g P coupled gyrostats
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b1=f1—a,0,| —6:X — 657,

6,=— a6, +6X —-X —%GSY,

X=—aX +0, —gyw,

03=— a0, +6,Y -Y _%95)(,

Y=—a,7 +6; —gwx,

94=f2—a404 —286sW,

0s=— as 05 +2B0,W —pBW +%03X +%02Y,

W=—a,W + 365 + BXY,
1 I 11 v A" VI

(19

where a;=4«k, a,=az=«(1+a?), a,=16k, as=2k(2  where the integration is over a volumé comprising one
+a?), ay=ay=v(l+a?), a,=2v(2+a%, f;=4x(1  “cell’ of the horizontally periodic fluid layer. The available
+2a?%)/(1+a?), f,=2f,, and B=(1+a?)/(2+a%. The potential energyA is the portion ofU available for conver-
vertical bars are used to organize the model into a superpsion into kinetic energysee[13] for further discussion and
sition of gyrostat “building blocks.” It is evident that the references therejnin the limits v—0 andx—0, the LOM
model can be decomposed into six gyrostats: | and Il arshould conserve both the total energy-U and the “un-
Lorenz gyrostats involving, 6,, 6, andY, 6,, 65, respec- available energy’U—A [13]. For Model I, these two qua-
tively; Il is another Lorenz gyrostat involving/, 6,, 6s; IV dratic integrals of motion are

and V are degenerative Euler gyroscopes involvings, 05

andY, 6,, 65, respectively; and VI is an Euler gyroscope 1

involving only thepthree v)ézlocity modex, Y, and%. Thep K+U=(1+a’)(xg+yD+ 5(2+32)W§+49002+29004,
remaining terms on the immediate right of the equal signs (168
represent frictionthe a’s) and external forcing f(; and f,)
in the gyrostat interpretation.

2 > L1, 2 2
U—A= 0191t 0511t 5 07121 20002 40002+ 20504+ 20004,

C. Model I: Conservation of energy (16b
It can be easily seen thazt In any system _Of coupled 9Yand are indeed both conserved in the dissipationless limit.
rostats, the sum of squarg; of all variables is conserved (Here, some constant terms and common factors are ig-
in the absence of fo_rcmg and fl’lCtIQI’], which guaranteesnored) In the variableg14), the two quadratic energy invari-
boundedness of solutiof43]. In Rayleigh-Baard convec-

X ; N e ants(in the dissipationless limittake the form
tion, this quantity is simply related to the kinetic energy, total

potential energy, and the available potential energy, respec-

’ . : . . K+U=X2+Y%2+W?+20,+0,,
tively, in nondimensional variables

1 2
KzszVZdV, U—A= = )(6%—# 6%4— 0§+ 0§+ 0523_291_04),
so that their linear combination,
U=—f 0zdV,
\ a2
(K+U)+ (U—A)=X2+ Y2+ W2+ g2+ 63+ 63
1+a?
1
—_ | p2
" ZLG " + 04+ 05, (17)
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FIG. 1. Time series solution foé,;, in Model Il (a) and Model I(b), with a=1/y2, =10, T =19, initial conditionsé,;{0)= 10,
w4(0)=—10, and all other variables zer@All quantities are nondimensiongalThe solution(a) illustrates the pathological divergence to
infinity that is possible in Model Il. In contrast, the solution for Moddb) achieves arfunstablg steady state witt9,,,~—0.2811,w,
~0.0570, andfgos~ —0.0127.

is also an integral of motion. This latter quantity is the afore-gvajlable energy’U—A are not conserved; in fact, in that

ways conserved in any system of coupled gyrostats. limit is

Besides energy, there is another quadratic integral of mo-
tion for dissipationless 3D flow: the total helicity; /2, in- d
tegrated overV. However, in the truncations used for all gt (KU = qr(U-A)=—abudtwy(t),
models considered in this paper, the helicity is identically
Zero. which is not, in general, zero. In contrast, in Model I, the
above rate of change is zero. Therefore, adding the Rin(4
D. Model Il mode to the temperature expansid®d), restores conserva-

: ; ; ; tion of energy and thus ensures that solutions are bounded.
theEt)(eCr:;fé?gtlg?sag%fr:g&;%g??:;&ll?g itnh?hsélr?:r\?eond_i]gde The_se observations are similar to t_hose for the Howard
model recently introduced by Dast al. [22] (Model II). a_”d Kr|shnamurt[4] model of 2D Raylegh-Beard convec-
Note that Model Il is actually a reduced version of the muchtion With spontaneously generated vertical sh@a. They
larger model of Rucklidge and co-workdgl], which is also cIearIy. demonst_rate. thane should never assume that a
missing the important singl mode in the temperature ex- G'ale'rkm apprpx!matlon always conserves enesgshe cﬁs-
pansion. The need for the sifdmode is motivated by the S|pat|(_)nless I|m|t_, although for L homogeneous Incom-
fact that Model Il has pathological solutions that exponenpress'bIe flow, vyltho_nly mechanicalnot thermal forcing,
tially diverge to infinity, such as the one illustrated in Fig. C2l€Tkin approximationsio conserve energ}g].

1(a), while inclusion of the sin() mode(that leads to Model

1) removes the pathology, as illustrated in Figb)1 E. Model Il (3D Lorenz mode)
To gain insight into the reason behind this, note that |f the w,, 6;,,, and 6,0, modes are removed from Egs.
Model Il has an invariant manifold, (1), the resulting five-mode model constitutes the simplest
model of three-dimensional Rayleigh48&d convection: the
X1=Y1= 0101= 0011~ 002~ 0, 18 3p analog of the Loreng3] model,
on which the equations for the remaining variables,and a
0,15, are linear and give unstable solutions fB>R., X, = —v(1+ad)x,— —— 0101, (199
=47*(2+a%?%a? Model | does not have this invariant 1+a?
manifold due to the presence of E{.1h representing the
sin(4z) mode. : a
To put it differently, lack of the sin@ mode in Model II y1=—v(l+a®)y;— 1+—a20011' (19b)

makes it impossible to transform it into coupled gyrostats:
nonlinear terms in gyrostat lll are then absent while linear

terms have the samieot opposite sign, causing violation of O101= — k(1+a?) 0101~ aX, — aX; ooz, (199
the energy conservation. Indeed, with the sih@ode miss- ]
ing in Model I, both the total energi+U and the “un- 0o11= — k(1+a2) 01— ay; — ay; ooz, (190
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. a a for any two functiond andg, and the Casimir invariant,
0o02= — 4K oot > O10X1+ > Oo11Y1, (199

C=X?+Y2+260,,
with Nusselt number Nu= 1—26gg,. This five-mode sys- . satisfie§ C,g]=0 for anyg.

tem has the form of two coupled Lorenz models, one for The Euler avroscope. a three-dimensional rigid bodv. has
each horizontal direction. This may be verified by restricting gyroscope, 9 Y,
an analog on the Lie algebra of group $®,(which can be

the flow to, say, the-z plane /,=6y;,=0). The resulting . . . -
three-mode system is the original Lorenz model, as can by terpreted as an—d|men§|onal Euler gyrosc_o;{éG]_. S|m|-. .
arly, the Volterra equations for a three-dimensional rigid

f:;?ica;&ertigr;ﬁ)%; fg?r? g?ZOfI;?QaQ?(iS‘}H"[l:G%)Sr'enggﬁgl);h body can be generalized todimensiong 11]. System(20)
9 9-zp 1 i as formulated in[11] as an example of the four-

another three-mode Lorenz model. Therefore, including aldimensional rostat
five modes produces theinimal LOM for three-dimensional ay '
Rayleigh-Beard convection. This five-mode mod&b) will
hereafter be referred to as the “3D Lorenz model” while the ll. DYNAMICS
original three-mode Lorenz modgd] will be called the “2D A. Analysis of the 3D Lorenz model(Model 111 )
Lorenz model.” We are not aware of any previous studies of . i h 4681, th del
the 3D Lorenz model, despite the fact that it is a simple and. Similar to the 2D Lorenz mod¢B], the 3D Lorenz mode
natural generalization of the 2D Lorenz model. as a conducnp_n steady st;(_t/ehere all .varlables are Zero

In variables(14), the 3D Lorenz mode(19) becomes a that loses stabl!lty at th(_a crltl_cal Rayleigh numbey given
system of two coupled Lorenz gyrostats | and II, where thd?Y EQ- (12), which has its minimum value, 274, at the
first one describes motion in thez plane and the second Critical aspect rati@.=1/y2. This regime also resuits from
one describes motion in thez plane. The associated fric- the stability analysis of the original Oberbeck-Boussinesq

tion and forcing terms are also present equationd27]. _ o

Above the critical Rayleigh number, there are an infinite

b=f,—a,6, | —0:X —0.Y number of nontrivial steady-state solutions, all of which have

L T > S the form

‘02:_&202 +01X _X,

. 8 R

X=—aX +6,, X{+yi=———— 1——°), (213

, T 1va2 T R

03:_a303 +01Y _Y,

F=ray o bror= 31\ eLo(1+a?)], (21b
[Re
20 for=—y1\ | Lo(1+ad)], (219

wheref, and thea's are as before. The same linear combi-
nation (17), without theW, 6,, 65 terms, is an integral of R.
motion here and has the form of the sum of squares of all the o02= — ( 1- E) , (210
variables.

The 3D Lorenz mode{19) also conserves both total en- and the following relation between the Nusselt and Rayleigh
ergy and “unavailable energy” in the limit#—0 and « numbers:
—0, since in this case, the quantitigst U andU—A are

the evident modifications of those in Eq46) (setw;=0, B c
011,=0, andfyy,=0). It is also known that the original 2D Nu=1+2|1- R/’ (22)
Lorenz model conserves the same two integrals of motion
[13]. which again agrees with the corresponding result for the sec-
In the dissipationless limit{— 0 and«x—0), system(20)  ondary(roll) solution of the 2D Lorenz model as well as the
has a Hamiltonian structure with Hamiltonian, stability analysis of the Oberbeck-Boussinesq equafi28k
1 Finally, all steady state@1) are neutrally stable in theame
H= §(X2+ Y2+ 03+ 03+ 63), parameter region, 4t <r,, where

) . ~ o(oc+b+3)

the generalized Poisson bracket, fo=——p—1 (23)

of 9g of 99 of elo| elo|
[f.9]

T X 30, 3y 965 36, Xp7_92+ 963 andb=4/(1+a?). This is the same secondary critical Ray-
leigh number at which the roll solution loses stability in the
of ( s 39) a ( e 079) 2D Lorenz model[3]. In Model IlI, roll solutions occur in

* a_az &_01_ X 6_03 either thex-z or y-z planes. In addition, solution®1) in-

yael ay
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10 15 20 25

FIG. 2. Contour plots of vertical velocity at midplane={ 77/2) for neutrally stable steady-state solutions of the 3D Lorenz mddiediel
I11): (a) roll planform, (b) symmetric square planform, arid) “asymmetric square” planform. Axes scales are nondimensional.

clude 3D patterns: symmetric square convection cells, and R,
intermediate planforms that could be characterized as asym- 0101= — X1 \/E[U(H-az)],
metric square cells, similar to those observed by Bial.

[22] in a time-varying regime of Model Il. Both 2D and 3D

solutions of Model Ill are shown in Fig. 2. It should be noted Oo0r= — ( 1— &)
that weakly nonlinear convection only has the roll form at R
onset[17,18, in contrast to the situation in Model III.

Experimentally, the observation of both 2D and 3D con-andy;=W;= 6p11= 0115= 6p04= 0. There is an analogous ex-
vection patterns in the same parameter region has been opression for rolls parallel to the axis. The heat transport
served[29], although in this case the 3D pattern is not arelatl_on, Eq.(22), is satisfied b)_/ these roll solutions. Square
steady state, but a regime of spiral defect chaos. On the oth&Plutions, those with symmetric square planforms, exist but
hand, Eq.(23) has pathological features such as an asymp@PPear to be always unstable. B
tote ato=b+1. For Prandtl numbers below this asymptote, ~The secondary criticlnormalized Rayleigh number,
steady-state solutions never lose stab(lg} In addition, for @t which the roll solution loses stability, has been estimated
large Prandtl numbers, the expression in E2p) increases numerically fora=1/y2 over a range of Prandtl numbers.
linearly with Prandtl number, contradicting experimental re-Representative values are listed in Table | and plotted in Fig.
sults that suggest thib approaches a plated80] with a 3. (The solid curve in F|g. 3 illustrates the stability curve for

] ~ ) steady-state solutions in the 2D and 3D Lorenz mogels.
theoretical upper bound at~13 [31]. Model | is free of  These results are consistent with those of Baal. [22] in
these pathOI()gieS of the Secondary critical RayIEIgh nUmbeMode| I, for the parameter regi0n40-< 12 that they dis-
as will be seen in the following section. played in their Fig. 1.

At Rayleigh numbers just beyond,, the 3D Lorenz Model | is free of the aforementioned pathologies in the
model appears to have chaotic solution; similar to those iehavior ofr, present in the 2D and 3D Lorenz models. At
the 2D Lorenz model. Rather than probing the 3D Lorenzvery low Prandtl numbersy, approaches a finite value

model in the supercritical regime, we turn next to the MOre;5und 10.83, and there does not appear to be an asymptote

adequatdfor convection Model in the curve. On the other hand, at high Prandtl numB@rs
grows very slowly and approaches another finite value,
around 18.50. The shape of this curve is qualitatively similar
to the one observed experimentdlBO], with growth at low

As in the 2D and 3D Lorenz models, Model | has a con-prandtl numbers and approach to a plateau value at high
ductive steady state that loses stability at the critical Rayprandtl numbers.

leigh number, Eq(12), whose minimal value, 27%/4, is

(a)

5

B. Analysis of Model |

. . L Beyondr,, Model | possesses periodic solutions involv-
achieved at the critical aspect ratip=1//2. Above the ing “asymmetric squares,” very much similar to those ob-

critical Rayleigh number, there is a regime of stable 2D ro”served by Dagt al. in Model Il [22]. The sequence of pat-
solutions. The analytical form of these solutions is identical.[ernS is illustrated in Fig. 4. The periodic solution coexists

to those in the 2D_ and 3D Lorenz models; er Instance, rOIISWith chaotic solutions in the same parameter regime, and it
parallel to they axis have the following form: has(at least a smallbasin of attraction.

R Experimentally, oscillatory “asymmetric squares” con-
_ _°>, vection has not been observed. This may be due to a small

8
2
x2=
R basin of attraction for this solution, to the stress-free vertical

b o(1+a?)?
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TABLE I. Secondary criticalnormalized Rayleigh number,  Rayleigh numbers for=1 and 25 are shown in Fig. 5,
at which the roll solution loses stability in the modified DGK where the solid curve represents the exact Nusselt number,

model.(The critical aspect ratia=1/\2 is used. Eqg. (22), for the steady-state solution in the parameter re-
gime where it is stable. The black da@nd gray dotsare
Prandtl number ¢) To (£0.01) mean Nusselt numbers for the periodic solution where it was

found to exist for Model |1 and Model Il, respectively. In

0.01 10.83 Model IlI, periodic solutions were found to exist in a nar-
0.1 10.83 rower band of Rayleigh numbers than in Model I. It can be
0.2 10.84 seen that Model Il predicts that the Nusselt number actually
0.3 10.84 starts decreasing as the Rayleigh number is increased past
0.5 10.87 the transition from steady state to periodic motion. This is
1.0 10.97 not consistent with experimental results that show a con-
2.0 11.32 tinual increase in the Nu \R curve(e.g.,[30]), as would be

5.0 12.63 expected based on Le Chatelier’s principle. Model | data
10.0 14.31 does not have this feature at the transition from steady state
17.5 15.70 to periodic motion. Forr=1, Model | data instead exhibits a
25.0 16.45 discrete transitiorfabrupt change in slopat that transition
375 17.09 [Fig. 5@)]. Furthermore, at a period doubling bifurcation
50.0 17.44 (starting atr ~29) Model | data levels off and even dips a
62.5 17.65 very slight amount as is increased further. Far=25 there

75.0 17.80 is a gradual change in slope of the heat transport curve for
87.5 17.90 both modeldFig. 5b)], although Model | data is increasing
100.0 17.98 and Model Il data is decreasing. The corresponding mean Nu
10° 18.46 for the chaotic solutions is generally higher for a giveand

10 18.50 R

Experimentally, the idea of discrete transitions in the heat
transport curve has been put forth by numerous autteogs,
boundary conditions and/or periodic horizontal boundary{30]), but Koschmiedef18] argues strongly that they do not
conditions, or to the severity of the Galerkin truncation. Os-really exist for shallow layer experimentge., those per-
cillatory convection of qualitatively different formge.g., formed in containers of very large aspect ratiBarticularly
traveling waves propagating along the rpliehere the am- relevant to the model results discussed above are theslow
plitude of oscillation increases smoothly with Rayleigh num-(helium) experiments of Ahlers and BehringE83], which
ber[32], are usually observed experimentally. Nonetheless, isupport Koschmieder's argumefiin fact, these studig33]
is still instructive to study the oscillatory “asymmetric found a transition from steady-state to broadband time-
squares” state in Model I, following the lead of Dasal. = dependent convection, not single-period convection, while
[22]. monitoring the Nu signal.Therefore, the discrete transition

The Nusselt number for this periodic solution is also pe-seen atc=1 in Model | is probably an artifact of severe
riodic in time, as was also seen in Model[#2]. The time-  truncation.
averaged values of Nusselt number calculated at various Finally, it was observed that the amplitude of oscillation
of the Nu signal generally increases wkhin both Model |

Rayleigh and Model Il
100 IV. CONCLUSION
80 In this paper, we have studied two simple low-order mod-
€0 els for three-dimensional Rayleigh-Bard convection:
Model | and its subsystem, the 3D analog of the Lorenz
40 model (Model IIlI). These models have the form of coupled
gyrostats, a structure that prevents certain unphysical behav-
M ga oo o o o o o o iors that are manifested in LOMs constructed in a made
Prandtl hocfashion, such as Model II.

20 40 60 80 100 The 3D Lorenz modelModel Ill) is the lowest-order

FIG. 3. Secondary criticahormalized Rayleigh number,asa  nontrivial LOM for 3D thermal convection, and as such has
function of Prandtl numbet for the 2D and 3D Lorenz models INtrinsic interest as a baseline for comparison with all higher-
(solid curveé and Model I (point. (The critical aspect ratia order models. Although the 3D Lorenz model leaves much to
=1/\2 is used. The stability boundary for Model | is better be- b€ desired, it is instructive to know exactly what can and
haved than that for the Lorenz models at very low and very highcannot be accomplished with the simplest model of all.
Prandtl numbers, qualitatively consistent with experimental obser- The physical significance of our work on Model | is that
vations. we have found that the “asymmetric squares” oscillatory so-
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FIG. 4. Contour plots of verti-
cal velocity at midplane 24
=/2) for a periodic solution of
Model | at different times. The pa-
rameters ares=10, =15, and
a=1/y2. The time sequence ig)
— (b) — (c) — (d). Axes scales
are nondimensional.

lution discovered by Dast al.[22] is not merely the artifact The formal analogy between rigid body mechanics and
of a problematic model. Our improved model eliminates un-fluid dynamics is well known(e.g.,[26,34]). However, its
physical behavior present in their model, and has heat trangnanifestation in low-order models is usually in terms of
port behavior more consistent with experimental results andoupled Euler gyroscopes, first suggested by ObukBpto

Le Chatelier’s principle. Yet the “asymmetric squares” solu- satisfy his requirements fdrydrodynamic type systenta-

tion (not yet observed experimentally or in other theoretical/dratic nonlinearity and conservation of energy and phase
computational studiggersists in our improved model. This space volume in the absence of forcing and dissipation. Gy-
is evidence that further investigation of the “asymmetric roscope “triplets” are also encountered in studies of nonlin-

squares” oscillation may hold promise. ear triadic interactions of helical wav¢35]. However, the
Nusselt (a) Nusselt (b)
ese®0ooe o®
3.5 .....0“ 3 os0ne®’
[ ]
3 o'..
See., 2.5
2.5
2
2
1 s 1.5
Rayleigh Rayleigh

5 10 15 20 25 30 5 10 15 20

FIG. 5. Time-averaged Nusselt numieatio of convective heat transfer to conductive heat trangbercertain solutions of Models | and
I, as a function of(normalized Rayleigh number for Prandtl numbersr=1 (a) and o= 25 (b), assuminga= 1/\/2. The solid curve
represents the Nusselt number of the steady-state roll solutions in the regime where they are stable. The black dots are the numerically
computed mean Nusselt numbers for periodic solutions of Model | when they are known to exist. The gray dots correspond to the
corresponding data for Model .

046306-9



CHRISTOPHER TONG AND ALEXANDER GLUHOVSKY PHYSICAL REVIEW E55 046306

use of gyrostats allows a more general type of “triplet,” medium [41], and quantum mechanidgt2]. The Lorenz
containing both nonlinear and linear terms, to be used amodel, a special case of the gyrogtht], itself has analogies
building blocks for LOMs.(The linear “gyrostatic” terms in a number of diverse areas in physjdg]. Although much

are needed to describe the effects of thermal forcing, as iwork in nonlinear dynamics is associated with coupled oscil-
lustrated in any LOM of Rayleigh-Beard convection, as lators, it is suggested that coupled gyrostats should also re-
well as effects such as rotation, topography, and magneticeive attention as a fundamental nonlinear system.
field[13,16.) The use of coupled gyrostat LOMs may not be

limited to the case of free-slip boundaries. Niededer
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