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Lattice-gas model based on field mediators for immiscible fluids
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A Boolean lattice-gas model based on field mediators is proposed for simulating the flow of immiscible
fluids. The field mediators introduced here simulate long-range action, enabling the use of local rules in
separation step and, by avoiding the optimization step, reduce computer processing time with respect to
previous models. In addition, fiektrengthandinteractiondistance is modeled by introducing distinct emis-
sion P, and extinctionP, probabilities, for field mediators, enabling us d¢ontrol interfacial tension and
transition thickness. The model’s microdynamics is fully described and macroscopic parameters are related to
model's parameters after a Chapman-Enskog asymptotic expansion for the ensemble-average distributions.
Simulation results are presented for several sample case studies, including the verification of Laplace’s law,
coalescence phenomenon, interaction of a pair of wetting and nonwetting fluids with solid surfaces, and droplet
formation under the action of gravity. These results are compared with available data.
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[. INTRODUCTION ducing an additionakeparationstep between particles of
Lattice-gas automatédLGA) designate a large class of different kinds, based on the information of the populations
models whose main feature is the presence of a set of paat first neighbors of siteX, at stepT, #;(X+¢,T), i

ticles moving in a discrete space lattice. In Boolean mod- =1,...b,, j=04,...,Q,, 1,... by, Where ¢ desig-
els, a Boolean variable;(X,T) is attributed to each sité at  nates the kind of particle found at directiprof site X +c¢;
time stepT, indicating the presencen{=1) or absencer and Q, ...,Q, is used for bit occupation when model al-

=0) of a fluid particle . For each time step, the dynamiclows b, rest particles. Output site configuration is decided
evolution of the model is given in two steps. In the first step,after a maximization step for the color flux in accordance
designated asollision step the state of siteX is changed with a color gradient at sitX.
following collision rules conceived so as to preserve total Rothman and Keller's model is computer expensive when
mass and momentum of the site. In the second step, callgatocessing time needs are considered. Somers and[Rem
propagation stepparticles are propagated to the neighborand Chen and co-workerg8] proposed a two-bit local
sites, in accordance with their direction at skteafter colli-  model, where the time-consuming neighbor survey of Roth-
sion step. The use of such models to study and simulate fluicthan and Keller is avoided, by introducing colored holes.
dynamics was first introduced by Hardy, Pomeau, and PazziSolored holes are null-mass particles representing the
[1], in 1973, but it was only after 1986 that these modelsmemory of the kind of a given particle, and moves in the
grew in increased importance due to the work of Fristhl.  same direction that particle moved before collision. The state
[2,3]. These authors formally demonstrated that the dynamef a given site is represented by a two-bit Boolean variable
ics of such models under certain conditions was described bgf;(X,T),n;(X,T)), where f;=1 designates red anfj=0
the Navier-Stokes equations for incompressible flows, andepresents blue);=1 represents a particle amg=0 repre-
could be used to simulate such flows. sents a hole. In this way, in separation step, (ede) par-
Mixtures and diffusion processes were simulated by disticles are deviated to the direction from where réxdue)
tinguishing different kindgsay ) of particles[4,5]. Most  holes were originated, simulatiigng-range attraction by
common models use two-bit Boolean variables,l§;) rep-  using, only, local rules. This is achieved by maximizing
resenting colored particles of identical mass, such as redolor flux g==;(2f;—1)n;c; in accordance with hole flux
(¢=r) and blue {=b) and diffusion coefficient can be q4=2;(2f;—1)(1—n;)c, at a given siteX.
related to collisions frequency between particles of different In Somers and Rem and in Chehnal. models, the opti-
colors. Exclusion principle is maintained betweerandb  mization step is also processor time consuming. In fact, in
particles. both models, optimization step requires choosing amohg 3
Long-range attraction between particles of the same kindonfigurations, in two-dimensional simulations and among
promotes particles separation, being responsible for interfe3* configurations, in three-dimensional simulations, for
cial tension, which acts as a potential barrier at the interfaceach site, at each time step. Due to this computational limi-
between fluids. Boolean models for simulating immiscibletation, Somers and Rem model was, in fact, designed to per-
fluids flow were, first, proposed by Rothman and Ke[lg}. form simulations in two dimensions, only.
In this model, long-range attraction between particles of the In addition, in Rothman and Keller model, interaction dis-
same kind is modeled by modifying the collision step, intro-tance is fixed and equal to a single lattice unit and in the two
last models, interaction range is related to the mean free path
of the single-phase collision rules, being dependent on den-
*Email address: philippi@Impt.ufsc.br sity. In these models, interaction range is thus a fixed quan-
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tity for a given density and cannot be independently manBoolean variable with B, bits, b,=b,+b,,, is used to des-
aged. A deep discussion on the influence of interaction rangignate an arbitrary particle state s
on error formation in modeling immiscible fluids is pre- =(sf,, ... ,s(’)br S, . ,s[,m,sgl, o ’Sgbr Sh ,sgm) of
sented in Boghosian and Coven@y. Following Boghosian 1« |attice model in d (b, + 1)2°m]2-dimensionalB, X By,

and Koveney, this error is related to the ralil between g4 ce(rest particles are undistinguishabl€ollision opera-
lattice unith and interaction rangleand can be made to scale {,,

subdominantly to terms that are usually neglected in

Chapman-Enskog expansion, by increadingth respect to o’ B,xB,—{-1,01 )
h. 1 L
Field mediators are null-mass particles moving with light (r* b*)— w!(r* b*) 3)
speed, introduced in electromagnetic theory for the quantum ' ! '
description of long-range fields. They were first introducedv =00 Ob, 1 b maps a #-dimensional
- y vy y gy s m: -

in LGA theory by Appertet al. [10] when modeling phase
transition. In present paper, we introduce field mediators fo
simulating the flow of fluid mixtures presenting arbitrary
miscibility, with the following, distinguishing, main features:
(i) such as in Chen’s model, preseigld mediatorsmove

ppace on the sdt-1,0,1}, respectivelyeliminating leaving
unaltered or addinga particle of kindy to directioni. Col-
lision term can be written as

with the greatest lattice speed=1, enabling the use of wi"’(r*,b*):E ag(s,s’)(si"”—si‘p)

local rules in separation stegij) emission and interference s,s’

of present field mediators follow distinct rules when com- } .

pared with Chen’smemory mediatorgholes, enabling to XH rjsj(l_rj)l—s}bjsj(1_bj)1—s}’, (4)
J

avoid Chen’s optimization stegjii) field strengthand inter-
action distance is simulated by introducing distinct emission
P, and extinctiorP, probabilities, for field mediators, allow- Wherea(s,s’) is the transition matrix§= £(X,T) is a ran-
ing to control interfacial tension and transition thickness andiom variable attributed to sit¢, at timeT. Transition matrix
the degree of mixing between different fluids, and, finally, nust assure, mass and momentum conservation
(iv) possibility of simulating fluids with different viscosity
coefficients and with an independently managed species dif- E o = 2 wP=0 5)
fusion coefficient. These features were achieved by introduc- = e T !
ing a four-bit Boolean model, described in the following sec-
tion.
> Ci(wf+wp)=0 )
Il. MODEL '

The state of a given sit¥ at timeT is given by a four-bit in collisions. In addition, letA(s,s’) be the ensemble aver-
Boolean variabldr;(X,T), bi(X,T), m/(X,T), m’(X,T))  age ofA(s,s")=(a(s.s")). As usually, considering the set
wherer;, b;, m/, and mib designate, respectively, par- E of theHaII pos&blef_random values,.tran3|t|on matrlcgs
ticles, b particles,r mediators, and mediators. Model al- @¢. €€=, must be written so as to satisfy the conservation
lows simultaneous; and b; bit occupation, but exclusion ©f probability and semidetailed balance condition
principle is maintained between particles of the same kind.

Particles are considered to have the same, unitary, mass. "N _ "N —

Microdynamics has the following steps: SE Als:s') z Alss)=1 )

(i) Collision. Collisions are responsible for mixing par-
ticles of different kinds, in the transition region, being relatedas sufficient conditions for satisfying the H theorem in de-
to binary species diffusion coefficiefit,;, . Microdynamics scribing irreversibility of diffusion processes.

equation relating postcollision Boolean variagleto ¢; can (i) Interference with field mediatarn this step, particles
be written as of kind ¢, at site X, are subjected to long-range attraction

from particles of the same kind. In present model, this is
P (X, T) = ¢i(X,T) simulated locally, by inverting the momentum of eatlpar-

ticle when(a) it finds a mediator in the same direction and
(b) opposite direction is free frony particles. Definingn,,

=w{(Tog, -+« Fob 15 -+ Fp Dors -+ Pop. b1, 0y ) =Sy (y=r.b) and n=n,+n,, this step is, only, per-
formed when 6<(n,)/n<1, assuring a null effect of long-
=w!(r*(X,T),b*(X,T)) (1) range fields and preserving single fluid state equation inside

each phase. Interference step can, thus be written as
where * = (oo, - - - Wob . ¥1, - - - ¥, ) designates a pre-
collision ¢ particles configuration of siteX, at time =g (X, T+ L * (X, T),mP (X,T)), (8)
T,00,...,M0, is related to Boolean occupation for allow-
able rest particles in a lattice witlb,, directions. A  where
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LT, m?* (X, T))= ¢l m” (1= g ) — g m(1— ¢ )
9)

and —i=(i+b,/2)(modb,,), i b

(iii) Emission of field mediators€Considering an elemen-

tary volumed located inside a mixture of two real gases,
acts as an attractive center fgr molecules whem,/n is

above some critical valuen(,/n),, with a potential strength
that depends on the kind ofr, b-b and, consequently-b,

interactions. In present LGA model, siXewill be a source of
 mediators whenr(, /n)>(n,/n).,, with a given emission
probability P, that depends on particlg- concentration
n,/n on S|teX at time T. Emission probability is, thus,
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well defined contact anglé between fluid interface and the
solid wall, which depends on the pair of fluids and on the
solid surface.

In present model, preferential attraction of solid wall, with
respect to a given fluig, is simulated by reflecting back
mediators at boundary sitég,, with a given probabilityP, ,
related tod. Nonwetting fluid mediators at boundary sites are
not reflected, being annihilated at these sites. This condition
may be written as,

m”(X,,T) when P(X,,T
0 otherwise,

)<P; (16)

m/(Xp, T+1)= (17)

related to potential strength in the transition region, g|vmgV| pointing outward the solid surface, whéris the wetting

the interfacial tensionr,,. WhenP,=0, independently of
n,/n, fluidsr andb will mix without Iong—range field restric-
tion. On the other extremeP.=1, Vn,/n, represents a
mixture of two, ideally, immiscible fluids.

Emission step can be written as

and P<P, (10

n n
1 when —w>(—w
milﬂr — n n or

m/  otherwise, (12)

whereP is a random variable (8 P<1) attributed to siteX,

at timeT. In this way,b mediators found at an attractive site

fluid with respect to solid surface and whdte 0<P<1, is
a random variable attributed to sig,, at timeT.

External forces: Forcing step

Forcing step is performed before collision step, above de-
scribed.

Labeling byk the lattice direction parallel to external field
direction, external forceg, are simulated by reversing the
momentum of particles andb, located at direction-k op-
posed tog,, when directionk, is free from particles of the
same kind. Probability?y , to this reversion, represents the
force strengtly,, on components. Microdynamical equation
describingforcing stepcan be written as

for r particles are preserved, during emission step, allowing
the site to propagate this information to its neighboring S|tes¢k(x T)

in propagation step.
(iv) Extinction of field mediatorsin addition to field

strength, interaction length is an important parameter, con-
tributing to transition layer thickness. In present model, in-

teraction length is related to an extinction probabilRy,.
Thus, for a field mediatom?(X,T) to be annihilated two
conditions are imposeda) n,(X,T)=0 and (b) P(X,T)

k(X TD[1= (X, T)]
Y otherwise,

when P(X,T)<Py , (18)
(19

where P(X,T) is a random variable attributed to si¥e at
timeT, O<P=<1.
At equilibrium, using ergodic hypothesis when consider-

<P,, (0<P<1). These conditions assure that a field me-ing the whole lattice domain, the mean effect of forcing step
diator ¢ will never be destroyed in the transition region al- on ¢ particles can be calculated by,

thoughr mediators will be found insidé phase, trying to
rescuer particles moved td phase by collisions. After ex-
tinction step

0 when n,=0 and P<P, (12

'y = (13

m’/  otherwise.

(v) Propagation In propagation, particles and mediators
are propagated to next neighbors, in the same manner as in

conventional LGA models
Pi(X+6, T+1)=¢{(X,T), (14

m/(X+¢ ,T+1)=m"(X,T). (15)

(vi) Boundary conditionsWetting and nonwetting prop-
erties of a pair of fluids with respect to solid surfaces are a

<”¢/>
by

fy=2Pg 4 (20)

<T;:>)Ck'

which is the force, related to the momentum g, par-
ticles per site are expected to gain in directiomuring a
lattice time step.

IIl. ENSEMBLE AVERAGES AND MACROSCOPIC
PARAMETERS

Considering ¥ (X, T)=(#;(X,T)) to be the expected
value of ¢;(X,T) in several realizations the evolution equa-
tion for ¥; may be written as

Wi(X4¢ , T+1)=Vi(X,T)=(AV) o1t (AW))q4

AW, (21)

macroscopic result of differential, long-range attraction be-
tween solid and fluid molecules. At equilibrium, this prefer- where AP;) .., is the change of?'; due tor-r andr-b col-
ential attraction can be summarized by the formation of disions on pointX, at timeT, (AW;), is the change of¥;
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promoted by an external fielg, and AW))}', is related to  A"": N'—R': however, as particles momentum is not con-

long-range attraction betweerparticles. served inr-b collisions thea component velocity vector
[0C1ps - - ,cbma] is an eigenvector of cross-collision term
A. Collision term with a non-null eigenvaluex [ .

Equation(4) gives, using molecular chaos assumption,
B. External forces

(AW) o= QV(R*,B*¥) =2, A(s,8') (s —s!) The change of; promoted by an external fielgidirected
s.s' along a given lattice direction labeleglis given by
r oGP .
x]] Rfi(l—Rj)l-sjBfl(l—Bj)l—S? (22 (AW )=V _(1-¥))5(i,9). (26)
J
_ o In this way, the flow of immiscible fluids with verdlif-
whereQ);=(w;) is the expected value of collision ter@,  ferent physicallensities undegravity action may be simu-

at X,T, giving the probability a state N |ated by adjusting probabilitieB,, and Py, related to ex-
=[Ro.R1, ...Ry ,Bo,B1, ...By ] has atransition to state ternal forces. In fact, in lowM approximation, lattice
N'=[Ry,R;, ...R} ,By,By, ...B} 1. variablesp, and p,, affect, only, physical parameters related
i " to collision term andhydrostatic pressurefside phases
f andb, when probabilities, , andP , are adjusted to pro-
duce the appropriate buoyancy forces related to different
andb physical densitiedn this way, considering low Mach
\I,i:\I,ioJr Kn\I,ilJran ‘I’i2+ ..., Ww=RB, (23 number incompressible approximation and restricting our-
selves to low Reynolds flows, Chapman-Enskog expansion
where Kn andM are, respectively, Knudsen and Mach num-9ives for pure phase,
bers. This expansion induces the decompositiof pfwrit-

A Chapman-Enskog expansion fod~Kn<1, is per-
formed on¥; around¥? taken as the equilibrium solution o
Boltzmann’s equation,

ten in its linearized form as Pydily,p=Pydal Vy1(daly, g+ IpUy,a) 1= 0sPy+ PyQy.p.
27
Q'=Q"%R™ B™*)+KnY, (AL'RL+A%PBL) wherep,,= cgpw is the pressure of componegitand
K
_ 1 Py
+.--, g=r,b, (24 gl,,=2Pg'¢ b_t(l_b_t) Cqg, (28)
whereQ/%(R%* ,B%*)=0 and

with directiong, as above, pointing to the direction of
Consideringpl’ﬁ as a rescaled density, written in the man-

ner to satisty p g, 5=py(2Pg,/0)(1—T,)Cq s=p,9s
=p,(2P4/b))cg 5, Where

QY

(?Bk ) (RO* ,BO*) .
(25)

, Aﬂf'b:(
ﬁRk)(RO*'BO*) K

p _fr(l_fr)Pg,r+fb(l_fb)Pg,b
o fo+fp

Collision termA " is related to the probability aparticle
situated at directiotk affectsR; population and/\{i;b, to the

probability ab particle, atk, affects this population. Consid- s related to the external force acting on the whole mixture,
ering N' to be the space of distributionsR  he following expression is obtained fof,
=[Ro,Ry, .. .Ry ], Ri RP—=RPm™, collision operator
A" R'—N" is related to transitions on populations pro- , Pg.u
moted byr-r collisions andA™P: XP—N" is related to tran- py=pPy1=T)—5—. (30)
sitions onr populations promoted by-b collisions. o

Collision operatorsA"" and A" are linear transforma- Equation(27) is rewritten in the form
tions. Macroscopic properties of pure compongnare re-
lated to the eigenvalues of some eigenvectors, respectively, dgPy
Ah of [—bm,1, .. .,T related to the second viscosity coeffi- 0 y,5= 0al Vy1( 90V y g Igvy o)1= —— +9p, (3D
cient and\y of [0Q1ap, - - Qo .apls @B=1,...D, Py

related to the first viscosity coefficient. Similar ConSider'WhereW:(pl,,/pl',,)uw. In this way, for low Reynolds flow,
ations apply t component, considering-b collisions. Bi- 7 is to be interpreted as thapparentdensity of fluid i,
nary species diffusion coefficiefit, is related to the eigen- \when this fluid is under gravity action. Considering, e.g.,
value N of [0Ciy, ... .Cp o), @=1,... D, which are  water as fluid and oil as fluidb, as lattice particles have all
eigenvectors of cross-collision operator, with non-null eigenthe same mass, using a higher inversion probaldigy for
value. In fact, by momentum conservation roparticles in  lattice particles related to water phase with respect to oil,
r-r collisions, [0.C14, - - . Ch o] belongs to the kernel of Py, it is possible to simulate differential gravity action on

(29

046305-4



LATTICE-GAS MODEL BASED ON FIELD MEDIATORS . .. PH'SICAL REVIEW E 65 046305

these fluids. This is traduced by apparentdensity ratio meaning that a mediator to be found on site 4 with, only,

between lattice andb lattice particles, equal to blue particles, it must be produced on site 1, with a predomi-
nantly number ofr particles and not annihilated on sites 2
ol and 3.
r=—. (32 When sites 2 and 3 are such that,# 0 and o, 3# 0, this
Po probability reduces td°, since, in present modet, media-

) ] . tors are only annihilated on putephase.
In the same way, in rescaled variableg,andu,, will be

only identical wher(i) physical densities of fluidsandb are
equal and/ofii) in absence of gravity. IV. SIMULATION RESULTS

All simulations were performed on a face centered hyper-
C. Long-range factor cubic (FCHO) lattice, with 24 degrees of freedoh1]. Con-

Considering Eq(9) with ¢=r, describing the micrody- sidering computer resident memory requirements, a simpli-
namics at interference step, long ramgeattraction changes fied collision table was used, replacing th# Bits complete

R; by table. In fact, complete collision table would require 200
| terabytes of resident memory. In this way, in the collision
(AR =(0)=R_iM_;(1-R)—RM{(1-R_j), step, a single fluid 2 bits collision table is successively

(33 used, for particles andb, respectively, followed by a ran-
dom recoloring step. Very simple emission rules were cho-
whereM| is the probability of finding @ mediator on siteX, sen, by consideringn(,/n),=0.5, P,=1 andP,=0.5. For
at timeT. two-dimensional simulations, a projection of FCHC lattice,

Caling n//n=w,, o, (X,T)=w,o, o (X—¢,T—1) was used, with four degrees of freedom attributed to each
=w; 1, 0/(X—2¢,T-2)=w,_, and so on, using the main axis, as a requirement for preserving fluid isotropy. For
Heaviside function, all presented results, initial conditions were chosen, by con-

sidering spatial average as around 9.6.
H(x—Xp)=0 for x<Xgq, (39
Hx-x0)=1 for x=xo, (39 A- Laplace's law
Simulation started by placing ancubic droplet, with a
and notingH" =H(w, _,— ¥) and Hf_bTEH(wb‘_T_l), linear size of 20 lattice units, inside a%0b domain with
annihilation probability of red particles will be given by periodic conditions at outer boundaries and in the absence of
gravity. Time averages were performed at each 10 time steps
P’ (X, T)=H(wp,—1)P —H™p (36) and final configuration is the average of 1000 time steps.
anm= © a 0re Figure 1 shows simulation results in a sequence from initial
condition to the final one, after 6000 time steps, showing a
perfect spherical droplet. In fact, spherical form was an ex-
pected and physically consistent simulation result, as a con-
sequence of long-range attraction betwegarticles.

In present problem, Laplace’s law predicts a linear depen-
dence between pressure drop and droplet radius, at equilib-
rium
+H P(1-H_ )(1-H")(1-H™P,) (D=1)or
Ap= R

meaning that a mediator to be annihilated must be in a pure
b site and with probabilityP,, .

In this manner probabilit| can be written as a down-
ward series,

MI(X,T)=H" P+ H" ,P(1—H"))(1-H"™P,)

38
X(1—H™,P)+---. (37) 39

The first two terms of this series are based on the fact th
ar mediator will be found in direction of siteX at timeT,
if (@) it was produced on sitX—c¢;, at time T—1, with

hhereD is the Euclidean dimension of the space. Figure 2
showsAp=p,—p, plotted against R for ten simulations,
o . _ and the best straight line that considers the ten simulation
probability H_ ,Pe, or when o, ;< , (b) it has been  oqts and cross the origin. Simulation domain was chosen
produced at tim& —2 and propagated from si®¢—2¢ and 55 great enough to avoid boundary influence on simulation
not annihilated on sitX—¢;. In this way, in equilibrium,  reqyits(from 100x 100, for simulating the small droplets to
considering, e.g., four sites numbered 14, inside the transinox 300, for simulating the largest one®resented results
tion region, aligned in accordance with directioand such .0 the average of21CP time steps for each radius. Pres-
that*“’r,ZZ oy 3= w;4=0, excepting for site 1 wher@,;  gyre inside each phase is obtained by using single-fluid state
=or the probability of flr_ldlng a med|atpr on site 4 will equationpzcﬁp, wherec, is the sound speed in FCHC lat-
be given by the last term in above equation, i.e., tice. Agreement with Laplace’s law is quite good, giving the
b b interfacial tensiono,, this particular immiscible lattice-gas
Pe(1-HT P (1-HD,P,) (ILG) model is intended to represent, in lattice units.
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FIG. 1. Evolution from a cubic droplet left alone without any
force field.
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FIG. 2. Pressure difference inside and outside of a circular

bubble as a function of the inverse of the radilaplace’s lavy.
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FIG. 3. Density variation across the interface of a circular
bubble.

Figure 3 shows the spatial change of total dengityp
=p,tp,. Total density has an abrupt decay frgm, in the
layer between 20 and 30 lattice units, being reestablished to
pyp, after the transition region. In this layer, simulation gives a
sharp decay op, in consequence af andb particles sepa-
ration, promoted by the strong interaction between particles
and their respective field mediators. In real interfacial phe-
nomena, this layer has a very small thickness related to in-
teraction length of long-range forces. In present simulation,
measuring unit for interaction length is the length sdale
=L/N, wherelL is a characteristic length of the physical
domain to be simulated and is the number of lattice sites
along L. In this way, as it was to be expected, although
simulation results, correctly pictures the main physical as-
pects of interfacial phenomena, quantitative results related to
distancesh must be considered with care.

B. Momentum conservation

In present model, momentum is not locally conserved
when particles are reversed due to field mediators action.
Nevertheless, from a global point of view, it is expected that
the effect of long-range forces will be zero when considering
the total momentum of an isolated system of particles. Sev-
eral simulations were performed, confirming this conjecture.
Figure 4 shows the variation @fcomponent of total momen-
tum (Amx) of a cubic domain with Slattice sites, taken as
a cell in the domain problem of Fig. 1, after equilibrium was

time steps

FIG. 4. Total momentum variatioAmx inside a cubic domain
filled with immiscible fluids.
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FIG. 7. Comparison between theoretical and simulated results of

the shape a curve formed by a pair of wetting and nonwetting fluids

FIG. 5. Simulation of coalescence process between two circula®ar @ solid surface.

bubbles. . . . . .
D. Interaction between a pair of wetting and nonwetting fluids

with a solid surface
reached. AlthouglA mx has time fluctuations due to the in-

trinsic nature of the model, its average value is zero as it WaFu i
to be expected.

Figure 6 shows simulation results for the equilibrium so-
on, y(x), giving the interface geometrical configuration
for a pair of a wetting(r) and a nonwettingb) fluids in
contact with a solid surface. Simulation domain has?300
C. Coalescence sites and simulation results are the average ®fl2 time
steps. Ordinaty gives the wetting fluid raise for each inter-
When two dropletsr are put very closely, long-range facial point at a distance from the solid surface, in lattice
fields arising from one of the droplets attract molecules belnits. Gravity action is simulated in accordance with Sec.
longing to the second droplet, giving rise to coalescencell A, reversing the momentum of and b particles with a
Coalescence can be, physically, explained by considering th@iven probabilityP . A theoretical expression for the inter-
competition betweer(i) dispersion of molecules belonging facial shapey(x), in equilibrium, is given in Batcheldrl2],
to the surface of first droplet promoted byb collisions and  in terms of contact anglé interfacial tensiorv, , and grav-
(i) long-range attraction from the second droplet. This is dty accelerationg. Figure 7 compares simulation with theo-
very difficult interfacial phenomenon, which can, only, be retical results ofy(x). Interfacial tensions,, was obtained
fully described, in the molecular scale, related to interactiorPy direct simulation of Laplace’s lawsubsection A, gravity
length of long-range forces In present work, coalescenc@cceleration is given by Eq28) and contact angle was di-
phenomenon was simulated by the action of mediators, in theectly measured on Fig. 6. Comparison shows a very good
manner described in Sec. Il. Simulation domain is280d agreement between theoretical and simulated results for in-
each droplet has a radius of 25 lattice units. As depicted ifierfacial shape/(x).
Fig. 5, limiting ourselves to qualitative aspects and consid-
ering the physical limitations imposed by model’'s simplicity, E. Droplet formation from a dropper under the action
simulation gave, nevertheless, an, apparently, correct picture of gravity

of coalescence phenomenon. Although very interesting from a physical point of view,

droplet formation from a dropper is a very difficult problem,
when we consider classical discrete methods of fluid me-
chanics. Droplet formation is pictured in Fig.(Bom Adan-
son [13]) showing a sequence of drawings based on high
speed photographs.

L
U

O

FIG. 6. Interaction between a pair of wetting and nonwetting FIG. 8. Photograph of a droplet, from Adamsd8] (reprinted
fluids with a solid surface. with permission of John Wiley & Sons, Inc.
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FIG. 9. Simulation of the growth and detach-
ment of a droplet due to gravity.

From a macroscopic point of view droplet’s shape timemodels leads to lattice effects, which become of increased
evolution is linked to the competition it is subjected betweenimportance for lattices with a small number of degrees of
gravity action, viscosity of the droplet fluid and interfacial freedom. Reducing particles occupation on lattice sites can
tension. In this way, interfacial forces hold the droplet untilreduce these effects, but increases processing-time and noise
breakoff, as droplet weight increases. Breakoff starts with theffects. On the other way, the number of degrees of freedom
development of a throat, which becomes thinner in time ands limited to computer storage capacity, which needs increase
from where droplet fluid is pulled downward against theby a factor of two for each unitary increment in the lattice
droplet and redistributed horizontally by viscous forces, giv-degrees of freedom. Considering these limitations, interfacial
ing an almost ellipsoidal shape to the falling droplet, with aphenomena present in the flow of immiscible fluids represent
major axis oriented along horizontal direction. a field of great interest where lattice gas automata concepts

From a microscopic point of view, during the first mo- appear to be very suitable for explaining complex macro-
ments of droplet fally particles at droplet surface are sub- scopic effects, based on simple models of fluid behavior at
jected to long-range forces fromphase inside the dropper, molecular level. In this paper a new Boolean model based on
maintaining the integrity ofr phase in despite of gravity a four-bit variable for each lattice direction was presented for
action. Droplet breakoff starts when combined action ofsimulating the flow of immiscible fluids. Field mediators
gravity and downward long-range attraction from the createdvere introduced for representing the action of long-range
droplet increases with respect to upward long-range attradields, but with an interference step described by local rules.
tion fromr phase inside the dropper, giving raise to the for-In addition, emission and extinction probabilities enable to
mation of droplet throat. During and after breakaffpar-  control interfacial tension and transition thickness. Taking
ticles in the throat are pulled against the droplet, where thesthe above limitations into account and considering its sim-
particles are redistributed inside the dropletrby collisions  plicity, simulation results, apparently, confirm the adequacy
(related to the viscosity of droplet fluid of presently proposed model to study physical phenomena

Figure 9 shows a sequence of simulation results, considelated to the flow of immiscible fluids.
ered as time averages for each 200 time steps, using present
field-mediators model, on a 2600 simulation domain.

Comparison of Figs. 8 and 9 shows a very good qualitative ACKNOWLEDGMENTS
agreement between simulation and experimental results.
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V. CONCLUSIONS
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