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River meandering dynamics
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The Ikeda, Parker, and Sawai river meandering model is reexamined using a physical approach employing
an explicit equation of motion. For periodic river shapes as seen from above, a cross-stream surface elevation
gradient creates a velocity shear that is responsible for the decay of small-wavelength meander bends, whereas
secondary currents in the plane perpendicular to the downstream direction are responsible for the growth of
large-wavelength bends. A decay len@il= H/2C; involving the river depttH and the friction coefficienC;
sets the scale for meandering, giving the downstream distance required for the fluid velocity profile to recover
from changes in the channel curvature. Using this length scale and a timeTsaaée explicitly trace the
observed length scale invariance to the equations of motion, and predict similar time and velocity scale
invariances. A general time-dependent nonlinear modal analysis for periodic rivers reveals that modes higher
than the third mode are needed to describe upstream migration of bend apexes just before oxbow cutoff, and
are important to accurate calculations of the time and sinuosity at cutoff.
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[. INTRODUCTION bends also migrate downstream, leading to bend distortions
(Fig. ).

Rivers and streams are among the most beautiful, impor- The purpose of this paper is to study the mechanisms and
tant, and dangerous objects in nature, supplying water, hyconsequences of the meandering instability. To do so, we use
droelectric power, transportation, and recreation, and inspira meandering model derived by lkeda, Parker, and Sg8yai
ing some of the world’s most beautiful poetry. They areand extended by Johannesson and Pafkgrto find the
crucial to terrestrial geomorphology, excavating huge canyoiigration rate at all points along a river. This model, derived
networks and forming new lands by sediment depositionfrom the Reynolds equations for quasisteady turbulent flow
Almost a billion tons of sediment are carried annually by thein a shallow sinuous channel, relates the migration rate to the
Mississippi river to the Gulf of Mexic§1], where sediment channel centerline curvature through a linear differential
deposition over the last 6000 years has increased the area@fjuation valid to first order in the curvature, and is appropri-
Louisiana by about 35%. To preserve the navigability of To-ate when the river width is small compared with bend radii.
ledo Harbor, where the Maumee river empties into Lake
Erie, almost a million cubic meters of sediment are dredged
annually [2]. Many sandstone reservoirs of natural gas,
which are responsible for 23% of the world energy consump-
tion (second only to o)l were formed from the sediment
deposits of primeval rivers. Tremendous ongoing efforts to
control rivers and to maintain their navigability are partly
motivated by disasters such as the 1931 flood of China’s
Yellow River, which killed almost four million people, and
the 1993 upper-Mississippi flood, which caused $15 billion
in property damagefl].

One of the most fascinating behaviors of rivers is their FIG. 1. Annotated aerial photograph of a reach of the Beatton
tendency to meander and rework their floodplains. Some meRiver (BC7182-057, Courtesy Province of British Columbia,
ander bends of the lower Mississippi move 20 m laterally pe,Canadaz, shoyvlng the lateral and downvalley migration of meander
year[1], though lateral migration rates for typical actively bends. The river flows_ from the left to the right S|d§s of the pho_to-
meandering rivers are of ordé m per year or less. Even on graph. The dark loop is an oxbow Iake,.a former river t.)endlwhlch
. lanar floodplain,lrge-vevelengih deparures from rvel/% SP314C0E6 e adacent b e mosncerng e e
“.”ea”t.y grow in amp“tUd.e and accordmgly Increase theduring the last 300 years; white arrows indicate the directions of
river S|nu03|tyS§ L/Lo, .deflned as the rath of the tqtal river channel shift. Meander nodéwhite dotg, where the channel shift
lengthL to the linear distancé, between its endpoints. As

. . o . X I itsolf is zero, are always downstream of inflection poifittack dots,
Its sinuosity increases, a river occasionally meets itsell angiere the channel curvature changes sign. The distance between an

abandons an oxbovdark, stagnant loop in Fig.)1thereby ixfiection point and its downstream meander node is governed by
shortening the river and reducing its sinuosity. Meandekne decay lengttd [Eq. (1)], the distance required for the cross-
stream shear in the downstream velocity to recover from changes in
the channel curvature. The separation between inflection points and
*Permanent address: Department of Physics, West Virginia Unimeander nodes is responsible for the downstream migration of me-
versity, Morgantown, WV 26506-6315. ander bends.
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Although Seminara and coworkels] have identified some We present a general time-dependent nonlinear modal
consequences of weakly nonlinear corrections to the Ikedanalysis that includes all Fourier modes describing periodic
Parker, and Sawai model, this model has enjoyed a rich folriver centerlines, in contrast with previous treatments that
lowing [6—10] because of its ability to account quantitatively include only a few low-lying modeg11,12. We show that
for the principal features of meandering rivers, which are théhigher modes implyupstreammigration of bend apexes in
growth and downvalley migration of long-wavelength bends.the latter stages of development of periodic rivers approach-
To relate the migration rate to the resulting evolution of theing the time of oxbow cutoff. We also calculate the precise
shape of the river centerline, we employ an exact nonlineasinuosity at cutoff. In a separate papab|, we use level-set
integro-differential equation introduced by Seminara and conumerical methods to study the predictions of the lkeda,
workers[11,12), which correctly accounts for the essential Parker, and Sawai model for nonperiodic rivers.
stretching and shrinking of the evolving river. We also intro-  Ignored herein are the effects of confining valley walls
duce and derive an explicit nonlinear dynamical equatiorand nonuniformity in the alluvium erodibilitief9]. Many
[Eq. (14)] for the time-dependent river length. This equationrivers such as the Beatton flow in flat flood plains, with quite
allows the sinuosity of the river to be calculated explicitly, uniform alluvium erodibility[16]. The “quasisteady” fluid
and serves as the key to our analytical estimates of the critflow through the channel is assumed to adjust quickly to the
cal wavelength for nonlinear river meanderifig3]. This  slow changes in the river shape caused by meandering. In-
wavelength separates short-wavelength bends, which decastuded herein are the dependences on sinuosity of the aver-
from long-wavelength bends, which grow. age downstream velocity and fluid depth, which are ignored
Our physical approach yields improved understanding ofn some recent studief9,10,17. Other statistical models
the basic mechanisms of meandering. We attribute the decd{8] ignore downstream migration, an essential feature of
of small-wavelength meander bends to the Bernoulli sheareal rivers.
caused by the cross-stream surface elevation gradient, and Section Il invokes fundamental fluid physics to discuss
trace the origin of neutral meandering stability to the com-the mechanisms of meandering. In Sec. Ill, we present a
petition between Bernoulli shear and the secondary flow irderivation of Seminara’s evolution equatiphl,12), intro-
the plane perpendicular to the downstream direction. Criticatiuce our equation for the evolution of the river length, and
to this competition is the decay length review the Ikeda, Parker, and Sawai mof#]. In Sec. 1V,
these equations are written in dimensionless variables to
demonstrate their scale invariance, and a series solution for
D=—, (1)  the sinuosity of a sine-generated cufle)] is presented. In
2Cs Sec. V, the linear stability analys[8] of small-amplitude
periodic departures from straight rivers is reexamined to fur-

which involves the river depthi and the friction coefficient ther elucidate the fundamental mechanisms of meandering.

C;. This decay length gives the downstream distance rel S€c. VI, we present a compact derivation of the *Ki-
quired for cross-stream shear in the downstream velocity t§0Shita curve” describing steady finite-amplitude rivers that
recover from changes in the channel curvature. BernoullProPagate downstream without change of form, which was
shear dominates for wavelengths that are small comparedSt derived by Parker and Andrevig] without the benefit
with D, and secondary flow dominates otherwise. In studyind®’ th€ Seminara equation. In Sec. VI, we present our general
any particular river, important insights may be gained by jus |_me-dependent modal analysis, and observe that this analy-
knowing D, which sets the basic scale for the meandering' Precludes even-numbered modes. We also show that our
wavelength as well as the distance between channel infle€Xplicit equation for the time-dependent river length predicts

tion points and meander nodes, where the migration rate var Sinuosity that agrees with numerical integration. In Sec.
ishes. VIII, we study the sinuosity and bend migration near oxbow

We also identify the basic time scale(Sec. IV) for me- ~ Cutoff, and address the question of why our approximate
andering rivers, and show that the equations of motion refonlinear stability condition for periodic rivers should be a
quire only a single dimensionless parameter when scaled by/MPIe extension of the linear stability condition.

D andT. This scale invariance is responsible for the remark-
able observed proportionality between meander wavelength
and river width, valid over an enormous range of river
widths, from 10-cm-wide laboratory flumes to the 1-km-  Natural alluvial rivers continually rework their flood
wide Mississippi, and over remarkably different conditionsplains, and either degrade or aggrade these plains depending
including alluvial rivers, incised rivers, the gulf stream, andon the balance between erosion and deposition of sediment.
glacier meltwatef14]. We suggest that a similar proportion- Meandering tends to decrease the local downstream bed
ality exists between the meander period dnalthough this  slope, and oxbow cutoff increases it. Local humps in the
proportionality is less readily observable over human life-riverbed degrade faster than average because their larger
times because meander periods for natural rivers are typfluid velocities, which are demanded by the smaller stream
cally of the order of hundreds or thousands of years. Identieross section, erode bed material more aggressively. Simi-
fication of the appropriate scales should prove useful to outarly, valleys in the riverbed aggrade faster than average be-
eventual goal of studying the oxbow size distribution createccause the associated smaller fluid velocities allow increased
by a meandering river10]. rates of deposition. These processes tend to quickly smooth

Il. FUNDAMENTAL CONSIDERATIONS
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out such humps and valleys, yielding a uniform downstreanditions determine the river dischargg=2bHU, which is
bed slope, apart from small-scale dunes and ripf26% determined by the rainfall conditions and is, therefore, inde-

The elevation of the riverbed centerline a distaseeea- pendent of S The depth H, and velocity Ug,
sured downstream along the centerline may be written ac=(gH,l,/Cs)*? of a straightened river of the same width
cordingly as (running in a straight line between the endpojintsust,

therefore, obeHU =HyU,, whence
z(s)=zy—Is, 2
. . U=U,S ¥° 6)

wherez,=2z(0) andz =z(L) are the respective centerline
elevations at the upstream and downstream ends of the reacind
and wherd ~10 %-10 2 is the downstream centerline bed
slope, assumed to be independens.dBince all points along H=H,S"" (7)
a reach may meander laterally with time, including the up- . ) , . ) ,
stream and downstream ends, it is convenientiéfine a for a sinuous rlve_|{3]. Increasing the sinuosity of a river,
river reach by the elevationg, and z, ; the upstream and therefo_re, Iov_vers its flow sp_eeo_l and increases its depth, and,
downstream ends of the reach are defined as those locatiof§COrdingly, increases the likelihood of flooding. _
on the river with respective specified elevatiagsandz, . . 1€ Phenomenology of meandering by slow lateral migra-
Correspondingly, the bed slopethough spatially uniform, tion depends cruc_:|ally on cross-stream gradlents_ of 'the
and the length_ of the reach measured along the river cen-downstream velocity. Large near-bank fluid velocities in-

terline must vary with time as the river meanders laterally,cf¢3S€ the local shear stress, resulting in increased bank ero-

while the elevation drog,—2z, =1L =1,L, remains constant sion, while small near-bank velocities result in increased
with time, wherel, and L, are the valley slope and valley deposition. Rivers tend to maintain uniform widths by bal-

length measured along a straight line between the endpoint&N€ing erosion at one bank with deposition at the other. Typi-

Accordingly, we can write a sinuosity-dependent bed slo é:ally, the outside “cut” bank of a meander bend erodes and
as[3] gy y-cep P the inside bank, called the “point bar,” aggrades, leading to

slow lateral and downstream migration of the bend. How-
lo ever, the roles reverse for small-radius bends resulting from
1S)=3, (3)  oxbow cutoff. These small-radius bends are quickly straight-
ened by high velocity and erosion near thsidebank. Thus
whereS=L/L,~2—6 is the time-dependent river sinuosity. the meandering problem reduces to finding the cross-stream
Natural rivers are fully developed turbulent boundary lay-Velocity profiles.
ers, with large typical Reynolds numbers ReéH/v~10° Elementary fluid physics illuminates fundamental mecha-
involving typical average downstream velocitigs=1 m/s ~ Nisms governing these cross-stream profiles. At river bends,
and depthH~1 m, and involving the kinematic viscosity the water surface elevation gradient creates an outward-
»~10"° m?s of water. Consequently, momentum transportdirected componer¥ P of the hydrostatic pressure gradient,
is dominated by diffusion, mixing, and stretching of turbu- Which supplies the centripetal body forte —VP/p neces-
lent eddies, rather than by viscous diffusion. To effectivelysary to accelerate fluid elements around the bend. Conse-

dissipate gravitational potential energy, aspect ratios quently, the downstream velocities of fluid elements entering
the low-pressure region near the inside bank must increase

2b by Bernoulli's law, whereas the downstream velocities of
“H (4) elements entering the high-pressure region near the outside

bank must decreagéig. 2(@)]. This “Bernoulli shear”[22]
of river width 2b to depthH are typically of orded’~10 tends to move the locus of maximum velocity toward the
—20. To close the system of equations, the turbulent downinside bank, and thereby straightens small-radius bends by
stream bed stresg=pC;U? is often evaluated using a con- erosion of the inside bank. Bernoulli shear also erodes the
stant dimensionless friction coefficief8] C;~10 3-10 2 inside bank at the upstream ends of large-radius bends.
and constant mass density In “quasisteady” mechanical A secondary flow[22] in the plane perpendicular to the
equilibrium, the upstream bed force per unit argaon the  downstream direction convectively transports downstream
overlying fluid volume must balance the downstream com-momentum toward the outside bank and deepens the bed
ponent of gravitational force per unit area on the volumethere. These two effects drive the locus of high velocity to-

pHgl, whence ward the outside bank, in direct competition with Bernoulli
shear, and account for the lateral and downstream migration
gHI\? of large-radius meander bends. Whereas fluid elements at all
U= C_f ) depths experience the same centripetal acceleradioih

=—VP/p, downstream fluid velocities increase with in-
The |2 dependence of this result is a central feature of pracereasing height above the bed, because of the vertical shear
tical hydraulic equations for open channel flg@2d]. produced by the bed stress. Accordingly, low-velocity fluid
Because the downstream bed slégiepends on sinuosity elements near the bed “fall” toward the inside bank, that is,
S according to Eq.(3), U and H must also depend o6 they follow circular paths whose radii=v?/a are smaller
through Eq(5). The upstream precipitation and melting con- than the meander bend radius, whereas high-velocity ele-
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ments near the surface careen toward the outside bank, hav-
ing radii larger than the meander bend radius. The resulting
inward secondary flow near the bed scours sediment toward
the inside bank, thereby deepening the river near the outside
bank [Fig. 2(b)]. To avoid excessive shoaling of the flow
near the inside bank, the channel then responds by shifting
the bulk of the downstream flow toward the outside bank.
Furthermore, the outward secondary flow near the surface
convectively transports downstream momentum, which is al-
ready greatest near the surface, toward the outside bank. As
seen by a river-bound observer facing downstream, bends to
the right produce counterclockwise secondary flpkig.
2(b)] and bends to the left produce clockwise secondary flow.
Because of scour, water near the outside of a bend carries
much less sediment than water near the inside. Ancient
Mediterranean civilizations may have recognized this fact;
branch channels in their irrigation systems consistently con-
nect to the outsides rather than the insides of b¢a#k

As will be shown in Sec. lll, the decay lengih is the
downstream distance required for the cross-stream shear in
the downstream velocity to recover from changes in the
channel curvature. This shear decays exponentially with in-
creasing distance along straight sections downstream of
bends due to turbulent dissipation, and increases with in-

FIG. 2. Schematic velocity profiles illustrating the physical basiscreasing downstream distance upon entering a bend due to
of meandering(a) Three-dimensional view of a river bend to the the secondary flow, exponentially approaching its curvature-
right, showing the outward hydrostatic pressure grad®ehtcre-  dependent asymptotic value. These effects combine to pro-
ated by the surface elevation gradient, and showing the resultinguce a phase lag between the channel curvature and the
Bernoulli shear in the downstream velocitgrrows. As fluid ele-  fluid velocity shear profile, leading to downstream migration
ments near the inside bank enter the low-pressure region at the bend meander patterns. Thu3~100-1000 m governs the up-
apex, their velocities increase by Bernoulli's law. Similarly, the stream distance over which the shape of the river contributes
downstream velocities of fluid elements near the outside of the bendignificantly to the local velocity profile, and supplies the
decrease as they approach the high-pressure region at the bepgsic length scale for meandering.
apex. This Bernoulli shear Straightens small-radius bends by erod- The Secondary ﬂOW responds more qu|ck|y to Changes |n
ing the inside bank(b) Vertical cross section through a river bend the channel curvature than the cross-stream shear in the
to the right, as seen by a river-bound observer facing downstreanyqwnstream velocity. Decay of the secondary flow occurs
shpwing countercloc_kwise secondary f!ow and the resulting deep(-)ver the considerably shorter length scBIE” because the
ening near the outside “cut” bank. This secondary flow convec- jqqiateq vertical shear in the cross-stream velocity is con-
tively transports downstream momentum toward the outside bankﬂned to the bed heightl, whereas the cross-stream shear in
and dominates over Bernoulli shear for large-radius bends, Ieadinﬁ,]e downstream velocit,y stretches over the entire widih 2
to lateral and downstream migration of meander befcjsSche- ;

of the channel. Accordingly, the small phase [8323,24

matic downstream velocitigsolid arrows for one cycle of a large- h d fl d the ch | .
wavelength sinusoidal river. Solid traces represent the river bank?,et\’veen the secondary flow and the channel curvature Is ne-

whereas the dashed trace represents the locus of maximum velocifjl€cted below. The phase lag between channel curvature and
called the thalweg, which lags behind the channel curvature by thé€condary flow is negligible because natural river depths are
decay lengttD [Eq. (1)]. Large downstream velocities near a bank an order of magnitude smaller than their widths. Figui® 2
increase the local shear and the local bank erosion rates, leading $§§hematically illustrates the phase lag between the channel
lateral and downstream migration of the meander pattdashed ~curvature and the cross-stream shear in the downstream ve-
arrows. For typical large-radius bends such as those shown, théocity.

secondary flow overwhelms Bernoulli shear, leading to high veloci- Most meandering occurs during spring and summer flood-
ties near the outsides of bends, with the largest velocities and ming, when river discharges, sediment loads, and bed scour are
gration rates downstream of the bend apex. For the fiight) much larger than usual. In the model, however, the discharge
bend, pointsA, A’, andA” respectively represent the bend apex, theis assumed to be constant throughout the year, and meander-
location of strongest secondary flow, and the location of maximuming is considered to occur continuously. This assumption is
cross-stream shear in the downstream velocity. Als&"athe thal- justified as long as the yearly migrati¢af order 0.5 m is

weg makes its closest approach to the left bank. P@8’, and  small compared with the meander wavelen@ihorder 300

B” respectively designate an inflection point in the channel curvam,) and as long as the erodibility is adjusted accordingly.
ture, a location of vanishing secondary flow, and a location of van-

ishing cross-stream shear in the downstream veldeityneander lIl. GOVERNING EQUATIONS

“node”). TheA-A' andB-B’ distances, neglected herein, are con-

siderably smaller tha®, which scales theA—A” and B-B” dis- The horizontal coordinates of the riverbed centerline may
tances. be parametrized by the distance according tor(s,t)
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=[x(s,t),y(s,t)], which gives the position of the centerline ds'

at a distances downstream, at timé Accordingly, the unit uo(t)dt§
vector r(0,t)dt
Lo v(0,t)dtn
gives the horizontal projection of the downstream direction. F(s,t)dt

Sincel is small for natural meandering rivers, the difference
between sand the actual downstream direction can often be
neglected. A cross-stream horizontal unit vecterngs,t)
=27Xs points to the left for a riverbound observer facing

downstream, where & the unit vector pointing vertically
upward. The downstream derivative

X
Js ~ FIG. 3. River centerline arc of lengthat timet, and the same
—=—kN C) ime’ = ! i

Js arc at a later time’ =t+dt, of stretched lengtls’ >s, used in the

derivation of Eq.(11). A position vectorr(s,t) locates the down-

defines the centerline curvature= k(s,t), measured as stream end of the arc at timeThe vectordtn gives the displace-

positive for turns to the right as seen by a riverbound ob/nent of this end normal to the river, where=v(s,t) is the normal

server facing downstream, and as negative for turns to thelocity. Accordinglyr(s',t") gives the r_esulting position vector of

left. Also needed is the downstream derivative of the crossthe downstream end at tinte. A vectorr(s,t)dt=[dr(s,t)/dt]dt

stream unit vector, gives the displacement of the point on the river at a constant down-

stream distancs, whereas (0t)dt gives the displacement of the
on . s=0 point at the upstream end, with(0t)=0v(0t)n+uys. A

=KS, (10 wedge subtends infinitesimal arc lengthsandds’ on the old and
new positions of the river, with respective local radii of curvatire
andR’.

s

which follows from the derivative of #zxs. A normal ve-
locity v(s,t) measures the slow lateral migration rate of theEquation(11) then follows simply by combining the vector

river in the ndirection, being positive for migration to the relation r(s’,t’)=r(s,t)+vdtn with the first-order Taylor

left and negative for migration to the right. expansion,
Givenu(s,t) and x(s,t), the general equation of motion 5 5
[18] e o r_nor
r(s’,t")=r(s,t)+(s'—s) as(s’t)+(t t) &t(s,t).
ar . s . (13
—=vn+ uO—J k(s' Hv(s',t)ds' |s (11
dt 0 Equation(11) gives the velocityor/dt of a point of constant

s on the river, including both normal and downstream veloc-
governs the time evolution of the rive(s,t). A simple geo- ity components, the latter being required by river stretching
metrical derivation of this equation helps to illuminate itsand shrinking. By settings=L(t) and s’=L(t+dt)
content: Figure 3 shows a river arc of lengtht timet, and  —y, (t)dt in Eq. (12), we obtain a simple equation govern-
shows the same river at timé=t-+dt, after “stretching” to ing the time evolution of the total river length
a new lengtts’. Significantly, the normal displacement vec-
tor vdtn joins points on the rivenot generally sharing the d_'-:f
same value ofs. The geometric relationslssR=ds'/R’, dt 0
R’=R+wvdt, andR= 1/« involving the local radii of curva-
ture allow us to relate the elemental arc lengths according twhereu, is the downstream component of the migration rate
ds’'=(1+ «vdt)ds, whence integration yields the new river dr(L,t)/dt=uv(L,t)n+u,(t)s of the downstream end of the
lengths’; river. The downstream migration ratag andu, , which are
omitted in Ref[18], provide maximum flexibility in defining
the river, and prove to be very useful below.

The downstream derivative of Eqll) gives a useful
equation of motion governing the river angt¥s,t), the

Here, the integration constanj(t) is the downstream com- angle betweeﬁ(s,}) and the fixed horizontal cartesian direc-
ponent of the migration ratedr(0;t)/dt=2ar(0t)/at tion x, satisfying s=x cos#+ysind and n=zxXs=—xsin#
=v(0t)n+uy(t)s of the upstream endsE&0) of the river.  +ycosé. Accordingly, 9§dt=na6/ot and k= —n-adgds

L
kv ds—uptug, (14

S
S’=S+dtf k(s",H)v(s",t)ds’—ug(t)dt. (12
0
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=—00/9s, and the downstream derivative of EQ.1) re- Including subsequent correctiofid], the lkeda, Parker,
duces to a scalar equation of motion #(s,t); and Sawai moddl3] relatesu’(s,b) and«(s,t) to first order
according to
a0 dv s , )
EZE‘FKJOK(S ,t)U(S ,t)dS _KUO. (15) [?ur(s,b)+ur(s,b)_ ( (9K+PK) 1
s D gs D)’ (19

Seminara and co-workers previously derived this equation
using a different approadii1,12. Given a solutiord(s,t) of  where
this equation, the cartesian componentsr(d,t) may be

recovered simply by integrating E¢B), yielding F2+A+A—1
PZ#* (20)
S
) =Xp(t)+ o(s’,t)]ds’, 16 . .
X(8,0)=%o(1) focos{ (s.0)lds (16) measures the strength of secondary flow relative to Bernoulli

shear, and involves the Froude numlber U/(gH)?, the
s , , ratio of the flow velocity to the wave velocity, and other
y(s,0)=Yyo(D)+ JO sin 6(s",t)]ds". (17 constants to be explained shortly. The first term on the left
side of Eq.(19) gives the rate of change in’(s,b) with
The case of a long river of uniform curvatuke=1/R(t) ~ downstream distance. F@®=H/2C;—x, Eq. (19) easily
serves to check the nonlinear formalism and to illustrateyields a left-bank excess velocity'(s,b)=—bU« that is
stretching. Such a river is a vertical right-handed helix 0f180° out of phase with the centerline curvature, thereby, giv-
time-dependent radiug(t) [see Eq(2)], whose flood plain ing increased downstream velocities nearitisde bank for
is shaped like a spiral staircase. Settingds=dv/as=0 in  both left and right turns in the rivéFig. 2a)]. The first term
the downstream derivative of EGL5) leavesdx/dt+ 2y  onthe right side of Eq19) accordingly represents Bernoulli
=0, which is satisfied immediately by the expected normashear. The second term on the left side governs the turbulent
velocity v (t) =dR/dt. Furthermore, integrating Eq14) for decay of cross-stream shear. The second term on the right
a river of initial lengthL(0)=R(0)¢ and foru,=0 yields  Side ignores the phase lag between the curvatureiafmib)
the expected time-dependent lengtift)=R(t)¢, where [4], but includes, througis, the convec_tive transport of
¢/27 is the fixed number of helix cycles. Thus, Eqa4) ~ downstream momentunttoward the outside bankby the
and(15) capture the correct nonlinear dynamics of stretchings€condary flow. The cross-stream bed sl@pappearing in
for spatially uniform, time-dependent curvature. the bed-elevation equatioa(s,n)=z,—Is—Ak(s)n [see
To determinev(s,t), we appeal to the celebrated model EQ- (2)] accounts for the shift of downstream momentum
pioneered by Ikeda, Parker, and SaWaj. This model, toward the outside bank due to bed deepening, which is also
which has been subsequently discussed and extended by rfipused by the secondary flow. For the typical validsP
merous author$4,6—10, employs the Saint Venant equa- ~5 andF~0.4, A and A; dominate in the second term on
tions of shallow steady incompressible turbulent flow in athe right side of Eq(19), combining to represent the overall
sinuous channel of uniform half-width to obtain a depth- €ffect of secondary flow on the cross-stream shear. We treat
averaged downstream fluid velocity of the foris,n)=U A as a constant, ignoring its insignificaStdependenceA
+u'(s,n), whereU is the reach-averaged velocity’ is a ~FH~S " [25,26. Lacking any information about th§
first-order correction due to stream curvature, ani$ the  dependence oAs, we also treat it as a constant. Finally, we
cross-stream coordinate measured as positive toward the |d@hore the 1-2% correction supplied By and, therefore,
bank. To account for cross-stream shear in the downstreaffeat” as a pure dimensionless constgfif here dubbed the
velocity, the normal migration rate(s,t) is taken to be pro- “Parker number”in honor of Gary Parker’s many contribu-

portional to the left-bank excess velocity(s,b) according tions to the field. Some previous stud[€10,17 ignore the
to sinuosity dependences &f and D in Eq. (19), which are

crucial to the conclusions reached in Secs. VIl and VIIL.
v(s,t)=EU’'(s,b), (18 To determine the distance required for the cross-stream
shear to recover from changes in the channel curvature, we

with a small positive dimensionless erodibility typically of write the solution to Eq(19) for the simple case of uniform
orderE~2x 108 [7]. Accordingly, the river migrates to the

left (v>0) when the left-bank velocity is higher than aver-

age, reflecting higher erosion rates, and the river migrates to u’(s,b)=bUPk+[u’'(0b)—bUPk]e SP. (21
the right @ <0) when the left-bank velocity is lower than

average, reflecting increased stagnation and sediment depdere,u’(0,b) is the value ou’(s,b) at the upstream end of
sition. Since the right-bank excess velocity satisfiggs, the reach, andUPk is the value approached asymptotically
—b)=—-u’(s,b), erosion at one bank always balances depowith increasing distance downstream, with decay cond¥ant
sition at the other, thereby, allowing the river to maintain Accordingly, D gives the distance required for the cross-
constant width. Points along the river centerline with vanish-stream shear to recover from changes jmas claimed in Sec.
ing cross-stream shear (s,b) =0 and vanishing migration Il. When the cross-stream sheai(s,b) does not match the
ratev (s,t) =0 are called meander nodes. value bUP«k prescribed by the local curvature, turbulence
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drives it toward this value exponentially with increasing dis-with
tance downstream. Note that settifg/ds=0 ignores Ber-

noulli shear entirely. K=—00l05, (250)
IV. SCALE INVARIANCE AND DIMENSIONLESS and a lone dimensionless paramé&®eDropping the tildes in
VARIABLES Eq. (250 gives Eq.(1) of Ref.[13], apart from a misplaced
Combining Eqs(18) and (19) allows us to relate (s, ) minus sign in the latter equation. Equatiofi®) and (17)
. reduce to
and «(s,t) according to
v v Ik Pk X(31)=%o(T) + J Scoso(3' T)d¥ (263
- — - - 1 0 1 I
ﬁs+D bEU( as+ D)' (22 o
This meandering equation possesses natural sinuosity- ——— o~ o~ S e
dependent length and time scales, y(s,t)=yo(t)+ J;) sing(s’,t)ds’. (26b)
D= 2C. = DS (23 Equation(25b) governs the time evolution of the river sinu-
f osity S=L/L,. For flood plains sloping in the direction
and only, the sinuosity may alternatively be computed directly
, from Eq. (26a by writing Lo=x(L,t) —x(0;t), whence
T= _bEU:TOS’ (24 1 1JNL o
=== cosé(s,t)ds. 2
57, cos0sD) (27)

whereDo=H/2C; and To=DZ/bEUj, are the correspond-
ing scales for a straightened rivgggs. (6) and (7)]. These ) ) ] )
sinuosity-dependent scales, therefore, govern the length ardd'e Scaled equation&5) governing the time evolution of
time scales for meandering, and account for the remarkabl@€andering rivers contain nonlinear integral teffinsEqgs.
observed meander wavelength scaling of natural meanderidg®@ and (25b)] associated with stretching and shrinking,
rivers[14]. Furthermore, we predict that the meandering pe-&nd are otherwise linear. _

riod of natural rivers should scale @s and that the down- The sinuosityS of the ubiquitous “sine-generated curve”
stream migration rate should scale BT. These scale in- [19] 6(s)= e sings can be determined analytically, for arbi-
variances are less obvious to observe in natural rivergrary amplitudese and centerline wave numbegs=2/L,

because of the long typical time scal@sassociated with by inserting Cogzzlio(_l)lyl/(zm into Eq. (27). The re-
meandering, which are of order hundreds or thousands afyjt is

years. On the other hand, sinDeis typically of the order of

hundreds or thousands of meters, the length scale invariance 1 2 (-D2-1n
is easily observed in maps or aerial photographs. §=2 212D e (28)
=0 ! !

Although D and T set the natural length and time scales
for the problem, they are inconvenient as scales for dimen-
sionless variables because they depend on time thr@ugh Where (2—1)!1=(21—-1)(2/-3)---3-1, and - 1)!!=1.
Accordingly, we employ the time-independent length andRetaining only the first four terms
time scalesDy and T, for a straightened river to define

~ ~ 2 4 6

dimensionless variables according t®=Dgs, t=Tyt, Z=1- 6_+ £ (29)
L)=DoL(), Lo=Dolo, r(s)=DgF(ET), uv(s) S 4 64 2304
_ —17 T _ -1~
B DQ-I;E v(s),  Uo()=DoTo uO(t.)’ and  k(st) s syfficient to giveS to within 2% for S<7 (Fig. 4).
=D, "k(s,t). These allow us to rewrite Eqél4), (15), and
(22) as V. LINEAR STABILITY ANALYSIS

a0 v~ 3 The linear stability analysis of small-amplitude sinusoidal

rivers[3] further validates the general equation of motion for
the river angle, Eq.(259. We consider small-amplitude
traveling-wave perturbations about a straight river of the

0 _®x j *ED0E DAY - ,, (259
ot Js 0

AL (Tee ~ ~ -~
ﬁ=fLdes— Up+ug, (25p  form
0
~ ~ 0(37)=Re el (5007, (303
slf3ﬁ—f +o=— 07—f+ z}, (250 — S
Js gs S8 v(s,1)=Rdg 7e'(@s~ 207, (30b)
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FIG. 4. Successive explicit series approximations of the sinuos-

ity S of the sine-generated curve as a function of the ampliwde

according to Eq(29). Traces A, B, and C respectively include terms
through ordere?, €*, and €°. Trace D gives the exact sinuosity.

Traces C and D differ by at most 2% f&<7.

To first order in the amplitudes and 7, Eq. (263 givesx
='s, whencelL =L ,=27/q andS=1. Accordingly, takinge
to be real, Eqs(25a), (250, and(26b) give, to first order,

0(37) = ee” cogd qs— wl), (313
*(37)=qee”'sin(qs— wl), (31b)
Y50 =q"teesings— i), (310
2(31)=q Y Q|ee’sings—wi—08), (310

with dimensionless wave numbey, frequency w=Re(},
growth ratec=1Im (), phase velocite= w/q, and phase lag
6 satisfying

1+P

e (329
P— 2

g™ (320)
1+P ,

=l (329

S=tan !

(32d

2

Equationg323 and(32b) correspond to Eq18) of Ref.[3].
The growth rateo is positive for q<q.=P*? and

reaches its maximum value,,=2+P—2(1+P)*? where

g?=q%=—1+(1+P)Y? (Fig. 5, with P of order 1-10. For

PHYSICAL REVIEW E65 046303

1 LAl B P LR TTOT AR
\ . T
,,'\‘ /_,,
----- c/(1+P)
—oc/P
-8/
OSF | Ay(14P 7Y I
--------- nq Y(1+P™
r>>D A<<D
-1 PR | gl P Y| M- L
0.01 0.1 1 10 100
q

FIG. 5. Dimensionless growth raie, phase velocityc= w/q,
nodal phase lag, nodal displacements= 8/q and theq— s limit
A's— 7/q for small-amplitude sinuosoidal perturbations of dimen-
sionless wave numbeg about a straight river, according to Egs.
(31d) and(32). Although the typical valug=5 is used for the plot,
the g—0 and g— limits of the scaled parameteks/P, c/(1
+P), 8lar, andAs/(1+P~1) are independent &?, hence plots for
other values ofP differ only in the details neag=1.

the typical Beatton River valu®=5 (Ref.[7]), we obtain
g.=2.24, 9,=1.20, 0,=2.10, w,=4.27, 5,=64°, and
Cm=wn/qm=13.55. Since these numbers are of order one,
the length and time scalé& andT capture the correct scales
for the problem. Thus, the critical wavelengti
=2mDgy/q. in conventional units divides the long-
wavelength regime, for which meander bends grow in am-
plitude, from the short-wavelength regime, for which bends
decay. Figure 5 also shows hanthe downstream migration
rate of meander bends, approaches the maximum value 1
+7P for short wavelengths and vanishes for long wave-
lengths. The phase la@,=64° between the channel curva-
ture and the downstream velocity shear profile greatly ex-
ceeds the estimates 1@3] and 24°[8] of the average phase
lag between the channel curvature and the secondary flow in
natural rivers; this latter phase lag is ignored herein.

Of particular interest is the nodal phase lagbetween
river inflection points such as poi in Fig. 2(c), where
y(s,1)=«(s,t)=0, and velocity nodes such as poiBt,
where the lateral migration velocity(s,t) vanishes. This
phase lag vanishes for long wavelengthsindicating that
very long-wavelength meander bends grow in amplitude
with little accompanying downstream migration. Agrows
with decreasing wavelength, more and more downstream mi-
gration accompanies the lateral growth. The phase lag
reachesé= /2 at the critical wavelengtih =\., and ap-
proachess=m for short wavelengths, wherg(s,t) and

v(s,1) are completely out of phase, accounting for the rapid
straightening of small-wavelength bends, due to Bernoulli
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shear. For wavelengths>\ relevant to river meandering
(all others quickly disappeprthe decay lengtlD sets the

scale for the downstream distance between inflection points

and velocity nodes, called the nodal displacemgst 5/q

(Fig. 5.

VI. STEADY PERIODIC FINITE-AMPLITUDE SOLUTIONS

Steady periodic finite-amplitude solutions that migrate= —Pe*/24, q@=—P1%%12, S@=¢4, and OF

PHYSICAL REVIEW E65 046303

S=504+sW4... (380
®|:®|(1)+..., (380

gives cW=qW=sV=0?=0 to second order, and®

downstream at a constant speed without changing form fol=(P/?+i/3)€%/128 to third order, whence

low directly from Eqgs.(258 and (25¢), without resorting to
an intermediate bend equatidiq. (11) in Ref. [27]), by
simply demanding that each point of fixedon the river

travel in the x=scosf#—nsin@ direction with constant di-
mensionless speadaccording to
ar .
—=cx=us+ovn,
Jt

(33

whenceu=c cosf andv=—csiné. Equation(253 corre-
spondingly requires thaté/ it =0, thereby, emphasizing that

0 is stationary as seen by an observer in the moving frame.

Equation(25¢ immediately yields

d?6 3 P \dé _
—-+| cS"cosf— ——|—=+csinf=0,
ds?

81/3 ds (34)

which reduces to Eq(18) of Ref.[7] by letting P—A/2,
S¥_y~1 's—2Css, and c—(2C;)"lc. We seek finite-
amplitude periodic solutions of E¢34) of the form

+ oo
6(5)= 2 0", (35)
|=—o
with ® _, =0 to ensure the reality of, and with centerline

wavelength = 24/q. Accordingly, working to third order in
0, Eq. (34) reduces to

) P
1+iql R=TE c

212
Sl/3_ | = £‘|®|

+ oo

>

m,n=—o

1 1/3
6 + Elq(l -m-n)S"0,_1-n0,0,.

(36)

Equation(27) then implies the third-order sinuosity,

s=1+|20|.|2. (37)
Equations(36) and (37) immediately yield the desired
finite-amplitude solution. Linearizing these equations in th
=+1 modes®H==ie/2 givesc®=q@2=P and SO
=1, in agreement with Eq$32) with q=q.. Expanding in
powers of the angle amplitudeaccording to

c= C(0)+C(l)+ ceey,

(38a

e

(3)
3
2
c=7?(1—ﬂ), (393
2
q:Pm(l— 1—2) (39b)
2
S=1+ T (399

~ € 2 ~ 1
6(s)= es:|n(qs)+&r PY%cos s+ 3sin3ds|.
(399
Equations(39) agree with Eqs(19)—(21) of Ref.[7], where
Eqg. (390 is called the Kinoshita curve. Thus, we can recover

the known finite-amplitude solution without resorting to a
bend equation.

VII. TIME-DEPENDENT NONLINEAR MODAL ANALYSIS

To study the time development of periodic meander pat-
terns, we employ general time-dependent expansions

03H= 3 a0e'", (408
k5D= 3 wde', (40b)
vEH= 3 vibe', (400

with time-dependent centerline wave numiger 27/L and
wavelengthL, time-independent cartesian wave numhgr
=2m/L, and wavelengtft,, sinuosityS=L/L,=q,/q, and
the reality condition®_,= 6 , k_, =« , andv_,=v} . We
takey(0:t)=y(L,) to align the river axis with thex axis,
whence Eq.(26b) implies that §,=0. Settingu,=u, and
substituting these expansions into E(5) gives

K|:_i|q0|, (413)

U|=A|K|, (4lb)
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ds - °°
aZ‘fSl:Zw 1A/ 0/|7=2q78 2, 17|6/|*ReA
(419

do L
d—~t'=(lzq2A|+llquO)0|—q2

+ o
x X

mn
mAn[l 0|—(| +m_n)el+mfn]0—m0na

m,n=—o
m#n

(41d

where the coefficient,

i 1/3 _12n2Q2/3
|=P ilgS S—1/3:P 170°S™ e 1FP ilq
1+ilgsY? 1+129?s*® 1+12g2s*

(419

satisfiesA_;= A , and where we have taken care to include

the time dependence of on the left side of Eq(253. The
results of Sec. V follow by linearizing Eq$41l) with 6,
=ee '™ The results of Sec. VI also follow from Eqgtl)
by writing d6,/dt=0, 6)==Fie/2, and Ug=c cosfls_g
=ccosE,"™ ..4), and by expanding in powers ef Although

PHYSICAL REVIEW E65 046303

modes withl=0, =2, =4, etc. The cubic nonlinearity in
Egs.(41d also fails to couple to any even modes when the
initial condition includes higher-order odd modes, as noted
previously by Seminardll]. This can be seen from the
structure of the cubic terms in Eqglld), which require6,

=0 for all evenl for all time if these modes vanish initially.

If the initial condition includes even modes, our simulations
show that these modes decay quickly to zero. A physical
reason for this restriction to odd modes is still lacking.

To test the accuracy of results for different values\pf
we compare values &=L1/L, obtained from Eq(41¢) with
values obtained by integrating E(@7), with L=2/q. For
these tests, we used the sine-generated curve as the initial
condition with e=0.01, and use®=5, g=q,,=1.20, and
At=0.001. Allowing the bend amplitude to grow until the
sinuosity reaches the vali#= 7, we found that values d®
determined by the two methods differ by at most 7%, 2%,
0.5%, and 0.2% foN=3, 5, 7, and 9, respectively. Thus, the
agreement between the two methods quickly improves with
increasingN, andN=9 yields sufficiently accurate results.

VIIl. RESULTS AND CONCLUSIONS

Of particular interest is the sinuosi§; at oxbow cutoff,
when adjacent river bends meet, whereupon the river ceases

Eqs.(36) and(37) describe steady periodic meander patternsg, fiow through a loop of the river called an oxbow lake. For

valid only to third order ine, Eqgs.(41) describe fully non-

periodic rivers, one oxbow lake is cut off for each wave-

linear time-dependent periodic meander patterns. In contraﬁ_{\ngth of the river, and, represents the maximum sinuosity

with a previous analysis by Zolez#ll2], which includes
only the modesf;, 65, and 65, our Eqgs.(41d) include all
modes. Furthermore, we also introduce E4lo, which
governs the explicit evolution d&

of the river. Here we calculat§&, for zero-width periodic
rivers, that is, the value @& when the centerlines of adjacent
bends first meet each other. This value represents an upper
limit on the cutoff sinuosity for finite-width periodic rivers,

To study the time-dependent nonlinear dynamics govyyhich cut off at smaller sinuosities, when the banks of adja-

erned by Eqs(41), it is convenient taassignthe’s=0 point
on the river to a bend apex, where

e<o,?>=|2_ 6,(t)= 2;1 Reg, =0, (42)

cent bendgrather than their centerlineseet each other, or
when floods erode the narrow strips of land between adjacent
bends.

To calculateS., we employP=5, q=q9,=1.20, and

At=0.001 to integrate Eq€410 and (41d, and then use
Egs. (269 and (26b) to produce snapshots of the shapes of

for all time, so thaﬁozc is the time-dependent downstream the river centerline at various times during the growth of the
migration rate of the apex. In contrast with the steady solubend(see Fig. 3 of Ref[13], for exampl¢. The cutoff time,
tions of Sec. VI, other points along the periodic meandersinuosity, and downstream apex migration rate for a particu-
pattern, such as theaxis crossings, do not generally migrate lar value ofN follow when the centerlines of adjacent bends

downstream with the same speed

For fixedP and fixedgg=qS, Egs.(410), (41d), and(42)
together determine the time-dependent sinuoStyapex
downstream migration rate=ﬁo, and complex mode ampli-
tudes@,. Setting#,=0 except forl==*=1, =2,...,=N re-
duces Eqs(41d to N complex equations for=1,2, ... N,

with 6#_,= 6] . Invoking forward differences, with integra-
tion time stepAt, to approximate the time derivatives in Egs.

(410 and(41d), explicit numerical solutions foé,, S, andc
are easily obtained.
For the initial condition,=0 except ford.,==*ie€/2,

which corresponds to the sine-generated curgés)

= esings Eqgs.(41d require growth of the higher-order odd

meet in such a snapshot. These val(®snbolg, together
with their exactN—oo limits t’=5.690, S=6.6945, andc
=—0.098 971(dotted line$ are plotted in Fig. 6. Thus, at
cutoff, the river is stretched to 6.6945 times the distance
between its endpoints. The downstream apex migratiorcrate
at cutoff converges much more slowly thnand S because
it is much more sensitive to the details of the shape of the
river. The positive values=+0.450 andc= +0.0418 for
N=1 andN=3 (off the scale of Fig. Bimply downstream
migration, in contrast with the negative values for larger
which imply upstreammigration. Previous calculations by
Seminara(Ref. [11]) for N=<3 fail to capture this upstream
migration prior to cutoff.

Growth of the amplitude of long-wavelength bends occurs

modes|==3, =5, etc., but fail to couple to any even only for dimensionless centerline wave numbeys.q,,
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12 ' ' ' ' ' ' ' ' ' satisfy A<27Dy/PY? in conventional units, whereD,

. =Hy/2C; is the decay length for a straight river. Extending
1 this linear condition to a sinuous river with decay len@th

=H/2C;=D,S"*[Eq. (23)] gives the nonlinear growth con-

10 ] * S S S ey S dition
*
] 2
¢ -100c 7\<P—1/2D, (45)
8 " S .
e t where\ is measured in conventional units along the river

I | centerline. Equatiori44) follows immediately as the corre-

'''' g @ -@--E--E--E--A--A--u--8 sponding dimensionless condition qr27Dg/A\.

Perturbations of centerline wavelengthsatisfying Eq.

----- D T B T TTT T T YR (45) decay with time. The critical wavelength scales wiith

as might have been expected from the discussion in Sec. IV.
¥ ] Why, though, should this nonlinear condition follow as the

4

simple extension of a linear condition valid only for small
perturbations about a straight river? The answer lies in the
linearity of the meandering equation, E&5¢), which deter-

N mines the sinuosity-dependent phase lag between the veloc-
ity and curvaturdcompare Eq(32d)],

FIG. 6. Time (circles, sinuosity (squarey and downstream
apex migration ratédiamond$ at oxbow cutoff predicted by trun-
cating and integrating Eq$410 and (41d), versus the truncation S=tan !
parameteN, together with exact results for these quantitidsshed
lines). The negative values af indicate that bend apexes actually
travel upstream at cutoff. which takes responsibility for the stability of individual

modes. This phase lag follows from E@50 by setting x

whereq= 2#/L involves the dimensionless centerline wave- =K quS o= Umelqs, andv = pe- '5Km- Just as for the lin-

lengthL =L/D, measuredalong the river centerlinewhich  ear problem, the phase-lag conditiér /2 leads directly to
equals or exceeds the usual dimensionless cartesian waugre stability condition, Eq(44). For meander bends to grow
lengthLo=Lo/Do=L/S measured along a straight line. An with time, the normal velocity must point in the direction
upper limit ong, can be obtained by rewriting E¢410) as  opposite the center of curvature of the channel. Sineasd

" o3 « are, respectively, defined as positive for growth to the left
ds —Ps d he righ by a river-bound ob
- —2¢? 2/32 12,2 and curvature to the right as seen by a river-bound observer
- |

2424 o-2/3 (43 : id il i :
=1 1°g9°+S facing downstreamy x>0 implies growth andy k<0 im-
plies decay. Fors<m/2, vk>0 for over half the wave-

length, leading to net growth, whereas fér 7/2, v'xk<0
for over half the wavelength, leading to net decay. The
o — (44) stretching noqlinearity _in the equation_of_moti()ZBa) gov-
s3 erns the relative contributions of the individual modes, but
not their stability. The meandering equation, E2G0), takes
holds initially, then all modes make negative contributions tofull responsibility for the stability of individual modes.
dS/dt for all times becausgy=qSis fixed. The sinuositys In summary, we have used the equation of motion intro-
of such short-wavelength rivers must, therefore, decreasguced by Seminara and co-work¢fd,12), the channel mi-
monotonically with time. This fully nonlinear result is valid gration rate of lkeda, Parker, and SawWai, and our own
for arbitrary finite-amplitude rivers of any shape, and sup-equation for the time-dependent river length to study the
plies an upper limig.=7PY%S'® on the exact critical wave meandering of periodic rivers. This approach allows us to
number. This limit exceeds the exact critical wave number byecover the known length scale for meandering and to
at most 10% over the full range of possible sinuosifiE3). introduce the associated time and velocity scalendD/T,
In summary, an arbitrary periodic river whose centerlinewhich await experimental verification. An explicit equation
wave number satisfies E¢44) will always straighten with  governing the river sinuosity, which is derived from our river
time, eventually becoming a straight line, regardless of thdéength equation, allows us to analytically determine the criti-
detailed initial shape of the river. cal wavelength for nonlinear river meandering. This critical
Remarkably, Eq.(44) follows simply by extending the wavelength separates short-wavelength bends, which
exact linear growth condition to a sinuous finite-amplitudestraighten with time, from long-wavelength bends, which
river. The linear conditior{Sec. ) states that perturbations grow. A general time-dependent nonlinear modal analysis for
about a straight river decay in amplitude if their wavelengthsperiodic rivers reveals that modes higher than the third mode

(1+P)S‘1’3

PS —2/3 q (46)

Accordingly, if
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are needed to describe upstream migration of bend apexesrvature, and thaD, therefore, plays a key role in down-
just before oxbow cutoff, and are important to accurate calstream migration of river bends.
culations of the time and sinuosity at cutoff.

Our physical approach yields a better understanding of the
basic mechanisms of meandering. We attribute the decay of We gratefully acknowledge fruitful discussions and corre-
small-wavelength meander bends to Bernoulli shear causegpondence with Goodarz Amahdi, Ray Boswell, S. F. Ed-
by the cross-stream surface elevation gradient. We trace thiards, Donald Gray, Peter Haff, Curtis Huffman, Hiroshi
origin of neutral meandering stability to the competition be-keda, Alan Kerstein, Stephen Kite, Ray Lopez, Mark
tween Bernoulli shear and the secondary flow. We show thd!!CKOy, Gary Parker, Jonathan Selinger, James Sethian, Jef-

the length scald® is the downstream distance required for rey Skousen, Jefirey Spooner, Tao Sun, Joseph Wilder, and

cross-stream shear to recover from changes in the channt e stafi of the Earth Resources Observation Systems
9 ROS9 Data Center.
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