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Probabilistic formalism and hierarchy of models for polydispersed turbulent two-phase flows
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This paper deals with a probabilistic approach to polydispersed turbulent two-phase flows following the
suggestions of Pozorski and Mini¢Phys. Rev. E59, 855 (1999]. A general probabilistic formalism is
presented in the form of a two-point Lagrangian PQpFobability density function A new feature of the
present approach is that both phases, the fluid as well as the particles, are included in the PDF description. It
is demonstrated how the formalism can be used to show that there exists a hierarchy between the classical
approaches such as the Eulerian and Lagrangian methods. It is also shown that the Eulerian and Lagrangian
models can be obtained in a systematic way from the PDF formalism. Connections with previous papers are
discussed.
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[. INTRODUCTION mean field equations are derived for both phases and the
Lagrangian approach or particle-tracking method, where
Polydispersed turbulent two-phase flows are ubiquitous inrmean field equations are solely used for the continuous phase
many industrial processes and natural phenomena. In theséhereas particles are tracked individually by using a set of
flows, a discrete phase in the form of inclusions is embeddedquations describing their dynamical behavior. In the La-
in a turbulent fluid. The turbulent fluid is referred to as thegrangian approach, one usually tracks stochastic particles
continuous phase and the inclusions, or discrete particlesyhich, hopefully, reproduce the same statistics as the real
form the so-called discrete phase. These types of flows inenes, i.e., real particles are replaced by stochastic particles
volve many aspects of physics at different scales and onehere the time evolution of the variables of interest is de-
may have to use simultaneously several domains such asribed by SDEgstochastic differential equationsThe Eu-
turbulence[1], particle dispersiorj2], granular mattef3], lerian and Lagrangian methods only differ by the level of
combustion and so on, to understand the basic mechanisnisformation that is retained for the description of the discrete
that come into play. There is, therefore, a real challenge tparticles. In the Eulerian model, the discrete phase is mod-
take up when one attempts to model such flows and to simweled at the macroscopic levighean field equationsvhereas
late them with modern computer technology. for the Lagrangian approach modeling is performed at a me-
The challenge might appear, at the first glance, as a pursoscopic level[SDES. The mesoscopic description is an in-
computational one since the equations describing the dynanermediate level between the macroscopic descriftiogan
ics of the system are known. One could solve, as in the spirifield equationsand the microscopic descriptidexact local
of direct numerical simulatiofDNS) [4], the Navier-Stokes instantaneous equations
equations and consider the particles as moving boundaries It is worth emphasizing that, in both the classical Eulerian
[5]. The force exerted on each particle would be given by theand Lagrangian methods, the fluid or continuous phase re-
surface integral of the fluid stress tensor. In practice, such amains modeled at the macroscopic level using mean field
approach is not feasible since a fluid in turbulent motion hagquations. There exist, however, alternatives for the simula-
a huge number of degrees of freed@®)7], not to mention tion of the fluid (single-phase flowswhich are particularly
the number of moving boundaries. Therefore, the challengiteresting when complex physics is involved, for example,
is to come up with a contracted descriptiga simplified compressible reactive turbulent flows. In such flows, the
mode) in order to express the problem in the form of equa-classical problem of writing closure laws directly at the mac-
tions that contain the main physical aspects while still beingoscopic level can be avoided by turning to P(pFobability
tractable with modern computer technology. density function models that simulate explicitly local instan-
Nowadays, two methods are widely used for practical nutaneous variableg8]. In practice, PDF models appear as a
merical simulations of polydispersed turbulent two-phasegood compromise between the level of information that is
flows. The Eulerian approach or two-fluid model, where provided and the computational effort that is requifefl In
these methods, which are middle-of-the-road approaches be-
tween the microscopi€local instantaneous equationand
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equations for single-phase floy0]. the velocity field at the location of the particle. The dimen-

In the present paper, the objective is to combine both thaion of the system isl=p;N;+p,N,. As mentioned in the
PDF approach to turbulent single-phase flows and the Lamtroduction, only two-point informatiofone fluid point and
grangian approach in order to propose a complete PDF amne particle pointis under investigation so that the dimen-
proach to polydispersed turbulent two-phase flows. The ainsion of the system is contracted tb=p;+p,. It is now
of the paper is not to present new models but to introduce assumedsee Minier and Peirandl2] for a specification of
formalism that contains the description of both phases. Atthe mathematical and physical backgroutitht the issue of
tention is focused on a two-point PO@ne fluid point and modeling polydispersed turbulent two-phase flows can be
one particle pointwhere one simulates the joint PDF at two successfully addressed by using stochastic diffusion pro-
different points for the variables of interest both for the fluid cesseq13] in order to mimic the evolution in time of the
and for the particles. Once again, the new feature is that theariables describing the physics of the fldive., the ps
present PDF description includes the two phases, that is, the p,, variables attached to a pair of particles, one fluid and
fluid and the particle phases. Furthermore, it is shown thabne discrete particje
the present probabilistic approach is useful to highlight sev- When dealing with a stochastic process, there are two
eral points: ways to characterize it: the time-evolution equation of the

(i) The derivation of mean field equations: there exists &rajectories of the process or the equation satisfied in sample
vast literature in this field and it is explained that, in thespace by its PDF. This correspondence is particularly clear
frame of the present formalism, the mean field equations arfor a diffusion process and is central in the present paper. If
derived in a natural way. Z(t)=(Z4,...,Z,) is a diffusion process with a drift vector

(i) The hierarchy between the different models: two-pointA=A; and a diffusion matriXB=B;; , the trajectories of the
PDF model, Lagrangian model, and Eulerian model. process are solutions of the following SDE:

(iii) The derivation of a closed set of mean field equations
in a simplified case, the formalism is used to emphasize the
level of simplification that is required by the macroscopic
closures.

(iv) The connections between the present approach andhere W(t)=(W,,...,W,) is a set of independent Wiener
previous work. processe$13] and Z(t) is the state vectofthe vector con-

Consequently, the purpose of the present paper is not t@ining thep; + p,, variableg. The SDEs are calledangevin
validate or discuss the models by comparing numerical comequationsin the physical literatur¢l4]. This corresponds in
putations with experimental data. Some references to nusample space to the Fokker-Planck equation for the transi-
merical computations obtained with the different approachesional PDFp(t;Z|ty;z,) (this equation is also verified by the
are, however, indicated at the end of the paper. PDF p(t;2), [13]),

The paper is organized as follows. In Sec. Il, the needed
mathematical tools are recalled, especially the link between P P 1
the trajectory and the PDF points of view for diffusion pro- P__ —I[A(t,2)p]+ =
cesses. Then, a probabilistic description of polydispersed tur- ot Z 2
bulent two-phase flows is given in Sec. Ill in terms of a
two-point PDF and the equivalent trajectories. After that, is itacyya|ly, the correspondence between the two points of view
shown in Sec. IV how the corresponding closed Fokkeris not a strict equivalence. Indeed, the matixhat enters
Planck equation is written and the mean field equations, i.eyhe Fokker-Planck equation is related to the diffusion matrix
the Eulerian model, can be derived. In Sec. V, the Lagrang!an the SDEsB, by D=BBT (B is the transpose ). Since
model is displayed and the hierarchy between the Euleriaf,ere is not always a unique decomposition of positive defi-
and Lagrangian approaches is explained. In Sec. VI, practic@fite matrices for a given matri, there may exist several
trajectory models are introduced and from them, an examplepices for the diffusion matriB. Therefore, one can have
of a closed set of mean field equations is given in a simpliyifferent models for the trajectories that still correspond to
fied case. Finally, before concluding, connections betweeghe same transitional PDF. In other words, there is more in-
the present formalism and previous work are explained ifomation in the trajectories of a diffusion process than in the
Sec. V. solution of the Fokker-Planck equation. However, in the
present work, interest is mainly focused on statistics ex-
tracted from the stochastic proce&seak approact13]).
Consequently, one can consider that the different models for

The problem is treated with a terminology coming from the trajectories belong to the same class and then speak of
the classicaN-body problemLet us consider an ensemble of the equivalence between SDEs and Fokker-Planck equations.
N; fluid particles andN,, inclusions to whickp; andp,, vari- It is now clear that the Lagrangian method, where the
ables are attached, respectively. A fluid particle is defined adynamics of the particles are described by a set of SDEs, is
a small element of fluid whose characteristic length scale isothing else than a Monte Carlo simulation of an underlying
much larger than the molecular mean free path but mucl®DF [15]. This correspondencgliffusion process—Fokker-
smaller than the Kolmogorov length scdl&l]. The fluid  Planck equationis fundamental to the presentation of the
particle has a mags, a volumeV, and a velocity that equals PDF formalism.

dZ,(t)=A(t,Z(1)dt+B(t,Z()dW(t), (1)

az

W[Dij(taz)p]- (]

Il. GENERAL FORMALISM
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lll. PROBABILISTIC DESCRIPTION OF DISPERSED For the field descriptiorfEulerian point of view, let us
TWO-PHASE FLOWS consider the quantit}npr. The probability to find, at time
Szgmd at positions; andx,, the system in a given state in the

The next sections are slightly anticipated and an expre rangel Vi Vi +dV,] and[ . dht da] is

sion for the two-particle state vectéone fluid particle and
one discrete particleis directly introduced. In the case of £
turbulent, reactive, compressible, dispersed two-phase flows,  Prp(t:Xe Xp: Ve, .V, 4)dVi dyy dVodif, . (6)
an appropriate state vector (see Sec. 1D
prp is not a PDF since, in a fluid-particle mixture, one cannot
Z=(X¢,Us, ¢ ,%p,Up, p), (3) always find with probability 1, at a given time and at two
different locations, a fluid and a discrete particle in any state.
whereg; and ¢, are to be specifiefhote that we distinguish Furthermore, at a given point in physical space and a
between physical space and sample space, given timet, the sum of the probabilities to find a fluid par-
=(Ys,V. ¥ .Yp.Vp. ) ]. Once again, it is necessary to in- ticle or a discrete particle in any state is one, ip#pzo
troduce two independent variables for the positions of thevheny;=y,=y and p$p=o for x;=x,=x. Consequently,
fluid and the discrete particles since the two kinds of par-one can write, in terms of the marginals of the Eulerian dis-
ticles are not convected by the same velocities. tribution function,

A. Eulerian and Lagrangian descriptions J’ pr(t,x;Vf ,aﬁf)dedtﬁf—Ff pE(t,x;Vp,tﬁp)dedtpp:l,
There are two possible points of view for the statistical )
description of the fluid-particle mixture. The Lagrangian one

where one is interested in, at a fixed time, the probability to . £ . .
find a pair of particlesa fluid particle and a discrete particle there the marginalg are defined as done in E(p) for
in a given state and the Eulerian descriptiield approach Pk
where one seeks the probability to find, at a given time and at
two fixed points in spacéa “fluid point” x; and a “discrete-
particle point”x), the fluid-particle mixture in a given state.

In the case of the Lagrangian description, let us introduce
the PDF p%p. The following notation is usedL or E as
superscripts to distinguish between Lagrangian and EuIeriaE . . . .
quantities andf and p as indices to specify if a two-point | qqaﬂon(?) can algo be reEwntten by introducing the normal-
(fp), or one-point(f or p) PDF is used. The probability to 1Zation factors ofpy andpy,, namely, a(t,x) and a(t,x),
find a pair of particles at timé whose positions are in the €SPectively, to yield
range [Yy,Vk+dyx], whose velocities are in the range

pE(ter;Vka'/’k):J prp(LvaXp;Vf-(r[’vapvl/’p)

X dxcdVi d iy ®)

[Vi,V,+dV,], and whose associated quantitiesalars and a(t,X) + ap(t,x)=1, 9
other variablesare in the rang@s , i +dys ], is (Wherek
is the phase index, eithéror p) where, by definition,

Pro(LYe . Vit Yp . V. ) dyr dVy dify dy, dV, das, .
(4) ak(t,x)zf P (1, X Vi, i) dV d o . (10

A distinction is made between the parameters and the vari- . , .
ables by using a semicolumn to separate them. Two marginéTf(t’X) represents the probability to find the fluid phase, at

PDFs have a clear physical meaning: the first qf;e, ob- tme t and positionx, in any state O<ay(t,x)<1]. This

tained by integration over all variables of the discrete par_probability is not always 1 as in single-phase flows where the

ticles, is the PDF related to the fluid characteristics and thghysmal space is continuously filled by the fluid. In a fluid-

second onep;, derived by contraction over all characteris- particle mixture, atx) there might be some fluid or a dis-

. ) . . : crete particle. Similarly, the probability to find the discrete
tics of the fluid particles, is the PDF related to the discrete : . : .
phase. The two PDFs are given by phase at timet and positionx in any state isa,(t,x)

[O=<a,(t,x)=<1]. It has been explained above thlﬁg is not
a PDF but rather a distribution functidas a matter of fact,

Pic(t: ¥ Vi, #1) it represents a field of distribution functionshe normaliza-
. tion factor ofprp is always less than or equal to 1. This can
= f Prp(tYe, Vi ¢, Yp, Vp, ) dydVidib, be clarified in the particular case where the fluid particles and
the discrete particles represent independent eventspre.,
) =prpE (strictly speaking, this is not always possible since

— ) they cannot be located, for a given time, at the same point in
wherek is the complement ok (for example, ifk=f then  physical space Under this assumption, the normalization
k=p). factor ofprp becomesw,(t,x) a(t,X).
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B. Mass density functions ka(t,Xk §Vk,l/lk):fkl'(tiyk:xk N, )
As explained in Sec. Il, a fluid particland also a discrete
particle is completely described by its mass, position, veloc- =J ]—“k"(t;yk,vk,:pk) S(Xe—Yi) Ay -
ity and associated scalars, so that it is logical to introduce a
mass density functioMDF) Fk where (15
Fr(tiyi, Vi, ) dyy dV d (1) By recalling thatF-=MFf, a direct consequence of the

previous equation is thaf,==M; Fg. Therefore, the rela-
is the probable mass of fluik¢ ) or discrete particlesk|  tions between the Eulerian mass density functiepsnd the
=p) in an element of volumely,dV\d . Both mass den- |agrangian mass density functioR§ are also given by Egs.
sity functions are consequently normalized by the total masg5).
M of the respective phasé#!; for the continuous phase  Bearing in mind the results that have been displayed so
andM, for the discrete phase, which are constant in time fofar, there are two possible strategies, yet equivalent, for the
the sake of simplicity, derivation of the mean field equations, i.e., for the path be-
tween Lagrangian and Eulerian MDFs, since the physical
L space is shared by the fluid and the patrticles.
Mk:f Fr(tyio Vi ¢ dy dVicd g (12 (i) In the first procedure, relations between the Lagrangian
and Eulerian MDFs are worked out at the two-point level.

The mass density functiorré; can be expressed in terms of Once on the Eulerian sidg, information i§ still a\{ailable at the
the respective total masshk, and the marginal PDFpk as two-pplnt level. Fpr a given pointt(x) in the time-space
Fi=M,pk . A two-point fluid-particle mass density function domain, we consider
is also defined,
Fiotys=XYp Ve, 8 ,Vp, ),
Fro(tYe Ve, th Yo Vi, th)

=Mprprp(t;yf,Vf,l,[ff,yp,Vp,ajlp), (13) }-fli)(t;yf1yp:X!Vf1¢’vapa¢p)- (16)

and its marginals are related to the mass density function a€orrespondence with the Eulerian MDFs is found by using
phasek by F- =M Fp. Eq. (14). Then, from these two-point Eulerian MDFs both
marginals at the same point in physical space can be ex-
tracted, i.e. FE(t,x; Vi, 4.
(ii) In the second procedure, relations between the La-
grangian and Eulerian MDFs are worked out at the one-point
Since one of the aims of the present paper is the derivaevel, that is,
tion of mean field equations, relations between Lagrangian
and Eulerian MDFgand PDF$ have to be found. By doing L
so, the partial differential equations verified by different Eu- Frty,Vie ¢, (17
lerian quantities will be written and from there, by defining
an appropriate operatdexpected valug mean field equa- s under consideratiofor ). Contraction has been made
tions will be derived. _ for the two-point Lagrangian MDF before going on to the
By generalization of the ideas of Balesf16], the La-  fielq description. By using Eqd5), information is obtained
grangian MDF 7y, can be linked to an Eulerian MDF by in the form of both the one-point fluid and particle Eulerian

C. General relations between Eulerian and Lagrangian
guantities

writing [12] mass density function&E(t,x;V,, 4, at the same point in
fpr(tyXf oVt Vo i) physical space.
=]-'pr(t;yf=Xf Vi, Yp=Xp ,Vp,lﬁp) 1. Two-point relations betwggn Eulerian and Lagrangian
quantities
:f ]-‘pr(t;yf Vet Yo Vo, th) If strategy (i) is adopted, the following relations are

needed. With Eq(14), the definitions of the two-point fluid-
X S(X—Y) (Xp— Yp)dys dyp, (14)  particle Lagrangian MDFF,=MMp;,, and the two-
point fluid-particle transitional PDFE)'f'p, one can writg 12]
where]—}% is the two-point fluid-particle Eulerian mass den-
sity function. By direct integration of the previous equation ]—"f'f)(t,xf X Vit Vo, i)
over physical spacg, and phase spac&/(, ), the associ-
ated marginalgthe one-point Eulerian mass density func- oA )
tions, F) verify a similar relation, that is, = | Prp(tixe Ve ot X, Vi, plto]
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X0+ Vt0s ¥r0+Xp0, Vpos ¥o)
X]:f%(tixfovXpO;Vva'»[’fOinoyl/’pO)

X deO deo dlﬁfo prO deo dlﬁpo .
(18)

This relation shows that the Eulerian MIJFf% is “propa-
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at (t,x) (the probable mass of phakdn a given state per
unit volume. The expected density, denotégl)(t,x), is

a(1,X){p) (t,x) = f P ) P, X Vi, h) AV dafs
(24

where the Eulerian mass density functief is

gated” by the transitional PDF, or in the language of statis-

tical physics, the transitional PI:fF-pr is thepropagatorof an

information that is the two-point fluid-particle Eulerian

FE(LX Vi, ) = pi i) PE(E,X Vi, ), (25)

MDF. Consequently, the partial differential equation that isand «,(t,Xx) is of course defined as the normalization factor
verified by the transitional PDF is also verified by the Eule-of pE, see Eq.(10). As mentioned at the beginning of the

rian mass density functioﬁ-}%.
The definitions of the expected densitiég;)(t,x) and

section,«,(t,x) represents the probability to find phaseat
time t and positiorx, in any statd 0< «,(t,x)<1]. Integra-

(pp)(t,x), and the probability of presence of both phasestion of Fi over phase space/(, ) yields

a¢(t,x) and ap(t,x), can be expressed in terms of the two-
point Eulerian MDFs and the associated marginals. For the

expected densities, one can write

1 E _ -
ak(t,X)<pk>(t,X): M_kf ffp(t,X,Xk;Vk,lpk,Vk,l/Ik)

XdxXcdVicda dVi di, (19

:ak(trx)<9k>(t,x):J Fr(t,X; Vi, i) dV da. (20)

Similarly, a; and a, are defined by

1 1
0= = | oo BRIVt Vi )

kJ pl(¥h)
X dx dVy dg dV, dis, (21
t f ! FE(t,x;V dv,d (22)
= = —= ) .
a’k( ;X) pk(l,[fk) k( VX kld’k) k 'J’k

2. One-point relations between Eulerian and Lagrangian
quantities

If strategy (ii) is adopted, the following relations are

needed. Using Eql5), the definition of the one-point La-

grangian MDFFL=M,pk, and introducing the one-point

transitional PDFf)[;, one can writg 12]

FE(t,X;Vk,l/lk):f P (1%, Vi, il to: Xko» Vo » o)

X F(t,%0; Vo, o) dXo AV difio .-
(23

1
P(t:X) = - a(tX){pi (1,X), (26

k
and therefore the conditional expectatipb(t;vk,z//k|x) is
given by

L _ px( ) £
Pk (6 Vi, i x) = mpk(t,wiﬂlfk)-

(27)

Thus, in a compressible flow, the one-point fluid Lagrangian
PDF conditioned by the position is not the one-point fluid
Eulerian distribution function but the density-weighted one-
point fluid Eulerian PDFp5/a; .

D. Trajectory point of view

The trajectory point of view is now chosdeee Sec. )l
and the construction of the trajectory of a pair of particles is
briefly explained with no emphasis on the models, and this
for the sake of generality. Indeed, as specified in the Intro-
duction, the purpose of the present paper is to present a gen-
eral formalism and not to introduce and discuss models used
in numerical simulations. Practical models will be displayed
in Sec. VL.

From now on, the study is limited to nonreactive polydis-
persed turbulent two-phase flows with two-way coupling,
i.e., particles are dispersed by the turbulent fluid and at the
same time they modify the turbulent state of the fluid. The
collisional mechanisms between discrete particles are ne-
glected. Furthermore, both phases have a constant density
with ps<p, (heavy particles These restrictions are made
for the sake of simplicity and extension of the present for-
malism to reactive flows is straightforwafthis is precisely
one of the main interests of PDF modelgrovided a proper

Once again, this relation shows that the Eulerian mass defyoquction of the relevant scalar variablesdg. The treat-

sity functionF{

in the language of statistical physics, the transitional I?ibF

is “propagated” by the transitional PDF, or ment of collisions is a more complex issue that is outside the

scope of the present paper but some proposal for a possible

is the propagator of an information which is the Eulerian approach can be found in Ré¢f.2].

mass density functioff; .

Integration of Eq.(15) over x=Xx,,V, ¥ gives the total
mass of phas&, M, which means that the integral 61f
over phase spacé&/(, ;) is the expected density of phake

In the particular case of heavy particles, the force exerted
on a rigid sphere in a turbulent fluid reduces to the sum of
the drag force and possible external force fidldi&]. The
acceleratiomA, reads
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du, 1 (see[12] for a detailed explanationA general diffusion pro-
p=gr ~ 7 (Us~Up)+Fe, (28)  cess is then introduced to simulate the time rate of change of
P Zy=(xp,Up, U, dp),

whereUg=U(x,(t),t) is the fluid velocity seen, i.e., the fluid

velocity sampled along the particle trajectoxy(t), not to be d%p,i=Up,dt, (309
confused with the fluid velocity;=U(x¢(t),t) denoted by dU. =A. dt (30
the subscriptf. These velocities are indeed different since, P TR

due to particle inertia and external force fields, a fluid and a dU,, = Aq; dt+Bg;; AW, . (300

discrete particle located at nearby positions at tinde not
follow the same trajectories under a time interdl [2,12]
(this drift is often referred to as th@ossing trajectory effect

in the literaturg 2]). In Eq.(28), 7, is the particle relaxation writing Egs. (30), one merely wants to mimic the local in-

time given by 7,=(4ppdy)/(3p¢Cp|Ur|) where Ui=Us  ganianeous behavior of the real discrete particles by stochas-

—U, is the local instantaneous relative velocifp, the (o particles whose dynamical behavior can be described by
drag coefficient, is a nonlinear function of the partlcle-baseq_(.jmgevin equations.

Reynolds number, Rep,|U,|/v¢ (in fact, Cp is a complex
nonlinear function of the discrete particle diametgy) [17]. 3. Trajectory of a pair of particles

The drift vectorAg and the diffusion matriBg are functions
of t, Z andZ, but also of the moments & andZ,. By

1. Trajectory of a fluid particle The path that is adopted here is to gather the preceding
) . results that have just been derived for the time increments of
Kolmogorov theory[11] (for Lagrangian statistigstells  he fiuid velocity seen along discrete particle trajectories and
us that the acceleration of a fluid particle is a fast variable fokq, the time increments of the fluid velocity along fluid par-
a time scaledt belonging to the inertial range. This variable tj¢je trajectories. The system of SDEs is, however, supple-
can be eliminated by fast variable elimination techniquesmented by two termgaccelerations namely,A, _; that re-
(see[12] for a detailed prodf A general diffusion process is figcts the influence of the discrete particles on the fluid and
then used to simulate the time rate of change 44f A that accounts for the influence of the discrete particles
=(x¢,Uy), on the statistics of the fluid velocity sampled along the tra-
jectory of a discrete particle. These terms are a simple con-
dxgi=Uy,;dt, (299 sequence of Newton'’s third law: the fluid exerts a fofge
on the discrete particles and, in return, the particles exert a
dUy,=Ay, dt+By; dW;, (29D force Fo—.t=—F;_p on the fluid. The trajectory of a pair of

. L . particles is simulated by resorting to a general diffusion pro-
where the drift vectorA; and the diffusion matrixB; are  .ass The time rate of change D (Z;,Z,) is given by

functions of t and Z; but also of the moments of

Z: ({Z:),{Z:Zs),...). In Egs. (29), the local instantaneous dx; ;=U;, dt, (319
equationgthe Navier-Stokes equations in Lagrangian fprm ’ '
have been replaced by SDEs, that is, real fluid particles are dU; ;=A; dt+A, ¢ dt+B;; dW/, (31b
replaced by stochastic particles, which reproduce the same ’ ' P M )
statistics. dxp,i _ Up,i dt, (310
2. Traj f a di icl
rajectory of a discrete particle U, =A,; dt, (310)

Let us assume for the moment that, at each point in the
time-space domain, the properties of the fluid are known in dUg=Ag;dt+A, s dt+Bg;; dW;, (31e
terms of mean fields, i.e., in terms of the momentZ of In
the case of discrete particles, the extension of Kolmogorowhere the expression for the drift vectdks,A, A and the
theory is not straightforward. The choice of the variables fordiffusion matricesB;,B, can be found by simple identifi-
the construction of the discrete particle state vector is stilcation with Eqs.(29) and (30). By assuming that the trajec-
subject to some debafd2,18,19. One hint can be found, tories of a pair of particles can be obtained in such a way, the
however, if the limit case of particles having small inertia is following approximations have been made.
consideredparticles nearly behave as fluid elements this (i) Two different Wiener processes are used for the veloc-
case, Kolmogorov theory indicates that fluid-particle acceldity increments of the fluid and the velocity increments of the
erations are governed by small scales which have a bettdiuid seen. Consequently, the correlation between the fluid
chance of showing some universal characteristics whereascceleration at locatior; and the time rate of change bf
fluid-particle velocities are more likely to be problem or flow along discrete particle trajectories at locatigyis neglected.
dependent. Building from the fluid case, it appears preferablét two nearby locations, when particle inertia becomes small
to include fluid velocities in the state vector, i.e., the fluid (7,—0), the present approximation is not accur@tee Kol-
velocity seenUs. It is then possible to generalize Kolmog- mogorov theory but as soon as inertia is not negligible the
orov theory and derive results that suggest to use a diffusiotwo accelerations are not necessarily correlated. This imper-
procesgLangevin equationfor the simulation ofUg [20,21] fection is bearable in the frame of our work where our real
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objective is not a two-point description for the fluid but a able that plays the role of an ersatz of the Eulerian random
two-point description for two-phase flows from which meanvariable that is formed from the discrete particles at location

field equations can be extracted. Xp=X,
(ii) In Egs.(31) an additional term should be present in
the form of a short-range interaction since at a given point in _ppUp—Us
the time-space domain only one phase can be present as HP:E Ty (34

mentioned previously(this term should also enter the
Fokker-Planck equation verified hy’]:p). The form of this In other words, from the stochastic models for the discrete

short-range interaction is not discussed here. particles, or from the one-point particle PDF value at loca-
tion x=x;, the random variablesr, are formed with the
4. Treatment of the coupling terms same distribution. This random term mimics the reverse

orces due to the discrete particles and is only nonzero where

. . he fluid particle is in the close neighborhood of a discrete

(the Navier-Stokes equationsa formal treatment of the . . . ) )
force exerted on the fluid by the discrete particles implies th&article. At the locationx C(_)n5|dered1_[_p is defined as a
use of a distributior{or density of forcg acting on the fluid ~random acceleration term in the equationldf, correlated
located in the neighborhood of the discrete particles in ordewith Us so that one has
to express the resulting acceleration on nearby fluid particles.
This accurate treatment, which would result in a multipoint (I, )=— ﬂ<AD.> (359
treatment of the discrete phase, is outside the scope of the P! ps " P
present paper. Here, in the frame of the one-point approach,
the influence of the discrete particles on the fluid is ex- [
pressed directly in the SDEs, E@81), with stochastic tools. (MpiUgj)=- E(Ap,ius,i)- (35h)

The force exerted by a discrete particle on the neighbor-
ing fluid corresponds to the drag force and it can be written
as

In the exact local instantaneous equations for the flui

E. Fokker-Planck equation

According to Sec. Il, the two-point model given by Egs.
5 Us—U, (31) is equivalent to a Fokker-Planck equation given in
Fpt=—MpAp=—m——, (32 closed form for the transitional PDPY,. This Fokker-

P Planck equation is also verified by the two-point fluid-
particle Lagrangian PDI1‘a'f'p and by the fluid-particle Eule-
rian mass density functioﬁ—}%, as seen in Sec. IlIC. The
Planck equation is, fqr,,

and obviously the variables enteritkg_.; are variables at-
tached only to the discrete particles, namdly,, Us, and
d,. As a consequence, the influence of the particles on thEokker-
fluid seen can be expressed directly as a function of these

apt ap- ap-
pfp+v pfp pfp

variables. Let us consider a local model where, at location . +Vp)

X,, the force due to one particle is given by Eg§2). The ot T OYii " IYp,i

total force acting on the fluid element surrounding a discrete P

particle is then the sum of all elementary forcEs, ., due =— W([Af’i+<AHYi|yf Vi lpr,)
fli

to all neighboring discrete particles,

J A L Jd A
- 5V_p,i( p,iPfp) — &T&i([ s,i

@ Us—U
aips Tp L
+<Ap—>s,i|yp:vpyl/’p>]pfp)
Here, it is implicitly assumed that all neighboring particles 1 92 _—
have the same acceleration ted . This acceleration is +§W([Bf5f]ij Pfp)

multiplied by the expected particle massgtapp,, divided

by the expected mass of fluidps, since the total force is 2

T L
distributed only on the fluid phase. This simple model is only + 5 v av.. [BsBslij Prp)- (36)
a first proposal and work remains to be done to improve the StTs
closure of this term. All tools, which are needed to write mean field equations,

In the case of the reverse force in the equation of a ﬂUiChave now been gathered, |é), the Correspondence between
particle, the situation is more delicate. Indeed, a local modej SDE and a Fokker-Planck equation &idl the relations
for A,_¢ at locationx; cannot be expressed directly in terms petween Eulerian and Lagrangian tools.
of the local instantaneous variables attached to the discrete
element that is located af . At time t and for a fluid particle
located atx;=x, A,_,; is modeled as a random variable that
is defined byA, =0 with probability 1—«(t,x;) and The partial differential equation$®DES9 satisfied by dif-
A,_ =, with probability a,(t,x;). 7, is a random vari- ferent mean field¢f(Z))(t,x), which are expectations of a

IV. MEAN FIELD EQUATIONS
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given polynomial functiorf of Z, are now derived. Here, the a (1, ) (P (1, X){H ) (1,X)

study is limited to the expected values Bf (Z), and the

second-order moment&ZZ). In the literature, the system of :f HV FE(t.x:V dv. d 3
mean field equations fgqZ) and(ZZ) is often referred to as Vie Pt X Vi ) Vi (37

the Eulerian modelor sometimegwo-fluid modelAs a mat-
ter of fact, the system of equations formed by the mean fiel
equations should rather be callizeb-field modellndeed, the

spirit of the approach is to derive field equations for both
phases by using arguments from statistical physics. Let
investigate how such equations are deriyeat incompress-

herefore, in the present formalism, all expected values must
e understood asiass-weighted mean valuéghe fluctuat-
ing component of the variables attached to the discrete par-
ticles are, for the velocity of the discrete particlgs=U,
US (U with (u)=0, for the fluid velocity seen
: : : . us=Us—(Ug) with (ug)=0, and for the diameter of the dis-
ible turbulent flows carrying discrete particles of constantCrete particlesd£,=dp—<dp> with (d,’)>=0. Similarly, the

density but different diameters fluctuat locity f fuid particle is ai b= U
Let us recall momentarily the Lagrangian and Eulerian U<CUU§‘ Ing velocily for a fluid particie 1S given oy =Ly
—(U).

tools that were defined in the previous section as well as the . -

i X . . . For the moments of the discrete phase, a general defini-
relations between them, see Fig. 1. A two-point fluid-particle,. = . . .

. L " tion is introduced, that is a moment of orde+ m+q (with

Lagrangian PDFpy,, (extracted from the transitional PDF n+m+q>1)
f)%p) has been introduced and from it separate information on '
each phase was obtained in the form of the margipgls ap(t,x)pp((d,;)”uslil---usyimup,jl---upyjq>(t,x)
Associated MDFs I{l';) were defined and for both of them
correspondence with the fie(8ulerian description could be
made (this crucial step is indicated with dashed arrows in
Fig. 1. It was then found that each Eulerian mass density
function FE is propagated by the corresponding transitional
PDF, py. The Fokker-Planck equations verified By can  where (,,j)e{1,2,3% V(k,1). Different moments can
then be directly derived from the Fokker-Planck equationghen be obtained by choosing the appropriate values for
satisfied by the transitional PDI—T#; or from the Fokker- (n,m,q. In the present paper, information is limited to the
Planck equation verified by the transitional PP, . There ~ second-order moments, i.e+m+q=2. At last, the mo-
is another, yet equivalent, way to go from the transitionaiments of orden for the fluid phase are given by
PDF ¥, to the Eulerian MDF$ |, see Fig. 1. One can keep n
the jqnt (one fluid pomt—.one p{irtlcle pomtnformanEon by af(th)Pf<uf,i1"'uf,in>(tix):f 11 vf,ikaE(t,x;Vf)de.
treating the two-point fluid-particle Eulerian MDF,. As k=1
indicated in Fig. 1, by direct integration, the Fokker-Planck (39

equations verified by the marginafg can be obtained from s\l second-order moments are listed in Table I. Note that the
the Fokker-Planck equation verified b5 which is, in its  dimension of the space associated to these moments is al-
turn, obtained from the PDF verified by the transitional PDFready 34, and this gives a foretaste, first, of the level of
f)pr. The latter equations are also verified B . complexity when one formulates mean field equations for
To sum up, it is now known how the Fokker-Planck equa-polydispersed turbulent two-phase flows, and second, of the
tions verified by the Eulerian MDFEE can be derived. Let amount of computational effort needed to solve such a sys-
us show how mean field equations are obtained from théem of equationgwhen it is finally closed
Fokker-Planck equations verified lﬁE It is now necessary to clarify the correspondence between
the mathematical expectations, E&7), and Monte Carlo
estimations drawn from a finite ensemble of particles. With
A. Fluid and discrete particle expectations Eqg. (15 and by approximatingS(x,—yy) as 16V, where
V, is a small-volume around poing, it is straightforward
o write Eq.(37) as

m q
:f (3" TL e JT vps FE(LXVp )V, d,

(39

In the case of discrete particles of constant density bu
variable diameter carried by an incompressible fluid, all in-
foErmation is contained in the distribution functions L NK
Pe(t,X; Vi, ) [with o,=(Vs,8,) for the discrete phase _ N i i
and ;= for the quiF:d]. Howepver, the definition of the ak(t,x)(p,()(t,x)(Hk)—&—le MiHUK(D), $i(1)).
expected values and the derivation of the mean field equa- (40)
tions will be addressed, for both phase, in terms of the MDFs
FE(t,XJVkWk)zpka(t,X;Vk,lﬂk) (the reason for this will Here N)'j is the number of fluid K=f) or discrete k=p)
shortly be explained particles in volumesV, and mj is the mass of a fluid or

The mathematical definition of the expectédlilerian  discrete particle indexedl The preceding equation can be
value of a functionH(V,,¢) (a sufficiently smooth func- written by supposing thati) all particles in 8V, represent
tion attached to a given particle, i.e., a fluid or a discretedifferent realizations(ii) space homogeneity is fulfilled in
particle is 6Vy, and (iii ) N>'§ is sufficiently large so that the ensemble
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. . Eq. (15) . ‘
pr [#] F F; field Eqgs. [+]
Eq. (@H
. Eq. (13) Eq. (14)
prP P?p ]:pr AAAAAAAAAAAAAAAAAAAAAAAA - ]:fb; FE

FIG. 1. Derivation of the mean field equations from the two-point fluid-particle Eulerian mass density furediam derivation of the
mean field equations from the marginal Lagrangian PD®$. The Eulerian approach corresponds to the field equations whereas the
Lagrangian approach is indicated by the symdg|

average is a good estimation of the mathematical expecta- » 9
tion. Furthermore, by making the following approximation - (asp H(Hi))+ o P (ViiH)
I

1N B A IH; . 88T 9% H;
ak(tax)<Pk>(t,X):5—VXZ:1 mik, (41) =Pt f,iavf’i 2 ¥t (BBs) i N0V
+f A Vo) U e evpdv 44
one has ( p~>f,i|X’ f)é,_vf (4, Ve)dVs. (44)
NK NK In this derivation, it has been supposed that B¢, andH;
— S [ i g are sufficiently smooth so that all generalized integrals con-
(1) .21 mkH(Uk(t)'d)k(t))/ .21 Mhe: 42 verge (by constructionF§ and (?FfE/an,i converge to zero

when, at least, one component of the fluid velocity goes to

which is indeed the discrete form of the Eulerian massiMfinity, Vii— ). By replacing’; by Hi=1, H;=Vj,
weighted mean value of a given function. and He=V¢,iVy ,_the continuity equation the momentum

In the particular case of an incompressible fluid, sincetquationsimean field equations fddy), and the Reynolds-
fluid particles have then a constant mass, the preceding eiress equationgmean field equations fofusus)) are ob-
pression is of course simplified to yield the local ensembld@ined, respectively. The Reynolds-stress equations can also
average. For discrete particles of constant density such a sirk€ derived using another route, i.e., by making a change of
plification is not relevant. Indeed, such particles may havesoordinates in sample spattis procedure will be outlined
different diameters and therefore different masses. Thé# the nextsection The continuity and momentum equations
natural averaging operator is therefore the mass-weighte@d®©
average.

J J
E(afpf)ﬂL&(afPf(Uf,O):O, (45

B. Mean field equations for the fluid phase :
In order to obtain the mean field equations for the mean D; d M
fluid velocity (Uy ;) and the second-order velocity moment @ 1 oy (Uri) == 2~ (ap {Ur,Us )+ amp  (Ar) +1;
(ufuy;), a standard procedure is used in analogy with the ! (46)

derivations that can be found in kinetic thed82,23. This

procedure is general and can be followed to obtain the meaand after some algebra, the Reynolds-stress equations are
field equations verified by any moment. The expected valugiven by

of a functionH;(V;) is defined by Eq(37) (i is omitted

since the flow is incompressibleWith Egs.(23) and (36), f

and the explanations of Fig. 1, it is straightforward to write “fpfﬁ<uf'i“f'1>: B (9_xk(“fp (U iUr,jUri))

the Fokker-Planck equation verified F)F(t,x;vf),

U ;)
JFF JF J £ —asp 1 (Ug iUs ) X,
TtV G T T vy, A
| ’I Uy
§ T E —ap £ Uy jUs ) X,
+ - (IB:BT.
2 (9Vf i(?Vf j ([BJBf]H Ff)
o +agp i (Asive+ A jvg,i)
d
~ (Ao riXVOFD), (43 +aip(BBD)+IR,, (47

where the Eulerian derivative along the path of a fluid par-
and if one multiplies Eq(43) by H; and applies the-) ticle is denoted¢/Dt with D¢/Dt=3d/dt+(U¢ )3/ X In
operator, one can write after some algebra both the momentum and Reynolds-stress equations, there is a
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TABLE |. Definition of the second-order moments: all moments attached to the discrete particles are
calculated with Eq(38) whereas the Reynolds stresses are obtained froni3y.

Second-order moment n m p Variable
Reynolds stresses 2 (ugiug )
Second-order particle velocity moment 0 0 2 (Up,iUp )
Second-order fluid velocity seen moment 0 2 0 (ugiug ;)
Fluid-particle velocity correlation tensor 0 1 1 (Up,ils )
Diameter-patrticle velocity correlation tensor 1 0 1 (dgup,i)
Diameter-fluid velocity seen correlation tensor 1 1 0 (dpus,i)
Second-order diameter moment 2 0 0 <(d§)2>

term (1 ?{'i for the momentum equations amﬁij for the (U )M((Uy ) +(U¢ ;)M(Uy 1)) =0, where the operato¥’
Reynolds-stress equatigrthat accounts for the influence of symbolizes Eq(46). Using the same reasoning as in the case

the discrete particles on the fluid phase. For both terms, furef the momentum equation and applying the model of Sec.
ther considerations are necessary before their final form cajy p 4 and the results of Sec. IlIC 2, the terrﬂiij is ex-

be obtained. Let us start with’; . pressed as
The terml}\ is expressed as a function of the conditional
expectation of a random variablas it has been suggested in
Sec. llID 4 a,
f,ij:(_)afpr’ Yop.iVep(Yp,i,VydVidY, (53

ag

(04
|Mi=a—‘f’f (i VOFF(t,x; Vi) dVy, (48)

where the ratioa,/a¢ expresses the probability to have a that'is,
random force conditioned on the fact that there is a fluid
particle atx. Let Y, be the sample-space value for the ran-

. . . . . 1B =— (AD U, ) (54)
dom variablell, at timet and locationx. It is then possible ,ij ApPpiApiYs,j/s
to rewrite the previous equation asherep(Y,|Vy) is the
PDF of I1,, conditioned upors]

and finally

o
=22 [ X OV VO FE VAV dY,. (49

' N 1811= — appp(Ap,Us i+ AD jUs ) + appp(Ua i{Ap ;)
Let us introduce the joint PDF dfl, and Us, p(Y,Vy), o
and the definiton of the conditional PDR(Y, Vi) U i (Ap))- (55)
=p(Y,,ilVy)p(Vy), where p(V¢) denotes the normalized

PDF of Us at locationx. From the relations given in Sec.
[11C 2 one has directlya;p;p(Vs) = FfE(t,x;Vf) and there- The expression oIffR’ij is written in a form where the differ-
fore the terml !, can be written as ence(Ug ;) —(Us;), denotedify;, explicitly appears. This
quantity represents, at a given timand a given locatiorx,
v [ % b the difference between the expected fluid velocity and the
= @ ap i (Ilp)=—appp(Ap)- (50) expected fluid velocity seen by the discrete particles.
Finally, in Table II, a list of the terms to be closed is
The terml Eij that enters the Reynolds-stress equations igiven. A distinction is made between the unclosed terms and
expressed by the third-order moments that appear naturally in the PDE
verified by (usus). The closure issue will be addressed in
IR =5+ 150 = (U I +(Ue 1Y), (1) Sec. VI where a closed two-field model is derived.
where TABLE II. List of the unknown terms in the mean field equa-

tions of the continuous phase.

1T = f (Ap_rilx VoV FRLX VAV, (52
Third-order

This form of | Eij is easily found as follows: the PDE, which Equation  Variable Unclosed term moment

is written for the local instantaneous second-order mo- Eq. (46) (Uy) Ilp\)Af,i<Af,i>
ment (U Uy ;), is linearly combined with the PDE for gq.(47) (et 1R (AU ((BeBD) ) (U U up )
(Uti){(Ug ;). The latter PDE is obtained by developing
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C. Mean field equations for the discrete phase

D J
—p = —_— — ! .
The mean field equations for the discrete phase are now “Prpt (dp) axmppp(dpup*'))’ (589

obtained following the procedure presented in Sec. IVB

when deriving mean field equations for the fluid phase. Thavherex=(appp)/(asps) and where the Eulerian derivative
expectation of a given functioh,(V,,,#,) is defined by Eq. along the path of a discrete particle is denoeg/Dt with
(37). Using Eqgs.(23) and (36), and the explanations of Fig. Dp/Dt=0d/dt+ (U m)d/ IXp,.

1, it is straightforward to prove thﬁg(t'x;vp'¢p) verifies The mean field equations verified by th.e se'cond—order
the following Fokker-Planck equation: momentgn+m+q=2 in Eq.(38)] can be derived in a way
that requires less algebra than the procedure that has been
JIF JIF, d . 3 . outlined so far by using Eq57) and the right function for
ot +Vpi <9_X| = O—,V_pi(Ap,in) - gTsi(As,in) H, . By introducing a change of coordinates in sample space,

v=V—(U)(t,x) and §,= 8,—(d,)(t,x) (wherev stands for

Vp OF V), it is straightforward to write the Fokker-Planck
equation verified b)i'fﬁ(t,x;vp ,vs,ﬁ,’)). Then using the usual
technique, the PDE verified by a given function
Hp(Vp,Vs,8p) is derived in the same fashion as for E§7)
where similar conditions for the convergence of the general-
ized integrals are required. This procedure is not detailed
As it was done in the previous section, E§6) is multiplied  here but it can be found with all necessary derivations in Ref.
by H, and the(-) operator is applied. Then, as done in Sec[12]. After some algebra, one finds fou, jup ;).

IVB, As, Ap, Bs, and’H, are assumed to be sufficiently
smooth so that all generalized integrals conve(@%,
JFpldVs;, anddF5/dV,; converge to zero when, at least,

2

2 Vv, B

- Wsi«Ap—»s,ilx’Vp . ¢p>FE)- (56)

D J
P
apPpD_t<up,iup,j>: - é,_xk(appp<up,iup,jup,k>)

one component ok or V, goes to infinity. After some AU, )
- . P.j
derivations, one can write — appp(Up,i Up i) I
J J
<z 2 _ HUp,i)
ot (appp<Hp>)+ x; (appp<vp,|Hp>) — appp<up,jup,k> —ﬂxil
IH IH
:appp<Ap"aV_?>+appp<AsviaT?> +appp(Apivp it Apvpi)s (59
P > for (U, iUs ;)
+1 <(B BI) *Hp > P
5 app sBs)iing v D J
2 PP SV Vs P _
S';H s apPpﬁ(”s,iupﬁ_ - (9_)(k(appp<us,iup,jup,k>)
+f (Ap_,syi|X,Vp,1//p>W?FE(I,X;Vp,lllp)ded(/ip. Uy ))
> _appp<us,iup,k> X,
(57)
e . . (Us,i)
The PDEs for the specified discrete particle expectations can — appp(Up,jUp,i Toxe
now be derived, simply by choosing the right function for K
Hp. Hp=1Vpi.Vsi,6, gives the continuity equation, the +appp(AsiVp ) T appp(Ap Vs i)
momentum equation, the PDE verified by the expected fluid o
velocity seen, and the PDE for the mean diameter, respec- _appr<Ap,iup,j>’ (60)
tively. These equations have the form
and for(usus ),
d a B D,
E(appp)‘l' a_xi(appp<up,i>)_oa (583 apppﬁ<us,i us,j>
D 0 _ ‘9<Us,j>
apppD_:<Up,i>:_K(appp<up,iup,j>)+appp<Ap,i>’ __a_xk(a’ppp<us,ius,jUs,k>)_appp<us,iUs,k> X
j
(58D Us)
_apPp<us,jus,k>—Y+a’ppp<As,jUs,i+As,iUs,j>
Dp J c?Xk
appp (Usi)=— —— (appp(UsiUp i)+ appp(As;
pPth ( S'I> IX; pPp< > p'J> pPp< SVI> +appp<(BsB-sr)ij>_apPpX<Alg,jus,i+A|3,ius,j>- (61)
—apppx(Ap), (580 After some calculus, one finds féd/u, ),
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D d
P/ ’
apPppy (dpUp,i) =~ (9_)(j(“ppp<dpup,iup,i>)

‘9<Up,i>

—appp(dpUp,j) ox;

(dp)
]

0
— appp(Up,iUp,j) o T appp(Ap,idp),

(62
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V. MEAN FIELD —-PDF APPROACH

In the previous section, the derivation of the mean field
equationgup to the second-order momentsr both phases
has been presented. It has been explained, in both Tables I
and lll, that apart from the third-order moments, writing
mean field equations is a move that generates, from a closed
mesoscopic model, unclosed terms at the macroscopic level.
Indeed, one has to express the expectations of complex non-
linear expressions of the basic variables, for example, terms

such ag/AP) or (APug ).

There is a natural way to avoid most of these difficulties,
which is the Lagrangian approach. In fact, in such an ap-
proach, mean field equations are used solely for the fluid
phase whereas for the discrete phase information is still
available at the mescocopic level, see Fig. 1. Actually, the
term “Lagrangian approach” is rather misleading. Here the
N approach is called from now omean fieldPDF approach

since mean fields are used for the description of the fluid and

a PDF is employed for the discrete phase. It is now clear that

a(d,) such a method:ontainsthe.mgan. fielq approach. Althoygh
—appp(us,iup,j)a—x?+appp<AS’id,’J> the description of the fluid is identical for the two-field
| model and the mean field-PDF model, the treatment of the
discrete phase is different. In the mean field—PDF approach,
information is available for the local instantaneous values of
any variable attached to the discrete phase whereas in the
two-field approach a contraction has been méalgy the
two first moments of the variables of interest are available
This distinction is apparently often missed in the literature.
The two models are frequently compared without specifying
that they do not correspond to the same level of information.
As a matter of fact, if such a comparison is attempted, one
should not only look at the computational effort and the easi-
ness of implementation but also at the information that can
be extracted from the model. If one is interested in, for in-
stance, discrete-particle residence time or conditional statis-

which concludes the set of mean field equations for thgjcs the mean field—PDF approach can provide such infor-
second-order moments related to the discrete phase. A fir§lation but the two-field model cannot.

glance at the amount of terms that are unknown, not to men- The mean field—PDF model equations are, for the fluid,

tion the third-order moments, gives an insight into the intri-EqS_(45) to (47), and for the particles Eq¢30). The closure
cate work which is left, that is to provide suitable closures iNhroblem has been greatly simplified since the exhaustive list

order to use the model in practical computations. Table lllof Taple 111 disappears. Closure is now limited to Table I1.
gives a list of all unknown terms that appear in the mean

field equations for the discrete phase. This information has to
be supplemented by Table Il to obtain the total amount of
unknown terms. The wise reader has already realized that a

tremendous work is waiting and it is already clear that such So far, a probabilistic approach to polydispersed turbulent
an approaclimean field equationgan only be used in prac- two-phase flows has been presented. From it, mean field
tice when further contractions are possittlee dimension of equations have been written for the expectations and the
the system is 46 with 19 unknown terms, which is nearlysecond-order moments of the variables that form the state
intractable, that is in a simplified case. This is the subject of vectorZ. The SDEs, proposed for the trajectoriesZofand
Sec. VI where an example of a practical model is given inthe mean field equations, derived f@) and(ZZ), are lim-

the case where there is no size distribution for the discretéed to the case of nonreacting turbulent polydispersed two-
particles, i.e., the particle diameter is eliminated from thephase flows where the fluid is incompressible and the par-
state vector. As mentioned in the Introduction, there are alticles are noncolliding hard spheres. Yet, the mean field
ternatives to the mean field equations, for example, the Laequations, to be used in practical simulations, present an in-
grangian approach. It is now shown that, with the Lagrangianricate challenge: the dimension of the problem is very large
approach, a great deal of the difficulties, created by the treatnd the amount of information that has to be closed is far
ment of the discrete phase with mean field equations, can tfieom being negligible. It is possible, however, in practice, to
eliminated. use the mean field equations for computations if further as-

for (d,SUs,i%

2 () =~ oty )
appp=, (dpusi)=———(app UgiUp
pProt {dplsi ax;  pPriCplisitlp,
N
—appp(dpUp,;) ox]
—apppx<AEid{)>, (63)
and for((d))?),

Dp N2 Jd N2
apppﬁ«dp) )>:_a_xi(appp<(dp) Up,i>)

Comoidiy s X9
appp(dpUp i) ax; (64)

VI. PRESENTATION AND HIERARCHY OF PRACTICAL
MODELS
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TABLE lll. List of the unknown terms in the mean field equations of the discrete phase.

Equation Variable Unclosed term Third-order moment
Eq. (580) (Up) (Ap)
Eq. (580 (Ug) (Api) (Asi)
Eq. (580) (dp)
Eq. (59 (Up,ilpj) (Ap,ilp,j) (Up,ilp jUp i)
Eqg. (61 (Us,iUs}) (AsjUs) (Apius) (BB (Us,iUs jUs 1)
Eq- (60) <us,iup,j> <Ap,jus,i> (As,jup,i> <AE,jup,i> <us,iup,jup,k>
Eqg. (62 (dgup,i) (Ap,idp) (dgup,itp i)
Eq- (63) (dé)us,i> <As,id;)> <d;’3us,iup,j>
Eq. (64) ((dp)? ((dp)?up,i)
sumptions are made on the nature of the flow, i.e., if further 1 o(P)
contractions are made4]. Asi=— o ox +9i—Gij(Ug;—(Ug i)+ ((Upp)
Before presenting the form of the mean field equations f '
that are used in simulations, let us show an example of a HUsi)
two-point PDF model from which practical Lagrangian and —(Usp)) ax; (67)

Eulerian models can be extracted. The presentation follows

the hierarchy of models that has been displayed in the pre- ks
vious sections(i) a two-point PDF model where information Biii = (6){ Cob‘k_ +
is available at the mesoscopic level for both phasisa f
mean-field—PDF model where a first contraction is made foynere Bg,; is expressed in its simplest forfas a diagonal
the fluid and(iii ) a two-field model where further contraction 5,4 nohisotropic matrix and G; is given by Gy

is performed(information is given solely for the two first =8;/T;;. TF, is the fluid integral Lagrangian time scale

moments of both phases sampled along the trajectories of the discrete particles. This
time scale can be evaluated by a formula due to Csanady
[26] as(if gravity is aligned with the first coordinate labeled

1)

K, )
310 1| (68)

A. Example of a two-point PDF model

From now on, the external force fielg: is reduced to

gravity g. In the single-phase flow case, one can use the T* =T /

RSM (Reynolds-stress mode¢quations since there is a di- Li— L

rect connection between a Langevin equation and a RSM

equation[10]. However, another route can be chosen usingNhereC1=,82, C,=C3=4p? and g is the ratio of the fluid

arguments from statistical physi€25]. The model is given Lagrangian and Eulerian integral time scalgs:T, /Tg.

by The formula of Csanady implies that, even in the simplest
case,Gj; is a nonisotropic diagonal matrix. To complete the

1Py Yni— (Ui definition of Eq.(68),

pt 9% 9 T

2\ 1/2
Ll ) | 69

" 2k/3

fi—

+G{j (U, j— (U ),
(65

3 3
%~kf=21 bi<ui2>/ ;l b; , (70)

Bt,ij=VCo(€)5jj (66)  whereb;=T_/T} ;. In practice, the PDF approach given by
Egs. (31 is not self-sufficient since one has to compute the
mean pressure fieldP)(t,x;) and the mean dissipation of
where (P)(t,X) is the mean pressure field arf@)(t,x;)  turbulent kinetic energy,e)(t,X). It is possible, following a
represents the mean dissipation rate of turbulent kinetic emprocedure outlined by Pod®], to derive for each phase a
ergy, ¢ =(uf)(t,x). T, is the fluid integral Lagrangian Poisson equation verified by the mean pressure. This Poisson
time scale, i.e.T =Ck/(e), where 1C=1/2+3Cy/4 and  equation, for each phase, guarantees that the continuity equa-
Cy is a constan{given by Kolmogorov theony Gf} is an tion of each phase is satisfied. The sum of both equations is
anisotropy matrixwhose precise form is not important here a Poisson equation that expresses the mass conservation of
that dependsolelyon the moments oZ; . the mixture. Fore), a model, based on Kolmogorov’s third
The construction of the SDE for the simulation of the time hypothesigIn(e) is normally distributed in homogeneous tur-
increments of the fluid velocity seen is an open questiorbulencd, has been developd@7]. It consists in writing a
[12,21 and the form that is proposed here belongs to a set dfangevin equation for the frequency rate= e/k; along the
possible solutions. The present model is expresse(d By trajectories of the fluid particles,
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do=[A°+Ay (]dt+B“dW, (71  same procedure can be applied to the coupling term in the
RSM equations(F ¢ Uy j).
where the drift and diffusion coefficient8” andB® respec- The level of simplicity of the mean field-PDF modeh

tively, are specified in Refl27]. The new state vector be- comparison to the simplified two-field model that is going to
comesZ=(Z;,Z,,») andA® andB* are functions of, Z be presented in Sec. VI)@nd its ability to compute compli-
and its moments. Equatidii1) has been supplemented by a cated terms in the polydispersed case are noteworthy. It is a
term A . accounting for the influence of the particles on School example of the reason why PDF approaches should be
the local instantaneous frequency. A possible model for thi§referred to mean field approaches in cases where the phys-

term reads ics of the flow becomes complex. Examples of practical
computations performed with the mean field-PDF approach
e =G I, Vs, (72) can be found in Refl12].
which means that the influence of the particleswiis re- C. Derivation of a practical two-field model

lated to the local instantaneous work performed by the action
of the particles on the fluid multiplied by a coefficient that is
a function of the moments o only. This subject is not
dwelt upon here and only the reduced state vedor
=(Z¢,Zp) is under investigation. For the complete state vec
tor, the Fokker-Planck equation, E@6), can easily be ex-
tended by adding the additional terms generated by the a
ditional dimension(w).

The derivation of the model is treated in two different
steps. First, a list of hypotheses that make it possible to re-
duce the dimensiod of the system is given and second, it is
shown how to close the unclosed terms by making further
‘hypotheses. It is recalled that, in the frame of our study that
is limited to second-order moments=46 andn=12[seven
hird-order moments and now five unclosed terms, the other

We do not dwell upon the different models that can beones can be directly closed, see H@&)—(70) and Tables Il

derived for the drift vectors and the diffusion matrices andand .
we try instead to retain the main features that are of impor-
tance for the derivation of the mean field equations. Detailed

discussions and proofs of the modeling choices can be found Al hypotheses needed to reduce the dimension of the
in Ref.[12]. original system are now given.

(i) Let us consider the case where the distribution in di-
ameter of the discrete particles is “narrow” enough so that
the statistics involving the diameter can roughly be approxi-

In the case of the fluid, the only difficultif one accepts mated as constant in time and spalthis hypothesis is
a gradient hypothesis for the third-order momegnidien  equivalent to state that the suspension is monodispersed and
writing mean field equations is the coupling terms both in thetherefore segregation effects cannot be quantified anymore
momentum equations and the RSM equations. In the case ghe sample space is only reduced by one dimension but
the discrete phase, a closed mesoscopic model, in the form efght PDEs have already been eliminatadl PDEs involv-
Langevin equations, has already been provided, E8j5. ing the particle diametgrthat is the new dimension of the
and (68). system isd= 38.

When the PDEs for the fluid are solved by classical meth- ~ (ii) Furthermore, it is assumed that there is no statistical
ods(for example, finite volume methopthe coupling terms  bias between the statistics of the second-order moments for
in a computational cell can then be calculated in a naturajhe fluid velocity seen and for the fluid velocity, i.€usus)
way by making the classical hypothes@$,homogeneity in - =(u;u;).
space, andii) the approximation of the expectation by en-  So far, with two hypotheses, which severely limit the
semble averaging when the number of samples in the cell isumber of problems which can be treated, the dimension of
sufficient. For example, for the coupling term in the momen-the problem has been reducedde 32 but many unclosed

tum equations, lev; be the volume of the computational cell terms remaim=9 (four third-order moments and five un-
that containd\,, discrete particles. The total force in the cell closed termp

due to theN,, particles is(with N, large enough

1. Reduction of the dimension of the system

B. Derivation of a practical mean field-PDF model

2. Treatment of the unclosed terms

NP
F .= 2 po VAR (73 Let us now enumerate the hypotheses that are necessary
p—f— & FPp¥p™p .
n=1 to make in order to treat the unclosed tertie hypotheses
. . . are numbered in continuation with the previous subsection
whereV, is the volume of the discrete particle labeled  ang this for the sake of clarity

The previous equation is indeed the mean momentum ex- (jji) It is assumed that all third-order tens@BZ;Z,) can

chang€g using apz(Er,\]‘ﬂ lV,?)/Vf] be expressed as a function of what is knolensolved foy,
that is,(Z;) and(Z;Z;) (a macroscopic closure is made with
(Fpﬂf>=apppvf(A,?). (74)  all the difficulties and the risks that such a move entails

This is done in analogy with classical turbulence results
One can, therefore, see that complicated nonlinear termghere one seeks macroscopic relations of the tjkos the
such as(AE} are computed in a simple and natural way. Thephase index
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<ukluk]ukm> kan(<z> <ZZ>) <uk|ukj> I _Ik<pp>p(<us,i>_<up,i>)- (81)

(75
Here,Z, is equal to 1 ifk=p and to—1 if k=f. Bearing in
and mind the models presented above and hypothégegs(v),
the remaining equations can now be written. For the expec-
tation of the fluid velocity seeqUs), it is found that the sum

~(Us;Up Upm) =Dspmal(Z), <ZZ>) (us|up i) of the terms to close reddhe two last terms on the right-
(76)  hand side of Eq(580)]
whereD, j; andDg;; are often called “turbulent diffusion 19 ) a(Uf i)
tensors.” Their possible forms are not given here but can be ®pPp| — E &Xi +((Up,j)—(Us)) — Xl

found, for example, in Ref28]. . 82)

(iv) It is assumed that, for heavy particles, a good ap-
proximation of A, is [Eq. (28) is supplemented with the where, as mentioned beforg= app,/ap;. For the RSM
mean pressure gradignt equations, as done for the expected fluid velocity seen, only
the sum of the terms to close is given, and this for the sake of
clarity. The closure of the third-order moments is immediate
by resorting to hypothesisiii). Using hypothesiqii), the
sum of the three last terms on the right-hand side of(&§).
where A'g is defined by Eq.32). In this expression, the is
influence of pressure fluctuations has explicitly been ne-
glected. Indeed, the pressure that should be involved in the fPf a
gradient is the local instantaneous pressure segh,x,(t)), [Cur,ur) = 5kidy 1+ asp Gidur )
along the path of the discrete particle, which is different from
the pressure fieldP(t,x;(t)) seen around the fluid particles. as, “pPp
Therefore, it has been assumed that the fielet (P) has no (U U T+ 72 (Tp) [=2Cur i)+ Mij Uy U )
influence on the motion of the discrete particles. )

(v) Let us suppose that all terms involving, can be + Uy i(Ur,i)]— atpi5(€) 5 , (83

linearized as followgwhere, in our caseg(u) is a linear ]
function of u=1,us,u,): where 1T=(1+3Cy/2)(€)/k; and whereM; is a symmet-

ric tensor given byM;;=(usup )+ (Ugjup;). It is easily

1 seen that, apart from the supplementary terms that arise from
(ADG(u))= m((Us—Up)Q(U)), (78 the two-phase flow formulationap;) and the influence of

P the discrete particles on the fluid, E@.7) supplemented by
Eq. (83) is equivalent to the Rotta model wh@'ﬂ =0. This
illustrates perfectly the correspondence between RSM mod-
els and SDEs for fluid particles. Depending on the chosen
form of the SDEs, different RSM formulations can be ob-
ained.
é The term to close in Eq59) readq once again the closure
of the third-order moments is immediate by resorting to hy-

Api= = = S HAG TG, (77)

(1p)=T7p((Z)(Z2)). (79

This final assumption allows us to close all terms involving
AE’ and more generallA,. After a subsequent number of
hypotheses, it now possible to finalize our task and give
simplified, but still quite intricate {=32), closed two-field

model. pothesis(iii )]
3. Finalization of the model p
. . . - pPp
It is now straightforward to write the set of continuity and ~ @pPp{Ap,iUp,j+Ap jUpi)=— ) [2(up,iupj) —Mjj],
momentum equations for both phases. The continuity equa- (84)
tions are given by Eq945) and (58g. For the momentum
equations, one has and for the fluid-particle velocity moment, the sum of the
Py three last terms on the right-hand side of E&p) is
K d d
akpkﬁ<uk,i>: —ay o a_xj(akpk<uk,iuk,j>)+ Y

<pp>p[<uf iUs ]> 1+X)<us,iup,j>+X<up,iup,j>]
+ arpii (80)

. . L . . . + apPpGik<us,kup,j>- (85
where the interaction terrty ; is simply given by lineariza-

tion ofAF'? as explained in hypothes(g) (the precise form of This last closure completes the formulation of the “simpli-
the calculation of 7p,) is not given here but can be found in fied” two-field model. The form of the equations given here,
Ref.[28]), especially the ones wher&g plays a part, should not be
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taken as final since the exact formulation of the acceleration Dok, 0

ak
of the fluid along the trajectories of discrete particles is still YpPp Dt g

D ‘9<Up,i>
®pPp pa_xk_“ppp<”p,i“pvj> ox;

. Xy
an open question. k
app
4. Further reduction of the system - <7p_—>p[2kp_ Kepl, (89
p
As mentioned in the Introduction, one of the underlying
goals, when one attempts to write mean field equations ténd
describe a physical phenomenon, is the use of modern com- D K K U
puter technology to obtain numerical solutions by, for ex- pip _ 9 J HVUp,i)

fp
“pPpDSDan — appp(Us,iUp,j) ox;

ample, control volume methods in combination with frac- “PPr Dt IXk
tional step algorithmd424]. Here, it is shown, by further AUe)
reduction of the closed system of PDEs of the previous sec- — appp(Up iUy ) ——l ﬂ[Zkf—(l
tion, that our approach is in line with the two-fluid models PERYTRITRAT gx (7p)
that can be encountered in research and industrial softwares
[24]. Let us point out that the dimension of the system TX0Kep T 2xKp] T apppGij(Usip). - (90)
=32 is still too large to allow practical simulations with Here, it has of course been assumed tB&=0, Dy m,
conventional techniques for the resolutions of PDEs. The:ZDk5nm and Dgpmn=Dspdmn. Equations (88)—(90)
system can be further reduced by making two additional hysupplemented by the continuity equations, E(5) and
potheses. . . (584, the momentum equations, E@O0), and Eq.(583 in
(vi) Let us consider flows where the level of anisotropy compination with Eq(82), are often used in the literature for
(for both phasesis low so that all second-order tensors, computations in different applicationf24]. Given the
(UpUp) and(usuy), can be contracted and expressed by theitamount of contraction and the needed hypotheses, one can
trace (Z?) as stated in the Boussinesg-like approximation.yonder whether it is suitable or not to use such a model or if
For both phases, the Boussinesg-like approximation is giveg more detailed description, such as the mean field-PDF
by model, should be used.
R For numerical reasong24], the coupling term between
(Ugug )= 3(uR) 8 — 21((Z),(Z%) S j((Uk)), (86)  the two momentum equations is often written in terms of the

_ o o - ~ so-called drift velocity as
wherev, are viscositylike coefficients whose specific form is

not given but possible expressions can be found in R&]. appp
S, is the deviatoric part of the strain rate ten&gr; . In the I"W«Uf’i)_wp'i)_ud'i)’ ©D
Boussinesqg-like approximation, it is implicitly assumed that
the characteristic time scale of the fluctuating motion isso that both momentum equations are coupled. One has then
much smaller than the time scale of the mean flow, a conto give the PDE satisfied by the drift velocity that is simply
straint that is not always true in practice since, in manyobtained by using Eqg45), (58a, (58¢), and(82), that is,
flows, this separation of scales is not always verified. after some algebra,

(vii) Let us make a similar assumption as hypothégis

for the tensoKug;up ;). It is supposed that a general macro- ) :i L2 .
scopic law exists, that is, APy U x; (@pp,{Us;Up,) Xox; (aspy (Uil j))
(U ip )= 5(Us p) 85+ F5((2).(Z2), (87) —— % @)
j

where we do not describe the exact form of the funcfign

see Refs[28] and[29] for possible laws. The form of this equation strongly depends on the expression
If hypothesegvi) and (vii) can be applied, the dimension that is chosen foAg in the Langevin equation fodg and

of the system becomes “reasonablel< 14). Letk, denote therefore the form given above should not be considered as

the turbulent kinetic energy of both phaskg=(uZ)/2 and  the last word.

Kip the fluid-particle velocity covariancek,=(Us;Up ;).

Equations(47), (59), and (60), where the closures given by VII. CONNECTIONS WITH PREVIOUS WORK

Egs. (83)—(85) have been inserted, can than be replaced by

three scalar PDEs of the form In this work, a probabilistic description of polydispersed

turbulent two-phase flows has been presented in the form of
U5 a two-point PDF(one fluid-particle point and one discrete-

’ particle poinj. The trajectories of the pairs of particles are
given by diffusion processes and thus the Fokker-Planck
apPyp equation verified by the PDF is known. In other words, a
+ m[—Zkarkpf+ud,i<ur,i)]—afpf (€), closed mesoscopic approach is provided. It is worth bringing

P out some important features of the present formalism.

(88) (i) The correspondence between a PDF equation and

&Pt Dt _&Xk

ki

aipiDy e

— agpg <uf,iuf,j>T
j
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mean field equations has been noticed, for the description dbr the particles In the latter models, there is, once again, no
the discrete phase, by several authors. However, in these aglear correspondence between Eulerian and Lagrangian
proaches, there is no systematic path from the PDF descrigiantities and closure, for the fluid, is performed at the mac-
tion to the field description, i.e., the correspondence betweefpscopic level. In the former models, apart from the problem-
Eulerian and Lagrangian quantities is not clearly made. Irflependent macroscopic closures, it is often intricate to estab-
the present formalism, there is a natural path from a Lalish the link between the computed quantities and what can

grangian PDF equation to an Eulerian PDF equation, an@€ measured by experiment. This is not the case in our ap-

therefore to mean field equations. proach where all operators are in fact, in discrete form, mass-
(i) By contraction of the present PDF formalism, the dif- weighted averages.

ferent approaches encountered in the literature can be ob-

tained. There is a hierarchyifferent levels of information

between the models that is clearly identified. _ In the present paper, a probabilistic description of poly-
(ii.1) By contraction over all discrete particle properties, gispersed turbulent two-phase flows has been presented in
the PDF equation verified by the marging (the one-point  the form of a two-point PDFone fluid-particle point and one
fluid PDF) is retrieved. This COI’I’GSpOﬂdS to the classical PDFdiscrete_partide poim_where the models are given in terms
approach to turbulent single-phase flop@s). of the trajectories of the associated diffusion process. By
(ii.2) By contraction over all fluid particle properties, the doing so, a closed mesoscopic model is provided and it is
PDF equation verified by the margingj (the one-point par-  shown that there is a clear equivalence between Langevin
ticle PDB is retrieved. This corresponds to the classical La-equations and the Fokker-Planck equation verified by the as-
grangian modelg2]. These methods are rather easy to imple-sociated PDF.
ment but this very easiness may hide consistency issues and By giving the relations between the field of distribution
a lack of theoretical analysis can lead to the creation of spefunctions(Eulerian PDF and the two-point Lagrangian PDF,
cific problems[12]. In the present approach a mathematicalit is demonstrated how mean field equations can be derived
framework is provided and such problertgpurious drifts, in a consistent manner without having recourse directly to
correspondence with a PDF},.are easily avoidedsee[12]  macroscopic closures. It is then emphasized that, in order to
for detailed explanations derive a two-field model that can be used in practical com-
(i.3) The PDF approach to polydispersed turbulent two-putations, supplementary assumptions have to be made that
phase flows is often encountered in the literature in the forngreatly limit the types of flows that can be considered. In
of a kineticlike equation for the discrete phase, §8,19.  flows where, at least, one of these hypotheses cannot be
In these work, one secks the Fokker-Planck equation verifieghade, it is shown that the natural alternative is the mean field
by the marginap'rg or more precisely by one of its marginals. PDF approach where one uses the mean field approach for
Indeed, the fluid velocity seen is often considered as an exhe fluid but where one keeps the PDF approach for the dis-
ternal variable and one has to resort to functional calculus tarete phase. It is important to stress that these two ap-
provide a closed form of the Fokker-Planck equation. In suctproaches are often compared in a misleading way. As clearly
derivations, Gaussianity has to be assurffés] and in non-  seen in the present work, they cannot be compared directly
homogeneous turbulenéehen the velocity of the fluid seen since they correspond to a different level of information for
is bound to deviate from Gaussianitythis approximation the discrete phase. In the case of the mean field approach,
might be too strong. It has been shoWt?], by Gaussian only the two first moments are availaliigith all supplemen-
integration by parts, that the Fokker-Planck equation obtary assumptions and limitations that are negdedereas in
tained by most authors is in fact a contraction of E2f). the mean field-PDF approach any expectation for a function
(iii) In the present formalism, from @losedmesoscopic  of the variables attached to a discrete particle can be evalu-
description, it is demonstrated how a closed two-field modehted. As a matter of fact, when two methods are compared,
can be derived, provided that some additional hypotheses amne should not only judge the computational effort that is
made. The path that is proposed in this work is rigorous angieeded(an error that is often magéut the optimal ratio
not model dependent. Once the models for the trajectories dfetween the level of information that can be obtained and the
the pairs of particles have been chosen, the derivation of theimulation time.
mean field equations is straightforward and the classical Finally, it should be pointed out that the use of probabi-
problem of finding closure laws at the macroscopic level caristic tools in the present form is not the ultimate answer to
then be avoided. our problem of modeling polydispersed turbulent two-phase
(iv) Many two-field models are often derived by time or/ flows. In other words, the probabilistic tools that are em-
and volume averaging the local instantaneous field equationdoyed cannot be declared as fundamental but as a practical
and by introducing closure laws at the macroscopic levelway to model complex systems within the frame of well-
Other two-field models combine ensemble averaging operastablished mathematical theories such as the theory of dif-
tors (for the fluid and probabilistic toolgkinetic equations fusion processes.

VIIl. CONCLUSION
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