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Delayed self-synchronization in homoclinic chaos

F. T. Arecchi? R. Meucci! E. Allaria! A. Di Garbo}®and L. S. Tsimring*
Listituto Nazionale di Ottica Applicata, Largo E. Fermi 6, 50125 Florence, ltaly
2Department of Physics, University Of Firenze, Florence, Italy
3Istituto di Biofisica CNR, Pisa, ltaly
4Institute for Nonlinear Science, University of California, San Diego, La Jolla, California 92093-0402
(Received 13 August 2001; published 11 April 2D02

The chaotic spike train of a homoclinic dynamical system is self-synchronized by applying a time-delayed
correction proportional to the laser output intensity. Due to the sensitive nature of the homoclinic chaos to
external perturbations, stabilization of very long-periodic orbits is possible. On these orbits, the dynamics
appears chaotic over a finite time, but then it repeats with a recurrence time that is slightly longer than the delay
time. The effect, called delayed self-synchronization, displays analogies with neurodynamic events that occur
in the buildup of long-term memories.
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The last decade has seen a great interest in controllingur laboratory implementatiofFig. 1), a single-mode C9Q
chaos using small perturbatiofts]. It started with the semi- laser with intensity feedback is tuned to the parameter range
nal paper by Ott, Grebogi, and York2] in which they pro-  vyielding homoclinic chao$9]. The intensity output of the
posed a method of stabilizing unstable periodic orbits usindaser consists of a sequence of almost identical spikes, re-
tiny, yet carefully chosen perturbations to an accessible sygeating at erratic times because of the homoclinic scram-
tem parameter. Subsequently, other methods were proposdaling, with an average period of 50@s. [Fig. 2(@].
as the delayed feedback due to Pyrad@dswho showed that Through a delay unit described elsewhgt€], a small de-
reinserting a time-delayed version of the output back into théayed perturbatiorfa few percent of the intensity outpus
system can at certain conditions stabilize some of its periodiadded to the feedback signal responsible for homoclinic
orbits. However, that method does not provide a reliable proehaos. As Figs. @) and Zc) show, this small feedback cre-
cedure that guarantees the stability of a chosen orbit, in pagates a sequence of spikes, which is periodic with a peFjod
ticular, it is exceedingly difficult to stabilize long-periodic slightly larger than the delay tim&, of the feedback loop
orbits. An improved version of the delayed feedback wagDSS. In fact, the DSS adjusts in such a way that the spikes
represented by the adaptive contrigt], experimentally of the delayed signal arrive through the delay line in the time
implemented via a Taylor expansion that consists in feedingnterval of largest susceptibility, which occurs around
a delayed fraction of the output as well as its variation rate=150 us. before the next large spike whente=Ty+ 7.

[5]. The extra time or “refractory time”r, which in fact corre-

In this paper we show that for a chaotic system displayingsponds to the duration of the quencheedro intensity time
a continuous return to a saddle foc(&hilnikov chaod6]) interval for each spike, is also measured by the width of the
and a high sensitivity to external perturbations applied neacorrelation function of the free-running ladétig. 3(@)].
that focus, a long-delayed feedback can indeed be used to The autocorrelation function of the DSS signal has large
stabilize very complex sequences of pulses. We demonstratevival peaks separated by the perid Fig. 3(b)]. Figure 4
this in numerical simulations and experiments with a,CO shows that the minimal signa necessary for DSS is con-
laser as well as on a return map model of a chaotic pulsetant for long delays, down to a delay o150 us. For
generator. However the validity of this scenario is muchdelays below the intrinsic refractory time the DSS thresh-
broader, including possible neurodynamic implications. Wepld increases dramatically.
call this effect “delayed self-synchronizatioiDSS), insofar DSS can be further illustrated by the space-time represen-
as the time signal appears as a traif\oérratically distrib-
uted spikesl being the ratio between the delay time and the PTTTTTTTTTTmmmmmmmmmeeees '
average interspike interyathat repeat themselves with the : Det .
same interspike intervals. The DSS phenomenon should by ( |C_02| |EOM| ) o———e]

no means be confused with the synchronization of two dis-

tinct systemg7]. !Delayl
Standard control methods are of limited effectiveness for ' L .

long times insofar as their complexity increases with the : by :

length of the periodic orbit, as shown, e.g., by the Hunt's B '

occasional proportional feedback applied to long period or- FiG. 1. Experimental setup consisting of a C@ser with a
bits [8]. On the contrary, in DSS each return to the saddl&eedback loop(dashed ling imposing a regime of homoclinic
focus permits an independent control of the correspondinghaos, and a delay unit. EOM, electro-optic modulator; Det,
interspike interval, and such an operation can be updated &&CdTe detectorr andb,, gain and bias of the amplifier in the
long as one wishes, without any increase in complexity. Infeedback loopg and Delay, coupling factor and delay units.
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FIG. 3. Autocorrelation function of the laser intensity for the
e running caséa) and for DSS withT4=4 ms(b). The recur-
rence timeT, for the revival of the correlation is the sum ©f plus
he refractory timer.

FIG. 2. A sequence of homoclinic spikes in the output intensityfre
of a CQ, laser in the free-running regim@ and DSS for two
different delays[1 and 4 ms,(b) and (c), respectively. A thick i
arrow denotes the zero intensity level. The two horizontal bars for 1
and 4 ms show the role of the refractory time=150 us. The .
shorter bar is the imposed delay), the larger one, withr added, Xe= — B(Xg+bo—rXy).
is the effective delayT,) that characterizes DSS.

Here x, is the laser intensityx, is the gain,x3,X,,Xs are
tation (STR) introduced elsewherEl1]. In this representa- Vvariables of the gain mediumg is the feedback voltage, and
tion, the time series is split into pieces of length, which ~ Po is the pump rate. The delayed feedback is introduced in
then are stacked together as different “snapshots” of a onethe equation for the feedback voltagg via X;=xy(t)
dimensional spatiotemporal system. Thus, every line of thist e[ x1(t—Tq) —X;], wherex, is the mean value ox,(t).
representation is mapped onto the next line. The STR for the
free-running system and for the DSS regime are shown in

Fig. 5. When DSS is achieved, the STR of the dynamics 1
changes drastically. 15k
We also investigate DSS by a numerical experiment with T
the model of the homoclinic chaos in G@aser, introduced
earlier[12], & (%)
. 10 X
X1= KoXq[ Xp— 1=Ky Sir’(xe)],
. L
X2= — 71X2— 2KoXaX1 +gX3+ X4+ Po, x
() 5r L3

X3:_71X3+X5+gx2+p0, N I T S S TR TP SR N S |
0.0 0.1 02 03 04 05 06 07 08 09 1.0

T, (ms)

5(4:_’}/2X4+9X5+ZX2+Zp0, figure 4

) FIG. 4. Minimal DSS signalin percent of the peak to peak
X5= — Y2X5+ZX3+ 09X+ Z Py, outpub the delay time.
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1, FIG. 7. Autocorrelation function of the chaotic pulse generator
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Notice that, once the dynamical system has become peri-
FIG. 5. Space-time plots of the transition from free running to odic with periodT,=T4+ 7, that is,x;(t)=x,(t—T,), than
DSS regime with a delay timé,=4 ms(indicated by the arroyv  py Taylor expansion we can writeX;=(1+ €)Xy(t)

The space cell corresponds to a single recurrence Timehe time + e(dx, /dt) 7— ex;. Thus fore=—1, the delay feedback

coordinate is a sequence of integer values corresponding to theeffect disapoears as zeroth order term. as expected from
successive delay units. PP : p

Pyragad 3], but a first order correction proportional to the

, ) _ . time derivative ofx; represents the adaptive correction of
Parameters of the model at which the regime of homoclinigyq. [4] in the approximation of Ref5].

chaos is observed aig=28.57, k;=4.55; y,=10.06, v, The DSS mechanism can be elucidated using the follow-

=1.06, g=0.05, po=0.016, z=10, r=70, by=0.173, B jng simplified model. Without time-delayed feedback, after a
=0.42. . ) ) o pulse is produced, the phase trajectory spends some amount
In numerical simulations, we are not limited in the length of time (which fluctuates because of the homoclinic chaos
of the time delay and the time series. We ran very long simupear the homoclinic saddle before it leaves its neighborhood
lations (up to 5x 10° nondimensional time unitswith long  ang produces the next pulse. A close inspection of the time

time delays up to 8000. The numerical time seii€&. 6)  series, both experimental and numerisae Figs. &), 2(c),

are very similar to the experimental ones. The autocorrelagng g, indicates that the arrival of a pulse through the delay

tion function also exhibits sharp peaks separated by a timg,op, triggers the escape of the phase trajectory of the laser

interval T, that is slightly larger thaT. The magnitude of ~ system from the neighborhood of the homoclinic saddle.

the peaks very slowly decays with time, which indicates therpys, the following simplified model can be proposed. Con-

slow evolution of the periodic orbit. sider a system that generates a pulse at timewhich is
determined by a map

K0T =t +f(tioa—ti_o). 2
If the function f(-) is chosen such that the map,,,
=f(x,) produces chaos, then the sequence of pulses will be
f/) chaotic. Such system has actually been implemented in elec-
tronic circuitry [13]. Let us assume now that the pulses are
inserted back into the system after a certain time d&lgyso
if a delayed pulse arrives at a tintg betweent; _,+ 6 and
tj, then it triggers a new pulse & instead oft;, and the
system is reset so that ney=t,. We introduce the small
offset § in order to avoid spurious generation of pulses with
5' , . . ) , . very small time distance, which would effectively destroy
5 8 pseudochaotic pulsation. In fact in the experiment this “re-
fractory time” wasT, — Ty=150 us. We iterated this system
FIG. 6. Numerical simulations of the laser Eq$) with time numerically using the logistic mab(x)_=ax(1—x) with a .
delayT,=2 ms: solid line, a section of the time series of the laser— 3-8 and found that the system typically settles on a peri-
output; dotted line, the same time series shifted forward by thé?diC orbit with the periodl as shown by its autocorrelation
delay timeT, and displaced vertically by- 1. As clearly seen, the function (Fig. 7). The particular orbit will obviously depend
spikes of the delayed signal give rise to the rapid escape of the las@n initial conditions, in particular, orbits with periods much
intensity from the floor at 0.5denoted by a thick arroyycorre-  smaller tharily, can also be stabilized, however, they are not
sponding to the saddle focus. typical. Note, in this case the strength of the feedback is
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irrelevant as long as the magnitude of the pulses passeda so-called synaptic reentry reinforceméBRR) [16]. In
through the delay line is sufficient to trigger the next pulse.those experiments, it has been demonstrated that neurons re-
This agrees with the experimental observation that theponsible for learning, repeatedly “replay” certain spiking
threshold of synchronization is independentTof for large  patterns in order to establish permanent connectisya-
enoughT, (Fig. 4). We also checked the influence of noise apsey among neurons. We believe that stabilization of the
on DSS. If noise was added to the sequence of the pulses @mplex periodic orbits in simple chaotic systems presented
the levels below the threshold for pulse_ generatipn, it vyoul_qn this paper can serve as a paradigm for SRR in more com-
not affect DSS. However, if a small white Gaussian noise igylex neural systems. In our forthcoming work we will con-
added to the interpulse interval, the revival peaks eventuallgjger stabilization of long-periodic orbits in the Hindmarsh-
decay to zero, albeit very slowly. Rose neural modef17]. We believe that the homoclinic

We have thus introduced a conceptual model for the phef:haos observed in that system as well as in real biological

nomenon of delayed self-synchronization that leads to Stabheurons[ls], is analogous to the laser chaos described here,

lization of very long-periodic orbits in a chao;ic system. and thus is should be susceptible to the phenomenon of de-
Such a model could also be used to explain similar results 'rlhyed self-synchronization

another laser systerfil4]. The relevance of long-periodic
orbits is also related to the so-called pseudochaos observed The authors are indebted to S. Boccaletti and N. F. Rulkov
in systems with discretized state spdd&]. In those sys- for useful discussions. F.T.A., R.M., and E.A. acknowledge
tems, the short-term behavior is indistinguishable from a reapartial support from the European Contract No. HPRN-CT-
chaos, however, the orbit returns to the initial point after2000-158. A.D.G. was supported by European Contract No.
some time and then repeats itself. Obviously, in the systemBSS 1043. L.T. wants to thank Istituto Nazionale di Ottica
considered here, the state space is continuous, so the analogygplicata(Florence for warm hospitality. The work of L.T.
between pseudochaos and DSS cannot be carried too far. was partially supported by the Engineering Research pro-

The ability to synchronize very long and complex peri- gram of the Office of Basic Energy Sciences at the U.S.
odic orbits is of particular interest in relation to the recentDepartment of Energy, Grant Nos. DE-FG03-95ER14516
discovery of the neuronal mechanism of transformation ofand DE-FG03-96ER14592 and by the UC MEXUS-
short-term memories into permaneiwng-term) memories CONACYT grant.
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