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Delayed self-synchronization in homoclinic chaos
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The chaotic spike train of a homoclinic dynamical system is self-synchronized by applying a time-delayed
correction proportional to the laser output intensity. Due to the sensitive nature of the homoclinic chaos to
external perturbations, stabilization of very long-periodic orbits is possible. On these orbits, the dynamics
appears chaotic over a finite time, but then it repeats with a recurrence time that is slightly longer than the delay
time. The effect, called delayed self-synchronization, displays analogies with neurodynamic events that occur
in the buildup of long-term memories.
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The last decade has seen a great interest in contro
chaos using small perturbations@1#. It started with the semi-
nal paper by Ott, Grebogi, and Yorke@2# in which they pro-
posed a method of stabilizing unstable periodic orbits us
tiny, yet carefully chosen perturbations to an accessible
tem parameter. Subsequently, other methods were propo
as the delayed feedback due to Pyragas@3#, who showed that
reinserting a time-delayed version of the output back into
system can at certain conditions stabilize some of its perio
orbits. However, that method does not provide a reliable p
cedure that guarantees the stability of a chosen orbit, in
ticular, it is exceedingly difficult to stabilize long-periodi
orbits. An improved version of the delayed feedback w
represented by the adaptive control@4#, experimentally
implemented via a Taylor expansion that consists in feed
a delayed fraction of the output as well as its variation r
@5#.

In this paper we show that for a chaotic system display
a continuous return to a saddle focus~Shilnikov chaos@6#!
and a high sensitivity to external perturbations applied n
that focus, a long-delayed feedback can indeed be use
stabilize very complex sequences of pulses. We demons
this in numerical simulations and experiments with a C2
laser as well as on a return map model of a chaotic pu
generator. However the validity of this scenario is mu
broader, including possible neurodynamic implications.
call this effect ‘‘delayed self-synchronization’’~DSS!, insofar
as the time signal appears as a train ofN erratically distrib-
uted spikes (N being the ratio between the delay time and t
average interspike interval! that repeat themselves with th
same interspike intervals. The DSS phenomenon should
no means be confused with the synchronization of two d
tinct systems@7#.

Standard control methods are of limited effectiveness
long times insofar as their complexity increases with
length of the periodic orbit, as shown, e.g., by the Hun
occasional proportional feedback applied to long period
bits @8#. On the contrary, in DSS each return to the sad
focus permits an independent control of the correspond
interspike interval, and such an operation can be update
long as one wishes, without any increase in complexity.
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our laboratory implementation~Fig. 1!, a single-mode CO2
laser with intensity feedback is tuned to the parameter ra
yielding homoclinic chaos@9#. The intensity output of the
laser consists of a sequence of almost identical spikes
peating at erratic times because of the homoclinic scra
bling, with an average period of 500ms. @Fig. 2~a!#.
Through a delay unit described elsewhere@10#, a small de-
layed perturbation~a few percent of the intensity output! is
added to the feedback signal responsible for homocl
chaos. As Figs. 2~b! and 2~c! show, this small feedback cre
ates a sequence of spikes, which is periodic with a periodTr
slightly larger than the delay timeTd of the feedback loop
~DSS!. In fact, the DSS adjusts in such a way that the spi
of the delayed signal arrive through the delay line in the ti
interval of largest susceptibility, which occurs aroundt
.150 ms. before the next large spike whenceTr5Td1t.
The extra time or ‘‘refractory time’’t, which in fact corre-
sponds to the duration of the quenched~zero intensity! time
interval for each spike, is also measured by the width of
correlation function of the free-running laser@Fig. 3~a!#.

The autocorrelation function of the DSS signal has la
revival peaks separated by the periodTr @Fig. 3~b!#. Figure 4
shows that the minimal signale necessary for DSS is con
stant for long delays, down to a delay oft.150 ms. For
delays below the intrinsic refractory timet, the DSS thresh-
old increases dramatically.

DSS can be further illustrated by the space-time repres

FIG. 1. Experimental setup consisting of a CO2 laser with a
feedback loop~dashed line! imposing a regime of homoclinic
chaos, and a delay unit. EOM, electro-optic modulator; D
HgCdTe detector;r and b0, gain and bias of the amplifier in the
feedback loop;e and Delay, coupling factor and delay units.
©2002 The American Physical Society37-1
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tation ~STR! introduced elsewhere@11#. In this representa-
tion, the time series is split into pieces of lengthTr , which
then are stacked together as different ‘‘snapshots’’ of a o
dimensional spatiotemporal system. Thus, every line of
representation is mapped onto the next line. The STR for
free-running system and for the DSS regime are shown
Fig. 5. When DSS is achieved, the STR of the dynam
changes drastically.

We also investigate DSS by a numerical experiment w
the model of the homoclinic chaos in CO2 laser, introduced
earlier @12#,

ẋ15k0x1@x2212k1 sin2~x6!#,

ẋ252g1x222k0x2x11gx31x41p0 ,
~1!

ẋ352g1x31x51gx21p0 ,

ẋ452g2x41gx51zx21zp0 ,

ẋ552g2x51zx31gx41zp0 ,

FIG. 2. A sequence of homoclinic spikes in the output intens
of a CO2 laser in the free-running regime~a! and DSS for two
different delays@1 and 4 ms,~b! and ~c!, respectively#. A thick
arrow denotes the zero intensity level. The two horizontal bars f
and 4 ms show the role of the refractory timet5150 ms. The
shorter bar is the imposed delay (Td), the larger one, witht added,
is the effective delay (Tr) that characterizes DSS.
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ẋ652b~x61b02rX1!.

Here x1 is the laser intensity,x2 is the gain,x3 ,x4 ,x5 are
variables of the gain medium,x6 is the feedback voltage, an
p0 is the pump rate. The delayed feedback is introduced
the equation for the feedback voltagex6 via X15x1(t)
1«@x1(t2Td)2 x̄1#, where x̄1 is the mean value ofx1(t).

y

1

FIG. 3. Autocorrelation function of the laser intensity for th
free running case~a! and for DSS withTd54 ms ~b!. The recur-
rence timeTr for the revival of the correlation is the sum ofTd plus
the refractory timet.

FIG. 4. Minimal DSS signal~in percent of the peak to pea
output! the delay time.
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DELAYED SELF-SYNCHRONIZATION IN HOMOCLINIC CHAOS PHYSICAL REVIEW E65 046237
Parameters of the model at which the regime of homocl
chaos is observed arek0528.57, k154.55; g1510.06, g2
51.06, g50.05, p050.016, z510, r 570, b050.173, b
50.42.

In numerical simulations, we are not limited in the leng
of the time delay and the time series. We ran very long sim
lations ~up to 53106 nondimensional time units! with long
time delays up to 8000. The numerical time series~Fig. 6!
are very similar to the experimental ones. The autocorr
tion function also exhibits sharp peaks separated by a t
interval Tr that is slightly larger thanTd . The magnitude of
the peaks very slowly decays with time, which indicates
slow evolution of the periodic orbit.

FIG. 5. Space-time plots of the transition from free running
DSS regime with a delay timeTd54 ms~indicated by the arrow!.
The space cell corresponds to a single recurrence timeTr , the time
coordinate is a sequence of integer values corresponding to
successive delay units.

FIG. 6. Numerical simulations of the laser Eqs.~1! with time
delayTd52 ms: solid line, a section of the time series of the la
output; dotted line, the same time series shifted forward by
delay timeTd and displaced vertically by21. As clearly seen, the
spikes of the delayed signal give rise to the rapid escape of the
intensity from the floor at 0.5~denoted by a thick arrow!, corre-
sponding to the saddle focus.
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Notice that, once the dynamical system has become p
odic with periodTr5Td1t, that is,x1(t)5x1(t2Tr), than
by Taylor expansion we can writeX15(11e)x1(t)
1e(dx1 /dt)t2e x̄1. Thus for «521, the delay feedback
effect disappears as zeroth order term, as expected f
Pyragas@3#, but a first order correction proportional to th
time derivative ofx1 represents the adaptive correction
Ref. @4# in the approximation of Ref.@5#.

The DSS mechanism can be elucidated using the follo
ing simplified model. Without time-delayed feedback, afte
pulse is produced, the phase trajectory spends some am
of time ~which fluctuates because of the homoclinic cha!
near the homoclinic saddle before it leaves its neighborh
and produces the next pulse. A close inspection of the t
series, both experimental and numerical@see Figs. 2~b!, 2~c!,
and 6#, indicates that the arrival of a pulse through the de
loop triggers the escape of the phase trajectory of the la
system from the neighborhood of the homoclinic sadd
Thus, the following simplified model can be proposed. Co
sider a system that generates a pulse at timet i , which is
determined by a map

t i5t i 211 f ~ t i 212t i 22!. ~2!

If the function f (•) is chosen such that the mapxn11
5 f (xn) produces chaos, then the sequence of pulses wil
chaotic. Such system has actually been implemented in e
tronic circuitry @13#. Let us assume now that the pulses a
inserted back into the system after a certain time delayT0, so
if a delayed pulse arrives at a timetp betweent i 211d and
t i , then it triggers a new pulse attp instead oft i , and the
system is reset so that newt i5tp . We introduce the smal
offset d in order to avoid spurious generation of pulses w
very small time distance, which would effectively destro
pseudochaotic pulsation. In fact in the experiment this ‘‘
fractory time’’ wasTr2Td5150 ms. We iterated this system
numerically using the logistic mapf (x)5ax(12x) with a
53.8 and found that the system typically settles on a p
odic orbit with the periodT0 as shown by its autocorrelatio
function ~Fig. 7!. The particular orbit will obviously depend
on initial conditions, in particular, orbits with periods muc
smaller thanT0, can also be stabilized, however, they are n
typical. Note, in this case the strength of the feedback
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FIG. 7. Autocorrelation function of the chaotic pulse genera
~2! with delayed feedback. Sharp spikes are separated by the d
time T051000.
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irrelevant as long as the magnitude of the pulses pas
through the delay line is sufficient to trigger the next pul
This agrees with the experimental observation that
threshold of synchronization is independent ofT0 for large
enoughT0 ~Fig. 4!. We also checked the influence of noi
on DSS. If noise was added to the sequence of the puls
the levels below the threshold for pulse generation, it wo
not affect DSS. However, if a small white Gaussian noise
added to the interpulse interval, the revival peaks eventu
decay to zero, albeit very slowly.

We have thus introduced a conceptual model for the p
nomenon of delayed self-synchronization that leads to st
lization of very long-periodic orbits in a chaotic system
Such a model could also be used to explain similar result
another laser system@14#. The relevance of long-periodi
orbits is also related to the so-called pseudochaos obse
in systems with discretized state space@15#. In those sys-
tems, the short-term behavior is indistinguishable from a r
chaos, however, the orbit returns to the initial point af
some time and then repeats itself. Obviously, in the syst
considered here, the state space is continuous, so the an
between pseudochaos and DSS cannot be carried too fa

The ability to synchronize very long and complex pe
odic orbits is of particular interest in relation to the rece
discovery of the neuronal mechanism of transformation
short-term memories into permanent~long-term! memories
a,
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via so-called synaptic reentry reinforcement~SRR! @16#. In
those experiments, it has been demonstrated that neuron
sponsible for learning, repeatedly ‘‘replay’’ certain spikin
patterns in order to establish permanent connections~syn-
apses! among neurons. We believe that stabilization of t
complex periodic orbits in simple chaotic systems presen
in this paper can serve as a paradigm for SRR in more c
plex neural systems. In our forthcoming work we will co
sider stabilization of long-periodic orbits in the Hindmars
Rose neural model@17#. We believe that the homoclinic
chaos observed in that system as well as in real biolog
neurons@18#, is analogous to the laser chaos described h
and thus is should be susceptible to the phenomenon of
layed self-synchronization.
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