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Deriving exact energy solutions to the symmetrizedj-difference Harper equation
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This paper deals with the application of thecalculus to second orderdifference equations, like the
symmetrized form of the Harper equation. One obtains three-term recurrence relations, for which a symme-
trized version is written down. This opens the way to establish explicit energy results that are dependent on the
commensurability parameter. The continuous realization of such energy results exhibits interesting patterns
characterized by hierarchical structures.
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I. INTRODUCTION the g calculus[15,16, which results in three-term recurrence
relations[17,18. In both cases one considers rational values
Starting from a certain gauge description, a symmetrize@f the commensurability parameter, like
g-difference formulation likg1]

P
1 5 BI@’ PeMg, (3)
¢(q2)—i(z+ a) ¥(q~'2)=Ey(2),
(1)  Where by nowP andQ are mutually prime integers. Fixing
Q, one gets faced with select&lvalues likeP=Pse Mg,
of the celebrated Harper equatif—5] has been proposed. so that, e.g.,M,={1,3}, but M,={1,2,3,4,5,6. Further
Hereq expresses a typical pure phase parameter there isq??=1, which amounts to conside&®-dimensional
. representations of the underlying quantum greiy§2), for
_ - which q is a root of unity, as shown befof&]. Nevertheless,
q—ex;(zﬁ ) ' 2 there are still some open points, such as the formulation of a
quickly tractable symmetrized version of such recurrence re-
whereasg=#*/2x is the pertinent commensurability pa- lations. Further, it is of interest to display the underlying
rameter expressing the number of magnetic flux quantaontinuous:* dependence of energies. This produces inter-
(®o,=h/e) per unit cell. The independent dimensionlessesting graphs exhibiting hierarchical structures with com-
variable is denoted by Both equations serve to the descrip- plexity degrees increasing wit. The graphs displayed in
tion of Bloch electrons on a two-dimension@D) square this manner can also be viewed, of course, as a source of
lattice threaded by a magnetic field. We have to note, hownontrivial pattern formation.
ever, that in the former case one deals with a fixed point in This paper is organized as follows. Some preliminaries
the Brillouin zone. In addition, the corresponding wave func-referring to theg calculus are presented in Sec. Il. In Sec. llI
tion ansatz is rather different from the usual Bloch descrip-one deals with the derivation of symmetrized recurrence re-
tion (see Appendix A such as applied in the derivation of lations. General properties of energy solutions are discussed
the Harper equatio(HE). The point is that the interest on the in Sec. IV. TheA* dependence of energies, which leads to
HE is even increasing nowadays. So remarkable advancepiite interesting patterns, is displayed for some seleGed
have been made quite recently, such as duality between H#lues likeQ=4-7. The conclusions are presented in Sec.
and the 2Dd-wave superconductivity6], the role of the V. The derivation of thegSHE is discussed in Appendix A,
energy spectrum of the HE in the description of the generalwhereas th&)=6 energy description is revisited in Appen-
ized Hall conductancg7,8], or the interconnection between dix B.
the spectral determinant characterizing the HE and the parti-
tion function of the 2D Ising modgR]. This motivates us to Il. PRELIMINARIES CONCERNING THE q CALCULUS
study in some more detail the energies of EL, with the
aim to achieve a deeper understanding of the HE itself. In the In order to handle Eq(1), we shall resort to the symme-
sequel we shall refer to second ordgdifference equation trized Jackson derivative
(1) as theqSHE. It should be remarked that the HE and the 71
gSHE are able to be related one to anotfi, 11, but they S ()= dyf(2) _ 7(a2—f(q "2) @
are not at all equivalent ones. z dqz z(q—q° Y
So far, the energy of thgSHE has been established in an
implicit manner by resorting to a Bethe ansatz descriptionvhereq has now the general meaning ofraal or complex
[10—14. However, Eq.(1) can also be solved by applying deformation parameter. This reproduces, of course, the usual
derivative as soon ag— 1. The Leibniz rule is given by

qu//(z):i(éﬂqu

*Email address: epapp@arad.ro dV[f(2)9(2)1=9(q2) 8\ f(2) + f(q *2)dVg(2), (5)
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in which thef and g functions can also be interchanged. In lll. THE DERIVATION OF SYMMETRIZED RECURRENCE

particular, one has

IWzZ"=[n]z" "%, (6)
where the quantum number is
qn_qfl"l
njg=——-71. 7
[nlq R ()

We can say that the!? derivative is ag—q~* symmetriza-
tion of the original Jackson derivatiy&5]

qu(z): f(qz—f(2)

Dyz z(g—1) ®
in which case
n
%‘*qzz ~[n]l2" ©
and
q"-1 _
[nJl=g— =1+a++a" ™ (10

RELATIONS

Indeed, inserting the polynomial wave function

Q-1
WD =ug”(2)= 2 Ci" (16)

into Eq. (15) yields the recurrence relation
[N+1]4Chs1+[N]gCno1=WGC,, 17

whereCy=1. On the other hand one hg®],=0 by virtue
of Eq. (3), in which case
Co+1=Cqy2=-=0. (18

This shows that the energy levels corresponding to a fixed
value of theQ parameter should be established via

Co=Cq(q,W)=0. (19
On the other hand there is
fo(9?,W)
Co(qW)=gNo—2 - 20

Both quantum numbers referred to above are interrelated Afheref o(q2, W) denotes a polynomial of degr&gin W and

1
[n]q:F[[n]]qz- (11)

where

Q

No=5(Q-1). (22)

It is worthy of being mentioned that the original Jackson

derivative is able to be produced by a radial reduction of the=qyation(20) comes from reasonable generalizations of ex-
covariant derivative characterizing the quantum group of ropjicit results. We have to realize, within the same context,
tations on the noncommutativll-dimensional Euclidean {5t fQ(qZ,\N)=fQ(1/q2,V\/), which means in turn that
space[19]. Theq integral co_rresponding to E(q4) can als_o_ Co(d,W) =Co(1/q,W) and W(g?)=W(1/g?). Conversely,
be eaS|I_y established 6]. This amounts to consider explicit his |atter equality implies the former one by virtue of Eq.
results like (17), which means that the wave function itself is invariant

[
2"d,z=
0

underq—1/q, i.e., y2(2)= iR (2). Accordingly, E=E,
Eq4. Which proceeds in accord with Egdl) and
whereb is an arbitrary number. Coming back to Eg), one
finds immediately the concrete realization

bn+l

m, (12

—Eyq=—
(14).
Now what remains is to insert Eq20) into Eq. (17),

which yields the symmetrized recurrence relations

2 W) — 2 W 02 2
_sinnéi*f2) fo(a%,W)=Wfqy_1(a%W) = Q5 _,fq-2(95W), (22

(o= g7z (13

for Q=1,2,3,..., where
Q9-2=0*"Y[Q—1]]e

Using the combination

which shows again th@n],—n asq— 1. Using Eq.(4) and (23

rescaling the energy
e=ifa- £ |w
= R ,
f q

it can be easily verified that E¢l) can be rewritten equiva-

(14

1 h*
F=Tyq)=C(lg)=q9"+ @:2 CO%”?): (24)

lently as which is invariant undeq— 1/q, it can be easily proved that
(09 + 20\ W z) y(z) = Wi(2), (15) Qq-2(9)=Qq-»(1/9)

which can be solved in terms of three-term recurrence rela- _ [T+ + T2, Q=odd, 25

tions[17,18. 1+T,+--+Tq_5, Q=even.
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Under such circumstances one obtains the eigenvalue equand

tion

fo(g?, W)= fo(1/g%,W) =0, (26)

by virtue of Eqgs.(18) and (20), which produces precisely a

number ofQ real W roots, say

W=W?(q*)=W?(1/g%), (27)

where j=1,2,...Q0. The g normalization of present wave

function can also be readily done in terms of Efj2), as
indicated beford 18]. For this purpose we can chooze
[ —1,1], but other normalization intervals likes[0,b] can
also be invoked.

The first sixfq polynomials are given by

fl(qz,W) :W! (28)
fo(a%W)=W?—1, (29)
f3(q%, W) =W(W?—3-T), (30)

f4(q%,W)=W*—6W?+ 3+ (2—3W2)T',+(1-W?)T,,
(31

f5(0%,W)=W[ W*— 10W?+ 21+ (17— 6W?)T',
+(11-3WA)T,+(5—W)I'g+T'g], (32
and
fo(0%,W) =W — 15W*+ 81W? — 37+ (7IW? — 10W* — 34)
XTI+ (53W2—6W*— 27T,
+(33W2—3W*—18)I"5+ (16W?— W*—10)
XTg+ (BW2—4)T 1o+ (W2—1)T 4. (33

dg2(W2)=(—1)( @7V, (38)

respectively. Concerning{®(W?), we can say that it is a
polynomial of degree@— a/2) in W2, but the general de-
scription of remaining constituents is still an open problem.

IV. SPECTRAL PROPERTIES AND ENERGY PATTERNS

Accounting for Eqs(14) and(27) yields the energy spec-
trum

Sol#a* 1={E|Q(h*)}, j=1,2,..Q (39
for Q=1,2,3,..., where

*

i
E=E[2(h*)= -2 sin—W?(q?), (40)

and where we shall assume hereafter fitat [ 0,277]. This
serves for a better description of underlying symmetries. For
the sake of discrimination we shall then put#*, thereby
consideringx as a continuous variable. Moreover, thele-
pendence of present energies has its own interest, as it serves
as a source for nontrivial pattern formation. Having estab-
lished thex dependence of energy levels, we are in a position
to derive immediately the actual discrete spectrum of the
gSHE by virtue of the intersection

This means that the actual spectrum is given by the set of
crossing points between thedependent energy curves be-
longing to Sg[x] and vertical lines likex=Xxs, where xg
=2mwPs/Q andP=Pse Mg.

A. Interconnections with usual results

The corresponding eigenvalue equations can be easily solved

in terms of available formulas for quadratic and cubic equa-

Assuming thatQ=3, we have to realize that the ordered

tions, but furtherQ>7 cases remain to be solved numeri- Sequence oPg points has an even number of constituents,
cally. It should be stressed, however, that explicit energysay N¢(Q), so thatP{?=1 and P(ZQN)S—Pe+1:Q_1' Ac-

results established in this way are useful in order to prob@ordingly, there areNy(Q) intervals centered arouné®

several conjectures concerning the spectrum ofdB8e&lE.
So, we have to realize thag, can be represented as
Bq
fo(@®W)=We >, di¥ (W24, (34)
n=0

in which d{®(W?) are constituent polynomials 2. Fur-
thermore,

ag=0, Bo=:iQ(Q-2) (39
for evenQ values, whereas
ag=1, Bo=2(Q-1)* (36)

for odd Q values. So one finds

dig (W2) = (= 1)%(1-W?) (37)

=Q/2, which are included successively one into another:
190159521, (42)
where

=[P PR -ksa: (43

k=1,2,..Ny(Q) and P(¥+P{) . ;=Q. Both edges of
the above interval produce the same endrsge also Eq.
(51)]. One has, e.g.Ns(Q)=3 for Q=7, 9, 14, and 18,
whereadN(Q) =2 for Q=5, 8, 10, and 12. This shows that
the Q dependence characterizifhg(Q) is rather nontrivial.
Further interconnections with the usual Harper equation
[see Eq(A13)] are also worthy of being mentioned. Indeed,
inserting P=P,=P{? into Eq. (26) yields a number of
Ns(Q) discrete polynomial realizations lik&(?(E)=0,
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are valid irrespective of [ 0,27]. This is synonymous with

whereP{?(E) is a polynomial of degre® in E. Such real- , ( : ,
o . . noncrossing behavior, which means that one has just con-
izations have to be established in terms of a subsequent naf- '

malization, which proceeds by choosing the coefficient oftact pointsx:x(CQ)(_E) correspondipg t.o the equality signs in
EQ to be unity. Accordingly Eq. (49). One realizes that thederivatives of energy eigen-

values are not continuous in such contact points. Next there
is
, (49
—exp(inP(Q
a=exp(inP(Q/Q) EQ(x)=—E§; 1(x), (50)

Q
f’&QRE):[i(q—éH fo(q?,W)

which works in combination with Eq14). These polynomi-
als are precisely the ones produced by applying either thﬁ/]
secular equation method20,21] or, equivalently, the
transfer-matrix techniqu¢4,22] to Eqg. (A13). Indeed, in

hich exhibits the so called energy reflection symmga3).
addition

these latter cases one obtains eigenvalue equations like EJ(Q)(O): EJ(Q)(ZW)ZO’ (51)
ﬁﬁQ)(E):AEZ cogQ6h;)+2 cogQb,), (45) but, excepting the zero-energy solution, there is
which serves to establistp bands via—4<P{Q(E)<4. E(Q(m)==2. (52

Equation(45) reproduces Eq(26) via Q6,=(2n| +1)w/2,
wherel =1, 2 and where; andn; are integers. Conversely, Correspondinglyx= 7 stands for a symmetry axis of the
Eq. (26) gets reproduced automatically for all o@dvalues  spectrum

like Q=2n’+1 provided thatd,= 6,= w/2, wheren;=n,

=n’. Note thatf, and 6, are usual Brillouin phases charac- EQx)=EQ27—x), (53)
terizing Eg.(A13). One realizes, of course that the energy J )
description characterizing tregSHE is produced by the HE
one in so far as\ =0. However, this would not work irre-
spective ofQ, if one would resort, e.g., t6,= 6, fixings. In
particular, one has

which holds for O0<x<27. This also means that 72
—xQ(E) is a contact point as soon a8 (E) does it. It is
also clear thak=0 andx= 2 have the meaning of general
multiple contact points, as indicated by E§1).

So the x dependence of the five energy levels
= EJ(S)(X) corresponding t@Q =5 is displayed in Fig. 1. One
sees that both Eq$50) and (51) are fulfilled, whereas Eq.
(52) works as

P(E)=PP)(E)=E(E*-10E2+1tD), (46)

for Q=5, wheret®= (7= \/5)/2. However, such structures
are rather relevant for large values(see, e.g., Fig. 1 in Ref.
[4]), unions overQ's included, so that they will be disre- 5 5
garded in this paper. Explicit energy results have been pre- EY (m)=EY)(m)=~2 (54)
sented before foQ=1-5[17] and Q=6 [18]. So far one

hasA=1, but A+ 1-generalizations of above polynomials, and

sayP(?(E,A), can be readily done using the transfer-matrix

approach. Choosing agafd=>5, then gives EQ)(m)=EY) (m)=2. (55)

P(E,A)=PY)(E,A)=E°~5E3(A%+1)+5E(A%+1) Ruling out the contact points=0 andx= 2, one sees that
Eq. (49 proceeds as
+3EA2(3+B), 47 EA(4IP

which works in combination with the generalized form () <ESY () <O0<E{ () <Ef(x), (56)
[22]
o whereE{(x) =0. A further interesting feature concerns mu-
A(A)=2 cogQh;)+2A°cogQ6,), (48 tual attraction(repulsion effects exhibited by central energy
curves likeEYY and E(Q ., (EQ .. and E(Q .. .) for
~ : Q12 +2)12 ~1)2 +3)12
such thatA(1)=A and P\(E,A)=A(A). Itis understood  gyen(odd) Q values. This means that f&—0 and )everQ

that A denotes a gap parameter characterizing the energy 4 yalues one has a relative larger number of zero-energy
dispersion law of the latticksee Eqs(A2) and (A13)]. contact points, SaMg:Q):N&Q)(EZO), than for adjacent odd

neighborsQ—1 and Q+1. Indeed, there iN&=2, N&

B. Symmetry properties and characteristic patterns =4, and N(CG):& WhereasN(Cg‘)= 2, N(CS)=2, and N(c7):4’
The present energies are well ordered in the sense thathich confirms clearly the above statement. Of course, the
following inequalities, present energy patterns exhibit hierarchical structures with
complexity degrees increasing wi@ Indeed theQ=4 (Q
ERX()<EX(x)=<---<E{?(x), (49 =6) patterns presented in Fig. (Eig. 3) look less(more
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FIG. 1. The x dependence of the five energy levels FIG. 2. The x dependence of the four energy levels
=E()(x), wherej=1,2,...5. Besidex=0 andx=2, there are  =E{"(x), wherej=1, 2, 3, and 4. One sees tha"(0)=2,
no E=0 contact points. whereasN{?(2)=N&(—2)=1. The corresponding contact points

arex(0)=2m/3, x{*)(0)=4m/3 andx{*)(+2)==.
involved than theQ=5 ones. And we may wonder that the
Q=7 patterns are actually even more sophisticated, agesults for theqSHE. This amounts to solve three-term re-
shown in Fig. 4. Comparing Figs. 3 and 4, one remarks gyrrence relations, for which a symmetrized and quickly
hierarchy of G<x< 7 contact points at nonzero energy. This tractable version has been formulated, as shown by 2.

hierarchy, which starts with Explicit formulas for characteristiéo(q2 W) polynomials
have been written down fo=1-6, but further cases can
X0 (Eg) = 2_7722 094 (57) be treated in a similar manner. We are led to the formulation
C 0 =& ) . . . K
3 of relevant properties of energy formulas just by solving ei-

genvalue equations for a few number@fvalues. Concern-

at Ep=2.449(see Fig. 3 gets enhanced towards ing the efficiency, there are reasons to say that the present
method of three-term recurrence relations is comparable with
xd(Ey)=1.244, x{(E,)=2513, the secular equation methd®0,21 as well as with the
method of transfer matric¢d,22. The Bethe ansatz solution
X (E3)=xY)(0)=2.095, (58  to theqSHE[1] looks somewhat more intricate, but it is, of

course, of an actual interest from a general theoretical point
if Q=7 (see Fig. 4, whereE;=1.360,E,=1.902, andE;  of view. Having obtainedQ(qZ,V\D opens the way to estab-
=E,. In other words we found nontrivial patterns character-lish P derivatives of energy eigenvalues via
ized by delightful symmetry realizations.
J T d

V. CONCLUSIONS 9Py =1 6 ﬁ - ) (59

Our main emphasis in this paper was on the application of
the q calculus to the derivation of explicit and exact energywhereq stands, of course, for exg(2) and where) is fixed.
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NN

E 04 EO

-1

_2+ 27

X

-3 37
1 2 3 4 5 6 ! 2 3 4 5 6
X X
FIG. 3. Thex dependence of the six energy levels E{®(x), FIG. 4. The x dependence of the seven energy levEls
wherej=12,....6. NowN®(0)=6, whereas botlim, —2) and(m,  =E{”(x), wherej=1,2,..,7. One ha{’(0)=2 and N{(2)
2) are triple contact points. In additiob{?(Eq)=N® (-Eg)=2, =N (-2)=1, but NO(E;)=N{(—E;)=2 for E;=1.360, E,
whereE=2.449. =1.902, andE;=2.449.

Such results are useful for the derivation of lateral deriva—nutmelr |callytenerg¥ tpr)]at;ekr'rés.pr?d ducdedbe IarIQaralugsl, thle
tives in contact points as well as for the study of relategdctud! Spectrum ot tng inciuded. Nonpolynomial Solu-
magnetic properties via/ 0P, = (2w#/ea®)dldB. It is then tions to theqSHE can k_)e derived by using again recurrence
clear that a further point of interest is the derivationof relations, but so far this was done for the zero energy only

# 1-generalizations of presef@(qz,\/\/) polynomials, which [25].

serve as continuous counterparts of polynomials iﬁ{g@)
(E,A) already mentioned before. For this purpose we have
to resort to theA#1 version of Eq.(1), so that the same e are indebted to CNCSIS/BucharéBroject 307 for
concerns Eq(A8). This is still an open point and related financial support.

investigations remain to be done.

On the other hand, having obtained explicit energy results
enables us to obtain useful information. Indeed, having es-
tablishedP{?)(E) polynomials enables us to establish the In order to make our paper self-contained, let us present
density of states for the Harper equation in terms of elliptichriefly the derivation of Eq(1). One starts, as usual, from
functions, as shown previousl21]. Further informations the energy dispersion law for a 2D lattice
concerning the density of states is able to be derived by using
the difference of lateral derivatives in contact poifigst]. Egisf(K) = £1 C0S0; + &, COSH;, (A1)
Nontrivial patterns have been displayed in Figs. 1-4. For
this purpose relatively smal) values have been invoked, so which is quite familiar in solid state physics, whefg
that present patterns can be viewed as being complementarykja, (1=1,2), k=(k;,k,) is the wave vector, whereas the
to the Hofstadter butterfl{4]. It is a nice exercise to derive lattice spacings are denoted hy. The gauge is chosen as

ACKNOWLEDGMENT

APPENDIX A: DERIVATION OF qSHE
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B Alternatively, we can make the identification§=z, q"**
A=(-1 5 (Xt Xt aa), (A2)  =qzandq" '=z/q, in which case Eq(A8) could produce
Eq. (1) via
wherea; =a,=a, which serves to the implementation of the
Peierls substitution W2)=(q") =g, . (A11)
9 e However, for this purpose we have to consider zhariable
Kj— —i x + gA, ) (A3) as it stands in EqJ) as being independent gf which looks
X somewhat questionable from a strict mathematical point of
view.

So farq,'s are arbitrary parameters. Combining Eg&1)—
(A3) yields an energy band Hamiltonian, sag,, which
serves to the formulation of the related eigenvalue equatio
as

The above procedure differs from the derivation of the HE
for which one considers the Landau gauge (0,Bx,,0) and
the usual wave function ansatz

Haisp? (X) =E4¥ (%), (A4) W(x)=e*P20(xy), (A12)

whereE, denotes the pertinent eigenvalue. instead of EQ(AS). This leads to the HE
Within the next step one considers the Bloch-like wave

function ansatz fns1t @n-1+ 20 COSNA* + 0, pn=Eqy, (AL3)

_ " which incorporates the Brillouin paramet#,, where X,
W00 =explik-x) ep(x), (A5) =na and where, as before,=Ae;. Thus the HE is a well
defined band energy equation with the periodic boundary

wherek - x=k;x;+k,X,, but this time .
ere LT 2R condition

X)=@(X1+X5), A6
e8(X)= (X1 FXy) (A6) oromn, (AL
which represents a rather special choice. Inserting(&§)
into Eg. (A4) and accounting for the Baker-Campbell-
Hausdorff formula

which differs from the rather specigiSHE.

APPENDIX B: REVISITING Q=6 ENERGY FORMULAS

ePeB = A+ Bg(1/2[AB] (A7) Solving Eq.(33) yields the six orderedV roots
yields the discrete equation W) = — WO = (FY34 FY3L )12 (B1)
H 1 n+1 H n—-1 1 6 6 1/3 1/3 /
I grta™ensami{ 0"+ on)en-1=Egn, (A8) We'=—W'=(e _F{P+e F3+1)Y  (B2)

for 61:02:77/2, a2=—a1=1/2, 82:A81, and Azl, and

whereE=2E,/e, andg,= ¢(na). The space discretization
is performed viax;=n,a, so thatn=n;+n, is an integer. WO = WO = (g FU34, ELB4 )12 B3
Moreover, thei* parameter gets introduced as 3 s =(e+Fy o ) B3)

where
d
h* = 2773, (Ag)
0 WP =WP =W (B4)

where® =Ba? is the magnetic flux through the unit cell.
After having arrived at this stage, we are ready to convert
Eqg. (A8) into Eq. (1) by resorting to the wave function

L=3(I'g+3lg+60I,+100,+15). (B5)
_ Inserting Q=6, one realizes that Eq42) gets fulfilled in
7)= " A10 g
¥(2) nz’oc @n (A10) terms of Eqs(40) and (B1)—(B4). Accordingly[26]
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N B6
ex=— 5%l o, (B6)
S
Fo=—5=\D, (B7)
such that
12
s=—nz0 [ (B8)

PHYSICAL REVIEW E65 046234

and

(B9)

where thec, coefficients are, of course, different from the
ones in Eq.(16). The values ob,, andc, are presented in
Table 1 in Ref[18].
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