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Deriving exact energy solutions to the symmetrizedq-difference Harper equation
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Physics Department, North University of Baia Mare, RO-4800 Baia Mare, Romania

~Received 26 October 2001; published 11 April 2002!

This paper deals with the application of theq calculus to second orderq-difference equations, like theq
symmetrized form of the Harper equation. One obtains three-term recurrence relations, for which a symme-
trized version is written down. This opens the way to establish explicit energy results that are dependent on the
commensurability parameter. The continuous realization of such energy results exhibits interesting patterns
characterized by hierarchical structures.
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I. INTRODUCTION

Starting from a certain gauge description, a symmetri
q-difference formulation like@1#

Hqc~z!5 i S 1

z
1qzDc~qz!2 i S 1

z
1

z

qDc~q21z!5Ec~z!,

~1!

of the celebrated Harper equation@2–5# has been proposed
Hereq expresses a typical pure phase parameter

q5expS i

2
\* D , ~2!

whereasb5\* /2p is the pertinent commensurability pa
rameter expressing the number of magnetic flux qua
(F05h/e) per unit cell. The independent dimensionle
variable is denoted byz. Both equations serve to the descri
tion of Bloch electrons on a two-dimensional~2D! square
lattice threaded by a magnetic field. We have to note, h
ever, that in the former case one deals with a fixed poin
the Brillouin zone. In addition, the corresponding wave fun
tion ansatz is rather different from the usual Bloch desc
tion ~see Appendix A!, such as applied in the derivation o
the Harper equation~HE!. The point is that the interest on th
HE is even increasing nowadays. So remarkable adva
have been made quite recently, such as duality between
and the 2Dd-wave superconductivity@6#, the role of the
energy spectrum of the HE in the description of the gene
ized Hall conductance@7,8#, or the interconnection betwee
the spectral determinant characterizing the HE and the p
tion function of the 2D Ising model@9#. This motivates us to
study in some more detail the energies of Eq.~1!, with the
aim to achieve a deeper understanding of the HE itself. In
sequel we shall refer to second orderq-difference equation
~1! as theqSHE. It should be remarked that the HE and t
qSHE are able to be related one to another@10,11#, but they
are not at all equivalent ones.

So far, the energy of theqSHE has been established in a
implicit manner by resorting to a Bethe ansatz descript
@10–14#. However, Eq.~1! can also be solved by applyin

*Email address: epapp@arad.ro
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theq calculus@15,16#, which results in three-term recurrenc
relations@17,18#. In both cases one considers rational valu
of the commensurability parameter, like

b5
P

Q
, PPMQ , ~3!

where by nowP andQ are mutually prime integers. Fixing
Q, one gets faced with selectedP values likeP5PsPMQ ,
so that, e.g.,M45$1,3%, but M75$1,2,3,4,5,6%. Further
there isq2Q51, which amounts to considerQ-dimensional
representations of the underlying quantum groupslq(2), for
which q is a root of unity, as shown before@1#. Nevertheless,
there are still some open points, such as the formulation
quickly tractable symmetrized version of such recurrence
lations. Further, it is of interest to display the underlyin
continuous\* dependence of energies. This produces in
esting graphs exhibiting hierarchical structures with co
plexity degrees increasing withQ. The graphs displayed in
this manner can also be viewed, of course, as a sourc
nontrivial pattern formation.

This paper is organized as follows. Some preliminar
referring to theq calculus are presented in Sec. II. In Sec.
one deals with the derivation of symmetrized recurrence
lations. General properties of energy solutions are discus
in Sec. IV. The\* dependence of energies, which leads
quite interesting patterns, is displayed for some selecteQ
values likeQ54 – 7. The conclusions are presented in S
V. The derivation of theqSHE is discussed in Appendix A
whereas theQ56 energy description is revisited in Appen
dix B.

II. PRELIMINARIES CONCERNING THE q CALCULUS

In order to handle Eq.~1!, we shall resort to the symme
trized Jackson derivative

]z
~q! f ~z!5

dqf ~z!

dqz
5

f ~qz!2 f ~q21z!

z~q2q21!
, ~4!

whereq has now the general meaning of a~real or complex!
deformation parameter. This reproduces, of course, the u
derivative as soon asq→1. The Leibniz rule is given by

]z
~q!@ f ~z!g~z!#5g~qz!]z

~q! f ~z!1 f ~q21z!]z
~q!g~z!, ~5!
©2002 The American Physical Society34-1
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in which the f and g functions can also be interchanged.
particular, one has

]z
~q!zn5@n#qzn21, ~6!

where the quantum number is

@n#q5
qn2q2n

q2q21 . ~7!

We can say that the]z
(q) derivative is aq�q21 symmetriza-

tion of the original Jackson derivative@15#

Dqf ~z!

Dqz
5

f ~qz!2 f ~z!

z~q21!
, ~8!

in which case

Dqzn

Dqz
5†@n#‡qzn21 ~9!

and

†@n#‡q5
qn21

q21
511q1¯1qn21. ~10!

Both quantum numbers referred to above are interrelate

@n#q5
1

qn21 †@n#‡q2. ~11!

It is worthy of being mentioned that the original Jacks
derivative is able to be produced by a radial reduction of
covariant derivative characterizing the quantum group of
tations on the noncommutativeN-dimensional Euclidean
space@19#. Theq integral corresponding to Eq.~4! can also
be easily established@16#. This amounts to consider explic
results like

E
0

b

zndqz5
bn11

@n11#q
, ~12!

whereb is an arbitrary number. Coming back to Eq.~2!, one
finds immediately the concrete realization

@n#q5
sin~n\* /2!

sin~h* /2!
, ~13!

which shows again that@n#q→n asq→1. Using Eq.~4! and
rescaling the energy

E5 i S q2
1

qDW, ~14!

it can be easily verified that Eq.~1! can be rewritten equiva
lently as

~]z
~q!1z]z

~q!z!c~z!5Wc~z!, ~15!

which can be solved in terms of three-term recurrence r
tions @17,18#.
04623
as
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III. THE DERIVATION OF SYMMETRIZED RECURRENCE
RELATIONS

Indeed, inserting the polynomial wave function

c~z!5cq
~Q!~z!5 (

n50

Q21

Cnzn, ~16!

into Eq. ~15! yields the recurrence relation

@n11#qCn111@n#qCn215WCn , ~17!

whereC051. On the other hand one has@Q#q50 by virtue
of Eq. ~3!, in which case

CQ115CQ125¯50. ~18!

This shows that the energy levels corresponding to a fi
value of theQ parameter should be established via

CQ5CQ~q,W!50. ~19!

On the other hand there is

CQ~q,W!5qNQ
f Q~q2,W!

†@Q#‡q2!
, ~20!

wheref Q(q2,W) denotes a polynomial of degreeQ in W and
where

NQ5
Q

2
~Q21!. ~21!

Equation~20! comes from reasonable generalizations of e
plicit results. We have to realize, within the same conte
that f Q(q2,W)5 f Q(1/q2,W), which means in turn tha
CQ(q,W)5CQ(1/q,W) and W(q2)5W(1/q2). Conversely,
this latter equality implies the former one by virtue of E
~17!, which means that the wave function itself is invaria
under q→1/q, i.e., cq

(Q)(z)5c1/q
(Q)(z). Accordingly, E[Eq

→E1/q52Eq , which proceeds in accord with Eqs.~1! and
~14!.

Now what remains is to insert Eq.~20! into Eq. ~17!,
which yields the symmetrized recurrence relations

f Q~q2,W!5W fQ21~q2,W!2VQ22
2 f Q22~q2,W!, ~22!

for Q51,2,3,..., where

VQ225q22Q
†@Q21#‡q2. ~23!

Using the combination

Gn5Gn~q!5Gn~1/q!5qn1
1

qn 52 cosS n
\*

2 D , ~24!

which is invariant underq→1/q, it can be easily proved tha

VQ22~q!5VQ22~1/q!

5H G11G31¯1GQ22 , Q5odd,

11G21¯1GQ22 , Q5even.
~25!
4-2
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Under such circumstances one obtains the eigenvalue e
tion

f Q~q2,W!5 f Q~1/q2,W!50, ~26!

by virtue of Eqs.~18! and ~20!, which produces precisely
number ofQ real W roots, say

W5Wj
~Q!~q2!5Wj

~Q!~1/q2!, ~27!

where j 51,2,...,Q. The q normalization of present wav
function can also be readily done in terms of Eq.~12!, as
indicated before@18#. For this purpose we can choosezP
@21,1#, but other normalization intervals likezP@0,b# can
also be invoked.

The first six f Q polynomials are given by

f 1~q2,W!5W, ~28!

f 2~q2,W!5W221, ~29!

f 3~q2,W!5W~W2232G2!, ~30!

f 4~q2,W!5W426W2131~223W2!G21~12W2!G4 ,

~31!

f 5~q2,W!5W@W4210W21211~1726W2!G2

1~1123W2!G41~52W2!G61G8#, ~32!

and

f 6~q2,W!5W6215W4181W22371~71W2210W4234!

3G21~53W226W4227!G4

1~33W223W4218!G61~16W22W4210!

3G81~5W224!G101~W221!G12. ~33!

The corresponding eigenvalue equations can be easily so
in terms of available formulas for quadratic and cubic eq
tions, but furtherQ.7 cases remain to be solved nume
cally. It should be stressed, however, that explicit ene
results established in this way are useful in order to pr
several conjectures concerning the spectrum of theqSHE.
So, we have to realize thatf Q can be represented as

f Q~q2,W!5WaQ(
n50

bQ

dn
~Q!~W2!G2n , ~34!

in which dn
(Q)(W2) are constituent polynomials inW2. Fur-

thermore,

aQ50, bQ5 1
4 Q~Q22! ~35!

for evenQ values, whereas

aQ51, bQ5 1
4 ~Q21!2 ~36!

for odd Q values. So one finds

dbQ

~Q!~W2!5~21!Q/2~12W2! ~37!
04623
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dbQ

~Q!~W2!5~21!~Q21!/2, ~38!

respectively. Concerningd0
(Q)(W2), we can say that it is a

polynomial of degree (Q2aQ/2) in W2, but the general de-
scription of remaining constituents is still an open proble

IV. SPECTRAL PROPERTIES AND ENERGY PATTERNS

Accounting for Eqs.~14! and~27! yields the energy spec
trum

SQ@\* #5$Ej
~Q!~\* !%, j 51,2,...,Q ~39!

for Q51,2,3,..., where

E5Ej
~Q!~\* !522 sin

\*

2
Wj

~Q!~q2!, ~40!

and where we shall assume hereafter that\* P@0,2p#. This
serves for a better description of underlying symmetries.
the sake of discrimination we shall then putx5\* , thereby
consideringx as a continuous variable. Moreover, thex de-
pendence of present energies has its own interest, as it se
as a source for nontrivial pattern formation. Having esta
lished thex dependence of energy levels, we are in a posit
to derive immediately the actual discrete spectrum of
qSHE by virtue of the intersection

EQ5SQ@x#ùMQ . ~41!

This means that the actual spectrum is given by the se
crossing points between thex-dependent energy curves b
longing to SQ@x# and vertical lines likex5xs , where xs
52pPs /Q andP5PsPMQ .

A. Interconnections with usual results

Assuming thatQ>3, we have to realize that the ordere
sequence ofPs points has an even number of constituen
say 2Ns(Q), so thatP1

(Q)51 and P2Ns2Pe11
(Q) 5Q21. Ac-

cordingly, there areNs(Q) intervals centered aroundP
5Q/2, which are included successively one into another

I 1
~Q!.I 2

~Q!.¯.I Ns

~Q! , ~42!

where

I k
~Q!5@Pk

~Q! ,P2Ns2k11
~Q! #, ~43!

k51,2,...,Ns(Q) and Pk
(Q)1P2Ns2k11

(Q) 5Q. Both edges of

the above interval produce the same energy@see also Eq.
~51!#. One has, e.g.,Ns(Q)53 for Q57, 9, 14, and 18,
whereasNs(Q)52 for Q55, 8, 10, and 12. This shows tha
the Q dependence characterizingNs(Q) is rather nontrivial.

Further interconnections with the usual Harper equat
@see Eq.~A13!# are also worthy of being mentioned. Indee
inserting P5Ps[Pk

(Q) into Eq. ~26! yields a number of

Ns(Q) discrete polynomial realizations likeP̃k
(Q)(E)50,
4-3
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whereP̃k
(Q)(E) is a polynomial of degreeQ in E. Such real-

izations have to be established in terms of a subsequent
malization, which proceeds by choosing the coefficient
EQ to be unity. Accordingly

P̃k
~Q!~E!5F i S q2

1

qD GQ

f Q~q2,W!U
q5exp~ ipP

k
~Q!/Q!

, ~44!

which works in combination with Eq.~14!. These polynomi-
als are precisely the ones produced by applying either
secular equation method@20,21# or, equivalently, the
transfer-matrix technique@4,22# to Eq. ~A13!. Indeed, in
these latter cases one obtains eigenvalue equations like

P̃k
~Q!~E!5L[2 cos~Qu1!12 cos~Qu2!, ~45!

which serves to establishQ bands via24<Pk
(Q)(E)<4.

Equation~45! reproduces Eq.~26! via Qu l5(2nl811)p/2,
wherel 51, 2 and wheren18 andn28 are integers. Conversely
Eq. ~26! gets reproduced automatically for all oddQ values
like Q52n811 provided thatu15u25p/2, wheren185n28
5n8. Note thatu1 andu2 are usual Brillouin phases chara
terizing Eq. ~A13!. One realizes, of course that the ener
description characterizing theqSHE is produced by the HE
one in so far asL50. However, this would not work irre
spective ofQ, if one would resort, e.g., tou15u2 fixings. In
particular, one has

P̃k
~5!~E!5 P̃6

~5!~E!5E~E4210E21t6
~5!!, ~46!

for Q55, wheret6
(5)5(76A5)/2. However, such structure

are rather relevant for largeQ values~see, e.g., Fig. 1 in Ref
@4#!, unions overQ’s included, so that they will be disre
garded in this paper. Explicit energy results have been
sented before forQ51 – 5 @17# and Q56 @18#. So far one
has D51, but DÞ1-generalizations of above polynomial
sayP̃k

(Q)(E,D), can be readily done using the transfer-mat
approach. Choosing againQ55, then gives

P̃k
~5!~E,D!5 P̃6

~5!~E,D!5E525E3~D211!15E~D411!

1 5
2 ED2~36A5!, ~47!

which works in combination with the generalizedL form
@22#

L~D!52 cos~Qu1!12DQ cos~Qu2!, ~48!

such thatL(1)5L and P̃k(E,D)5L(D). It is understood
that D denotes a gap parameter characterizing the en
dispersion law of the lattice@see Eqs.~A2! and ~A13!#.

B. Symmetry properties and characteristic patterns

The present energies are well ordered in the sense
following inequalities,

E1
~Q!~x!<E2

~Q!~x!<¯<Ej
~Q!~x!, ~49!
04623
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are valid irrespective ofxP@0,2p#. This is synonymous with
a noncrossing behavior, which means that one has just
tact pointsx5xC

(Q)(E) corresponding to the equality signs
Eq. ~49!. One realizes that thex derivatives of energy eigen
values are not continuous in such contact points. Next th
is

Ej
~Q!~x!52EQ2 j 11

~Q! ~x!, ~50!

which exhibits the so called energy reflection symmetry@23#.
In addition

Ej
~Q!~0!5Ej

~Q!~2p!50, ~51!

but, excepting the zero-energy solution, there is

Ej
~Q!~p!562. ~52!

Correspondinglyx5p stands for a symmetry axis of th
spectrum

Ej
~Q!~x!5Ej

~Q!~2p2x!, ~53!

which holds for 0,x,2p. This also means that 2p
2xC

(Q)(E) is a contact point as soon asxC
(Q)(E) does it. It is

also clear thatx50 andx52p have the meaning of genera
multiple contact points, as indicated by Eq.~51!.

So the x dependence of the five energy levelsE
5Ej

(5)(x) corresponding toQ55 is displayed in Fig. 1. One
sees that both Eqs.~50! and ~51! are fulfilled, whereas Eq
~52! works as

E1
~5!~p!5E2

~5!~p!522 ~54!

and

E4
~5!~p!5E5

~5!~p!52. ~55!

Ruling out the contact pointsx50 andx52p, one sees tha
Eq. ~49! proceeds as

E1
~5!~x!,E2

~5!~x!,0,E4
~5!~x!,E5

~5!~x!, ~56!

whereE3
(5)(x)50. A further interesting feature concerns m

tual attraction~repulsion! effects exhibited by central energ
curves likeEQ/2

(Q) and E(Q12)/2
(Q) ~E(Q21)/2

(Q) and E(Q13)/2
(Q) ! for

even~odd! Q values. This means that forE50 and evenQ
>4 values one has a relative larger number of zero-ene
contact points, sayNC

(Q)5NC
(Q)(E50), than for adjacent odd

neighborsQ21 and Q11. Indeed, there isNC
(2)52, NC

(4)

54, and NC
(6)58, whereasNC

(3)52, NC
(5)52, and NC

(7)54,
which confirms clearly the above statement. Of course,
present energy patterns exhibit hierarchical structures w
complexity degrees increasing withQ. Indeed theQ54 (Q
56) patterns presented in Fig. 2~Fig. 3! look less~more!
4-4
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involved than theQ55 ones. And we may wonder that th
Q57 patterns are actually even more sophisticated,
shown in Fig. 4. Comparing Figs. 3 and 4, one remark
hierarchy of 0,x,p contact points at nonzero energy. Th
hierarchy, which starts with

xC
~6!~E0!5

2p

3
>2.094, ~57!

at E0>2.449~see Fig. 3!, gets enhanced towards

xC
~7!~E1!>1.244, xC

~7!~E2!>2.513,

xC
~7!~E3!5xC

~7!~0!.2.095, ~58!

if Q57 ~see Fig. 4!, whereE1>1.360,E2>1.902, andE3
>E0 . In other words we found nontrivial patterns charact
ized by delightful symmetry realizations.

V. CONCLUSIONS

Our main emphasis in this paper was on the application
the q calculus to the derivation of explicit and exact ener

FIG. 1. The x dependence of the five energy levelsE
5Ej

(5)(x), where j 51,2,...,5. Besidesx50 andx52p, there are
no E50 contact points.
04623
s
a
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results for theqSHE. This amounts to solve three-term r
currence relations, for which a symmetrized and quic
tractable version has been formulated, as shown by Eq.~22!.
Explicit formulas for characteristicf Q(q2,W) polynomials
have been written down forQ51 – 6, but further cases ca
be treated in a similar manner. We are led to the formulat
of relevant properties of energy formulas just by solving
genvalue equations for a few number ofQ values. Concern-
ing the efficiency, there are reasons to say that the pre
method of three-term recurrence relations is comparable w
the secular equation method@20,21# as well as with the
method of transfer matrices@4,22#. The Bethe ansatz solutio
to theqSHE @1# looks somewhat more intricate, but it is, o
course, of an actual interest from a general theoretical p
of view. Having obtainedf Q(q2,W) opens the way to estab
lish Ps derivatives of energy eigenvalues via

]

]Ps
5 i

p

Q
q

]

]qU
x5xs

, ~59!

whereq stands, of course, for exp(ix/2) and whereQ is fixed.

FIG. 2. The x dependence of the four energy levelsE
5Ej

(4)(x), where j 51, 2, 3, and 4. One sees thatNC
(4)(0)52,

whereasNC
(4)(2)5NC

(4)(22)51. The corresponding contact poin
arexC,1

(4) (0)52p/3, xc,2
(4)(0)54p/3 andxc,1

(4)(62)5p.
4-5
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Such results are useful for the derivation of lateral deri
tives in contact points as well as for the study of rela
magnetic properties via]/]Ps5(2p\/ea2)]/]B. It is then
clear that a further point of interest is the derivation ofD
Þ1-generalizations of presentf Q(q2,W) polynomials, which
serve as continuous counterparts of polynomials likeP̃k

(Q)

(E,D) already mentioned before. For this purpose we h
to resort to theDÞ1 version of Eq.~1!, so that the same
concerns Eq.~A8!. This is still an open point and relate
investigations remain to be done.

On the other hand, having obtained explicit energy res
enables us to obtain useful information. Indeed, having
tablished P̃k

(Q)(E) polynomials enables us to establish t
density of states for the Harper equation in terms of ellip
functions, as shown previously@21#. Further informations
concerning the density of states is able to be derived by u
the difference of lateral derivatives in contact points@24#.
Nontrivial patterns have been displayed in Figs. 1–4.
this purpose relatively smallQ values have been invoked, s
that present patterns can be viewed as being compleme
to the Hofstadter butterfly@4#. It is a nice exercise to derive

FIG. 3. Thex dependence of the six energy levelsE5Ej
(6)(x),

where j 51,2,...,6. NowNC
(6)(0)56, whereas both~p, 22! and~p,

2! are triple contact points. In addition,NC
(6)(E0)5NC

(6)(2E0)52,
whereE0>2.449.
04623
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numerically energy patterns produced by largerQ values, the
actual spectrum of theqSHE included. Nonpolynomial solu
tions to theqSHE can be derived by using again recurren
relations, but so far this was done for the zero energy o
@25#.
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APPENDIX A: DERIVATION OF qSHE

In order to make our paper self-contained, let us pres
briefly the derivation of Eq.~1!. One starts, as usual, from
the energy dispersion law for a 2D lattice

Edisp~k!5«1 cosu11«2 cosu2 , ~A1!

which is quite familiar in solid state physics, whereu l
5klal ( l 51,2), k5(k1 ,k2) is the wave vector, whereas th
lattice spacings are denoted byal . The gauge is chosen a

FIG. 4. The x dependence of the seven energy levelsE
5Ej

(7)(x), where j 51,2,...,7. One hasNC
(7)(0)52 and NC

(7)(2)
5NC

(7)(22)51, but NC
(7)(Ei)5NC

(7)(2Ei)52 for E1>1.360, E2

>1.902, andE3>2.449.
4-6
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Al5~21! l
B

2
~x11x21a la!, ~A2!

wherea15a25a, which serves to the implementation of th
Peierls substitution

kl→2 i
]

]xl
1

e

\
Al . ~A3!

So fara l ’s are arbitrary parameters. Combining Eqs.~A1!–
~A3! yields an energy band Hamiltonian, sayHdisp, which
serves to the formulation of the related eigenvalue equa
as

HdispC~x!5EdC~x!, ~A4!

whereEd denotes the pertinent eigenvalue.
Within the next step one considers the Bloch-like wa

function ansatz

C~x!5exp~ ik•x!wB~x!, ~A5!

wherek•x5k1x11k2x2 , but this time

wB~x!5w~x11x2!, ~A6!

which represents a rather special choice. Inserting Eq.~A5!
into Eq. ~A4! and accounting for the Baker-Campbe
Hausdorff formula

eAeB5eA1Be~1/2!@A,B#, ~A7!

yields the discrete equation

i S 1

qn 1qn11Dwn112 i S qn211
1

qnDwn215Ewn , ~A8!

for u15u25p/2, a252a151/2, «25D«1 , and D51,
whereE52Ed /«1 andwn5w(na). The space discretizatio
is performed viaxl5nla, so thatn5n11n2 is an integer.
Moreover, the\* parameter gets introduced as

\* 52p
F

F0
, ~A9!

whereF5Ba2 is the magnetic flux through the unit cell.
After having arrived at this stage, we are ready to conv

Eq. ~A8! into Eq. ~1! by resorting to the wave function

c~z!5 (
n5`

`

wnzn. ~A10!
04623
n

rt

Alternatively, we can make the identificationsqn5z, qn11

5qz andqn215z/q, in which case Eq.~A8! could produce
Eq. ~1! via

c~z!5c~qn!5wn . ~A11!

However, for this purpose we have to consider thez variable
as it stands in Eq.~1! as being independent ofq, which looks
somewhat questionable from a strict mathematical point
view.

The above procedure differs from the derivation of the H
for which one considers the Landau gaugeA5(0,Bx1,0) and
the usual wave function ansatz

C~x!5eik2x2w~x1!, ~A12!

instead of Eq.~A5!. This leads to the HE

wn111wn2112D cos~n\* 1u2!wn5Ewn , ~A13!

which incorporates the Brillouin parameteru2 , where x1
5na and where, as before,«25D«1 . Thus the HE is a well
defined band energy equation with the periodic bound
condition

wn1Q5wn , ~A14!

which differs from the rather specialqSHE.

APPENDIX B: REVISITING QÄ6 ENERGY FORMULAS

Solving Eq.~33! yields the six orderedW roots

W1
~6!52W6

~6!5~F1
1/31F2

1/31L !1/2, ~B1!

W2
~6!52W5

~6!5~«2F1
1/31«1F2

1/31L !1/2, ~B2!

and

W3
~6!52W4

~6!5~«1F1
1/31«2F2

1/31L !1/2, ~B3!

where

W1
~6!>W2

~6!>W3
~6! ~B4!

and

L5 1
3 ~G813G616G4110G2115!. ~B5!

Inserting Q56, one realizes that Eq.~42! gets fulfilled in
terms of Eqs.~40! and ~B1!–~B4!. Accordingly @26#
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«652
1

2
6 i
)

2
, ~B6!

F652
S

2
6AD, ~B7!

such that

S52 (
n50

12

bnG2n ~B8!
-

a,

ys

04623
and

D52
1

108(
n50

20

cnG2n , ~B9!

where thecn coefficients are, of course, different from th
ones in Eq.~16!. The values ofbn and cn are presented in
Table 1 in Ref.@18#.
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