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Fundamental scaling laws of on-off intermittency in a stochastically driven
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Noise-driven electroconvection in sandwich cells of nematic liquid crystals exhibits on-off intermittent
behavior at the onset of the instability. We study laser scattering of convection rolls to characterize the
wavelengths and trajectories of the stochastic amplitudes of the intermittent structures. The pattern wave-
lengths and statistics of these trajectories are in quantitative agreement with simulations of the linearized
electrohydrodynamic equations. The fundamemtal? distribution law for the durations of laminar phases
as well as the power law of the amplitude distribution of intermittent bursts are confirmed in the experiments.
Power spectral densities of the experimental and numerically simulated trajectories are discussed.
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[. INTRODUCTION bursts[3,4,26,27 and the power spectrum of the trajectories
[21-23,24.

A. Intermittenc . . . . .
Y Experimental evidence for on-off intermittent behavior

Intermittency is a prominent phenomenon observed in &as been reported in a number of very different physical
large variety of nonlinear dynamical systems. The “classi-systems. A simple experimental realization can be achieved
cal” examples of intermittent behavior, the so calledn coupled oscillator circuit§8]; other systems described in
Pomeau-Manneville types 1-I[LL,2], can be found in deter- g jiterature involve a gas discharge plagi@pand a ferro-
ministic systems where upon a certain change of a Co”tr%agnetic resonance spin wave experimiid]. While the

par_an;_et?r a fltxedbpomt of the ts;:)slte(rm(;)rrespf)?ﬁdmg to ‘"i[‘ fundamental validity of the asymptotic scaling laws is estab-
periodic trajectory becomes unstable. One of the charac ®Mished theoretically, it is not easy to confirm this prediction in

istic feature_s for the d_|s'§|nct|on of the d_|fferent types of in- experiments. In the spin wave systé@0], a power law in
termittency is the statistics of the duration of the QuUasIPENS, o distribution of laminar phases has been reported over just
odic (“laminar”) phases which are irregularly interrupted by P P J

chaotic parts of the trajectory. sl_ightly more th'c_m one order of magnitude m In_the gas

A fundamentally different type of intermittent behavior diScharge experimeii], the power law behavior is covered
has been observed in coupled chaotic oscillafgrss]. This ~ PY @n exponential function. , _
phenomenon can be found in dynamical systems at the sta- AMong the experimental situations where on-off intermit-
bility threshold when a stochastic or chaotic process couplet€nt behavior has been unambiguously detected is electrohy-
multiplicatively with the system variables. The term on-off drodynamic convectionEHC) in nematic liquid crystals
intermittency has been coined for this phenomenon. In sysdriven by multiplicative nois¢11]. This system turns out to
tems that exhibit this type of intermittency, there is no shargoe particularly well suited for an experimental characteriza-
transition from an equilibrium quiescent state into an activetion. It represents a spatially extended dissipative system.
state but intermittent behavior occurs for a range of values oEompared to other reported systems, the EHC experiment
the control parameter, and the system has to be characterizetlows an additional spatial periodicity of the intermittent
by a statistical description. It resides in a groundf) state  bursts where a wavelength selection process is involved. Ac-
during quiescent or laminar periods, which are interrupted byess to the control parameters and observation of trajectories
bursts of large scale excursions of the system variables intis straightforward. The physical mechanisms are well under-
the on state. Like the other types, on-off intermittency isstood. Many material parameters involved are accessible in
characterized by fundamental statistical properties of the inindependent experiments. The validity of the asymptotic
termittent process which have been extensively studied iscaling law for the duratiom of laminar phases has been
recent years, experimentally as well as theoretiddhy25]. confirmed experimentallj11].
A statistical analysis reveals characteristic asymptotic laws In this study, a modified optical setup is used in order to
that describe the universal behavior of such systems. It hagcord pattern wavelengths and amplitudes with high sam-
been shown that the distribution of the duration®f the pling rates. The trajectories of pattern amplitudes are ex-
laminar phases in on-off intermittency follows a characteris-tracted from the laser scattering profile produced by the nem-
tic power law with exponent-3/2 [7] in the vicinity of the  atic cell. In addition, a simulation of the linearized dynamic
instability threshold. Other fundamental scaling laws haveequations is presented. Trajectories obtained in the simula-
been predicted for the distribution of the amplitudes of thetions are compared to the experimental results to test the
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FIG. 1. Schematic drawing of the convection rolls and director

field in a nematic sandwich cell. A snapshot of the spatial modula- FIG. 2. Threshold voltage® and wave number) for driving

tions of director and charge fieldsp() in the cell midplane is  With periodic and stochast{dichotomous Markov proces®MP)]

sketched. square waves ofmean frequencywv. Periodic excitation: experi-
ment (O), theory (— — —); stochastic excitation: experimer®],

validity of a linearized treatment of the system dynamicstheory (—). The method for the experimental determination of

[28] near the instability threshold. stochastic thresholds is explained in the text. The symbaindi-

cates the frequency where the stochastic measurements presented

below were performed.

B. Nematic electroconvection

Nematic EHC[29-34 represents a standard system ofonset of conduction rolls increases monotonically with fre-
dissipative pattern formation; its fundamental features areuency. At the cutoff frequency,., the threshold voltage
well understood today35]. The instability is driven by in- curve intersects that of the “dielectric” patterns. In the di-
teractions of an external electric field with electric chargesglectric regime abové., the director deflections alternate
present as either impurities or dopants in the nematiwith the field while the charge density modulation retains its
material. sign. Figure 2 shows the stability diagram for the system

The experimental geometry is sketched in Fig. 1. Thestudied in this paper. Figurga@ gives the onset voltage for
ground state with the nematic direct@ptic axi9 uniform  the first instability, toward normal rolls. The corresponding
along an easy axis in the cell plane is achieved by propewave numbers are shown in Figb2
surface treatment of the cell plates. An electric field is ap- When a stochastic excitation scheme is used where the
plied normal to the cell plane. Nematic material with nega-driving field has no deterministic compone(such as, e.g.,
tive dielectric anisotropyA e is chosen to prevent the splay the dichotomous Markov process that is considered in this
Freedericksz instability. In the electric field, the dielectric papej the system does not exhibit a sharp transition from the
torque stabilizes the ground state, but small thermal fluctuaguiescent to the convective state upon variation of the con-
tions of the director field in connection with an anisotropictrol parameter, but shows intermittent behavior. Two differ-
conductivity of the nematic generate a periodic space chargent regimes are found which have many features in common
modulation in the cell plane. The interaction of these spacevith the corresponding conductive and dielectric regimes in
charges with the electric field leads to convective flow whichthe deterministic case. At onset of the instability, one of the
in turn generates a destabilizing viscous torque on the diresystem’s characteristic timdglirector or charge relaxation
tor field. Above a threshold voltadd,, this torque exceeds becomes comparable to the characteristic time of the noise
the stabilizing dielectric and elastic torques and a periodicrg,ch. A cOnsiderable qualitative change of onset and appear-
pattern of convection rolls and corresponding director deflecance of the convection patterf6,37) is observed. A typical
tions is formed. In the simplest case, the wave vector of thenapshot is shown in Fig. 3.

first instability is along the directofnormal rollg. The roll Nevertheless, there was little interest until recently in the
structure appears in optical transmission as an array of paguantitative statistical interpretation of the structures at the
allel stripes in the cell planéig. 1). instability threshold. The main focus of research has been

Electroconvection is conventionally driven with a peri- directed to the study of superimposed deterministic and sto-
odic ac voltageto avoid sample degradation in dc fieldso  chastic driving fields and the construction of pattern state
understand the mechanism of pattern formation it is essentialiagrams. The empirical concept of a threshold voltage has
to note that director and charge fields respond on differenibeen applied in previous experimental investigations of
time scales to the alternation of the electric field. The symnoise-driven EH(36,38—-42 and statistical methods have
metry of the dynamic equations requires that their time debeen applied to test various stability critef#8—46,28. The
pendence with respect to a periodic driving field is antisymdargest Lyapunov exponeitof the trajectories of the system
metric. This is reflected in the existence of two differentvariables, which is analytically know[28], provides a quan-
types of patterns. In the low frequency “conduction” regime, titative measure for the instability threshold, but the crucial
charge relaxation is fast compared to the ac frequency. Thproblem is the experimental determination of the threshold in
charge density alters its sign with the applied field; the sigra system with limited dynamical range and additive noise.
of the director deflection is preserved. The voltage for theThe statistical analysis of the intermittent trajectories pro-
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TABLE |. Material parameterscgs unit$ used in the simula-
tions. The parameter set for the simulations of stochastic trajectories
is taken from the fit of threshold voltage and wave number charac-
teristics for periodic ac driving; see also Fig. 2. Experimental data
for Mischung 5 are taken frof¥9,50.

Parameter Simulation input  Experimental value
No 1.4935 1.4935
Ne 1.6315 1.6315
= g 6.24 6.24
° e, 6.67 6.67
£ o) (s'h 90.0 117.0
= o, (s 60.0 90.0
a, (gem s 0.1
Y1 (gem s 3.3 3.6
Y2 (gemts™h) -33
m (gem s 3.62
72 (gem s 1.0
K11 (gecms?) 14.9x10° 7 14.9x10° 7
Kas (gecms?) 13.76x10° 7 13.76x10° 7

transparent indium tin oxide electrodes (5 mnd mm);
they are polyimide coated and rubbed antiparallel for planar
Lateral position = [pm] surface alignment. The temperature of the samples is con-
trolled by a Linkam heating stage with an accuracy of 0.1 K.

FIG. 3. Transmission microscope images of the noise-driventpe sample temperature was set to 32 °C in all experiments.
pattern during a bursta) and space-time plot of a cross section

along the wave vectotb). The horizontal axis gives the spatial

coordinate along the pattern wave vecdfdirector easy axjs Only

in adjacent bursts does the spatial phase of the pattern appear cor- All relevant material parameters for the simulation of the

related; long laminar phases destroy such correlations. electrohydrodynamic equations except for some viscosities
have been measured in independent experimptfissq.

vides an experimental tool to characterize the stability! "€ conductivity of the nematic samples differs by about

threshold,\ =0 [11]. 20% between individual cells; values for a given cell are

The observation and quantitative characterization of tht;frllmoSt constant in time. In order to prevent Io_ng-term t_ren_ds
iﬂf the conductivity, we reheat the material into the liquid

dissipative patterns under stochastic excitation is achieved h bet b i f th ) & simil
this study by exploring the phase grating formed by the spap ased etween su sequ%rEmruans Z" € expenmetn » Simiiar
tially periodic deformed director field. The laser scatteringproce ures were propose ~4. All measurements pre-

profile resulting from the nematic convection patterns is re_sented in the diagrams of this paper were performed con-

corded. A two-dimensional2D) detector allows one to ob- secutively with the same cell, in order to obtain quantita-
serve the complete scattering profile of the transmitted Iasetf’VQIy comparable results for the different statistical

light and to study the wave vector orientation and Wave_mvestigations. Differences in conductivity between indi-

length selection process with a sampling rate of 25, and vidual cells may lead to variations of the respective thresh-
alternatively a photodiode positioned at the scattering refleX lds but do not influence the statistical characteristics.

enables us to record the trajectory of the dominant mode. In or_der to cor_nplete the parameter set for the_ r_1umerica|
with faster sampling rate and higher intensity resolution Simulations, we fitted the threshold curves and critical wave

numbers for deterministic square wave excitation where the
experiment yields sharp thresholds toward the first instabil-

ity. With a fixed parameter sefTable ), good agreement

A. Sample preparation between numerical results and experimental data is achieved
. . . . across the whole frequency range investigdteid. 2). The

We use the nematic mixture Mischung(Balle) which same parameter set is used thereafter for the calculation of

consists of four . d'SUb$t'tUted all(pky)phenyl— . the Lyapunov exponents and stochastic trajectories.
alkyloxybenzoates. This material has been used in previous

EHC experiment§11,37,47,48 The mixture is nematic at
room temperature; its clearing point is 70.5 °C. The commer-
cial sandwich cellLINKAM ) used in the experiments has  The wave form of the driving electrical voltage is synthe-
cell gaps of 25.8.um. The glass plates are covered with sized by a computer and subsequently amplified. We gener-

B. Material parameters

Il. SAMPLE PREPARATION AND EXPERIMENTS

C. Excitation
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(a) Periodic photodiode screen
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FIG. 4. Excitation wave forms and corresponding power spec-
tral densities for periodic square wa(@ and a DMP(b). FIG. 5. Sketch of the experimental setup. Abbreviations used:
PC, personal computer; AD, analog-to-digital; DA, digital-to-

. . . analog; and LC, liquid crystal.
ate the driving voltage curve with a sampling rate of 10 kHz. g . y

Although the spectrum of this wave form is in principle dis- turns out that the statistical properties of the trajectories and
crete, we can consider it as quasicontinuous in the frequendye derived scaling laws for these stochastic processes are in
range relevant in the experimentiselow 500 Hi. Within  full accordance with those for the DMP. Therefore, we will
this study, we have used a few special wave forms, which argiscuss only the DMP results as representative of other types
detailed in the following. Figure 4 visualizes their signal Of stochastic excitation.

shapes and shows the respective power spectra.

Periodic square wavexcitation is used to construct the
stability diagram for deterministic driving. We exploit the ~ The sample cell is irradiated by a He-Ne laser with wave-
sharp threshold toward the first instability for adjustment oflength A j;e=632.8 nm at normal incidence. The beam di-
system parameters and a test of the long-term stability of thameter is about 1 mm. The scattered light is monitored on a
samples. For example, the cutoff frequency is a sensitivécreen at a maximum distance of 1.3 m from the @&lj. 5).
measure to reveal even small changes of the sample condu@then the sample is in the ground stétero electric fielg}
tivity. only a weak background scatteriAg(t) is observed around

The dichotomous Markov proce$BMP) is the stochastic the primary beam. Since we are interested in scattering from
wave form used in all experiments presented below. It ispatial deformations of the director field, we correct the raw
characterized by random jumps of the electric field betwee§lata with a time averaged intensifyy by A(t)=|A(t)
the two valuest+ E and —E, with an average jump rate. — Ag|. This correction is marginal since the background sig-
The time intervals between consecutively jumps are distribnal is in general three orders of magnitude smaller than the
uted asAt;j=—(1/a)Inx, wherex; e (0,1] is a uniformly ~ amplitude of the scattering reflex at the position of the
distributed random number. In analogy to a deterministic®hotodiode. _ _ o
square wave excitation with frequeneywe define the “av- From the two-dimensional scattering images, wavelengths

erage frequency’v=a/2. The DMP power spectrum is and orientations of the patterns can in principle be continu-
Lorentzian with its maximum at frequency zero and a halfously extracted. However, because of bandwidth limitations

width related to the jump rate by/ 7 [Fig. 4b)]. An impor- in si%naﬂ process_ing dWe use two different equipments to
L . . . ecord the scattering data.
tant feature that facilitates the numerical calculations is that A commercial video camera is employed to take 2D scat-

_aII terms quadratic in _the electric_field are time indepen_ol_en{ering images with an acquisition rate of 25 frames per sec-
in the DMP. An analyt_mal calculation of the sample stability ond and 8-bit intensity resolution. This enables us to study
threshold and the critical wave numbers has been perform e evolution of the mode spectrum and to access the full

[28]. Technically, identical realizations of the stochastic pro-\5yve vector information, although time and intensity resolu-
cess can be reproduced with the computer. This allows us 9y gre limited.
use identical noise sequences for experiment and simulations The 2D images show that at given frequency, the pattern
when details of the trajectories of pattern amplitudes are ofs dominated by a single modsee Fig. 6 with fixed wave
interest. vector but varying amplitude. Any low order scattering reflex
Other stochastic processésve been tested in additional of that mode is representative for the momentary pattern, and
experiments. While the DMP randomizes the phases of # is sufficient to record only the scattering intensity at a fixed
periodic square wave, another stochastic process can be symsition (here, we use one of the two symmetric second or-
thesized that randomizes the amplitudes of the square wader reflexes For that purpose we employ a photodiode with
but keeps the jumps equidistant. This randomization of theperture 7 mrhadjusted to the reflex of interest.
amplitude can be combined with a random phase of the The photodiode signal is digitized and the trajectory is
jumps. Such processes do not complicate the numericatored in a computer. We use a f&8t2 ms time resolution
simulations; the electric field is piecewise constant and the2-bit analog-to-digital convertetADC) for measurements
equations of motion can be integrated straightforwardly. ltwith high time resolution such as, for example, the determi-

D. Data acquisition
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small fluctuations considered here, both approximations lead
(a) t=500s : to similar results. In order to establish a relation between the
: : g experimental observations and the results of the simulations
of the director and charge fields, it is necessary to calculate
the diffraction efficiency of a given periodic director field.

We use the eigenfunctions(x,z,t) from the linear stability
analysis. Using Fermat’s principle it is possible to determine
the optical path, the resulting phase differenfgx,t), and

the intensity profile of light passing the cdb3—60. At
small deflection angles, one can assume that individual light

% '(b) ' ' - '.'1 : rays pass the cell without deflection, creating a phase grating
- -3
GE, 350} — . —— . ——p - ‘ 3 24 (d
= = -2 -uge -E . X,t =—f Ngrdz
= el ? ' ¢( ) )\Iaser 0 eff
400 -
7 fﬂ'/kzzﬂne
450} “ 0 )\Iaser
nZ2—n2
500} - X | 1— === (t)%cog(kX)sir(k,z) |dz.
(0]
550} )
Analytical integration overz along a straight path through
A A . A the cell [61] yields a periodic phase modulatiaki(x,t)
-020 -0.15 -0.10 ) -0.05 0.00 with twice the wave numbek, and a quadratic dependence
Scattering angle 6 [rad] on the director deflection,
FIG. 6. Scattering image at=2v=160 s ! (jumps per sec- n 71_2(nz_nz)
ond DMP excitation recorded with a charge-coupled device cam- A ¢(x,t) = ¢ 5 © 2 (1) 2co@(k,X) = ¢(t)2coL(K,X)
era. (@) 2D snapshot during an intensive bursttat500 s; (b) 2N5K N jaser

scattering angle—time plot of intensity profiles takeryatO, pre-
sented in inverse gray scale. The constant angle of the individual
reflexes in subsequent bursts reflects the fast and stable wavelength . . . . . . .
selection mechanism. An arrow marks the position of the photodi- " this approximation, the intensity modulation wily
ode, set to the most intense scattering reflex of the most unstabfée to focusing effects of the inhomogeneous refractive in-
wave number. dex profile is neglected and only even order reflexes appear

in the scattering image. This is in agreement with the experi-
nation of laminar phases, and alternatively a sk®01 9 mental observations. The second order reflex dominates the
24-bit ADC for accurate amplitude measurements over largémall amplitude patterns, and with increasing amplitude of
dynamic ranges. the director deflectionsg(t), higher order reflexes can be
observed. We note that the amplitude gratiwghich pro-
IIl. OPTICS duces the well known shadowgraph images in conventional
orthoscopic microscopyis effective as well; it is most
The electroconvection rolls in the nematic material pro-prominently reflected in the weak first order reflexsse

o« p(t)%coq 2K,X). (4)

duce spatial periodic director deflections Fig. 6).
- . ) The relationk, = 2 sin 6,/(M\,4se) CONNECts the scatter-
@(X,2,t) = (t)sin(k,x)sin(k,z), (1) ing angled,, of the mth order reflex with the wave number

k(6. The scattered light intensit4(t) of the phase grat-

which lead to a modulation of the effective refractive mdexing at the second order reflex is related to the square of the

Ner fOr the transmitted extraordinary beam, Bessel function of the first kindl; (¢madt)), with the ampli-
tude of the phase grating),, in the argumenf61-6§. For
Net(B(X,2))= MoNe (@2 small director deflectiong(t), the intensity at the second
\/n§ cog B(x,z)+ ng Sir? B(x,2) order reflex is proportional to the fourth power of
wheren, andn, are material parameters apdis associated A1) < IH(Prma 1)) % P2 (D) o @4 (1). (5

with the angle between the electric field vector and the opti-

cal axis[53]. A phase and amplitude grating is formed in the By numerical integration of the nonlinear Euler-Lagrange
cell. There has been some discrepancy in literature about trejuations we have calculated the actual propagation of light
usage of refractive or ray index in these calculations. For théeams through the sample. The numerical integration allows
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for the deflection of light and thus for intensity modulations (such as the deterministic square wave and DMP described
by focusing effects. These simulations confirm the relatiorabove, E(t) assumes only two valuesE, and all elements
A(t)x (t)* even for large director deflections(t)<1. of the matrix are constant between consecutive jumps.

The numerical simulation of EHC patterns yields  Within a time intervalAt; of constant excitation field, inte-
=dy¢ (see below, which represents the director deflection gration of the differential equation gives a solution in the
for a given mode. For comparison of simulatedand ex- form of a sum of two exponentials. The solutianfrom the

perimental intensities we use the relation ith integration step is taken as the starting value for the (
theor A +1)st step. The complete trajectory for givign E, and set
ATEP(t) =consX @™ (t). (6)  of (random timesAt; for jumps of the excitation voltage is

i i __calculated with an initial vectozy=(q,#)|;=o. At the dis-
We emphasize that we compare the experimental and simy;ate jump times,,, the solution is
n»

lated pattern amplitudes only on a relative level, since no

efforts have been made to relate calculated absolute scatter- 2(t)=TE(At,)- - - TEY(At)Z(0), (10)
ing intensities to voltages measured by the photosensor.
Since the simulations use a linear model, absolute scaling of Ati=t;—t,_;, S=sSgnE(t;>t>t;,_,),
pattern amplitudes is not relevant for the fundamental statis-
tical properties of the system. n
=11 79 at), (11)
=

IV. NUMERICAL SIMULATIONS

A. Basic equations whereT)(At;) is the 2 2 time evolution matrix for théth

The basic equations for the charge and director fields antterval- _ o _ _ _
the method for analytical derivation of the Lyapunov expo- For & detailed statistical analysis #t), in particular for
nents in the electrohydrodynamic instability were describedn€ calculation of power spectral densitig3SD’9, the tra-
in detail in[28]. jectory can be filled in the intervals between the jumps using
The important quantities describing the system dynamicéhe exact exponential solutioS*)(t—t;_,).

are the charge density and the amplitude of the director In the particular system. §tud|ed herg, f[he eigenvalues
o~ . i . ET,(E,k,) are real and positive. For periodic square wave
deflectione (see Fig. L A standard technique to describe

. - ; S . driving, all intervalsAt; are equal and the product i§,
the time evolution of small amplitude periodic patterns is the_ (T*T~)"2. For the calculation of the Lyapunov exponents
gge Of. In":earléed d'ﬁer?nt"’ﬂ equations _anq al t(‘;\’O'it is sufficient to conside€(T"T~). This reproduces the
imensional mode ansatz for the two quantities involved, || known results of classical theory using Floquet methods
~ B : . [32,33.
e(x.z) = p(v)sin(kx)sin(k.z), @) In the case of stochastic excitation all the are different
~ ) and the calculation of the Lyapunov exponents leads to an
a(x,z,t) =q(t)cogky x)sin(k,z). (8 infinite product of 2<2 random matrice§28]. This system
) . yields two real Lyapunov exponenis;>\, which are re-
In the relevant parameter range, the pattern is spatiallyyteq to the eigenvalues of the product of stochastic matrices

periodic along the director easy axis direction This result 7,. In particular, the largest Lyapunov expongint the fol-
of the linear stability analysis is in agreement with the &X|owing denoted by) is found from

perimental observations. Therefore, we consider only the sta-
bility of modes with the wave vector parallel to theaxis. 1
The (stress-freeboundary conditions for the director field at A= lim — In{max E7,)}. (12

~ ~ t
the glass plateg(z=0)=¢(z=d)=0 are satisfied by, "

=r/d. For convenience, the director deflectipnis substi- For DMP excitation, the Lyapunov exponents can be ob-
tuted by the curvature=dy¢. A system of two ordinary tained analyticallyf28]. Figure 7 shows the Lyapunov expo-
differential equations is derived from the torque balancenent for the critical wavelength calculated with the param-
Nawer-S_tokes, and Max_well equanons._After hneanzaponeters specified above. In the linear mode],is growing to
we obtain an ordinary differential equation system in timejnfinity (\>0) or shrinking to zero X<0), depending on

n—o

for the vectorz(t) = (q(t), ¢(t))", the value of the largest Lyapunov exponent. The selected
wavelengths and threshold voltages for a given frequency
iz(t) _ 1Tq oHE(t) 2(t) ©) and set of material parameters are calculated from the neutral

dt aE(t) Ap—ALE(1)? ' curve. The wave number is varied and the minimEmof

the neutral curve provides the critical wave numkgr
where A;,A;,,Tq,04, anda are parameters related to the  Because of the symmetries of E®), one of the system
viscous, elastic, and electric properties of the liquid crystal ayariables (1, ) keeps its sign while the other variable has to
well as to the wavelengtk, of the modeg28]. The electric  change its sign with the polarity of the applied field. At pe-
field amplitudeE(t)=U(t)/d corresponds to the excitation riodic excitation, the system is synchronized with the applied
voltage U(t). In the case of piecewise constant excitationfield and the conductiong( alternating periodicallyand di-
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10f T T T ]
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FIG. 7. Analytically calculated Lyapunov exponentof the 102
most unstable modk,=0.204 um™1, for DMP excitation withy \
_ ~1 ° > FRprH . . n
80 s . Material parameters are taken from the fit of periodic 0 200 200 500

excitation thresholds and wavelengths. The value0O defines the Time ¢ [g]
critical voltageU®=14.2 V.

FIG. 9. Two simulated trajectories rt< 0 for different constant
electric (4 alternating periodically regimes are distin- background level$a) ¢m,=5%10° and (b) ¢m,=5%10*. The tra-
guished. In the case of DMP excitation, the support of one ofectories appear to be significantly different, whereas the statistical
the variables still preserves the sign and the two regimes caanalysis produces the same fundamental power laws.
still be distinguished28]. In the following, we will discuss
only the low frequency conduction regime; Fig. 8 shows de-earities in the system limit the excursion of the system vari-
tails of a simulated trajectory. The slow variable is the direc-ablesz to large values while additive noise prevents their
tor deflection, which is directly related to the measured quanunlimited decay. In order to compare the results of simula-
tity, the scattering intensity. Due to the coupling af,§), tions and experiments, we introduce limits for the director
both the director deflection and the envelope of the chargdeflection(curvaturey) by clipping each time step,
density curves show the same long-tert» ({/v) character-

istics. Ymax it (t)> Ymax
'p(ti): ‘pmin if ‘//(ti)<¢minu (13)
B. Boundaries H(ty) otherwise.

In the linear description, the trajectories tend to infinity or . ] ] ) ] ]
zero for all values ol #0. However, a realistic description Because of the linearity of the ordinary differential equation

of the experiments has to consider boundariegfdionlin- ~ System[Eq. (9)], only the ratio of the upper and lower
thresholds is important. A constant factor in the amplitudes is

irrelevant for the statistical properties and scaling laws. Here,
we assume that the dynamic range is two orders of magni-
tude, 5<10 3<y(t;))<0.5. This dynamical range reflects
approximately the situation of a thermal background stimu-
lation ( ?)Y2~ y, K .k2~5 mrad[51,52,67 and an upper
limit of 0.5 rad. For negative Lyapunov exponents, the lower
boundary is necessary to prevent the unlimited decay of
#(t). The choice of the value of the lower boundary has a
strong effect on the number of bursts per unit tifeee Fig.

9), but only a small effect on the fundamental statistical laws
(see below.

The assumption of a well defined lower limit is of course
artificial and cannot describe the actual experimental behav-
ior for very small pattern amplitudes. A more realistic as-
sumption considers low amplitude additive noise in the vari-
450 5(')0 550 5"‘0 560 able (t;). We have_' studk_ed this case by adding Ge_lussian

Time ¢ [s] random numbers with a given varianBe[68] at each time
step. For zero electric field, Eq$9) decouple andy de-

FIG. 8. Details of a simulated trajectory of and q at »  Scribes an Ornstein-Uhlenbeck proce@8UP), which is
=80 s, at \=0 (“conductive” regime for a constant lower Characterized only by and an exponentially decaying au-
boundaryl//min=5x10’3; see Eq(13). In the low frequency regime tocorrelation with correlation timeoupoc 1/\ related to the
the slow variabley(t) keeps its sign, whereag(t) oscillates syn- Lyapunov exponent at zero voltageee Fig. 7. One conse-
chronously with the applied fielf; . quence of such additive noise is that the simulated trajecto-

050

¥(t)

0.00

q(t)
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(a " " " " " nematic cell, taken with the 2D camera detector. The image
1 shows the primary beam &t=0 and diffuse scattering spots
from the periodic spatial director modulation in the cell. The
scattering reflexes concentrate on theaxis, i.e., normal
electroconvection rolls are observed. The wave nurkbef
the pattern producing this image of 02m! is derived
from the spot positions; the director period Ng;,=27/k,
=32 um. Below the scattering image, in Figi®, the time
dependence of the intensity profile taken along the horizontal
symmetry axis of the profilek{,=0) is plotted. For better
reproduction, the image is plotted with inverse gray scale,
dark spots corresponding to high amplitudes of scattered
light and consequently to large director modulatigimgrsts.
The bursts are characterized by a narrow wavelength band
and the reflexes remain approximately at the same positions,
i.e., in all bursts the patterns have nearly the same wave-
lengths. The wavelength selection process itself is not ob-

FIG. 10. Same as in Fig. 8 but with background additive noises_ervable in the images; it is obviously fast compared to_ the
in 4(t). With additive noisey(t) can change its sign occasionally. Vid€0 rate of 25 Hz and occurs below the level of optical

The pattern amplitude as well as the optical scattering intensitie§€Nsitivity of our camera. The information about the spatial
are, however, insensitive to the sign if phase of the patterns gets lost in the scattering image, there-

. _ . _ fore we cannot determine from the scattering images whether
ries for the slow variables(t) can change sigfsee Fig. 18, the convection rolls of subsequent bursts appear spatially
in contrast to Eq(13). This is not relevant for the compari- phase correlated or not. The essential information taken from
son with the scattering experiment which is insensitive to thghe 2p images is that the wavelength of the noise-driven
spatial phase of the pattern. If the variafizés chosen such patterns is constant and the scattering image consists of re-
that the mean squ;drlelzamplltude@ﬁn the absence of elec- flexes at fixed scattering angles with varying amplitudes.
tric fields gives(y")"“= ymin, the statistical properties of 1,5 we achieve a considerable data reduction by restricting
|| are qualitatively identical with the simulations using con- ¢onsjderation to the strongest scattering reflex. In particular,

0.5

480 500 520 540 560
Time ¢ [s]

ditions (13). the detector is placed at the second order scattering reflex of
V. RESULTS AND DISCUSSION the most critical wave number, indicated by the arrow in
Fig. 6(b).
A. Pattern images
The conventional technique to observe pattern formation C. Trajectories
in EHC is the shadowgraph methffB] in combination with The intensity of scattered light at the position of the sec-

a transmission microscope. An instant picture of a patteriond order scattering reflex of the first unstable mode is
burst, recorded by means of orthoscopic microscopy, ishown in Fig. 11. The curves have been digitized by means
shown in Fig. 8a). The dynamics of this pattern can be vi- of the 24-bit AD converter. The random electric excitation
sualized best when the intensity in a cross section perpeffield E, uses identical realizations of the stochastic process
dicular to the rolls is scanned and a spatiotemporal plot as ifor all three trajectories, with different amplitud& Con-

Fig. 3b) is analyzed. Some bursts, in particular those thaterning the effects of the multiplicative noise in the system,
appear in fast sequences, are correlated in their spatial phasftails of the three curves can be directly compared. The
After long laminar phases, however, there is in general n@haracteristic frequency was 80 Hz, corresponding to an
spatial correlation remaining between the bursts. For stationaverage of 160 jumps/s of the sign®f. Figure 11a) shows

ary rolls, this loss of correlation is a consequence of additivehe raw signal from the detector for a voltage below the
noise in the system; it triggers new modes whenever theritical U®®. The contributions of(additive background
pattern amplitude reaches the thermal noise level. In sucfictuations to the detector signal are of the order of3L0/
cases, the new fluctuation mode has an arbitrary spatial pha(sigound a constant offsét,=3x 10-3 V. Bursts of the spa-

with respect to the previous convection pattern. On the Othetrially periodic pattern that exceed the background noise level

2aggéltiirﬁe?gﬁ;rfq#ﬁgcecsazf g:rsifrig]ugg) g]a;rgr?i?iigfonsoccur infrequently. From arguments discussed in the next
p - 1hey X . PINCalONS, ¢ tions we conclude that the excitation voltage is below the
of the same mode which has disappeared in the optical ima

but has not reached the level of additive noise during thi'-z%ei"jlblllty threshold(defined by the Lyapunov exponent

) . . =0). In Fig. 11b), the voltage is approximately equal to the
intermediate laminar phase. critical voltage § =0). The characteristic feature of the tra-
jectory is its mirror symmetry of high and low amplitude
excursions of the scattering intensiy(t) on a logarithmic
Figure 8a) shows a snapshot of the scattering imagescale. The rise and decay sections of the graph are symmet-
originating from a burst in a DMP-drivedi=25.8 uwm thick  ric. We note that, in a linear presentation of the same plot

B. Scattering images
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%10’3 ] FIG. 12. Normalized distributiorp(2a7) of durationsr of
€ 10*° 4 laminar phases from experiment@ft) and simulatedright) tra-
< o A jectories; voltages as in Figs. (Bl-11(c). Here the trajectories
460 480 500 520 540 were recorded in 12-bit resolution Wita 1 ms samling rate. The
10 (©) r ' ' ' ' time axis was scaled with the jump rate=2v. The thresholdh,, is
> L set to 0.05 V. Ther™ %2 power law holds over several decades; best
< 10! ’ i agreement is found ai =U & which we assign ta.=0.
0 _2 - . . . . . .
g 1073 the distribution of laminar phases is calculated by introduc-
S 10 ] ing an arbitrary threshold intensi#y,,,, and the durations of
g 10 m . periods where the intensity curve stays completely below
e e s i m that threshold are determined. A threshélg,=0.05 V has
5 _? 5 been chosen here; it corresponds to the geometrical average
ime ¢ [s] of lower and upper bounds of the photosensor signal. As

FIG. 11. Trajectories recorded with a photodiode positioned apxpected in on-off intermittency, the choice of the actual

the most intense second order reflex and 24-bit ADC; the excitatioﬁhreS,hOI,d value is not'crltlcal. Figure 1.(ﬂaft) depicts the
is identical with that in Fig. 6(a) At low voltage (U=12.2 V) the distribution of the laminar phase durations extracted from

trajectories for DMP excitation with three different voltages,

the same values as in Fig. 11. The time axis is scaled with the

_ s _ _ .« Jump ratea of the DMP. These distributions were extracted
|Aranlf) ~ Ag| at U=12.9 V where we assume=0 (see stafis from 4200 s runs of the experiment; each trajectory was re-

tical analysi$. The up-down symmetry of the curve is recognized. . . .
The experimental dynamic range is limited by saturation for IargeCorded with a sampling rate of 1000]3(W'th the fast AD

amplitudes and by background noise for small amplitudesAt convertey, so that a range O_f Si)f or_ders Oj gagnituderi'n;
U=13.6 V the on state is dominant, interrupted infrequently by'€SOlved. The dash-dotted line indicates & dependence,

breakdowns to the quiescent off state. yvhich is predicted theoretically g_xactly_at t_he sample stabil-

. _ . ity threshold, A =0, when no additive noise is present. In the
A(t), the high amplitudes appear as prominent bursts out ofhort-time range, for 27<1, the curve deviates from this
the background level, and the typical intermittent behavior isyredicted fundamental dependence, because one approaches
acknowledged. At higher voltagéBig. 11(c)], the tIaJectory the time scale of the driving DMP process and specific de-
will be predominantly in the saturation regig¢fon” state),  is of the driving process become important. In the long-
interrupted by short laminar phases. These intrinsic Symmeyme Jimit of the curve, the power law behavior of the ex-
tries reflect theoretical predictions for on-off intermittent be'perimental trajectories breaks down mainly because of the
ha\%;[(;?%. litudes in Figs. 1) and 11c) have been cor- lower boundary(additive noise levelfor the system vari-

b gs- — ables. For long periods at least one of the variablps)

rected for the background intensi#y=| Az~ Ao|. This COr-  1eaches 4therma) noise level which prevents excursions of
rection attempts to separate the constamay lighy back- 5 gystem variables to values much belawy; trajectories

ground signal and additivéherma) noise in the trajectories. e essentially reflected there. This leads to faster injections

Since these contributions are comparably small, the COITeGst the next burst abovA,,, and thus to a lower probability

tipn aﬁectg pnly the onv amplitu.de section; of the trajecto-of long-duration periods. The flat shoulder indicated in Fig.
ries. It facilitates the identification of laminar phases and;s is the outcome of this effe6].

enables us to visualize the symmetry of burst and quiescent Figure 12(right)
periods on the logarithmic scale.

measured raw sign#,,,, fluctuates around a background Ie\?%l,
interrupted by infrequent burstgb) Corrected intensityA(t)

shows the results of the corresponding
simulations. Limits to the system parameters were set as
o _ given in Eq.(13). The voltages used in the simulation are
D. Distribution of laminar phases uhee'=14.2 V (corresponding to the critical value=0),
The statistics of experimental and simulated trajectorie@nd U®®+0.7 V chosen in the vicinity of this threshold.
can be compared on a quantitative level. In the experimeniThe critical voltage in the simulated curves is derived from
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the analytically calculated Lyapunov expon¢®8]. It is in 104F
perfect agreement with the numerical simulation of the tra-
jectories in the absence of upper and lower limits. In the
experiment, it was proposed earlier that a reasonable defini-
tion of the critical voltage can be found when the statistical
distribution of the laminar phases duration is analyzed. Thus
we assume that the experimental critical driving voltage

102 oo, N

U&®is reached when the distribution of laminar phases du- £ g2
rations is most adapted to=a %2 dependencéll]. Knowl-
edge of the relatiori6) between director deflection ampli- 10

Probability density p(A)

tudes and scattering intensities is not necessary for the increasing U
determination of the distribution of laminar phases. On the background saturatiorf
other hand, the laminar phase distribution is not the most

sensitive criterion for the determination of the sample stabil-
ity threshold as will be shown in the next section.

104 103 102 101 1 10
Amplitude A [V]

o ] FIG. 13. Distribution density of the burst amplitud&ét) mea-
E. Distribution of pattern amplitudes sured over 4200 s for the same DMP voltages as in Fig&)41
Another fundamental prediction for the statistics of on-off 11(c). (d) ForU=11.8 V (large negative\) and(e) background at
|nterm|ttent processes |S the dlst”bqun of amp“tudes |n théero excitation V0|tage. In their middle parts, the distributions fit to
trajectory. It has been showB,4,26,27 that the distribution & Power IatWIA_lIt+ 7. From the c;_rveang slope-1 we find the
of the amplitudes of the intermittent varialeshould follow experimental vottage correspondingAe=1.

a power law o o i .
value is in good coincidence with the critical voltage found

p(A)xA~1*7 (14)  from the best fit of the laminar phase distributions to &'
law. Both statistical definitions of the experimental threshold

in the vicinity of the thresholh=0. The parametep=\  Voltage agree consistently, and the numerical simulations

vanishes at the threshold of the instability. confirm the equivalence of the thresholds determined from
A statistical analysis of the recorded trajectories requiredh€ distributions of amplitudes and laminar phase durations.

sured scattering intensiti and the amplitude of the pattern @nd the exponent-1+ 7 can be extracted. Typical ampli-
. One can easily show that a similar power law as for thetude distributions are depicted in Figs.(@Band 13d). The
amplitude distributions of the intermittent variableholds ~ €Xponents exiracted from experimental data as well as from
also for quantitieA(¢) that depend on theth power of . simulated trajectories are shown in Fig. 15. In accordance

Whenp(¢)xe~1*7 andAx o™ then with the natural scales of the system, the axis was normal-
ized by the critical voltage to obtain a control parameter
p(A)c ALt 7/m, (15) The optical relation6) has been applied to retrieve pattern

amplitudesA which can be compared to the simulation from
The hyperbolic dependence at the threshbld0 is pre- experimental scattering intensitids The good agreement in
served. Our observabla(t), the scattered intensity in the
second order reflex, is related to the director deflection am-
plitude in first approximation by Eq5), and this relation
provides another opportunity to determine the critical voltage
U.. Figure 13 shows the distribution of scattering ampli-
tudesA(t) for zero driving voltage and four representative
voltages in the vicinity of the stochastic threshadld. A
power law can be fitted to the middle part of all these distri-
butions. For low scattering amplitudes, the curve deviates
from the fit because of the superimposed background scatter-
ing. For large amplitudes, the power law breaks down be-
cause of the saturation of the system variables and because

heor)

—
(=]
™
T

—
(=]
OS]
T

._.
<)
N
T

~
increasing U ~

Probability density p(A"

the optical characteristics, E¢5), are not valid for large 10° 10 107 A 1?f2 q 1%heo, 1 10
director deflections. In the numerically simulated trajecto- mplitude

ries, Fig. 14, where hard boundaries, cf. Efg) have ?higrn FIG. 14. Amplitude distribution densitigg(A"®®) of the simu-
used, these effects are condensed in the edge¢Ji A lated trajectories. The power law holds in the complete dynamical
is computed fromp by means of Eq(6). range; the fixed boundari¢&q. (13)] generate abrupt edges in the

In Fig. 13b), the amplitude folJ=12.9 V is closest t0  support ofp(A"e°). The critical voltageU"*°=14.2 V deviates
the exponent-1 in the power law; therefore we assign this somewhat from the experimental value. The graphs repredent
voltage to the experimental threshold voltagé®™. This  =14.2 V(solid), 14.9 V (dotted, and 13.5 V(dashesl
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Frequency w/2m [Hz]

FIG. 15. Voltage dependence of the exponert+ 7 (O ex- FIG. 16. Power spectral density of trajectorias-(c) in Fig. 12.
periment;— — —simulatior). The empirical error bars illustrate the AD converter with 1 ms sample time and 12-bit resolution was
uncertainty of the fit and variations between individual runs of theused. General predictions for the PSD in on-off intermittency are an
measurements. Foe<0, bursts appear infrequently and the exponent zero for very low frequencies; 1/2) for medium fre-
statistic is rather poor. A scattering efficiency according to @). quencies, and+2) for high frequencies; see E(L6). Near the
has been used to relate measured optical data to the simulationstical voltageUS™, the experimental data indicate such a behav-
(Ax|p|xAY4. Along the dash-dotted line the Lyapunov exponentior. The curve has been smoothed by averaging the density over
is assumed to be zero and the corresponding voléag@. Bigger  intervals proportional to frequency.
symbols indicate the applied voltages depicted in Fig. 13.

the logarithmic plot, the curves have been smoothed by av-
the slopes of they(€) curves ate=0 justifies the application eraging the spectral energy over intervals proportional to
of the optical relation Eq(6). w.
At the threshold voltagdJ$*™* (b), the o~ Y2 and w2
regions are well separated, and the existence of a constant

PSD in the low frequency wing seems to be indicated. In the

Finally, we discuss the power spectrum of the intermittenthigh frequency wing, influences of the mean frequency of
process. The main general theoretical prediction for the[he driving process;z;80 Hz are observable

power spectral density_ fok=0 is_ a square root frequency The PSD’s obtained from the numerical simulati@ee
depe?;jenc_ﬁ]21—23,26 'T a c(jertaln(;requencyt;angei. I atrt]y Fig. 17) are not in agreement with the experiment, in particu-
quantity with a power law dependence on the Intermittent, 'y, square root dependence is not reproduced. Only when
variable IS observed, this predlc_tlon IS equa[ly_v@d]. Th? . the dynamical range is chosen unrealistically large, do we
PSD predicted for a process driven by multiplicative noise ISybtain a PSDxw- 2 The choice of a realistic lower bound

qualitatively different from a process where noise couples[Eq_ (13)], i.e. additive noise with reasonable amplitude, de-

additively to the system variables, . .stroys any long-time correlations. Therefore, a simulation of
In the range of very small frequencies, a constant PSD is

expected because any time correlation in the system vari-
ables is destroyed by additive noise and the limited dynami-
cal range of @,). In the high frequency tail, a PSBw 2
dependence is expected, similar to that of a simple stochastic -
process with exponentially decaying autocorrelation func-
tion. The relation for the high frequency limii— can be
obtained analyticallyfrom Eq. (50) in [22]]

F. Power spectral density

10*}

o l.
W..
2L RPN oy J
10 w,l/g Sa, L2 \.\
o, °

[y
o
o b

const
PSDx{ w 12
2

1) if 0>w,.

if o<wq,

—
<
N

if wi<w<w,, (16)

PSD(A™") [arb. units)

—
<
£

The crossover frequencies, and w, where the asymptotic
exponent changes depend upon the Lyapunov exponent and
specific properties of the additive and multiplicative noise.

Figure 16 displays the PSD of experimentally recorded FiG. 17. Simulated power spectrum aK"eor with different
trajectoriesA(t) for three voltagesthe same as in Fig. 121t lower bounds[¢,=5X10"3 (@), 107 (A), 10710 (O)];
was obtained from Fourier transformation of %.20° data  upper limit ¢;,,=0.5. The theoretical exponert1/2 is found only
points of the optical trajectories in an interval of 4200 s. Infor unrealistically low background.

101! 1 10 102
Frequency w/27m [Hz]

103 1072
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the PSD with similar parameters as in Fig. 14 yields a prochosen such that the Lyapunov exponent is Zsample sta-

nounced constant low frequency region. bility threshold[28]). This result coincides with theoretical
predictions of the universal behavior of on-off intermittency
V1. SUMMARY [7]. In the vicinity of the critical voltage the linear depen-

dence of the exponent 1+ 7 on \ is also in quantitative
On-off intermittency in stochastically driven electrocon- agreement with the numerical simulation. In the experiment,
vection of nematic liquid crystals in the conductive regimewe cannot relate the exponent of the amplitude distribution
has been investigated experimentally and by numerical simuo a Lyapunov exponent. However, the functional depen-
lations. Results were presented for excitation with the di-dence of» on the reduced voltageis in satisfactory agree-
chotomous Markov process, but the resulting fundamentanent with the calculated dataee Fig. 15
statistical behavior is qualitatively similar for many other =~ We note that, although the statistical characterizations of
types of stochastic excitations. experimental and simulated data are in good quantitative
Laser scattering was used to determine the wavelengtragreement, the experimental and calculated threshold volt-
and time resolved pattern amplitudes. It was shown experiages and wave numbers can differ on an absolute scale by
mentally and confirmed in the simulation of the electro-roughly 10%(see Fig. 2 This is mainly the consequence of
hydrodynamic equations that under stochastic excitation théhe simplified assumptions of director and flow modes in the
pattern selects its wavelength within a narrow band; theremodel; it is not relevant for the description of on-off inter-
fore the intensity of scattered laser light at a fixed scatteringnittent behavior.
angle can be used to characterize the temporal behavior of In the power spectrum of the experimental trajectories, a
the pattern amplitude. The resulting trajectories were anaew ™2 dependence is indicated in a small frequency range, in
lyzed quantitatively and their statistical properties extractedagreement with predictions of general theofi2$,22; in the
The statistical analysis confirms that the distribution den-high frequency tail, the PSD adopts an 2 behavior(Fig.
sity of laminar phase durationsis in full agreement with  16). In the numerical simulations with boundaries to the sys-
theoretical predictions. In particular, the ¥2 power law de-  tem variables(Fig. 17), we did not find thew ™2 depen-
scribes the statistics of laminar phase durations at the stabiflence; it is reproduced only when boundaries of the trajec-
ity threshold in the conduction regime over four decades irfory are disregarded and a simulation with quasiunlimited
T dynamical amplitude range is performed. This discrepancy
The distribution density of pattern amplitudésin the leads us to the conclusion that the PSD is particularly sensi-
vicinity of the instability threshold is also in quantitative tive to additive noise and the full nonlinear dynamical equa-
agreement with the predicted power law. Deviations ardions. The appearance of the Y2 range in the experimental
found in the experiment in the limits of low and high pattern data in apparent agreement with general predictions should
amplitudes where additive noigemall A) and nonlinearities therefore not be overestimated.
in the dynamic equation8arge A) influence the dynamical We note that, although the investigated experimental sys-
behavior of the system variables. With increasing voltage théem represents a spatially extended dissipative system, it has
exponent— 1+ 7 increases. Theory predicts a relation  been shown in this study that its fundamental statistical prop-
o\ for on-off intermittence, which allows us to define a erties can be reproduced in simulations of &2 evolution
critical voltageU&* from the slopes of the amplitude distri- Matrix model with global pattern amplitude, thus neglecting
bution functions. The critical voltage obtained with this SPatial details of the pattern. In the case of a global driving
method agrees with the value derived from the analysis oparameter, the spatial phase does not play a role as long as
the laminar phase durations, i.e., the two definitions characther noise sources are excluded. Additive noise, however,
terize consistently the experimental system as well as thB1ay introduce phase drifts in the syst¢i0,71] and is re-
numerical simulations. This provides a quantitative criterionSPonsible for complex spatiotemporal characteristics. A de-
for the stability thresholdJ ' of stochastically driven EHC  tailed spatiotemporal description of the system represents an
patterns, irrespective of the fact that the Lyapunov exponerfR90ing interesting task.
is not directly accessible in the experiment. From a practical
aspect, the distribution density of the pattern amplitudes is ACKNOWLEDGMENTS
the more sensitive measure for the determinatiob §f". Thanks are due to Hirokazu Fujisaka for stimulating dis-
In the simulations of the corresponding model systemgcussions. The authors acknowledge financial support from
trajectories that are characterized by the®? and A"!  the Deutsche Forschungsgemeinsché&@rant No. Be
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