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Mode locking of spatiotemporally periodic orbits in coupled sine circle map lattices
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We study the organization of mode-locked intervals corresponding to the stable spatiotemporally periodic
solutions in a lattice of diffusively coupled sine circle maps with periodic boundary conditions. Spatially
periodic initial conditions settle down to spatiotemporally periodic solutions over large regions of the param-
eter space. In the case of synchronized solutions resulting from synchronized initial conditions, the mode-
locked intervals have been seen to follow strict Farey ordering in the temporal periods. However, the nature of
the organization of the mode-locked intervals corresponding to higher spatiotemporal periods is highly depen-
dent on initial conditions and on system parameters. Farey ordering in the temporal periods is seen at low
coupling for mode-locked intervals of all spatial periods. On the other hand, stable spatial period two solutions
show an interesting reversal of Farey ordering at high values of coupling. Other spatially periodic solutions
show a complete departure from Farey ordering at high coupling. We also examine the issue of completeness
of the mode-locked intervals via a calculation of the fractal dimension of the complement of the mode-locked
intervals as a function of the couplinge and the nonlinearity parameterK. Our results are consistent with
completeness over a range of values for these parameters. Spatiotemporally periodic solutions of the traveling
wave type have their own organization in the parameter space. Novel bifurcations to other types of solutions
are seen in the mode-locked intervals. We discuss various features of these bifurcations. We also define a set of
new variables using which an analytic treatment of the bifurcations along theV50 line is carried out.
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I. INTRODUCTION

Dynamical systems with many degrees of freedom sh
many phenomena which involve the interaction of spa
and temporal degrees of freedom and can demonstrate
organized and turbulent behavior. Examples of organized
havior seen in the case of extended systems include pa
formation in two-dimensional arrays of coupled oscillato
@1# and charge density waves@2#. The simplest class of or
ganized structures in extended systems, that of spatiotem
rally periodic solutions, occurs quite frequently in laborato
experiments. For example, experimental systems such
coupled oscillator arrays@3–5# and multimode lasers@6#,
support a number of periodic solutions and traveling wa
behavior has been seen in coupled electronic circuits@7# and
ring lasers@8#.

Spatially extended systems which serve as models
coupled oscillators show a distinct tendency towards m
locking @9#. Coupled oscillators tend to lock into commens
rate motion where the ratios of their frequencies is a ratio
number. A striking example of this behavior is the mo
locking seen in Josephson-junction series arrays@10#. It is
observed that, just as a single Josephson junction oscillat
a frequency that is proportional to the voltage across
junction, multiple Josephson junctions arranged in one
mension, shunted by load, phase lock strongly and thus
cillate coherently for some value of the parameter, in t
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case the capacitance. Yet another physically realisable
tem where mode locking is observed is an overdamped c
of balls connected by identical springs of random leng
subjected to strong sinusoidal potential and a time depen
forcing. Here it is shown that for sufficiently strong puls
and weak springs, the chain moves an integral numbe
periods for a range of pulse lengths@11#.

Thus, it is evident that the existence of periodic solutio
and mode locking play an important role in the behavior
extended systems, especially those which can be mod
using oscillators. Coupled map lattice~CML! models @12#
have turned out to be simple and effective paradigms for
study of complex spatiotemporal systems such as the o
described above due to their computational tractability a
rich phenomenology. A typical example of a CML, the nea
est neighbor future coupled map lattice can be described
the evolution equations

xn11
i 5~12e! f ~xn

i !1
e

2
@ f ~xn

i 11!1 f ~xn
i 21!#, ~1!

wherexn
i are the variable values at the sitei at the timen, the

local dynamics is governed by the mapf, ande which lies
between 0 and 1 is the strength of the coupling paramet

We make our choice of the local map to be the sine cir
map first introduced by Arnold@9#, and defined by the evo
lution equation

un115 f V,K~un!5un1V2
K

2p
sin~2pun!, ~2!
©2002 The American Physical Society27-1
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where 0<un<1, 0<V<1, 0<e<1, and the map is invert
ible when the nonlinearity parameterK,1. The parameterV
is the natural frequency of the system forK50. This map is
one of the simplest representations of physical phenom
involving periodic motion and exhibits a rich variety of tem
poral behavior, namely, periodic, quasiperiodic, and cha
behavior. As is well known, this system shows mode lock
as the parameterK is increased, and exhibits the Arno
tongue structure organized by Farey ordering in theK-V
parameter space and a complete Devil’s staircase of peri
orbits at K51 @9#. Such Devil’s staircase structures ha
been seen in diverse contexts such as the one-dimens
~1D! Ising model with long-range interactions@13#, the
Frenkel-Kontorova model of atoms on a periodic substr
@14#, and the 3D Ising model with competing interactio
@15#.

CML studies of lattices of coupled sine circle maps@de-
fined in Eq. 3 below# show a remarkable diversity of beha
ior @16#. Since the system under study has many degree
freedom, it is highly sensitive to initial conditions@17#. The
class of initial conditions that we study is the class of s
tially periodic initial conditions. These are a natural class
initial conditions, are easy to excite in an experimental c
text and result in stable spatiotemporally periodic solutio
over a very large region of parameter space. We exam
spatially periodic conditions of spatial periodk. It has been
observed earlier that synchronized initial conditions wh
k51 settle down to stable synchronized solutions of vary
temporal periodsQ, and that the Arnold tongue structure an
the Devil’s staircase seen for the synchronized solution
exactly the same as that seen for the single circle map@16#
and therefore follows the Farey sequence. The widths of
mode locked intervals are found to be independent of
coupling strengthe and are identical to those of the temp
rally periodic orbits of the single circle map. Hence, t
completeness of the mode-locked regions over theV interval
at K51 seen in the case of the single circle map carries o
to the stable synchronized solutions resulting from synch
nized initial conditions. On the other hand, the question
the organization of the higher spatially periodic orbits a
the manner in which mode-locked intervals of such hig
spatial periods fill up the parameter space remains open.
is the question addressed in the present paper.

In marked contrast with the synchronized situation,
organization of spatiotemporally periodic orbits which is o
tained from the evolution of initial conditions of spatial p
riod k.1 shows distinct departures from Farey organizat
in large regions of parameter space. The specific natur
the departure depends on the period of the initial conditi
evolved with initial conditions corresponding to odd a
even periods falling in different classes. For even periok
52m,m>1 initial conditions, the stable spatiotemporal
periodic orbits settle down to the spatial periodsm, 2, or
other factors ofm with the temporal periods for a give
spatial period following the Farey series at lowe, whereas
they settle down to the spatial period 2 and the tempo
orbits show a reversal of the Farey series at highe. Even
period initial conditions also settle down to stable solutio
with spatial periods corresponding tom or other factors ofm
04622
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at highe but the temporal periods of these solutions do n
follow the Farey sequence. Odd periodk initial conditions
settle down to spatial periods which correspond tok or its
factors, with temporal periods which follow the Farey ser
at low e with nongeneric departures from the Farey at highe.
The organization of spatiotemporal periods is insensitive
perturbations in the spatially periodic initial conditions a
though the width of the mode-locked intervals can chan
for large perturbation strengths. The width of the mod
locked intervals corresponding to orbits of spatial periodk
and temporal periodQ ~henceforth to be denoted by the n
tation SkTQ) is no longer independent ofe and hence the
question of the completeness of the mode-locked interv
has to be considered as a function of the parametere and
with reference to specific classes of initial condition. Bifu
cations to traveling waves are seen inside many of the mo
locked tongues. These traveling wave solutions have t
own characteristic organization in the parameter space w
is discussed here. Many other bifurcations which are spa
temporal, and spatiotemporal in nature can also be obse
inside the mode-locked tongues. These bifurcations sh
several interesting features which we discuss in detail.
also set up an analytic framework by which bifurcations
the V50 line can be picked up.

This paper is organized as follows. In Sec. II we discu
the stability analysis of spatiotemporally periodic solution
Section III A discusses the role of initial conditions in th
spatiotemporal organization of orbits. We discuss the beh
ior of spatial period two and other odd period solutions
Secs. III C and III D, respectively, the size of the basin
attraction in Sec. III E, and the completeness of the soluti
in Sec. III F. We discuss the behavior of traveling waves
Sec. IV. Section V discusses bifurcation behavior. Our res
are summarized and discussed in Sec. VI.

II. THE MODEL AND STABILITY ANALYSIS

The model under investigation is a lattice of coupled sin
circle maps with nearest neighbor diffusive coupling and
riodic boundary conditions defined by the evolution equat

u t11~ i !5F ~12e! f „u t~ i !…1
e

2
f „u t~ i 11!…1

e

2
f „u t~ i 21!…G

mod 1, ~3!

wheree is the coupling parameter andi is the index of lattice
site and the local mapf (u t) is the single sine circle map
given by Eq.~2!, with parameters as in Eq.~2!.

Now consider such a lattice of sizekN where k is the
spatial periodicity of the solution andN is the number of
blocks of the spatial periodk. The Taylor series expansion u
to first order about any given solution gives a linear stabi
matrix M t

kN which is of the orderkN3kN. The structure
and the eigenvalues of this matrix enable us to determine
stability edge of the corresponding spatiotemporal soluti
The general form of the stability matrix at timet will be
7-2
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M t
kN5S esAt~1! enAt~2! 0 0 enAt~kN!

enAt~1! esAt~2! enAt~3! ••• 0

0 enAt~2! esAt~3! enAt~4! 0

A A A A A

enAt~1! 0 ••• enAt~kN21! esAt~kN!

D , ~4!

wherees5(12e) anden5e/2, and theAt( i )5 f 8„u t( i )…512K cos„2pu t( i )….
For a spatially periodic solution with periodk, i.e., whenu t( i 1k)5u t( i ), for all i and temporal period 1, the form of the

stability matrix in Eq.~4! can be simplified and can be put in a block diagonal formM t8
kN , with N blocks M t

k( l ), l
51,2, . . . ,N each of sizek3k along the diagonal@18,16#. For k.2 each of theM t

k( l ), l 51,2, . . . ,N, has the structure

M t
k~ l !5S esAt~1! enAt~2! 0 0 enAt~k!v l

enAt~1! esAt~2! enAt~3! ••• 0

0 enAt~2! esAt~3! enAt~4! 0

A A A A A

enAt~1!v l
21 0 ••• enAt~k21! esAt~k!

D , ~5!
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wherev l52p i ( l 21)/N, l 51,2, . . . ,N.
A similar block diagonal form will be achieved for thek

52 case as well but the matrixMt
k( l ) has a different form

given by

Mt
2~ l !5S ~12e!Āt

2~1!
e

2
~11v l !Āt

2~2!

e

2
~11v l

21!Āt
2~1! ~12e!Āt

2~2!
D . ~6!

The problem of finding the largest eigenvalue of the s
bility matrix Mt8

kN can be further simplified. It has bee
shown that the largest eigenvalue of thek3k block corre-
sponding tol 51, viz., M t

k(1) is same as that of the large
eigenvalue of the entirekN3kN matrix Mt8

kN @19#. Thus
the stability of ak period solution can be studied by lookin
at a single, uniquely identified,k3k matrix, even for a lattice
of size kN. This analysis can be extended to arbitrary te
poral periodsQ where the largest eigenvalue of the stabil
matrixJ kN5) t51

Q M t
kN is the same as the largest eigenva

of the matrix ) t51
Q Mt

k(1). The use ofthese results greatly
simplifies the numerical stability analysis which follows
the stability analysis for a lattice of sizeM5kN can be re-
duced to the eigenvalue analysis of a single matrix of dim
sion k3k @20#.

We study the evolution of the Eq.~3! for a class of spa-
tially periodic initial conditions for varying spatial periodk.
For various spatial periodk initial conditions, we fix the
nonlinearity parameterK and identify the spatial periodk and
the temporal periodQ solutions, i.e., the solutions whic
satisfy the closure conditions

u t~ i !5u t~ i 1k! ~7!

and
04622
-

-

-

u t~ i !5u t1Q~ i !. ~8!

The periodic solutions under consideration are said to
stable if the largest eigenvalue of the matrix) t51

Q M t
k(1) is

less than 1, i.e.,

ul largestu,1. ~9!

We check the periodicity of the solutions up to the accura
of 10214 and scan theV-e parameter space with the mes
size 1023 while obtaining the various phase plots. To ensu
that the solutions are stable, we verify that the eigenva
l largest is less than one inside the mode-locked regions. O
main interest is the organization~i.e., the sequence in which
the parameter space is filled! of various stable mode-locke
periodic solutions. Most of our phase plots are obtained
the valueK51 for the nonlinearity parameter as the mod
locked tongues are widest here.

III. ORGANIZATION OF MODE-LOCKED INTERVALS

A. Initial conditions

Due to the existence of many degrees of freedom
system has multiple coexisting attractors and the dynam
behavior of the evolution Eq.~3! is strongly dependent on
the nature of initial conditions@17#. We find that while sev-
eral classes of initial conditions including random initial co
ditions can settle down to spatiotemporally periodic so
tions, spatially periodic initial conditions settle down
spatiotemporally periodic solutions in large regions of t
parameter space. Distinct classes of initial conditions lea
distinct organizations of spatiotemporally periodic behav
in the parameter space. It is therefore useful to study
stable behavior resulting from each type of initial conditi
class by class. It has been shown that random initial con
tions settle down to a spatiotemporally synchronized solut
for this model in the0

1 and 1
1 tongues of single sine circle
7-3
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GAURI R. PRADHAN, NANDINI CHATTERJEE, AND NEELIMA GUPTE PHYSICAL REVIEW E65 046227
map@16#. For synchronized initial conditions~spatial period
k51, henceforth abbreviated asS1), the entire structure o
the Devil’s staircase and Arnold’s tongues lifts off to th
third dimensione @16#.

Here, we concentrate on spatial periodk initial conditions
wherek>1. We study initial conditions that are symmetr
on the lattice about 0.5, i.e., in the case of spatial periok
initial conditions where a blocku(1),u(2), . . . ,u(k) is re-
peated, we haveu( i )1u(k2 i 11)51.0 within each block.
These initial conditions lead to stable spatiotemporally p
odic solutions in large regions of the parameter space
addition, the stable mode locked intervals seen for this c
of initial conditions are symmetric aboutV50.5 and result
in interesting bifurcations in the parameter space. We n
that spatially periodic initial conditions which do not follow
the above restriction also lead to stable spatiotemporally
riodic orbits in the parameter space, but their regions of
bility in parameter space are much smaller than those re
ing from the symmetric initial conditions described abov
Moreover the symmetry aboutV50.5 is lost when the initial
conditions are not symmetric. However, the organization
spatiotemporally periodic orbits in the parameter sp
which we shall discuss in detail below is the same in b
cases. We discuss the size of the basin of attraction of th
initial conditions in Sec. III E.

The numerical method followed has been outlined in S
II above. Initial conditions of a given spatial periodk are
evolved, the closure of the resulting spatial and tempo
period is verified and the stability of the solution is check
via the eigenvalue of the stability matrix@21#. It is seen that
initial conditions of spatial periodk settle down to stable
spatiotemporally periodic solutionsSk8TQ where thek8 are
factors ofk. Stable solutions corresponding to all factors ok
from 1 to k are seen in different regions of the parame
space. It is also seen that the region of parameter space
cupied byS1TQ andSkTQsolutions is the largest.

Secondly, the organization of the mode-locked interv
of a given spatial period but of varying temporal perio
follows the Farey organization in some parts of the para
eter space, but departures from Farey organization are
in other regions of the parameter space. The numerica
sults also show that the arrangement and width of the mo
locked intervals varies with initial conditions with the beha
ior for odd and even period initial conditions falling i
different classes. We examine these features in detail in
section below. We also examine the issue of the compl
ness of the mode-locked intervals and the size of the bas
attraction.

B. Synchronized initial conditions kÄ1

As mentioned earlier, it has been observed that sync
nized initial conditions (k51) settle to stable spatially syn
chronized solutions with temporal periodsQ which are orga-
nized by the Farey sequence, exactly as in the case o
single circle map@16#. It was seen that the Arnold tongu
structure in theK-V space and the Devil’s staircase of th
winding numberP/Q versus the corresponding stability in
tervalDV(P/Q) seen for the single circle map lifts off to th
04622
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third direction, viz. the coupling parametere @16#. The width
of the mode-locked intervals is independent of the coupl
strength as seen in thee-V phase plot in Fig. 1 plotted for
K51 with P/Q values as marked in the figure. Thus th
completeness of the mode-locked intervals seen in the
of the single sine circle map atK51 carries over to the
coupled map as well.

C. Spatial period two initial conditions and initial conditions
of even period

Spatial period two initial conditions are the simplest in
tial conditions of the even period class. The evolution of t
class of initial conditions results in stable solutions of sp
tiotemporal periodS2TQ or S1TQ. The arrangement of the
S2TQ periods in thee-V plane~for K51) up toQ55 can
be seen in Fig. 2~a!. It is clear that the mode-locked orbits a
arranged in a Farey sequence from0

1 to 1
1 in the lower half

plane ofe. The P/Q values are as marked in the figure a
follow the Farey sequence of order 5 vi
0
1 , 1

5 , 1
4 , 1

3 , 2
5 , 1

2 , 3
5 , 2

3 , 3
4 , 4

5 , 1
1 . In contrast the Farey sequence

the upper half-plane follows the order12 , 2
5 , 1

3 , 1
4 , 1

5 , 0
1

5 1
1 , 4

5 , 3
4 , 2

3 , 3
5 , 1

2 . This is a reverse Farey sequence which b
gins and ends at12 . We draw a schematic diagram of th
Farey organization and reverse Farey organization in F
2~b!. The organization follows the order shown by the so
circle at lowe and the dotted circle at highe. Thus there is
a beautiful reversal of the Farey sequence in the upper
plane. We have checked numerically temporally mod
locked values uptoQ564 and note that the same reversal
seen at all observed levels of the Farey sequence.

We note that that the mode-locked intervals seen in F
2~a! are symmetric aboutV50.5 as in the case of the singl

FIG. 1. The mode-locked intervals in thee-V parameter space
corresponding toS1TQ stable solutions arising fromS1 initial con-
ditions are shown. The width of the intervals is independent oe
and the arrangement of the intervals is according to the Farey o
nization.
7-4
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FIG. 2. ~a! The mode-locked intervals in thee-V parameter space corresponding toS2TQ stable solutions arising fromS2 initial
conditions are shown. TheP/Q values are as shown in the figure. The mode-locked intervals are arranged according to Farey serie
lower half plane ofe and in the reverse Farey series in the upper half plane ofe. ~b! The Farey organization starting at0

1 and ending at11
is shown. The points01 and 1

1 are identified due to periodic boundary conditions. The starting point and the end point are denoted by
bars whereas the arrow gives the direction in which the sequence is traversed. The reverse Farey organization starts at1

2 and ends at12 . The
arrow on the dotted circle shows the reversal of the direction.~c! The regions of thee-V parameter space whereS2TQ solutions are stable
are shown for the winding numbersP/Q5

1
6 , 1

4 , 1
3 , 2

3 , 3
4 , 5

6 . The symmetry in the shapes of the tongues arounde50.5 is clearly seen.
th

o-

er-

f

ity

-

orm
circle map and the synchronized solutions. However
mode-locked intervals resulting fromS2 initial conditions
show an additional symmetry arounde50.5 which is not
seen in other cases (k.2) and is not apparent from Fig. 2~a!
alone. Mode-locked intervals of winding numberP/Q map
onto intervals of the sameQ when reflected aboute50.5
providedQ is a multiple of 4. IfQ is not a multiple of 4, then
the interval maps onto an interval of temporal periodQ/2 or
2Q under this symmetry. See Fig. 2~c! which plots mode-
locked intervals corresponding toQ53,4,6 where this sym-
metry is clearly seen.@It is necessary to go to higher temp
04622
eral periods to see this symmetry for the mode-locked int
vals of Fig. 2~a!.#

Now consider spatially periodic initial conditions o
higher even periods (k52m,m>1). These initial conditions
settle down to stable solutions of spatiotemporal periodic
Sk8TQ where all the factors ofk appear ask8, e.g., if the
initial condition has spatial periodk54, we see stable solu
tions which areS4TQ, S1TQ, andS2TQ. The mode-locked
intervals corresponding to these solutions appear in the f
of two sets of tongues with bases neare50 ande51, re-
spectively. TheS2TQ solutions neare51 appear in the re-
7-5
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GAURI R. PRADHAN, NANDINI CHATTERJEE, AND NEELIMA GUPTE PHYSICAL REVIEW E65 046227
verse Farey sequence as seen in the case of theS2 initial
conditions above. Neare50.0, theS4TQ solutions form a
complete Farey sequence from01 to 1

1 . The S2TQ solutions
neare50.0 also form a Farey sequence, but we note that
sequence lacks the two end points0

1 and 1
1 asS4T1 solutions

are found at these two ends. The combined sequence
lowed is –

1
0 , –

4̃

1 , –
4
1 , –

3̃

1 , –
3
1 , –

2̃

1 , –
2
1 , –

3̃

2 , –
3
2 , –

4̃

3 , –
4
3 , –

1
1 , where the denomina

tors of the fractionsP/Q correspond to theS4TQ solutions

while thoseP/Q̃ correspond to theS2TQ solutions. Thus
elements of the sequence of the lower spatial period 2
ways appear to the left of the higher spatial period 4 wh
V,0.5 with the usual symmetric reversal forV.0.5.
Mode-locked intervals corresponding to theS1TQ solutions
exhibit Farey organization in temporal periods in all regio
of the parameter space.

The entire set of features seen in the case of the sp
period 4 initial conditions discussed here carries over to
tial conditions of higher even periods as well.~Even periods
have been studied up tok514.! Thus givenSk initial con-
ditions wherek is even, the following common features a
observed.~i! An S2TQ reverse Farey sequence is seen
high e. ~ii ! Sk8 sequences, where thek8 are factors ofk are
seen with regular Farey ordering at lowe. Of these, the
SkTQ sequence is complete, whereas the sequences w
correspond to other values ofk8 lack the end points01 and 1

1

in a minor violation of Farey ordering.~iii ! The elements of
the two series merge in a manner in which the Farey orde
is preserved for eachSk8TQ the elements of the sequenc
with the lower values of the spatial periodk8 appearing to
the left of the higher value ofk8. ~iv! At high e, spatial
periodsk8.2 do not show Farey ordering in the tempor
periods.

D. Spatial period 3 and other odd spatial period initial
conditions

The behavior of stable solutions resulting from odd per
initial conditions is quite different from those resulting fro
the evolution of even period initial conditions. We begin wi
the study of spatial periodk53 initial conditions. The phase
plot of the stable mode-locked regions for this set of init
conditions is shown in Fig. 3. It is clear that the mode-lock
tongues with bases neare50.0 follow the regular Farey se
quence whereas the mode-locked tongues neare51.0 clearly
violate the Farey sequence. Mode-locked regions resul
from other odd period initial conditions~studied up tok
515) show similar behavior, i.e., there is Farey-like beh
ior at low e whereas nongeneric departures from the Fa
are seen at highe.

We note an interesting feature seen in the case of perio
initial conditions. The Farey sequence between theP/Q val-
ues 1

3 and 1
6 appears at highe (0.87<e<1) in theV range

(0.17<V<0.25) and a corresponding range to the right
V50.5 by symmetry. No similar feature has been seen in
case of any of the other initial conditions that we have st
ied.

E. Basins of attraction

We have mentioned above that the conditionu( i )1u(k
2 i 11)51.0 is necessary to obtain mode-locked interv
04622
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which are symmetric about theV50.5 line but the organi-
zation of mode-locked intervals does not depend on this c
straint. Other initial conditions of the same spatial periodk
will result in the same organization of periods but the sha
of the mode-locked regions changes and the symmetry a
the V50.5 line is lost. We have also checked that the or
nization of mode-locked intervals is stable to perturbatio
We have added random perturbations of strength 0 tod to
initial conditions of spatial periodk and checked the organi
zation of the mode-locked intervals. We note that the or
nization of mode-locked intervals remains unchanged
perturbations as large asd50.1 ~i.e., a perturbation strength
of 10%) about the spatial periodk. The phase space plot
after the addition of perturbation remain indistinguishab
from the original plots resulting from strictly periodic initia
conditions for perturbations up tod50.001. However, the
shapes of the tongues change for perturbations stronger
this. Thus, the organization of mode-locked intervals is
sensitive to fairly strong perturbations to the spatial period
the initial conditions, but the question of completeness of
mode-locked intervals has to be discussed in the contex
the specific nature of the initial conditions. We discuss t
issue below.

F. The completeness of the mode-locked intervals

In the case of the single sine circle map at the valueK
51, the width of the mode-locked intervals covers the en
V axis and the Devil’s staircase ofP/Q values against the
corresponding stability intervalsDV(P/Q) is said to be
complete@9#. It is interesting to see if this feature is seen
the case of the coupled sine circle map lattice. From

FIG. 3. The mode-locked intervals in thee-V parameter space
corresponding toS3TQ stable solutions arising fromS3 initial con-
ditions are shown. TheP/Q values are as shown in the figure. Th
mode-locked intervals are arranged according to Farey series in
lower half plane ofe while, unlikeS2 initial conditions, no specific
sequence is seen in the highe regime.
7-6
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previous discussion it is quite clear that the issue of co
pleteness depends strongly on the class of initial conditi
and the class of stable solution under consideration. Ag
since the width of the mode-locked intervals of a given cl
depends on the parameter values, the question of comp
ness has to be studied as a function of the coupling par
eter.

In the case of synchronized solutions atK51, as seen
above, the width of the mode-locked intervals is independ
of e and depends only onV @16#. We use the following
procedure to investigate the property of completeness for
e. All the plateaus on theV axis for whichS1TQ solutions
are stable are identified uptoQ595. The step widths are
found up to an accuracy of 1026. Let S(r ) be the total width
of the steps which are larger than a given scaler. The space
between the steps given by 12S(r ) is found for varyingr.
Then the number of holes is given byN(r )5@12S(r )#/r , if
the V interval is of unit length. Now, the plot of lnN(r)
versus ln (1/r ) turns out to be a straight line indicating th
the power lawN(r )'(1/r )D is valid over theV interval.
Thus the slope of the line gives the dimensionD of the set
which is complementary to the mode-locked intervals.
have chosen 40 values ofr in the interval (0.000017,0.0009
@9#. The dimensionD turns out to be 0.87692660.0008647.
This value is the same for synchronized solutions at all
values ofe between 0 and 1. Next we find that for the sing
circle map, the dimension for the set which is complem
tary to the mode-locked intervals turns out to be 0.8759
60.0009406 for the same accuracy and the same numb
temporal periods and it indeed compares well with the va
obtained for the synchronized solutions. Hence we say
the staircase for the synchronized coupled sine circle m
lattice is complete for anye. We note that the procedure w
have followed is the same as the procedure which has b
followed for the single circle map earlier@9# which found
D50.87 as the dimension of the complement set of
mode-locked intervals on theV axis ~where the step width
was measured up to an accuracy of 131028).

From the phase plots of the higher spatial periodsk
>2), it is evident that the widths of the mode-locked regio
depend on the coupling strength as well as on the clas
initial conditions iterated. Thus the dimension of the comp
ment set of the mode-locked intervals for stable perio
SkTQis a function of the strength of the coupling parame
and also has to be examined for a specific class of in
conditions. We study this quantity usingS2 initial conditions
and find the widths of the mode-locked intervals correspo
ing to the stableS2TQ solutions. Using the procedure de
scribed above, we find the complement set to the mo
locked intervalsS2TQ with temporal periodsQ up to 95 for
different values of the coupling parameter. We plot lnN(r)
against ln(1/r ) in Fig. 4~a! for e50.01, where all the points
fall on a straight line indicating the existence of a power la
The slope gives the dimensionD50.87215960.003932.

It is clear that the width of the mode-locked solutio
varies withe for a givenK value. We plotD(e) as a function
of e for threeK values viz.K50.6,0.9,1.0 in Fig. 4~b!. It is
clear that for eachK value plotted, there is a range of valu
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of e in the interval@eL ,eR# for which 12S(r ) vanishes as
r 12D asr→0 and therefore, the mode-locked intervals cov
the entireV axis and the staircase can be said to be co
plete. AtK51 theeL value is zero indicating that the mode
locked intervals of the single circle map satisfy this proper
whereaseR is about 0.2 after which the curve rises sharp
The behavior of the mode-locked intervals fore values in
this range is consistent with completeness. As the value oK
decreases, the mode-locked intervals do not fill theV axis at
e50.0 and botheL and eR shift to the right on thee axis.
The valueemin for which the dimension is minimum,Dmin
shifts to the right asK decreases and the value ofDmin de-
creases as well. TheK dependence of these features clea
depends on the way in which the mode-locked tongues o
up in parameter space and forK<0.4 the completeness prop
erty is not seen at anye observed. Similar qualitative behav
ior is seen at higher spatial periods.

IV. TRAVELING WAVES

Traveling waves~TWs!, i.e., waves where the values o
the lattice variable translate along the lattice in every ti
step with a given velocity form an important class of so
tions of CMLs@12#. This class of solutions is also found ver
frequently in experiment@7#. Hence spatiotemporally peri
odic solutions which have the traveling wave structure
serve special attention@see Fig. 5~a!#.

A general spatiotemporally periodic solution with temp
ral period Q and spatial periodk satisfies the condition
u t( i )5u t1Q( i 1p) where pmodk50. On the other hand
traveling wave solution with spatial periodk and temporal
periodQ which translates with velocityv at each time step
clearly satisfies the equationu t( i )5u t1Q( i 1vQ), where
vQmodk50, and the velocityv can takek21 distinct val-
ues 1, . . . ,k21. The TW solution with the velocityk is the
frozen solution. Further, the solution with the velocityk21
is the same as that of the solution with velocity 1. For
stance, the Fig. 5~a! exhibits this for the TW solutions o
spatial period 3 where the velocities admitted are 1 and
respectively, with temporal period 3 for both cases. As m
tioned earlier, traveling waves of a given spatial periodk can
have different temporal periodsQ and different velocitiesv
which satisfy the relationvQmodk50. For example, the
TW solution with the spatial periodk54 can have velocities
1, 2, and 3 with the corresponding temporal periods 4, 2,
4, respectively.

In the case of our CML, spatially periodic initial cond
tions settle down to spatiotemporally periodic traveli
waves in many regions of the parameter space. Moreover
a fixed value ofK, if there is a TW at a given value of (V,e)
in the e2V parameter space, then the presence of a TW
(12V,e) is guaranteed by symmetry aroundV50.5. There
a definite relation between the velocityv, of TW solutions at
these two sets of parameters viz.

v (V,e)1v (12V,e)5k. ~10!

This can be seen clearly from the Fig. 5~b!, where thee-V
phase plot atK51 corresponding to stableS5T5 TW solu-
7-7
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GAURI R. PRADHAN, NANDINI CHATTERJEE, AND NEELIMA GUPTE PHYSICAL REVIEW E65 046227
tions with different velocities is shown. The traveling wav
with velocities 1, 2, 3, and 4 appear at various parame
values and the relation just described above is satisfied.
example, the TW solution seen in the2

5 mode-locked tongue
~on left of V50.5) corresponds to the velocity 3 while at th
symmetrically opposite position along theV axis, on the
right of V50.5, the TW solution seen in the35 mode-locked

FIG. 4. ~a! The plot of lnN(r) vs ln 1/r for the coupled sine
circle map lattice atK51 ande50.01 with S2 initial conditions.
The slope of the straight line givesD50.87215960.003932.~b!
The dimension of the set complementary to the mode-locked in
vals as a function of the coupling parameter for different values
K is plotted. D is seen to vary with the coupling parametere as
shown. Numerical observations show that the staircase is com
over a range ofe. The three curves correspond to each ofK
50.6,0.9, and 1.0. The dashed line showsD50.87, the value for
the corresponding set for the synchronized solution~at K51) as a
reference.
04622
er
or

tongue corresponds to the velocity 2.~The rest of the tongue
contains nontraveling wave solutions. The TW to non-T
bifurcation will be discussed in the next section.!

Further, as in the case of non-TW solutions, spatially
riodic initial conditions with spatial periodk evolved accord-
ing to the Eq.~3! settle down to TW solutions with the spa
tial period k8, where thek8’s are factors ofk in different
regions of the parameter space. The velocities for the co
sponding TW solutions with the spatial periodk8 follow the
relation given by Eq.~10! above. ThusS4 initial conditions
settle down toS2T2 ~TW! solutions of velocity 1 in in small
regimes of0

1 and 1
1 tongues andS4T4 ~TW! solutions with

velocity 1 inside the main14 tongue whileS4T4 ~TW! solu-
tions with velocity 3 are seen in the34 tongue in theV-e
parameter space. Solutions which are traveling waves of
typeS4T2 are also seen in the12 tongue. Ask increases, and
the factors ofk increase in number, the widths of the mod
locked intervals decrease.

A. Spatiotemporally periodic staircase: thekÄQ case

In the case of a single sine circle map, the interv
DV(P/Q) corresponding temporally mode-locked regio
of winding numberP/Q form a Devil’s staircase. It is there
fore interesting to ask whether the spatial and tempo
mode-locked regions arising from the spatiotemporally pe
odic solutions of equal spatial and temporal periodsSkTk
~i.e., the k5Q case! give rise to a staircaselike structur
which could be called a double Devil’s staircase since it
doubly periodic~i.e., periodic in both the spatial as well a
temporal periods!. Unlike the case of the single sine circ
map where all the mode-locked tongues arise from a sin
initial condition, here, it is necessary to consider mod
locked tongues of periodSkTk, each of which arises from a
distinct spatially periodic initial conditionSk. We plot the
mode-locked tongues of spatiotemporal periodSkTk and
also have the TW structure forK51.

It is clear that these mode-locked tongues are also
ranged in the Farey sequence@see Fig. 5~c!# and the symme-
try aroundV50.5 is maintained. However, since all eve
period initial conditions give rise to stable TW solutions
periodS2T2 in two triangular regions at highe, the staircase
is augmented by these two triangles. Due to the fact that e
of the mode-locked intervals arise from distinct initial co
ditions, they can occupy overlapping regions in theV-e
space, and hence no statement about the completeness
staircase can be made. We note that mode-locked solut
SkTkwhich do not have the TW structure also form a doub
Devil’s staircase which follows the Farey series. Additio
ally, TW solutions arising from the other classes of the s
tially periodic initial conditions, e.g., those that are not sy
metric about 0.5 also gives rise to the double Dev
staircase but the mode-locked regions reduce in size and
symmetry aroundV50.5 is lost, however, no overlap be
tween various mode-locked regions is seen for this case

V. BIFURCATIONS

Many dynamical systems show bifurcation behav
wherein the qualitative nature of the stable solution chan

r-
f

te
7-8
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FIG. 5. ~a! The traveling wave solutions with spatial as well as temporal period 3 with velocities 1 and 2 are shown in~i! and ~ii !,
respectively.~b! The coupled sine circle map lattice with theS5 initial conditions supports theS5T5 traveling waves of velocities 1, 2, 3
and 4 following Eq.~10!. The regions of stability of these waves are seen in the figure.~c! The stability regions ofSkTk traveling wave
solutions in thee-V parameter space are shown. Each of theSkTksolutions results from the correspondingSk initial conditions. TheP/Q
values are as shown in the figure. The spatiotemporally mode-locked regions follow Farey organization. Note the triangles corresp
the bifurcated solutions in the01 and 1

1 tongues.
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as the parameters are varied@22#. For low-dimensional sys-
tems, these changes are changes in the qualitative tem
behavior of the system. On the other hand, for systems w
many degrees of freedom, many attractors with differing s
tiotemporal properties are available to the system and bi
cations which are spatial/temporal or spatiotemporal can
cur in the system with changes in the parameters@1#. It is
clear from the discussion earlier that the model under st
shows bifurcations of all types.

It is simplest to discuss bifurcation behavior in the cont
of the evolution of Eq.~3! for S2 initial conditions. Figure
6~a! shows the phase diagram ine-V space of the stable
solutions resulting from the evolution ofS2 initial conditions
for K51. The triangles seen at lowe in the e-V parameter
space in Fig. 6~a! inside the0

1 and 1
1 tongues, supportS2T1

solutions while triangles which can be seen in the stro
coupling regime, supportS2T2 ~TW! solutions. TheS2T1
04622
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g

solutions seen in the lower triangles bifurcate to synch
nized solutions along the lower edges, and toS2TQ solu-
tions of higher temporal periodsQ along the upper edges
The S2T2 ~TW! solutions seen in the upper triangles bifu
cate to synchronized solutions along the upper edges
S2TQ solutions along the lower edges. There is a la
tongue withS2T2 ~TW! behavior nearV5 1

2 below e50.5
and anS2T1 tongue which is symmetric to this at highe.
Bifurcations fromS2T2 ~TW! behavior toS2T2 ~non-TW!
behavior are seen near the base of the lower tongue, whe
bifurcations fromS2T1 behavior toS2T2 ~non-TW! behav-
ior are seen at highe.

It is clear that the bifurcations seen here are spatial, te
poral and spatiotemporal in nature wherein the change th
seen in the behavior of the stable solution is purely spa
purely temporal or spatiotemporal. In addition the transiti
from the traveling waveS2T2 solution to the nontraveling
7-9
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GAURI R. PRADHAN, NANDINI CHATTERJEE, AND NEELIMA GUPTE PHYSICAL REVIEW E65 046227
wave S2T2 solution is mediated by a spatiotemporal bifu
cation by which both the spatial and temporal structures
the initial and final solutions remain the same but the str
ture of the solution changes from the traveling wave type
the nontraveling wave type. We note that similar bifurcatio
can be seen in solutions which result from initial conditio
of all spatial periods. The bifurcations seen here have sev
interesting features which we shall discuss in this sect
We set up new sum and difference variables and recas
equation of evolution as given by Eq.~3! in a convenient
form. We also recast the stability matrix in terms of the

FIG. 6. ~a! The e-V parameter space corresponding to sta
S2TQ and S1T1 solutions resulting fromS2 initial conditions is
shown. Clear bifurcation are seen along various edges. The
tiotemporal periods are as marked in the figure.~b! The plot of
dl/de versuse for V50.01 for the spatially periodic solution re
sulting from the spatial period 2 initial conditions wherel is the
largest eigenvalue.ebl

t l andebu
tl correspond the lower and the upp

bifurcation edges of the lower triangle whileebl
tu andebu

tu correspond
to the upper triangle in the01 tongue.
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variables. The new variables permit us to cast the analys
a form where the bifurcation points along theV50.0 line
can be picked up analytically. We present this analysis in
subsection below.

A. Analytic evaluation of the bifurcations on the VÄ0.0 line

We consider a lattice of 2N sites and construct neare
neighbor differencesãt( i )5u t( i )2u t( i 11) and nearest
neighbor sumsb̃t( i )5u t( i )1u t( i 11). The evolution equa-
tion for ãt( i ) and b̃t( i ) are given by

ãt11~ i !5~12e!@ h̃a
„ãt~ i !,b̃t~ i !…#

1
e

2
@ h̃a

„ãt~ i 11!,b̃t~ i 11!…#

1
e

2
@ h̃a

„ãt~ i 21!,b̃t~ i 21!…#1p ~11!

and

b̃t11~ i !5~12e!@ h̃b
„ãt~ i !,b̃t~ i !…#

1
e

2
@ h̃b

„ãt~ i 11!,b̃t~ i 11!…#

1
e

2
@ h̃b

„ãt~ i 21!,b̃t~ i 21!…#12V1q. ~12!

Here,

h̃a
„ãt~ i !,b̃t~ i !…5ãt~ i !2~K

/p!sin„pãt~ i !…3cos„pb̃t~ i !…

and

h̃b
„ãt~ i !,b̃t~ i !…5b̃t~ i !2~K

/p!3sin„pb̃t~ i !…cos„pãt~ i !…,

andp andq are integers. We note that since the angle va
ablesu t( i ) lie between 0 and 1, the difference variablesat( i )
lie between21 and 1 and the sum variablesbt( i ) lie be-
tween 0 and 2.

The closure conditions for the various spatiotempora
periodic solutions seen along theV50 andV50.5 lines, viz
S1T1, S2T2, and S2T2(TW) can be expressed neatly i
terms of the new variablesãt( i ), b̃t( i ). The closure condi-
tions for S2T1 are given byãt11( i )5ãt( i )52ãt( i 11)
Þ0 and b̃t11( i )5b̃t( i )5b̃t( i 11). Similarly, the traveling
wave solutionS2T2(TW) implies the closure conditions
ãt11( i )52ãt( i )5ãt( i 11)Þ0 and b̃t11( i )5b̃t( i )5b̃t( i
11).

We study the stability of different kinds of solutions to th
above equations by Taylor expanding the evolution equati

e

a-
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MODE LOCKING OF SPATIOTEMPORALLY PERIODIC . . . PHYSICAL REVIEW E 65 046227
~11! and ~12! about the solutions of interest and retaini
terms to linear order. The stability matrix so obtained has
form

Jt
4N5S Ãt

2N B̃t
2N

B̃t
2N Ãt

2ND , ~13!

whereÃt
2N and B̃t

2N are 2N32N matrices which are given
by

Ãt
2N5S esÃt~1! enÃt~2! 0 ••• enÃt~2N!

enÃt~1! esÃt~2! enÃt~3! ••• 0

A A A A A

enÃt~1! 0 ••• ••• esÃt~2N!

D .

~14!

Here es5(12e), en5e/2 and Ãt( i )51
2K cos@pãt(i)cos„pb̃t( i )…#. The matrix B̃t

2N has a similar

form where eachÃt( i ) is now replaced byB̃t( i ), where
B̃t( i )5K sin„pãt( i )…sin„pb̃t( i )….

Consider the spatial period 2 solution whereat( i )5

2at( i 11) and b̃t( i )5b̃t( i 11). For these conditions, w
find that the matrixÃt

2N reduces to a circulant matrix@23#

with each Ãt( i )5Ãt(1), and thematrix B̃t
2N reduces to a

form whereB̃t(1)52B̃t(2) andBt( i )52Bt( i 11).
Using simple matrix algebra,Jt

4N can be put into a block
diagonal form given by

Jt
4N5S Mt~1 ! 0

0 Mt~2 !
D , ~15!

where Mt(1)5Ãt
2N1B̃t

2N and Mt(2)5Ãt
2N2B̃t

2N . The
matrices Mt(1) and Mt(2) are similar @Mt(2)
5pMt(1) p21, where p is the permutation matrix# and
thus have the same characteristic polynomial and it is su
cient to consider the eigenvalues of one of them.

We use a similarity transformation which is a direct pro
uct of Fourier matrices of sizeN3N and identity matrices of
size 232 which reducesMt(1) to a matrix of N blocks,
each block of size 232 @18,23#. For the solution of spatia
period twoMt( l ) is given by

Mt~ l !5S ~12e!~A1B!
e

2
~11v l !~A2B!

e

2
~11v l

21!~A1B! ~12e!~A2B!
D ,

~16!

whereA1B5Ãt(1)1B̃t(1), A2B5Ãt(1)2B̃t(1), andv l
5e2p i ( l 21)/N and l :1,2, . . . ,N.

It can be easily seen that the largest eigenvalue occur
l 51,3,5, . . . , and isgiven by
04622
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l̃5~12e!@12K cospãt~1!cospb̃t~1!#

1$e2@12K cospãt~1!cospb̃t~1!#2

1~122e!@K sinpãt~1!sinpb̃t~1!#2%1/2. ~17!

Using the condition that the largest eigenvalue cros
one and the appropriate closure conditions the widths of
e interval for which stable solutions can be obtained. T
stability edges for theV50 andK51 case can be obtaine
analytically.

Substituting the S2T1 conditions for this case in Eq.~12!
we obtain, for the choiceq50

1

p
sinpb̃t~1!cospãt~1!50 ~18!

which implies that eitherb̃t(1)50,1,2, . . .n, and ãt( i ) is
arbitrary, or ãt(1)5 1

2 , 3
2 , . . . ,(2n11)/2 and b̃t( i ) is arbi-

trary. From Eq.~17! we observe that if the second case
used, the eigenvaluel̃ exceeds 1 and the solution is un
stable. Hence for stableS2T1 solutions we useb̃t(1)
50,1,2, . . .n, and ãt( i ) arbitrary, in Eq.~11! choosingp
50 to get

~122e!

p
sin„pãt~1!…22eãt~1!50. ~19!

We consider the case whereb̃t(1)51 and ãt(1) is arbi-
trary, a condition also observed in numerical simulatio
Using this in Eq.~17!, the largest eigenvalue is given byl̃

511cos„pãt(1)….
For the bifurcation boundary or stability edge of the sta

solution, we havel̃51 which givesãt(1)5 1
2 , 3

2 , . . . ,(2n

11)/2. Thus, the stability edge is obtained forãt(1)50.5
~mod 1!. Using this value ofãt(1) in Eq. ~19! we find that
the stability edge for the S2T1 solution turns out to bee
51/(21p)50.1904 which is in good agreement with nu
merical results. Synchronized solutions are seen ate50 due
to the special nature of the initial condition.

A similar analysis can be carried out for the spatiotemp
ral bifurcation to traveling wave solutions in the01 and 1

1

tongues. Thee edges of theS2T2 ~TW! solution forV50
andK51 can also be analytically obtained using the clos
conditions for theS2T2 traveling wave case. In this case th
the stability matrixJt

4N is replaced by the stability matrix
Jt11

4N Jt
4N . Expanding this matrix about the traveling wav

solution, it is easy to show that the largest eigenvalue of
matrix is given byl̃2, so that the stability edge is again give
by the condition for the eigenvalue in Eq.~17! crossing 1.
Since the conditions onb̃t( i ) for the traveling wave are the
same as those for theS2T1 solution, using arguments simila
to those used above, we useb̃t(1)50,1,2, . . . ,n and ãt( i )
arbitrary in Eq.~11! for the traveling wave to get
7-11
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TABLE I. The behavior of eigenvalues of the largest modulus at the bifurcation points forK51 in the
lower and upper triangles for a fixedV in 0

1 tongue. Identical behavior is seen in the1
1 tongue.ebl

t l andebu
tl

are the values ofe at the bifurcation edge along the lower and upper edges of the lower triangle, respec
while ebl

tu andebu
tu are those at the lower and upper edges of the upper triangle.

V50.01, e values corresponding to the triangle
e Largest eigenvalues Solution type

e,ebl
t l 0.01 0.00198, 0.00197 S1T1

e5ebl
t l 0.0101 0.00793, 0.00793 S2T1

ebl
t l,e,ebu

tl 0.17 0.8722, 0.8559 S2T1
e5ebu

tl 0.1723897 1.00284, 0.988 S2T1

V50.01, e values corresponding to the upper triangle

e5ebl
tu 0.8276103 1.0057, 0.52932 S2T2~TW!

ebl
tu,e,ebu

tu 0.83 0.7608,0.4066 S2T2~TW!

e5ebu
tu 0.9899 0.000062, 0.000031 S2T2~TW!

e.ebu
tu 0.99 0.001975,20.001936 S1T1

V50.5, e values corresponding to the tips of the small bases inside1
2 tongue

e5ebl
0.08171 1.0055, 0.87884 S2T2~non-TW!

e5ebu
0.91829 1.0055, 0.6746 S2T2~non-TW!
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~12e!ãt~1!1
~122e!

2p
sin„pãt~1!…50. ~20!

Since the stability condition is the same as that above,
stability edge is obtained forãt(1)50.5. Using this in Eq.
~20! we obtain e5(p11)/(21p)50.805523. We find a
close agreement between the analytically and numeric
obtained values forV50 and K51. The traveling wave
solution is unstable ate51 as at this value we obtainãt( i )
50 which corresponds to the synchronized solution.

It is thus clear that the bifurcation edges at the lower e
of the upper triangle and the upper edge of the lower trian
can be evaluated by using the condition that the eigen-v
of the stability matrix crosses one and the closure conditio
and that an analytic evaluation of the bifurcation points
the V50.0 line is possible. A numerical evaluation of th
bifurcation boundary is necessary at other values ofV. This
throws up some unexpected results which we discuss be

B. Anomalous behavior of the eigenvalues

We have seen thatS2 initial conditions settle down to
S2T1 solutions inside the lower triangles in the0

1 and 1
1

tongues andS2T2 traveling waves inside the upper triangle
Synchronized solutions are seen along the lower edge o
lower triangles and the upper edge of the upper triangles.
the other hand,S2TQ solutions are seen along the upp
edges of the lower triangles and the lower edges of the up
triangles. We list the largest eigenvalues of the stability m
trix observed at these bifurcation edges forV50.01 in Table
I.

It is clear from the table that the lower edge of the upp
triangle and the upper edge of the lower triangle in the0

1 and
1
1 tongues can be picked up by linear stability analysis w
04622
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.
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h

the largest eigenvalue of the stability matrix crossing one
both these edges, indicating the existence of a tangent b
cation. However, the upper edge of the upper triangle and
lower edge of lower triangle cannot be picked up by th
analysis as the eigenvalue does not cross one in this
even though the nature of the solution changes, from
traveling wave solution to a synchronized solution at t
upper triangle, and from anS2T1 solution to a synchronized
solution at the lower triangle. This situation is exactly lik
the one seen in the case when kink initial conditions
evolved via Eq.~3! @24#, where the bifurcation from the kink
solution to the synchronized solution cannot be picked up
the usual eigenvalues. We note that the characterizers s
in the case of the kink case, viz. the rate of change of
largest eigenvalue and the distribution of eigenvalues, w
satisfactorily for the present case as well. We plot the rate
change of the largest eigenvaluedl/de in Fig. 6~b!. It is
clear all the bifurcation edges seen in the present case
picked up by the new characterizer@25#. We also note that
the bifurcations fromS2T2 ~TW! solutions toS2T2 non-
traveling wave solutions seen in the1

2 tongues are tangen
bifurcations which can be picked up by the usual analysi

As we have seen earlier, the spatial period two solutio
resulting fromS2 initial conditions show a temporal organ
zation which corresponds to the Farey sequence at lowe and
to a reverse Farey sequence at highe. It is interesting to note
that the bifurcation toS2T2 traveling waves at highe in the
0
1 tongue is essential if the reverse Farey organization is to
seen at highe. Similarly, the bifurcation fromS1T1 to S2T1
in the triangles at lowe in the same tongues can only be
pure spatial bifurcation as the temporal period must rem
unchanged for the usual Farey organization to be followe
low e. Thus the spatial bifurcation along the lower edges
the lower triangles and the spatio temporal bifurcations alo
7-12



ke

e
g
to
o

g
i-
t

po
re
rio
bl
f
tia

d
n
r

ng
io

he
o

ver
.
pa-
ns
y of

ere

ns

ic

s
and
is
are
nd
a-
nta-
r-
can
sis

nt
es

MODE LOCKING OF SPATIOTEMPORALLY PERIODIC . . . PHYSICAL REVIEW E 65 046227
the upper edges of the upper triangles in the0
1 and 1

1 tongues
are clearly dictated by the arrangement of the mode-loc
regimes in the forward and reverse Farey sequence.

VI. DISCUSSION AND CONCLUSIONS

Thus we have studied the organization of mode-lock
intervals in a system of coupled sine circle maps. The or
nization of the mode-locked intervals is highly sensitive
the nature of the initial conditions and also to the values
the system parameters. The organization correspondin
even and odd period initial conditions falls in different un
versality classes. Period two initial conditions settle down
mode-locked solutions with spatial period two whose tem
ral periods show Farey organization at low periods and
verse Farey organization at high periods. Other even pe
initial conditions result in a systematic organization of sta
spatial periods at lowe with the temporal organization o
each spatial period forming it’s own Farey, as well as spa
period 2 solutions ordered by the reverse Farey at highe,
with other stable spatial periods seen at highe which do not
follow the Farey ordering in the temporal periods. The o
spatial periods on the other hand, show Farey organizatio
the temporal periods at low coupling, but show nongene
departures from Farey for all the solutions at high coupli
In contrast to the above observations, mode-locked reg
corresponding to stableS1TQ solutions resulting from both
kinds of initial conditions are organized according to t
Farey series at all values of coupling. The organization
ys

E

ys

.
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mode-locked regions is consistent with completeness o
theV interval in certain regions of theK-e parameter space
We also see a variety of bifurcations which are purely s
tial, purely temporal, and spatiotemporal in various regio
of the parameter space. We carry out a systematic stud
completeness in the case of mode-locked regions forS2 ini-
tial conditions and identify regions of parameter space wh
behavior consistent with completeness over theV interval is
found. We also carry out a systematic study of bifurcatio
seen in stable solutions resulting from the evolution ofS2
initial conditions. A framework which permits the analyt
evaluation of bifurcation points along theV50.0 line atK
51 is set up. Additionally we note that all the bifurcation
seen here cannot be picked up by the usual quantifiers
define quantifiers which can identify these bifurcations. It
interesting to note that the bifurcations seen in this case
dictated by the fact that the temporal periods at small a
large coupling follow forward and reverse Farey organiz
tion, respectively. Since our system constitutes a represe
tion of the general behavior of oscillators, it would be inte
esting to see if some of the behavior seen in our systems
be found in realistic oscillator systems. We hope our analy
will prove to be of utility in some of these contexts.

ACKNOWLEDGMENTS

N.G. thanks DST, India, for partial support under Gra
No. SP/S2/E-03/96, and G.R.P. gratefully acknowledg
CSIR ~India! for financial support.
alue
@1# R. Kapral, Phys. Rev. A31, 3868~1985!.
@2# J. Levy, M. Sherwin, F. Abraham, and K. Wiesenfeld, Ph

Rev. Lett.68, 2968~1992!.
@3# K. Wiesenfeld and P. Hadley, Phys. Rev. Lett.62, 1335~1989!.
@4# M. Choi, H. Kim, D. Kim, and H. Hong, Phys. Rev. E61, 371

~2000!.
@5# H. Hong, M. Choi, K. Park, B. Yoon, and K. Soh, Phys. Rev.

60, 4014~1999!.
@6# K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, Ph

Rev. Lett.65, 1749~1990!.
@7# M. Matias, V. Perez-Munuzuri, M. Lorenz, I. Marino, and V

Perez-Villar, Phys. Rev. Lett.78, 219 ~1997!.
@8# M. Clerc and P. Coullet, Phys. Rev. E60, 6589~1999!.
@9# M.H. Jensen, P. Bak, and T. Bohr, Phys. Rev. A30, 1960

~1984!.
@10# P. Hadley, M. Beasley, and K. Wiesenfeld, Phys. Rev. B38,

8712 ~1988!.
@11# S. Coppersmith, Phys. Rev. A36, 3375~1987!.
@12# K. Kaneko, Chaos2, 279 ~1992!.
@13# P. Bak and R. Bruinsma, Phys. Rev. Lett.49, 249 ~1982!; R.

Bruinsma and P. Bak, Phys. Rev. B27, 5824~1983!.
@14# S. Aubry, inSolitons and Condensed Matter Physics, edited by

A. R. Bishop and T. Schneider~Springer, Berlin, 1978!, p. 264.
.

.

@15# P. Bak and J. von Boehm, Phys. Rev. B21, 5297~1980!; M.H.
Jensen and P. Bak,ibid. 27, 6853~1983!.

@16# N. Chatterjee and N. Gupte, Phys. Rev. E53, 4457 ~1996!;
Physica A224, 422 ~1996!.

@17# J.F. Heagy, T.L. Carroll, and L.M. Pecora, Phys. Rev. E50,
1874 ~1994!.

@18# P.M. Gade and R.E. Amritkar, Phys. Rev. E47, 143 ~1993!.
@19# N. Chatterjee and N. Gupte, Phys. Rev. E63, 17 202~2001!.
@20# However, for most of the cases seen here, the eigenv

analysis has been carried out for both thekN3kN and k3k
matrices. The results agree as expected.

@21# For initial conditions of spatial periodk, the phase plots shown
in the figures are for lattices of size 2k. However, the numeri-
cal results have been verified for much larger lattices.

@22# J. Guckenheimer and P. Holmes,Non-linear Oscillations, Dy-
namical Systems and Bifurcations of Vector Fields~Springer-
Verlag, Berlin, 1983!, Chap. 3, p. 117.

@23# P. J. Davis,Circulant Matrices ~Wiley, New York, 1979!,
Chap. 3, pp. 66–107.

@24# G. R. Pradhan and N. Gupte, Int. J. Bifurcation Chaos11, 2501
~2001!.

@25# The distribution of eigenvalues as defined in Ref.@24# above,
also picks up all the bifurcations seen, as expected.
7-13


