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Mode locking of spatiotemporally periodic orbits in coupled sine circle map lattices
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We study the organization of mode-locked intervals corresponding to the stable spatiotemporally periodic
solutions in a lattice of diffusively coupled sine circle maps with periodic boundary conditions. Spatially
periodic initial conditions settle down to spatiotemporally periodic solutions over large regions of the param-
eter space. In the case of synchronized solutions resulting from synchronized initial conditions, the mode-
locked intervals have been seen to follow strict Farey ordering in the temporal periods. However, the nature of
the organization of the mode-locked intervals corresponding to higher spatiotemporal periods is highly depen-
dent on initial conditions and on system parameters. Farey ordering in the temporal periods is seen at low
coupling for mode-locked intervals of all spatial periods. On the other hand, stable spatial period two solutions
show an interesting reversal of Farey ordering at high values of coupling. Other spatially periodic solutions
show a complete departure from Farey ordering at high coupling. We also examine the issue of completeness
of the mode-locked intervals via a calculation of the fractal dimension of the complement of the mode-locked
intervals as a function of the coupling and the nonlinearity parameté&. Our results are consistent with
completeness over a range of values for these parameters. Spatiotemporally periodic solutions of the traveling
wave type have their own organization in the parameter space. Novel bifurcations to other types of solutions
are seen in the mode-locked intervals. We discuss various features of these bifurcations. We also define a set of
new variables using which an analytic treatment of the bifurcations alon@ th® line is carried out.
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[. INTRODUCTION case the capacitance. Yet another physically realisable sys-
tem where mode locking is observed is an overdamped chain
Dynamical systems with many degrees of freedom showof balls connected by identical springs of random lengths
many phenomena which involve the interaction of spatialSubjected to strong sinusoidal potential and a time dependent
and temporal degrees of freedom and can demonstrate bol@rcing. Here it is shown that for sufficiently strong pulses
organized and turbulent behavior. Examples of organized beand weak springs, the chain moves an integral number of
havior seen in the case of extended systems include patteRgriods for a range of pulse lengtfisl].
formation in two-dimensional arrays of Coup|ed oscillators ThUS, it is evident that the existence of periodic solutions
[1] and charge density wavég]. The simplest class of or- and mode locking play an important role in the behavior of
ganized structures in extended systems, that of spatiotemp@xtended systems, especially those which can be modeled
rally periodic solutions, occurs quite frequently in laboratoryusing oscillators. Coupled map lattic€ML) models[12]
experiments. For example, experimental systems such &ve turned out to be simple and effective paradigms for the
coupled oscillator array$3—5|] and multimode laser§6],  study of complex spatiotemporal systems such as the ones
support a number of periodic solutions and traveling wavedescribed above due to their computational tractability and
behavior has been seen in coupled electronic cir¢ditand  rich phenomenology. A typical example of a CML, the near-
ring laserg8]. est neighbor future coupled map lattice can be described by
Spatially extended systems which serve as models dhe evolution equations
coupled oscillators show a distinct tendency towards mode
locking [9]. Coupled oscillators tend to lock into commensu- _ e _ _
rate motion where the ratios of their frequencies is a rational Xpe1=(1—e)f(x;)+ E[f(x'n“)Jr f(xih1, (1)
number. A striking example of this behavior is the mode
locking seen in Josephson-junction series arfdyd. It is
observed that, just as a single Josephson junction oscillates @herex! are the variable values at the sitat the timen, the
a frequency that is proportional to the voltage across thgpcal dynamics is governed by the mépand e which lies
junction, multiple Josephson junctions arranged in one dipetween 0 and 1 is the strength of the coupling parameter.
mension, shunted by load, phase lock strongly and thus 0s- we make our choice of the local map to be the sine circle
cillate coherently for some value of the parameter, in thismap first introduced by Arnol9], and defined by the evo-
lution equation
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where 0<6,<1, 0<( <1, 0O<e<1, and the map is invert- at high e but the temporal periods of these solutions do not
ible when the nonlinearity parameték 1. The parametef) follow the Farey sequence. Odd peridnitial conditions
is the natural frequency of the system ##=0. This map is  Settle down to spatial periods which correspondtor its
one of the simplest representations of physical phenomerfactors, with temporal periods which follow the Farey series
involving periodic motion and exhibits a rich variety of tem- at low e with nongeneric departures from the Farey at high
poral behavior, namely, periodic, quasiperiodic, and chaotid he organization of spatiotemporal periods is insensitive to
behavior. As is well known, this system shows mode lockingperturbations in the spatially periodic initial conditions al-
as the parameteK is increased, and exhibits the Arnold though the width of the mode-locked intervals can change
tongue structure organized by Farey ordering in k€  for large perturbation strengths. The width of the mode-
parameter space and a complete Devil's staircase of periodlecked intervals corresponding to orbits of spatial period
orbits atK=1 [9]. Such Devil’s staircase structures have and temporal perio® (henceforth to be denoted by the no-
been seen in diverse contexts such as the one-dimensioriation SKTQ is no longer independent af and hence the
(1D) Ising model with long-range interactiond 3], the  question of the completeness of the mode-locked intervals
Frenkel-Kontorova model of atoms on a periodic substratdéias to be considered as a function of the parametand
[14], and the 3D Ising model with competing interactions with reference to specific classes of initial condition. Bifur-
[15]. cations to traveling waves are seen inside many of the mode-
CML studies of lattices of coupled sine circle mgpe-  locked tongues. These traveling wave solutions have their
fined in Eq. 3 beloWshow a remarkable diversity of behav- own characteristic organization in the parameter space which
ior [16]. Since the system under study has many degrees d@$ discussed here. Many other bifurcations which are spatial,
freedom, it is highly sensitive to initial condition47]. The  temporal, and spatiotemporal in nature can also be observed
class of initial conditions that we study is the class of spainside the mode-locked tongues. These bifurcations show
tially periodic initial conditions. These are a natural class ofseveral interesting features which we discuss in detail. We
initial conditions, are easy to excite in an experimental con-also set up an analytic framework by which bifurcations on
text and result in stable spatiotemporally periodic solutionghe (=0 line can be picked up.
over a very large region of parameter space. We examine This paper is organized as follows. In Sec. Il we discuss
spatially periodic conditions of spatial peridd It has been the stability analysis of spatiotemporally periodic solutions.
observed earlier that synchronized initial conditions whereSection Il A discusses the role of initial conditions in the
k=1 settle down to stable synchronized solutions of varyingspatiotemporal organization of orbits. We discuss the behav-
temporal period®), and that the Arnold tongue structure and ior of spatial period two and other odd period solutions in
the Devil’'s staircase seen for the synchronized solutions i§ecs. Ill C and Il D, respectively, the size of the basin of
exactly the same as that seen for the single circle [i&p  attraction in Sec. lll E, and the completeness of the solutions
and therefore follows the Farey sequence. The widths of thi# Sec. Il F. We discuss the behavior of traveling waves in
mode locked intervals are found to be independent of théec. IV. Section V discusses bifurcation behavior. Our results
coupling strengthe and are identical to those of the tempo- are summarized and discussed in Sec. VI.
rally periodic orbits of the single circle map. Hence, the
completeness of the mode-locked regions ovellhaterval
atK=1 seen in the case of the single circle map carries over
to the stable synchronized solutions resulting from synchro- The model under investigation is a lattice of coupled sine-
nized initial conditions. On the other hand, the question ofcircle maps with nearest neighbor diffusive coupling and pe-
the organization of the higher spatially periodic orbits andriodic boundary conditions defined by the evolution equation
the manner in which mode-locked intervals of such higher
spatial periods fill up the parameter space remains open. This . .
is the question addressed in the present paper. V=1 (1— i i i i -
In marked contrast with the synchron?ze%l situation, theoHl(l) (1= 916N+ 2f(0t(|+1))+ Zf(et(l D)
organization of spatiotemporally periodic orbits which is ob-
tained from the evolution of initial conditions of spatial pe- mod 1, (3)
riod k>1 shows distinct departures from Farey organization '
in large regions of parameter space. The specific nature of
the departure depends on the period of the initial conditionsvheree is the coupling parameter ands the index of lattice
evolved with initial conditions corresponding to odd andsite and the local map(#é,) is the single sine circle map
even periods falling in different classes. For even pekod given by Eq.(2), with parameters as in EQR).
=2m,m=1 initial conditions, the stable spatiotemporally = Now consider such a lattice of sizeN wherek is the
periodic orbits settle down to the spatial periauls 2, or  spatial periodicity of the solution anN is the number of
other factors ofm with the temporal periods for a given blocks of the spatial periokl The Taylor series expansion up
spatial period following the Farey series at laywwhereas to first order about any given solution gives a linear stability
they settle down to the spatial period 2 and the temporammatrix M KN which is of the ordekNxkN. The structure
orbits show a reversal of the Farey series at higlEven  and the eigenvalues of this matrix enable us to determine the
period initial conditions also settle down to stable solutionsstability edge of the corresponding spatiotemporal solution.
with spatial periods corresponding toor other factors on  The general form of the stability matrix at timtewill be

Il. THE MODEL AND STABILITY ANALYSIS
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eA(L) €,A(2) 0 0 €,A{(kN)
A1) €A(2) €,A(3) s 0

MN= 0 enA(2)  €A(3) €nA(4) 0 : (4)
€nAl(1) 0 cee € Al(kN—1)  eA(kN)

wherees=(1—¢€) ande,=¢€/2, and theA(i)=f'(6,(i))=1—K cod276,(i)).

For a spatially periodic solution with peridd i.e., when#é,(i + k)= 6,(i), for all i and temporal period 1, the form of the
stability matrix in Eq.(4) can be simplified and can be put in a block diagonal fokty N, with N blocks M (1), |
=1,2,... N each of siz&kxXk along the diagondl18,16. Fork>2 each of theM {‘(I), [=1,2,...N, has the structure

€Al eA(2) 0 0 enA(K) o)
A1) €A(2)  €A(3) e 0
MKy = 0 eA2) €A(3)  €A(4) 0 , (5)
eA(Do 0 o &A= eA(K)
[
wherew;=2#i(I-1)/N, 1=1,2, ... N. 0,(i)= 0y o(i). (8)

A similar block diagonal form will be achieved for the
=2 case as well but the matrM{‘(I) has a different form The periodic solutions under consideration are said to be

given by stable if the largest eigenvalue of the matfi ;M (1) is
less than 1, i.e.,

€
(1-eAKD)  S(1+w)AX2) et ©)
2 —
Mih=1| . - (8 We check the periodicity of the solutions up to the accuracy
S+ o HAZ(1)  (1-€)A(2) of 10" '* and scan thd)-e parameter space with the mesh

size 10 2 while obtaining the various phase plots. To ensure
_thlat tt\e solutions are stable, we verify that the eigenvalue
. . , .2 '@t |ess than one inside the mode-locked regions. Our
bility matrix MtkN can b.e further simplified. It has been main interest is the organizatidne., the sequence |gr’1 which
shown that the largest ek'ge”Ya'Ue of ek block corre- o narameter space is filledf various stable mode-locked
sponding td =1, viz., M (1) is same as ttht of the largest perindic solutions. Most of our phase plots are obtained for
eigenvalue of the entireNxkN matrix M{*" [19]. Thus  the valueK =1 for the nonlinearity parameter as the mode-
the stability of ak period solution can be studied by looking |ocked tongues are widest here.

at a single, uniquely identifietf, < k matrix, even for a lattice

of sizekN. This analysis can be extended to arbitrary tem- || R ANIZATION OF MODE-LOCKED INTERVALS

poral periodQ where the largest eigenvalue of the stability

matrix 7<N=112 ;, M KN is the same as the largest eigenvalue A. Initial conditions

of the matrixIIZ ;M{(1). The use ofthese results greatly  pue to the existence of many degrees of freedom our
simplifies the numerical stability analysis which follows as system has multiple coexisting attractors and the dynamical
the stability analysis for a lattice of si2Zd =kN can be re-  behavior of the evolution Eq3) is strongly dependent on
duced to the eigenvalue analysis of a single matrix of dimenthe nature of initial condition517]. We find that while sev-
sionkxk [20]. eral classes of initial conditions including random initial con-
We study the evolution of the E¢3) for a class of spa- ditions can settle down to spatiotemporally periodic solu-
tially periodic initial conditions for varying spatial peridd  tions, spatially periodic initial conditions settle down to
For various spatial period initial conditions, we fix the  spatiotemporally periodic solutions in large regions of the
nonlinearity parametef and identify the spatial periddand  parameter space. Distinct classes of initial conditions lead to
the temporal periodQ solutions, i.e., the solutions which distinct organizations of spatiotemporally periodic behavior

The problem of finding the largest eigenvalue of the sta

satisfy the closure conditions in the parameter space. It is therefore useful to study the
stable behavior resulting from each type of initial condition
0:(1)=6,(1 +k) (7) class by class. It has been shown that random initial condi-
tions settle down to a spatiotemporally synchronized solution
and for this model in the? and } tongues of single sine circle
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map[16]. For synchronized initial conditionspatial period 1 T T
k=1, henceforth abbreviated &), the entire structure of

the Devil's staircase and Arnold’s tongues lifts off to the 091 ;
third dimensione [16]. 08 | .
Here, we concentrate on spatial periothitial conditions
wherek=1. We study initial conditions that are symmetric 071 E
on the lattice about 0.5, i.e., in the case of spatial pekiod 06 L i
initial conditions where a bloclé(1),6(2), ... ,0(k) is re-
peated, we havé(i)+ 6(k—i+1)=1.0 within each block. w O05F on T
These initial conditions lead to stable spatiotemporally peri- o ]
4 I 75 a5 =

odic solutions in large regions of the parameter space. In
addition, the stable mode locked intervals seen for this class 3
of initial conditions are symmetric aboit=0.5 and result 1/ 3
in interesting bifurcations in the parameter space. We note 02| 2% 35 .
that spatially periodic initial conditions which do not follow
the above restriction also lead to stable spatiotemporally pe-
riodic orbits in the parameter space, but their regions of sta- 0 IR N B P B
bility in parameter space are much smaller than those result- 0 01 02 03 04 05 06 07 08 09 1

ing from the symmetric initial conditions described above. Q

Moreover the symmetry abo@t= 0.5 is lost when the initial _ _

conditions are not symmetric. However, the organization of FIG. 1. The mode-locked intervals in the() parameter space
spatiotemporally periodic orbits in the parameter Spacé:grrespondlng t&1TQ staple solutlon§ arising fr.0|ﬁ.§1 initial con-
which we shall discuss in detail below is the same in bothdltlons are shown. The width of the intervals is independen¢ of
cases. We discuss the size of the basin of attraction of the?@d the arrangement of the intervals is according to the Farey orga-

initial conditions in Sec. Il E. nization.

The numerical method followed has been outlined in Sec.
Il above. Initial conditions of a given spatial peridédare third direction, viz. the coupling parametef16]. The width
evolved, the closure of the resulting spatial and temporabf the mode-locked intervals is independent of the coupling
period is verified and the stability of the solution is checkedstrength as seen in the() phase plot in Fig. 1 plotted for
via the eigenvalue of the stability matriig1]. It is seen that K=1 with P/Q values as marked in the figure. Thus the
initial conditions of spatial periok settle down to stable completeness of the mode-locked intervals seen in the case
spatiotemporally periodic solutior8k TQ where thek’ are  of the single sine circle map @& =1 carries over to the
factors ofk. Stable solutions corresponding to all factorkof coupled map as well.
from 1 to k are seen in different regions of the parameter
space. It is also seen that the region of parameter space ocz. Spatial period two initial conditions and initial conditions
cupied byS1TQ and SkTQsolutions is the largest. of even period

Secondly, the organization of the mode-locked intervals Spatial period two initial conditions are the simplest ini-

of a given spatial peno.d b.Ut qf varying temporal IoerIOdStial conditions of the even period class. The evolution of this
follows the Farey organization in some parts of the param-

eter space. but departures from Farev oraanization are seCIr?SS of initial conditions results in stable solutions of spa-
. pace, P y org X 'ﬁotemporal period52TQ or S1TQ. The arrangement of the
in other regions of the parameter space. The numerical r

. eS'ZTQ periods in thee-Q) plane(for K=1) up toQ=5 can
sults algo show thafc the ?‘ff"?‘ﬂgeme”t g_nd W'd.th of the mOdEb'e seen in Fig. @). Itis clear that the mode-locked orbits are
locked intervals varies with initial conditions with the behav- arranged in a Farey sequence fréro © in the lower half
ior for odd and even period initial conditions falling in 9 Y S€q !

different classes. We examine these features in detail in th (iﬁ(r)]\?v ofet.hl'he IF:’/a(r)evaIugz ireen?:z ma(;lf<ed (')rr] dtehre f|%ure \‘;ﬁd
section below. We also examine the issue of the complete; ; 1 1 2 13 2 3 iy; n gontrast the Farev sequence n
ness of the mode-locked intervals and the size of the basin %es‘lu;)rferz ’ 5H§|'f4r’)|56;ﬁé follows the order}y qu !

- 1513141511

attraction. e .
=1432 31 Thisis areverse Farey sequence which be-

gins and ends a}. We draw a schematic diagram of this
Farey organization and reverse Farey organization in Fig.
As mentioned earlier, it has been observed that synchrad2(b). The organization follows the order shown by the solid
nized initial conditions k=1) settle to stable spatially syn- circle at low e and the dotted circle at higa Thus there is
chronized solutions with temporal perio@swhich are orga- a beautiful reversal of the Farey sequence in the upper half
nized by the Farey sequence, exactly as in the case of th@ane. We have checked numerically temporally mode-
single circle maf16]. It was seen that the Arnold tongue locked values upt@=64 and note that the same reversal is
structure in theK-Q) space and the Devil's staircase of the seen at all observed levels of the Farey sequence.
winding numberP/Q versus the corresponding stability in-  We note that that the mode-locked intervals seen in Fig.
terval AQ(P/Q) seen for the single circle map lifts off to the 2(a) are symmetric abou2 =0.5 as in the case of the single

o1 E

B. Synchronized initial conditions k=1
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. 11=0/1

04 | b 04 1
03 . 03 | b
02 o1 11 02 1
01} o 01| :
ok 1 1 = 0 1 I N BN | 1 I K | 1
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Q Q

(b)

1/1=0/1

FIG. 2. (a) The mode-locked intervals in the-Q) parameter space correspondingS®TQ stable solutions arising fror82 initial
conditions are shown. The/Q values are as shown in the figure. The mode-locked intervals are arranged according to Farey series in the
lower half plane ofe and in the reverse Farey series in the upper half plane @) The Farey organization starting %tand ending a&
is shown. The point§ and% are identified due to periodic boundary conditions. The starting point and the end point are denoted by vertical
bars whereas the arrow gives the direction in which the sequence is traversed. The reverse Farey organizati(éwamdrmd‘s a%. The
arrow on the dotted circle shows the reversal of the directigriThe regions of the-{) parameter space whe8TQ solutions are stable

are shown for the winding numbeRQ=%,%,% 2 2 2 The symmetry in the shapes of the tongues aroemn@.5 is clearly seen.

circle map and the synchronized solutions. However theal periods to see this symmetry for the mode-locked inter-
mode-locked intervals resulting fror82 initial conditions vals of Fig. Za).]

show an additional symmetry around=0.5 which is not Now consider spatially periodic initial conditions of
seen in other case&% 2) and is not apparent from Fig(é2  higher even periodsk&2m,m=1). These initial conditions
alone. Mode-locked intervals of winding numbefQ map  settle down to stable solutions of spatiotemporal periodicity
onto intervals of the sam@® when reflected abou¢=0.5 SKTQ where all the factors ok appear ax’, e.g., if the
providedQ is a multiple of 4. IfQ is not a multiple of 4, then initial condition has spatial periokl=4, we see stable solu-
the interval maps onto an interval of temporal per@2 or  tions which areéS4TQ, S1TQ, andS2T Q. The mode-locked
2Q under this symmetry. See Fig(c2 which plots mode- intervals corresponding to these solutions appear in the form
locked intervals corresponding @=3,4,6 where this sym- of two sets of tongues with bases near0 ande=1, re-
metry is clearly seerjlt is necessary to go to higher tempo- spectively. TheS2TQ solutions neak=1 appear in the re-
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verse Farey sequence as seen in the case o82hmitial
conditions above. Nea¢=0.0, theSATQ solutions form a
complete Farey sequence frofnto 1. The S2TQ solutions
neare= 0.0 also form a Farey sequence, but we note that the
sequence lacks the two end poifitandi asS4T1 solutions

are found at these two ends. The combined sequence fol-

js 11111122331 ina-
lowed Is3, 2, 4.2 T Ik Ty 1,where the denomina

tors of the fractiond?/Q correspond to th&4TQ solutions 0.6 - T
while thoseP/Q correspond to th&2TQ solutions. Thus w
elements of the sequence of the lower spatial period 2 al- 04

ways appear to the left of the higher spatial period 4 while
(<0.5 with the usual symmetric reversal fd2>0.5.

Mode-locked intervals corresponding to t6&T Q solutions

exhibit Farey organization in temporal periods in all regions 0.2
of the parameter space.

The entire set of features seen in the case of the spatial
period 4 initial conditions discussed here carries over to ini-
tial conditions of higher even periods as wékEven periods 0 0
have been studied up to=14) Thus givenSk initial con-
ditions wherek is even, the following common features are
observed.(i) An S2TQ reverse Farey sequence is seen at FIG. 3. The mode-locked intervals in the() parameter space
high e. (i) SK' sequences, where tike¢ are factors ok are  corresponding t&3TQ stable solutions arising froi83 initial con-
seen with regular Farey ordering at loev Of these, the ditions are shown. The/Q values are as shown in the figure. The
SkTQsequence is complete, whereas the sequences whiehode-locked intervals are arranged according to Farey series in the
correspond to other values kf lack the end point§ andi  lower half plane ofe while, unlike S2 initial conditions, no specific
in a minor violation of Farey orderindiii) The elements of sequence is seen in the highregime.
the two series merge in a manner in which the Farey ordering
is preserved for eacBK TQ the elements of the sequence . . . .
with the lower values of the spatial peridd appearing to Which are symmetric about the =0.5 line but the organi-
the left of the higher value ok’. (iv) At high e, spatial zation of mode-locked intervals does not depend on this con-

periodsk’>2 do not show Farey ordering in the temporal Straint. Other initial conditions of the same spatial period

0/1 1/1

01 02 03 04 05 06 07 08 09 1
Q

periods. will result in the same organization of periods but the shapes
of the mode-locked regions changes and the symmetry about
D. Spatial period 3 and other odd spatial period initial the 2=0.5 line is lost. We have also checked that the orga-
conditions nization of mode-locked intervals is stable to perturbations.

. . . . We have added random perturbations of strength @ to
The behavior of stable solutions resulting from odd period, i1 onditions of spatial periott and checked the organi-

initial conditions is quite different from those resulting from ;"¢ the mode-locked intervals. We note that the orga-
the evolution of even period initial conditions. We begin with _._ . : ;
nization of mode-locked intervals remains unchanged for

the study of spatial periok=3 initial conditions. The phase perturbations as large a@s=0.1 (i.e., a perturbation strength

plot of the stable mode-locked regions for this set of initial ; .
conditions is shown in Fig. 3. It is clear that the mode-locked®f 10%) about the spatial peridd The phase space plots

tongues with bases near 0.0 follow the regular Farey se- after the addition of perturbation remain indistinguishable
guence whereas the mode-locked tongues aedr.0 clearly from the original plots resulting from strictly periodic initial
violate the Farey sequence. Mode-locked regions resultin§onditions for perturbations up t6=0.001. However, the
from other odd period initial conditionsstudied up tok  Shapes of the tongues change for perturbations stronger than
:15) show similar behavior, i_e_, there is Farey-"ke behav.thls. ThUS, the organlzatlon of mode-locked intervals is in-
ior at low e whereas nongeneric departures from the Fareypensitive to fairly strong perturbations to the spatial period of
are seen at higl. the initial conditions, but the question of completeness of the

We note an interesting feature seen in the case of period 810de-locked intervals has to be discussed in the context of
initial conditions. The Farey sequence betweenRh® val-  the specific nature of the initial conditions. We discuss this
ues3 and¢ appears at higle (0.87<e<1) in the() range issue below.

(0.17=Q0=0.25) and a corresponding range to the right of
0 =0.5 by symmetry. No similar feature has been seen in the F. The completeness of the mode-locked intervals
case of any of the other initial conditions that we have stud-

iod In the case of the single sine circle map at the vadue

=1, the width of the mode-locked intervals covers the entire
) axis and the Devil's staircase &/Q values against the
corresponding stability intervald Q(P/Q) is said to be
We have mentioned above that the conditiéf)+ #(k  complete[9]. It is interesting to see if this feature is seen in
—i+1)=1.0 is necessary to obtain mode-locked intervalsthe case of the coupled sine circle map lattice. From the

E. Basins of attraction
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previous discussion it is quite clear that the issue of comef € in the interval[ ¢, ,eg] for which 1—S(r) vanishes as
pleteness depends strongly on the class of initial conditions* P asr—0 and therefore, the mode-locked intervals cover
and the class of stable solution under consideration. Agairthe entire() axis and the staircase can be said to be com-
since the width of the mode-locked intervals of a given clasglete. AtK=1 thee_ value is zero indicating that the mode-
depends on the parameter values, the question of completgcked intervals of the single circle map satisfy this property,

ness has to be studied as a function of the coupling paranwhereaser is about 0.2 after which the curve rises sharply.
eter. The behavior of the mode-locked intervals fervalues in

In the case of synchronized solutions Kat=1, as seen this range is consistent with completeness. As the value of

above, the width of the mode-locked intervals is independerfi€creases, the mode-locked intervals do not fillhexis at
of € and depends only of) [16]. We use the following €=0.0 and bothe;, and e shift to the right on thee axis.

procedure to investigate the property of completeness for any'€ Valu€eni, for which the dimension is minimunt) i,
e. All the plateaus on th€ axis for whichS1TQ solutions ~ Shifts to the right aX decreases and the value Df,;, de-

are stable are identified up@=95. The step widths are C'3SES as well. Thé dependence of these features clearly
found up to an accuracy of 16. Let S(r) be the total width depends on the way in which the mode-locked tongues open
of the steps which are larger than a given scal€he space up in parameter space agd K)'SdOA .th(.:‘l Comp'l?tef‘ess pkrlop—
between the steps given by-15(r) is found for varyingr. erty is not seen at ang observed. Similar qualitative behav-

Then the number of holes is given b1 =[1—S(r)Jir,if 'O > Seen at higher spatial periods.
the Q interval is of unit length. Now, the plot of IN(r)
versus In (I7) turns out to be a straight line indicating that
the power lawN(r)~(1/r)P is valid over theQ interval. Traveling wavegTWSs), i.e., waves where the values of
Thus the slope of the line gives the dimensrof the set  the lattice variable translate along the lattice in every time
which is complementary to the mode-locked intervals. Westep with a given velocity form an important class of solu-
have chosen 40 values ofn the interval (0.000017,0.0009) tions of CMLs[12]. This class of solutions is also found very
[9]. The dimensiorD turns out to be 0.8769260.0008647. frequently in experimenf7]. Hence spatiotemporally peri-
This value is the same for synchronized solutions at all th&dic solutions which have the traveling wave structure de-
values ofe between 0 and 1. Next we find that for the single Serve special attentioisee Fig. %)].
circle map, the dimension for the set which is complemen- A general spatiotemporally periodic solution with tempo-
tary to the mode-locked intervals turns out to be 0.875981al period Q and spatial periock satisfies the condition
+0.0009406 for the same accuracy and the same number @f(i) = 61+ q(i +p) where pmodk=0. On the other hand
temporal periods and it indeed compares well with the valudraveling wave solution with spatial periddand temporal
obtained for the synchronized solutions. Hence we say thdteriod Q which translates with velocity at each time step
the staircase for the synchronized coupled sine circle maglearly satisfies the equatiofi (i) = 6;. (i +vQ), where
lattice is complete for any. We note that the procedure we vQmodk=0, and the velocity can takek—1 distinct val-
have followed is the same as the procedure which has beaies 1, ...k—1. The TW solution with the velocitk is the
followed for the single circle map earli¢®] which found  frozen solution. Further, the solution with the velocikty 1
D=0.87 as the dimension of the complement set of thds the same as that of the solution with velocity 1. For in-
mode-locked intervals on th@ axis (where the step width stance, the Fig. & exhibits this for the TW solutions of
was measured up to an accuracy of 10 8). spatial period 3 where the velocities admitted are 1 and 2,

From the phase plots of the higher spatial periokls ( respectively, with temporal period 3 for both cases. As men-
=2), itis evident that the widths of the mode-locked regionstioned earlier, traveling waves of a given spatial petkazhn
depend on the coupling strength as well as on the class dfave different temporal period3 and different velocities
initial conditions iterated. Thus the dimension of the comple-Which satisfy the relatiornQmodk=0. For example, the
ment set of the mode-locked intervals for stable periods’W solution with the spatial period=4 can have velocities
SkTQis a function of the strength of the coupling parameterl, 2, and 3 with the corresponding temporal periods 4, 2, and
and also has to be examined for a specific class of initiaft, respectively.
conditions. We study this quantity usi®g initial conditions In the case of our CML, spatially periodic initial condi-
and find the widths of the mode-locked intervals correspondtions settle down to spatiotemporally periodic traveling
ing to the stableS2TQ solutions. Using the procedure de- waves in many regions of the parameter space. Moreover, for
scribed above, we find the complement set to the modea fixed value oK, if there is a TW at a given value of);€)
locked intervalsS2T Q with temporal period€ up to 95 for  in the e—{) parameter space, then the presence of a TW at
different values of the coupling parameter. We ploNn)  (1—,€) is guaranteed by symmetry aroufi=0.5. There
against In(Ir) in Fig. 4a) for e=0.01, where all the points @ definite relation between the velocity of TW solutions at
fall on a straight line indicating the existence of a power law.these two sets of parameters viz.
The slope gives the dimensidh=0.87215% 0.003932.

It is clear that the width of the mode-locked solutions V@9 TVa-0,0=k (10
varies withe for a givenK value. We ploD (€) as a function
of € for threeK values viz.K=0.6,0.9,1.0 in Fig. #). Itis  This can be seen clearly from the Fighh where thee-Q)
clear that for eaclK value plotted, there is a range of values phase plot aK=1 corresponding to stab&5T5 TW solu-

IV. TRAVELING WAVES
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(a) tongue corresponds to the velocity (@he rest of the tongue

105 r r r r T T T contains nontraveling wave solutions. The TW to non-TW
bifurcation will be discussed in the next section.

Further, as in the case of non-TW solutions, spatially pe-
riodic initial conditions with spatial periokl evolved accord-
ing to the Eq.(3) settle down to TW solutions with the spa-
tial period k', where thek’’s are factors ofk in different
regions of the parameter space. The velocities for the corre-
sponding TW solutions with the spatial peri&d follow the
relation given by Eq(10) above. Thuss4 initial conditions
settle down td52T2 (TW) solutions of velocity 1 in in small
regimes of? andi tongues and4T4 (TW) solutions with
velocity 1 inside the mais tongue whileS4T4 (TW) solu-
tions with velocity 3 are seen in thg tongue in theQ-e
parameter space. Solutions which are traveling waves of the
type SAT2 are also seen in thetongue. Ask increases, and
the factors ok increase in number, the widths of the mode-
locked intervals decrease.

InN(®r)

7 75 8 85 9 95 10 105 11
Inlir A. Spatiotemporally periodic staircase: thek=Q case

(b In the case of a single sine circle map, the intervals
1r T T T AQ(P/Q) corresponding temporally mode-locked regions
’ of winding numberP/Q form a Devil’s staircase. It is there-
fore interesting to ask whether the spatial and temporal
mode-locked regions arising from the spatiotemporally peri-
odic solutions of equal spatial and temporal peri&isT k
(i.e., thek=Q casg give rise to a staircaselike structure
which could be called a double Devil’s staircase since it is
doubly periodic(i.e., periodic in both the spatial as well as
temporal periods Unlike the case of the single sine circle
map where all the mode-locked tongues arise from a single
initial condition, here, it is necessary to consider mode-
locked tongues of perio8kTk each of which arises from a

distinct spatially periodic initial conditiorsk We plot the
0.8 I T K06 1 mode-locked tongues of spatiotemporal peri&Tk and
also have the TW structure fat=1.
It is clear that these mode-locked tongues are also ar-

0.95

0.9

0.85

0.75 L L L ranged in the Farey sequereee Fig. )] and the symme-
0 0.05 0.1 0.15 02 try around(Q=0.5 is maintained. However, since all even
€ period initial conditions give rise to stable TW solutions of

FIG. 4. (a) The plot of InN(r) vs In 1f for the coupled sine periodSZTZ in two triangular _regions at high the staircase
circle map lattice aK=1 ande=0.01 with S2 initial conditions. is augmented by the:?‘e two trlangles. Due t_o t.he fgclt.that each
The slope of the straight line gived=0.87215% 0.003932.(b) of the mode-locked intervals arise from distinct initial con-
The dimension of the set complementary to the mode-locked interditions, they can occupy overlapping regions in tee

vals as a function of the coupling parameter for different values offPaC€, and hence no statement about the completeness of the
K is plotted. D is seen to vary with the coupling parametems  Staircase can be made. We note that mode-locked solutions

shown. Numerical observations show that the staircase is complet%kaWhiCh do not have the TW structure also form a double
over a range ofe. The three curves correspond to eachkof Devil's staircase which follows the Farey series. Addition-
=0.6,0.9, and 1.0. The dashed line shaws 0.87, the value for ally, TW solutions arising from the other classes of the spa-
the corresponding set for the synchronized solutatrK =1) as a  tially periodic initial conditions, e.g., those that are not sym-
reference. metric about 0.5 also gives rise to the double Devil's

. o L ) staircase but the mode-locked regions reduce in size and the
tions with different velocities is shown. The traveling Waves symmetry around)=0.5 is lost, however, no overlap be-

with velocities 1, 2, 3, and 4 appear at various parametefyeen various mode-locked regions is seen for this case.
values and the relation just described above is satisfied. For
example, the TW solution seen in temode-locked tongue
(on left of A =0.5) corresponds to the velocity 3 while at the
symmetrically opposite position along tie axis, on the Many dynamical systems show bifurcation behavior
right of Q=0.5, the TW solution seen in tikmode-locked  wherein the qualitative nature of the stable solution changes

V. BIFURCATIONS
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FIG. 5. (a) The traveling wave solutions with spatial as well as temporal period 3 with velocities 1 and 2 are sh@yvand (ii),
respectively(b) The coupled sine circle map lattice with t88 initial conditions supports th85T5 traveling waves of velocities 1, 2, 3,
and 4 following Eq.(10). The regions of stability of these waves are seen in the figaoyelhe stability regions oSkTktraveling wave
solutions in thee-() parameter space are shown. Each of $k& ksolutions results from the correspondigg initial conditions. TheP/Q
values are as shown in the figure. The spatiotemporally mode-locked regions follow Farey organization. Note the triangles corresponding to

the bifurcated solutions in thg and 1 tongues.

as the parameters are varigg®]. For low-dimensional sys- solutions seen in the lower triangles bifurcate to synchro-
tems, these changes are changes in the qualitative tempordked solutions along the lower edges, andS®T Q solu-
behavior of the system. On the other hand, for systems witions of higher temporal period® along the upper edges.
many degrees of freedom, many attractors with differing spaThe S2T2 (TW) solutions seen in the upper triangles bifur-
tiotemporal properties are available to the system and bifureate to synchronized solutions along the upper edges and
cations which are spatial/temporal or spatiotemporal can ocS2TQ solutions along the lower edges. There is a large
cur in the system with changes in the parameféis it is  tongue withS2T2 (TW) behavior neaf)=3 below e=0.5
clear from the discussion earlier that the model under studgnd anS2T1 tongue which is symmetric to this at high
shows bifurcations of all types. Bifurcations fromS2T2 (TW) behavior toS2T2 (non-TW)

It is simplest to discuss bifurcation behavior in the contextbehavior are seen near the base of the lower tongue, whereas
of the evolution of Eq(3) for S2 initial conditions. Figure bifurcations fromS2T1 behavior toS2T2 (non-TW) behav-
6(a) shows the phase diagram u() space of the stable ior are seen at higl.
solutions resulting from the evolution 82 initial conditions It is clear that the bifurcations seen here are spatial, tem-
for K=1. The triangles seen at lowin the e-) parameter poral and spatiotemporal in nature wherein the change that is
space in Fig. @) inside the? and } tongues, suppoi$2T1 seen in the behavior of the stable solution is purely spatial,
solutions while triangles which can be seen in the strongurely temporal or spatiotemporal. In addition the transition
coupling regime, suppoi®2T2 (TW) solutions. TheS2T1  from the traveling waveS2T2 solution to the nontraveling
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variables. The new variables permit us to cast the analysis in

T a form where the bifurcation points along tfe=0.0 line
i can be picked up analytically. We present this analysis in the
0.9 [S2T(TW) . / )
;i subsection below.
i
0.8 [ ,gi fi
i A. Analytic evaluation of the bifurcations on the 2=0.0 line
0.7 S2T6
We consider a lattice of R sites and construct nearest
06 - neighbor differencesa,(i)=6,(i)— 6,(i+1) and nearest

n, 8 neighbor sum®,(i)= 6,(i) + 6,(i + 1). The evolution equa-
tion for a,(i) andb,(i) are given by
A 1(1)=(1-e)[h*(ay(i),by(i))]

+ TR+ 1) B+ 1))]

§3T1-

S 12 . 3
P E BV (. T +5[PGEG-1) B(-1)]+p (1D
0 01 02 .3 04 05 06 07 08 09 1
Q
and
(b) _ o
150 . T . . bes1(i)=(1—e)[hP(a(i),by(i))]
100 - . +§[F1b(~at(i+1),5t(i+1))]
50 J B €
. + =[R°(@(i—1),b(i—1))]+2Q+q. (12
S 2
5 —
50 + . + Here,
i etli Stl stu etui Tars i\ ~ .
-100 J:' bli/ bu [ bu‘i‘ he(a(i),bi(i))=a(i)— (K
150 / 4 . . : \ Im)sin(ma,(i)) X cog(by(i))
0.2 0.4 0.6 0.8 1
€ and

FIG. 6. (@) The e-Q) parameter space corresponding to stable
S2TQ and S1T1 solutions resulting fron82 initial conditions is
shown. Clear bifurcation are seen along various edges. The spa-
tiotemporal periods are as marked in the figuil®. The plot of
d\/de versuse for 21=0.01 for the spatially periodic solution re-
sulting from the spatial period 2 initial conditions whexeis the ~ andp andq are integers. We note that since the angle vari-
largest eigenvalues:)'I and egu correspond the lower and the upper ablesé,(i) lie between 0 and 1, the difference variabded)
bifurcation edges of the lower triangle whif ande," correspond  lie between—1 and 1 and the sum variablég(i) lie be-
to the upper triangle in thé tongue. tween 0 and 2.

The closure conditions for the various spatiotemporally
wave S2T2 solution is mediated by a spatiotemporal bifur- periodic solutions seen along thle=0 and(Q = 0.5 lines, viz
cation by which both the spatial and temporal structures 06171, S2T2, and S2T2(TW) can be expressed neatly in
the initial and flr_1al solutions remain the same but the strucCierms of the new Variabléét(i), Bt(i). The closure condi-
ture of the solution changes from the traveling wave type tq[ions for S2T1 are given bva (i)=5 (i):—a (i+1)
the nontraveling wave type. We note that similar bifurcations SO .g — Yara S t _
can be seen in solutions which result from initial conditions* 0 @ndbe.1(i) =b(i) =b(i+1). Similarly, the traveling
of all spatial periods. The bifurcations seen here have sever§fave solutionS2T2(TW) implies the closure conditions
interesting features which we shall discuss in this sectiona;1(i)=—ai(i)=a(i+1)#0 and by ,(i)=b(i)=b(i
We set up new sum and difference variables and recast the 1).
equation of evolution as given by E¢3) in a convenient We study the stability of different kinds of solutions to the
form. We also recast the stability matrix in terms of theseabove equations by Taylor expanding the evolution equations

hP(a(i),by(i)=by(i)— (K

/1) X sin(wrby(i))cogmay(i)),
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(1) and (12) about the solutions of interest and retaining X=(1-€)[1—K cosma,(1)cosmby(1)]
terms to linear order. The stability matrix so obtained has the ! !
form +{€’[1—K cosmay(1)cosmb,(1)]?
AN BN +(1—2e)[K sinmay(1)sinwby(1)12}Y2 (17

: 13

BN AN _ y _
Using the condition that the largest eigenvalue crosses
one and the appropriate closure conditions the widths of the

A 2N D2N H . .
whereA™ and Bi™ are NX2N matrices which are given . inierval for which stable solutions can be obtained. The

by stability edges for th€) =0 andK =1 case can be obtained
~ ~ - analytically.

A1) €enAl(2) 0 & Al2N) Substituting the S2T1 conditions for this case in Etp)

Aon_ eA(l) eA(2) eA(3) - 0 we obtain, for the choicg=0
t . . .
: : H : H l . ~ _
fnﬁt(l) 0 L L. eS"At(ZN) ;sm mhi(1l)cosma,(1)=0 (18
(14

which implies that eitheb,(1)=0,1,2 ...n, anda(i) is
arbitrary, ora,(1)=3%,%, ..., (2n+1)/2 andb,(i) is arbi-
trary. From Eq.(17) we observe that if the second case is
used, the eigenvaluk exceeds 1 and the solution is un-
stable. Hence for stabl&2T1 solutions we useb,(1)
=0,1,2...n, anda,(i) arbitrary, in Eq.(11) choosingp

Here e=(1—¢€), e,=€e/2 and Afi)=1
—K cogmai)cogwby(i))]. The matrix BZN has a similar
form where eachA(i) is now replaced byB,(i), where
By(i) =K sin(may(i))sin(7by(i)).

Consider the spatial period 2 solution wheag(i)=

—a(i+1) andB[(i):Bt(i+l). For these conditions, we =0 toget
find that the matrixA?N reduces to a circulant matri23] (1-26)
with eachA(i)=A(1), and thematrix BN reduces to a p sin(ma,(1))—2ea,(1)=0. (19)
form whereB,(1)=—B,(2) andB,(i)=—B(i +1).
Using simple matrix algebral;™ can be put into a block _ - - . _
diagonal form given by We consider the case whebg(1)=1 anda(1) is arbi-
trary, a condition also observed in numerical simulations.
N M(+) 0 Using this i~n Eq.(17), the largest eigenvalue is given by
t - 0 M=)/ (19 =1+coqma(1)).
For the bifurcation boundary or stability edge of the stable
where M,(+)=AMN+B2N and M(—)=A2N-B2N. The solution, we havex=1 which givesa,(1)=3,3, ...,(2n

matrices M{(+) and M(—) are similar [M{(—) +1)/2. Thus, the stability edge is obtained f&y(1)=0.5

=7M(+) 7', where is the permutation matrixand  (mod 1). Using this value of,(1) in Eq. (19) we find that
thus have the same characteristic polynomial and it is suffithe stability edge for the S2T1 solution turns out to be
cient to consider the eigenvalues of one of them. =1/(2+ 7)=0.1904 which is in good agreement with nu-

We use a similarity transformation which is a direct prod- merical results. Synchronized solutions are seesrad due
uct of Fourier matrices of sizé X N and identity matrices of o the special nature of the initial condition.

size 2<2 which reducesMl(+) to a matrix ofN blocks, A similar analysis can be carried out for the spatiotempo-
each block of size 22 [18,23. For the solution of spatial ral bifurcation to traveling wave solutions in the and
period twoM(l) is given by tongues. Thes edges of thes2T2 (TW) solution for(2=0

andK=1 can also be analytically obtained using the closure
conditions for theS2T2 traveling wave case. In this case the
the stability matrixJ;" is replaced by the stability matrix
MdD={ : I N Expanding this matrix about the traveling wave
5(1+ o H)(A+B) (1-€)(A-B) solution, it is easy to show that the largest eigenvalue of this
(16) matrix is given by 2, so that the stability edge is again given
by the condition for the eigenvalue in E(L7) crossing 1.

whereA+B=A,(1)+B,(1), A-B=A,(1)-B,(1), andw, Since the conditions oh,(i) for the traveling wave are the

(1— €)(A+B) §(1+w|)(A—B)

=e2m (=N gndl:1,2,... N. same as those for tf#2T1 solution, using arguments similar
It can be easily seen that the largest eigenvalue occurs fao those used above, we ubg1)=0,1,2 ...,n anda,(i)
[=1,3,5..., and isgiven by arbitrary in Eq.(11) for the traveling wave to get
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TABLE |. The behavior of eigenvalues of the largest modulus at the bifurcation point§=dt in the
lower and upper triangles for a fixéd in  tongue. Identical behavior is seen in théongue.ep,! and ey,
are the values of at the bifurcation edge along the lower and upper edges of the lower triangle, respectively,
while e,'v and e,,'v are those at the lower and upper edges of the upper triangle.

=0.01, € values corresponding to the triangle

€ Largest eigenvalues Solution type
e<ey! 0.01 0.00198, 0.00197 S1T1
e=¢y! 0.0101 0.00793, 0.00793 S2T1
e ll<e<ep, 0.17 0.8722, 0.8559 S2T1
e=ept 0.1723897 1.00284, 0.988 S2T1

()=0.01, e values corresponding to the upper triangle

€= €yl 0.8276103 1.0057, 0.52932 SaTw)
€pu< €< e 0.83 0.7608,0.4066 S2TPW)
€= €p,lu 0.9899 0.000062, 0.000031 SaTw)
€> €y, lu 0.99 0.001975; 0.001936 S1T1

0 =0.5, e values corresponding to the tips of the small bases in%idmgue

€=€p 0.08171 1.0055, 0.87884 S2(fdn-TW)
E=€p, 0.91829 1.0055, 0.6746 S2[dn-TW)

_ (1-2¢) -~ the largest eigenvalue of the stability matrix crossing one at

(1= e)a(1)+ — ——sin(ma,(1))=0. (200 both these edges, indicating the existence of a tangent bifur-

cation. However, the upper edge of the upper triangle and the
Since the stability condition is the same as that above, thiower edge of lower triangle cannot be picked up by this
stability edge is obtained faa,(1)=0.5. Using this in Eq. analysis as the eigenvalue does not cross one in this case
(20) we obtain e=(7+1)/(2+ 7)=0.805523. We find a €ven though the nature of the solution changes, from the
close agreement between the analytically and numericalljfaveling wave solution to a synchronized solution at the
obtained values fof2=0 andK=1. The traveling wave UPPer triangle, and from aB2T1 solution to a synchronized

solution is unstable a¢=1 as at this value we obtamm(i) solution at the _Iower triangle. This situation is exe_u_:tly like
o . . . the one seen in the case when kink initial conditions are
=0 which corresponds to the synchronized solution.

. . . evolved via Eq(3) [24], where the bifurcation from the kink
ILis thus clear that the bifurcation edges at the lower edgesolution to the synchronized solution cannot be picked up b
of the upper triangle and the upper edge of the lower triangl y P b by

. i . %he usual eigenvalues. We note that the characterizers set up
can be evaluated by using the condition that the eigen-valug . .

" . ... _1h the case of the kink case, viz. the rate of change of the
of the stability matrix crosses one and the closure condltlonsI

, . . . . argest eigenvalue and the distribution of eigenvalues, work
and that an analytic evaluation of the bifurcation points on__> .
- T ) ; . satisfactorily for the present case as well. We plot the rate of
the 2=0.0 line is possible. A numerical evaluation of the

. . ; . change of the largest eigenvalda/de in Fig. 6b). It is
?AE’%:I?I?:?;Skz)or:]J2dufé/;;enc?g(ejisez%titvs:]?:f: \\//vaeludeigzzzzlzelo V\c/[ear all the bifurcation edges seen in the present case are
picked up by the new characterizig25]. We also note that
the bifurcations fromS2T2 (TW) solutions toS2T2 non-
traveling wave solutions seen in tBetongues are tangent
We have seen tha®2 initial conditions settle down to bifurcations which can be picked up by the usual analysis.
S2T1 solutions inside the lower triangles in tHeand } As we have seen earlier, the spatial period two solutions
tongues an®2T2 traveling waves inside the upper triangles. resulting fromS2 initial conditions show a temporal organi-
Synchronized solutions are seen along the lower edge of theation which corresponds to the Farey sequence aklanwd
lower triangles and the upper edge of the upper triangles. Oto a reverse Farey sequence at heglt is interesting to note
the other handS2TQ solutions are seen along the upper that the bifurcation t&2T2 traveling waves at highk in the
edges of the lower triangles and the lower edges of the uppértongue is essential if the reverse Farey organization is to be
triangles. We list the largest eigenvalues of the stability maseen at higle. Similarly, the bifurcation fron51T1 to S2T1
trix observed at these bifurcation edges fb+=0.01 in Table in the triangles at lowe in the same tongues can only be a
l. pure spatial bifurcation as the temporal period must remain
It is clear from the table that the lower edge of the upperunchanged for the usual Farey organization to be followed at
triangle and the upper edge of the lower triangle inYrend  low €. Thus the spatial bifurcation along the lower edges in
1 tongues can be picked up by linear stability analysis withthe lower triangles and the spatio temporal bifurcations along

B. Anomalous behavior of the eigenvalues
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the upper edges of the upper triangles in $hend$ tongues mode-locked regions is consistent with completeness over
are clearly dictated by the arrangement of the mode-lockethe () interval in certain regions of thi€-e parameter space.

regimes in the forward and reverse Farey sequence. We also see a variety of bifurcations which are purely spa-
tial, purely temporal, and spatiotemporal in various regions
V1. DISCUSSION AND CONCLUSIONS of the parameter space. We carry out a systematic study of

) o completeness in the case of mode-locked region&2oini-
~ Thus we have studied the organization of mode-lockedjg| conditions and identify regions of parameter space where
intervals in a system of coupled sine circle maps. The orgapenhavior consistent with completeness over@h@terval is
nization of the mode-locked intervals is highly sensitive tofong. We also carry out a systematic study of bifurcations
the nature of the initial conditions and also to the values okgen in stable solutions resulting from the evolutionSaf
the system parameters. The organization corresponding {gjtial conditions. A framework which permits the analytic
even and odd period initial conditions falls in different uni- o\51yation of bifurcation points along tH@=0.0 line atK
versality classes. Period two initial conditions settle down to_ 1 s get up. Additionally we note that all the bifurcations
mode-locked solutions with spatial period two whose tempOgeen here cannot be picked up by the usual quantifiers and
ral periods show Farey organization at low periods and regefine quantifiers which can identify these bifurcations. It is
verse Farey organization at high periods. Other even perioglieresiing to note that the bifurcations seen in this case are
initial conditions result in a systematic organization of stablegjstated by the fact that the temporal periods at small and

spatial periods at love with the temporal organization of 506 coupling follow forward and reverse Farey organiza-

each spatial period forming it's own Farey, as well as spatialjon respectively. Since our system constitutes a representa-

period 2 solutions ordered by the reverse Farey at kigh (o of the general behavior of oscillators, it would be inter-
with other stable spatial periods seen at higivhich do not  ggting to see if some of the behavior seen in our systems can
follow the Farey ordering in the temporal periods. The oddye found in realistic oscillator systems. We hope our analysis

spatial periods on the other hand, ;how Farey organization_im,i” prove to be of utility in some of these contexts.
the temporal periods at low coupling, but show nongeneric

departures from Farey for all the solutions at high coupling.

In contrast to the above observations, mode-locked regions
corresponding to stabl81TQ solutions resulting from both N.G. thanks DST, India, for partial support under Grant

kinds of initial conditions are organized according to theNo. SP/S2/E-03/96, and G.R.P. gratefully acknowledges
Farey series at all values of coupling. The organization ofCSIR (India) for financial support.
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