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We study the behavior of an open quantum system, witiN-@imensional space of states, whose density
matrix evolves according to a nonunitary map defined in two steps: A unitary step, where the system evolves
with an evolution operator obtained by quantizing a classically chaotic(bedgr's map and Harper's map are
the two examples we consideA nonunitary step where the evolution operator for the density matrix mimics
the effect of diffusion in the semiclassidd@rgeN) limit. The process of decoherence and the transition from
guantum to classical behavior are analyzed in detail by means of numerical and analytic tools. The existence
of a regime where the entropy grows with a rate that is independent of the strength of the diffusion coefficient
is demonstrated. The nature of the processes that determine the production of entropy is analyzed.
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I. INTRODUCTION unitary map for the density matrix in such a way tkegain,
in the largeN limit) it mimics the effect of the interaction

Decoherence has been recognized in recent years as owsh an environment producing the same effects one ob-
of the main ingredients needed to understand the origin o$erves for a Brownian partici@amely, diffusion. For such
the classical world from the fundamental quantum lawssystem, we developed a numerical code enabling us to effi-
[1,2]. Decoherence is a process whose origin is conceptuallgiently evolve the density matrix and study in particular the
simple: It is due to the entanglement between the system arfvolution of the entropy. Our aim is to present solid numeri-
its environment that is created in the course of their interaccal evidence supporting the conjecture presented in Refs.
tion. As a consequence, the environment keeps a record 68,4] and, by combining the numerical calculations with ana-
the state of the system, that loses its purity. Only a smallytic calculations, develop new intuition on the main pro-
subset of all possible states of the systéme so-called Ccesses contributing to entropy production for this kind of
pointer statesis relatively stable against the interaction. Systems.
They are the ones that are less likely to become entangled The paper is organized as follows. In Sec. Il we review
with the environment. In the vast majority of cases, when thesome basic elements of the theory of quantum maps. We
state is a superposition of pointer states, the information inifocus, as in the rest of the paper, on two specific examples:
tially stored in the state of the system can never be restorediaker's map(the paradigmatic example of a fully chaotic
since it irreversibly flows into the correlations with the envi- System and Harper’s magan example of the wide class of
ronment. A basic question one should ask in this context i&icked maps with mixed phase spac&here are no new
how fast does the information flow away from the system.results presented in this section and the reader with experi-
This can be studied, for example, by analyzing the evolutiorence in the theory of quantum maps can easily skip it. In Sec.
of the entropy obtained from the reduced density matrix oflll we describe in detail the model for decoherence that we
the system. This has been done for a variety of cgses study in this paper. In Sec. IV we present the main results
Ref. [2] for a review and it has been recognized that this concerning the behavior of the entropy as a function of time
process has unique features if the system has a C|assicam}ﬂd the evolution of the Wigner function. Finally, in Sec. IV
chaotic counterpart. In fact, as conjectured in RE8s4], the ~ We present our conclusions. The Appendix contains technical
rate of entropy production in such cases has a regime that @etails about the phase space representation we use in this
independent of the strength of the coupling between the sygaper(the discrete Wigner function
tem and the environment and is entirely determined by the
dynamical parameters characterizing the chaotic evolution.
This conjecture was analyzed in the literat{fsé¢ mostly us-
ing numerical tool§6—11]. In this paper we present a study  The construction of the quantum analog of a classical map
of this problem for some systems that are simple enough téollows two well-defined steps: a kinematical one, where the
enable both a rigorous numerical treatment and some anaature of the Hilbert space is defined in relation to a specific
lytic estimates. We consider here a quantum system with phase-space structure, and a dynamical one, where a unitary
finite-dimensional Hilbert spaceN(is the number of dimen- operator defines the evolution of a finite time step. For the
sions, and we are interested in learning about the behavior aftudy of chaotic behavior, a finite phase space is required and
the system in the largh! limit). For such system we define therefore the question of boundary conditions arise. The sim-
an evolution operator for the density matrix in two steps aglest case is the torus, where periodic boundary conditions
follows: first we consider a purely unitary evolution defining are assumed for both the coordinate and momentum repre-
an operatolJ that is such that it corresponds the largeN  sentations. The most general quasiperiodic boundary condi-
limit) to a classically chaotic map. Then, we define a non+ions are

II. QUANTUM MAPS
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(9+1[y)=e?m™a(qly), (1) 1 G
(p+1|yy=e""2"(p|y), (2) G

wherey, andx,, are fixed, arbitrary real numbers between 0

and 1 (2rxq and 27y, are called Floquet anglesThese o o

conditions result in a finite-dimensional Hilbert space. This, FI.G' 1. Quantum circuit tha’t performs a Bernoulii shift, i.e., an
B . . - iteration of the quantum baker’s map

space’s dimensiol is related to by the relation

_ where the square brackets symbolize the integer part of a real
2mAN=1, 3 ) ; X S
number. This evolution has a very simple geometrical inter-

which signifies that phase spatef area equal to unifyis ~ Pretation, as a “stretching” step followed by “cutting” step,
spanned byN states(of area 27%). The position and mo- as a baker rolling a dough. The map is uniformly hyperbolic,

mentum eigenvalues in this finite-dimensional space are ~ With a single Lyapunov exponent, with a value of In 2. More-
over, at every point the stable and unstable manifolds are

n+xp parallel to the coordinate axes. The baker's map has a re-
|an) = N | n=01,...N—-1, (4 markably simple symbolic dynamics, and can be mapped
into an unrestricted Bernoulli shift on two symbgls3]. If
m+ xq the phase space coordinatesand g are written in binary
Pm) =R > m=0,1,... N—-1. (5  notation
. . q:0.€0€1€2€3 ey p:0.€_16_2€_36_4 ey
These position and momentum eigenstates are related by a
discrete Fourier transform: (DQ)= ... € 46 56 r€ 1 €0€L€res . . .. (12)

1 2 The map’s action on these symbols is to move the most
= o — — Xq X
(Pmlan)= \/Nexp{ "N (erXq)(”JFXD)}_(GNq P significant bit ofq to p, shifting to the right the decimal point

6 na
The values ofy, and y,, specify different Hilbert spaces. q'=0.€1663..., p'=0.€0€ 1€ 6 3...,
In the present paper we us@lzxpzé, corresponding to R
antiperiodic boundary conditions. Cyclic shifts on these two (P'.Q")=...€ 46 z€ 26 160 €16065. ... (13

bases are implemented by unitary operafd Thus each doubly infinite sequence of binary digits repre-

sents a unique trajectory. The phase-space points on this tra-

Udn)=an+ 1), @) jectory are obtained by placing the dot somewhéitee
- presentand reading off the coordinate and momentum to the
VIPm)=Pm+1)- @)  right and left of it.

The quantization procedure for the map is not unique but
lows closely semiclassical prescriptions. As originally for-
mulated[14], it used periodic boundary conditiong{= x,

A  AAGIAD i /N ADA =0) but was later modified to antiperiodic conditiong,(
D(Ap.Ag)=L£9 e P ©) =Xp= 1) [15]. The full semiclassical theory has been dqevel—
for integer values ofAp,Aq. These are the analogs of the oped in Ref_.[16]. The resulting unitary matrix for one step
Weyl displacement operators in the continuous case. PhaSé the map is
space in this context is then assimilated to a disckexeN A 0
grid that will be useful for the representation of quantum A - Gn

effects in phase spadeee Appendix Boaker=G2an| o &yl (14

These operators and their powers can be combined to Pres)
duce unitary displacement operators in phase space

A. The baker's map A different approach, leading to the same result, was pro-

The baker’s map is one of the simplest systems displayingosed in Ref[17] (see also Ref18]) interpreting the map as
strongly chaotic behavior. In spite of its simplicity, it has a the quantization of a Bernoulli shift showing that it could be
very rich dynamical behavior, both in its classical and itsimplemented by elementary gates and thus would be an in-
quantum versions. The map is an area preserving transformgeresting candidate to be run as an algorithm in a quantum

tion defined in thg 0,1] X[ 0,1] phase-space square as computer. This approach is strongly based on the symbolic
, dynamics of the map and runs as follows: as the position and
q'=29-[2q], (10 momentum bases are related by a Fourier transform, we can
1 implement the Bernoulli shift—which shifts the most signifi-
= cant bit of the coordinate to the most significant bit of
P 2(p+[2q]), (D momentum—using the quantum circuit shown in Fig. 1.
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The action of this circuit can be understood as follows: — — | — -
the qubits on the input codify in the usual way the eigenval- :
ues of the position operator with the most significant bit at G Ui G Y,
the bottom; after applying the split Fourier transform, the 5
most significant qubit now represents the most significant bit
of the eigenvalue of the momentum operator. As a final step,
an inVerse Fourier transform a“OWS us to |00k at the final FIG. 2. Quantum circuit that imp|ements a quantum kicked map.
state in the position basis. This is exactly the circuit repre-

sentation of the matriBbaker. As is well known[19], the For the Harper’s map the two diagonal operaffj@and
Fourier matrices can be further decomposed into elementary 5.

gates leading to a circuit representation in terms of opera- "
tions on qubits.

. ) 2
Uq|qn>=eXp[_|7N CO{W(”"’Xp) }|qn>v (18

B. The Harper's map

A 2

Th(_a bakgr’s map do_es not capture the full complexjty of Up|pk>=exp{ —iyN COS{W(kJrXq) ]|pk> (19
chaotic motion in Hamiltonian systems. The fact that it has

uniform hyperbolicity and very simple manifolds are not A
very generic properties as the most common situation is thaéfndGN is given by Eq/(6).

X A , _ Kicked maps also lead very naturally to a circuit interpre-
of a complex mixture of elliptic islands interspersed by cha tation, like in the case of the baker's map. The diagonal

otic regions with locally defined Lyapounov exponents. To'nteractions are controlled phases that act among all the qu-
address this more general situation a different family of maps. X . P . ng q
its while the Fourier transformations can again be decom-

can be devised whose characteristic is to alternately produ Csed into elementary qates. Some of these e cat
“kicks” of potential or kinetic energy. The combined action P y 9 y

of these kicks is equivalent to that of a periodic time- MaPs: for examplecan be efficiently decomposed in terms

dependent Hamiltonian and the resulting motion is area preQf elementary operations and have recently been studied as

. . ; . ossible candidates to be simulated in a quantum computer
serving and can mimic the full complexity of a generic sys—p . L
tem. A wide variety of maps on the sphdkécked tops, on i[r?nz]l'e'r:r']ge%z s Sgg\évrsictrll?clfgéj%lge of a quantum circuit that
the cylinder(kicked rotorg, or on the torugHarper’'s majp P 9 P-

have been extensively studied in the quantum chaos litera-
ture[20,21. Ill. DISSIPATIVE MAPS

Here we have studied a specific kjcked_map, known as the oyr aim is to study the impact of the process of decoher-
Harper's map because of its relationship to the Harper'nce induced by the interaction between our system and an
Hamiltonian in solid-state physics. This map acts on the unibyternal environment. The system would otherwise evolve
square with periodic boundary conditions in phase space angecording to one of the unitary operators described in the
is defined by the transformatid@1] previous section. In general, modeling the coupling to the

, : outside world may be complicated. Here we will not use a

a’=q- ysin2mp) (mod D), (15 microscopic modgl of this iF;Iteraction but will describe the

effect of the environment in a phenomenological way by
p'=p+ysin2mq’) (mod 1). (16) defining a dissipative map for the evolution of the density
matrix of the system. As decoherence generally induces a

loss of purity, the first important point to notice is that the

The behavior of the map is determined by the real parametefi o of the system should be defined in terms of a density

v If y<1 the map approaches an infinitesimal transformas,ayiy , In the absence of any coupling to the environment,

the density matrix evolves unitarily according to the ma
is regular. If, on the other hang~1 the map becomes fully y L y g P

chaotic. In between, the motion presents the complex mix- ’3,:0;)0 t (20)
ture of regular and chaotic motion characteristic of most re-
alistic systems. The coupling to the environment would induce nonunitary

The reason that kicked maps are so popular is that thegyolution. To correspond to an allowed temporal evolution
are very easy to quantize. In fact the potential and the kinetigthat should come from a unitary map for the whole Uni-
kicks are respectively diagonal in the coordinate and moversg, the nonunitary map for the density matrix has to sat-
mentum bases and therefore the full evolution consists Oi%fy some constraints. Assuming thaD it is linear and pre-
these diagonal kicks interspersed by the Fourier transformaseryes hermiticity,(ii) it is trace preserving, andiii) it
tion between these two bases. One full step of the map igreserves the complete positivity of the density mafttig],
then the evolution operatdy, the map is strongly constrained. Moreover, if one imposes

also Markovian behaviaineglecting all memory effeck®ne
A PO can show that the most general map for the density matrix of
U=UqG\UpGn- (17 the system should be of the form
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~, PSEPNPN ~ a .

p =; ExpEq . (22) E, = \[ED, (26)
Equation(21) is known as the operator sum representation . \/;A :
(or Kraus representatiprof the superoperator that maps Ex= ED ' (27)

onto p' =$(p) (see Refs[19,23,24 for a review of this _ _ _
representation and a derivation of the main formuldhe  Which are normalized in such a way that £g2) holds.

trace preserving nature of the superoperator defines a con- The above operator sum representation provides an intui-
straint for the operator&, , tive interpretation for.the evolution: the densny_matrlx is first
evolved with the unitary quantum majhe unitary step
o Then, three things can happén: with probability 1— « the
> ElE=T, (22 state does not changéi) with probability a/2 the state is
: displaced in one direction in phase spdade) with probabil-
ity a/2 the state is displaced in the opposite direction in
phase space. As the probabilities of both displacements are
equal, a localized state does not drift in phase space as a
consequence of this evolution. The net effect is to smear the
state in phase space in the direction of the displacement op-
erator. Thus, this nonunitary map is a discrete model for a
diffusive process. The diffusive superoperator can be made
more efficient by using not just a single displacement opera-
tor but rather a sum of many terms. Thus, we will consider a
more general model where

wherel is the identity operator. There is no other constraint
on these operators, although it is worth noting that this con
straint boils down to plain unitarity if there is only one op-
erator. There is a nice physical interpretation for (Iﬁq(}
operators: One can think of E¢R1) as corresponding to a
process where the staje is converted randomly into the
stateE, pE/tr(E,pE]) with a probability tr€,pE}) (in this
sense, these operators are quantum jump operalbis im-
portant to notice that the set of thg, corresponding to a
given nonunitary evolution is not unique: For example) i

are the elements of a unitary matrix, we can define the op-

M

~ ~ o A A~ ~ A A

: p'=(1=a)p+ 50 2 (DypD,"+D,"pDy),  (28)
eratorsg| as n=1
whereD,,=D(Aq,,Ap,) for some displacementsq;,, and
Ap, . In particular, it is simplest to consider all displace-
ments along the same directighe., Ag,=nAq and Ap,
=nAp). In such case, we can get the following formula for

E(:; UEx, (23

and show that the se{fi,’} generates the same evolution as ] , N .
the set{E’} the evolution of the matrix elements @f (in the basis of
[}

We will use the operator sum representation to define £'9enstates obDy):
specific model to introduce decoherence in our system. We
want our model to correspond, in the continuum limihere
-« 1—cos(
sin(
X

N—o0) to a diffusive environment having similar effects as m(i—i’)
Msin(

N

|
|

From this equation we see that the effect on the density ma-
24 ~ A trix in this representation is clear: the diagonal elements are
+D(Ag,Ap)pD(Ag,Ap)], (24) not affected by the nonunitary evolution while the nondiago-
where a is a real number between 0 and 1 measuring thé'@/ €lements are suppressed by a factor that rapidly decays
with the distance to the diagonal. In the continuous case this
suppression is gaussigP0] but here, due to the discreteness

1

= M+1
Wl e

the ones present in the well-studied Brownian motion model
[25]. For this, we will assume that the temporal evolution is
divided into two steps: a unitary step, where the density ma-
trix evolves unitarily as in Eq(20); and a dissipative step,
where the density matrix evolves by a map whose operator
sum representation is of the form.

a(i—i")

— M

a(i—i")
N

(29

p'=(1-@)p+ 5(D(Aq,Ap)pD (40, Ap)

strength of the coupling to the environment aﬁ(qu,Ap)

is the displacement operator defined in £9), which from
now on will be denoted simply aB. Notice that the con-
straint(22) is automatically satisfied becauBeis unitary. In

of the Hilbert space, the suppression has the shape of a dif-
fractionlike kernel. Using the above expression it can be
shown that ifM =N, the net effect of one step is to com-

fact, in the above equation the three terms appearing in thpletely wipe out all the nondiagonal elements, leaving a di-

operator sum representation are
Eo=V(1—a)l,

(29

04622

agonal density matrix.
The diffusive character of this nonunitary map is even
clearer if we represent the quantum state in phase space by
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using the Wigner functions. As we are dealing with a finite- L N S S
dimensional Hilbert space we should use a discrete version T T
of the ordinary Wigner function that is well adapted to the

e 0 =01
finite-phase-space structuf@6]. The definition and main S Y A . a:=0.3 ]
properties are given in the Appendix and more in detail in | /4 T e a=05| |

Ref. [27]. In this representation the Wigner function of the ey ' e - 608 |
density operator is a real array defined onNv22N lattice :
in phase space that shares many of the well-known properties
of the continuous Wigner function. The action of the diffu-
sive map given in Eq(28) in the Wigner representations is

M ceee 0 =0.1
o 4 "
W'(q,p)=(1-a)W(a,p)+ 51 X, [W(q+2nAg,p ” " 503
a:=0.8 _-
+2nAp)+W(g—2nAqg,p—2nAp)]. (30 — ozt | ]

| L
25 30

This expression shows clearly that the diffusive step smears
the Wigner function in directions specified yp,Aq (the T

factor of 2 present in the above equation is due to the fact s 3 Linear entropy growth for the baker's map with
that the phase space is an array of silx2N rather than  _ 1594 and different values far. For the top graph diffusion is
NxN). More general diffusion models involving mixtures in ajong momentum and for the bottom graph along position.
different directions in phase space, or even over whole areas

where diffusion occurs, are similarly represented. the same slope. This slope turns out to be equal to In2, the

Lyapunov exponent for the baker’'s map.
IV. RESULTS Similar results are shown in Fig. 4, for which the unitary
ropagation was provided by the Harper map. Even though

In this section we present and discuss our results. The% this case there is no well-defined linear regifatleast not

concern two separate but connected issues: First, we WiSO well defined as in the case of the baker's jnitgs clear
examine the behavior of entropy as a function of time focus-,[hat the rate of entro roduction becomes indpe endent of
ing both on understanding the role of the different mecha- Py p P

nisms that make entropy to grow and determining the depen‘-“' Thus, in this regime entropy is produced due to the cou-

dence of the rate at which it grows on the parameters of ouﬁ’Iing with th_e environmen_t but the rate becomes i_ndependent
model (like the strength of the coupling, 8tcSecond, we of the coupling strengtlihis feature is preserved if we con-

analyze the issue of the correspondence between quant?‘per larger values of, the parameter that controls the chao-

and classical dynamics. The basic tool we used for our stu icity Qf _the evolutio. .

ies is a highly efficient code to evolve the density matrix that . This is one (.)f the main results Of. the paper, that substgn-
makes good use of fast Fourier transform routines. With thistates the conjecture that was qnglnal!y put.forward n
running on a personal computer, one can easily compute t e{.o[?:] and later tested numerically in various works
density matrix for Hilbert spaces with dimension of about'™ 3
N=2000 (larger machines would be required to go above
that limit but there is no good reason to do that, see below

The source code is available from the authors.

A. Rate of entropy production i

For a variety of initial states we studied the evolution of
the density matrix under the dissipative map and computed
the linear entropys= —In[Tr(p?)]. We did that both for the
baker’s and for the Harper’'s map. The diffusion mechanism
is as in Eq(28) and in the plotsy, labels diffusion along the

momentum axis D =V) while a, labels diffusion along the

coordinate D=0{). Our results clearly establish that in both
cases, the rate of entropy production becomdspendenof

the parametew provided its value is above a certain thresh-
old (that is close to 0.4). This is seen in Fig. 3 where the
plots show the entropy as a function of time for two types of
diffusive environmentgwhere diffusion is along either posi-
tion or momentum It stands out from this graph that all of
the curves witha greater than 0.4 have a linear regime with FIG. 4. Same as Fig. 3 but for Harper's map=0.45).
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\E ' ' ' ] classical counterpartWhy is this the case? We will argue
08k b here. that it is possible to attribute the entropy production to
Z o6l - N-12| ] twq mterconn_ected processes whose origin can be better ex-
S,OA-_ — b plained by using a phase-space representation for the quan-
ol k tum state. The reason is that in this way we can use some of
s | | %=02 the intuition we have about the behavior of the classical sys-

% 6 8 tem. Consider an initial state that is represented by a local-
£ T - 7] ized and smooth phase-space distributifor concreteness
i we base our discussion on the Wigner function, see below
0.8 — N=62 -1 . . . . . .
S 2 N =302 The application of the chaotic unitary map will distort the
§°'6 § TTNCeE state in a way that, at least for short tinjémes smaller than
04 7 In(N)], will be consistent with the classical evolution. In a
02r- o =07] hyperbolic region this will mean that the initial wave packet
0 ' : 3 — 2 will be stretched along the unstable manifold and contracted

4
T/nN along the stable one. In the case of the baker’s faag only

FIG. 5. Scaling of the linear entropy growth with dimension of in this casgthese wo directions are the same all over phase

the Hilbert space of the system with diffusion on the position axis. SPAcE the vertical direction—that we have called

The strength of the diffusion is kept constant by smoothing over E[nomentum—|s stablecontracting and the horizontal one—

constant fraction of the system’s phase space. In relationship witﬁhe c_oordinate—is unstablexpanding. The ratg of expan- .
Figs. 5 and 6 both axis have been rescaled bi)in( sion is equal to the Lyapunov exponent that in the baker’s

map (and only in this cageis constant all over phase space

We have also studied the dependence of the entrop nd is equal to In 2. However, this expansion cannot proceed
growth as a function oN (the dimensionality of the Hilbert forever. As the phase space is finite, after some time the state
space. This was done both for small values efand in the will start experiencing the other essential feature of chaotic
regime where the rate of entropy production is independerfiynamics: folding. As soon as this process starts the quantum
of the coupling. These results are shown in Figs. 5 and 6. |qnd classical evolutions will start deviating significantly
both cases we have found that—when appropriatel)from each other due to the quantum interference between the
rescaled—the entropy growth is quite independent on thdlifferent folds. In the Wigner functiotsee below these in-
value of N and tends to a universal curve in the linnt  terferences appear as rapid oscillations with large negative
— (as 1IN is the effective Planck’s constant this corre- valu_es happening in between the fo'lds .and oscillating in Q|-
sponds to the classical limitThis result suggests that the rections parallel to them. These oscillations are the footprint
mechanism for entropy growth in quantum maps has a domief the quantum interference between the different pieces of

nant classical component with corrections that vanish in th&h€ delocalized state. o
classical limit. The two interconnected effects generated by the diffusive

Our results show clearly that above some thresholdfor MapP are(a) the destruction of the interference fringes in the

the rate of entropy production is determined by the dynamicVigner function,(b) the smoothing and widening of the re-

of the unitary quantum map, and in great measure by itgions where the Wigner function is already positive. It

should be clear that the two effects have the same origin:
diffusion, but it is worth distinguishing between them be-

T [ [

'r — =1 1 cause they are effective for different types of states and can
Z‘“‘_‘ T N=30 7] be analyzed separately under some special circumstances. In
R - N=-1594| ] fact, procesqa) affects states that have a quantum nature
N 041 - exhibiting important oscillations in the Wigner function. On

02| o 03] the other hand, procesb) is present even for classical sys-

ol | | s tems[in fact, in a classical diffusive map proceds is the

0 N 6 ®  only source of entroply The important point is that even if

= ' ' ' . we consider an initial state where only procéssis impor-

08k —N-ez | A tant (i.e., a classical statethe dynamics of the system will
Z 06l Nl create large-scale quantum interference that will trigger pro-
sl &/l N=1594| cess(a).
oabd h In the baker’s map the two processes can be analyzed
L | | | o, =07 separately. Thus, if we consider a nonunitary map producing
O 2 6 8 diffusion only along the momentufie., Ax=0 in Eq.(28)]

4
T/InN

only process(b) will be relevant. In fact, this is the case

FIG. 6. Scaling of the linear entropy growth with dimension of because an initial phase-space distribution will tend to be
the Hilbert space of the system with diffusion on the momentumcontracted in the momentum direction while being expanded

axis. The strength of the diffusion is kept constant by smoothingn the position direction. Folding will start to occur when the
over a constant fraction of the system’s phase space. In relationshigiate reaches the boundary of the phase space. After that,
with Figs. 5 and 6 both axes have been rescaled by)In(

quantum interference will develop between the different
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pieces of the packet and will be characterized by fringes that 08 - - - T - | - 08
will be aligned along the vertical direction. Therefore, the

fringes will not be significantly affected by diffusion. On the I T
contrary, the effect of diffusion will be to fight against the 061 Jos

contraction of the wave packet along the momentum direc-
tion. One can see that diffusion will tend to compensate con-
traction and the Wigner function will tend to acquire a criti-

cal width along momentum. When this happens, the entropy
will start growing at a rate fixed by the expansion rate that is
the Lyapunov exponent. This is the scenario originally dis-

vI04- Ho4

cussed in Ref.3]: the entropy grows at the rate fixed by the o2 o2
Lyapunov exponent when the Wigner function reaches a — Theoretical prediction
critical width along the stable directigontraction stops but i X Numerical data
expansion continues almost unaffected by diffusion, there- , , , , , | , | , .
fore the area grows exponentially which implies that the en- 0 02 04 o 06 08 !

tropy grows linearly. ¢

The other extreme case is to consider a nonunitary map gig. 7. S, vs a: Analytic prediction against numerical results.
where difussion is along the position directifire., Ap=0 The analytic line and the numerical data points were not taken from
in Eq. (28)]. In that case, diffusion will not prevent the sys- the same iteration, in order to compensate for the fact that the initial
tem from contracting along the stable direction and thereforgtate in the simulations was not a momentum eigenstate but a co-
will not give rise to a critical width in that direction. How- herent state instead, which takes some iterations to transform into
ever, entropy will still grow but its origin is entirely due to something approximate to a momentum eigenstate.
process(@). In fact, as soon as the phase-space distribution
starts to fold, interference fringes develop. These fringes areoherent superposition of two momentum states separated by
aligned along the momentum ax{since they correspond, a macroscopic distandé/2. According to Eq(29), the mo-
roughly, to interference between two horizontal strips sepamentum  diffusion leaves untouched the diagonal-
rated by a distance 1/2). As the strips are macroscopicallincoherent-elements for the density matrix of this state
separated they will be very sensitive to diffusion along posi-while suppressing, in the lardé limit, the off-diagonal parts
tion. Thus, if the coupling strength is such that the fringes by a factor
are washed out in just one iteration, the mechanism will pro-

duce a mixture of two horizontal strips for every iteration of {i|p'[i +N/2)

the map, producing one bit of entropy. The rate associated —(i|A|i+N/2> ~l-a. (32
with this mechanism is the rate of folding that in the case of P

the baker's magand only in this cases equal to the global With these assumptions it is simple to obtain an equation

Lyapunov exponent. Thus, the fact that both procesaes o the entropy as a function of time. Thus, afteterations
and(b) give rise to the same rate is an accident of the baker'g,o density matrix has'2"~! matrix elements with value

map. In general, the rate will not be the Lyapounov exponenéft(l_a)n, with n ranging from 1 tot. Using this, we
but a combination of such exponent and the global foldingsp,o\wed that the linear entropy is
rate. In any case, the general conclusion that is still valid is
that the entropy production rate for classically chaotic sys- S(t)=tIn2—-In(1— a))1+[2(1-a)?]'}—1). (33
tems will tend to be dominated by dynamical properties of
the system becoming independent of the strength of the cou  os : . . ,
pling to the environment.
It is interesting to present a simple analytic model to sup- - XX x 12
port the above discussion about entropy production. The sim-
plest case is the one corresponding to prod&sswhere
difussion is along the position direction. To simplify our
model we will assume that the action of the baker’s map is
just to transform a momentum eigenstate into a superpositior 04
of two such states,

N 1 (kg kot1 02l _
B| k0>_ E( ?> + 2 > (31) — Theoretical prediction
X Numerical data
(this is a rough approximation for the baker’s map that ne- . ! . ! . ! . ! .
glects diffraction effects and relative phases but that capture: ~ ° 02 “ o, 08 !
the essential folding mechanism of the baker’s action in the
large N limit and away from saturation In this approxima- FIG. 8. S, vs a: Anaylytic prediction against numerical results

tion, the unitary evolution turns each momentum state into &ome iterations after the ones depicted in graph 7.
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FIG. 9. Wigner functionposition is the hori-
zontal coordinate and momentum is the vertical
one at several steps in the evolution of the Baker
map. The quantum versions have been computed
with N=62.

The second term in this equation corrects the slope in ther and independent of the Lyapounov exponent of the map.
small @ regime. The transition is predicted at a critical value All the predictions of this simple model are confirmed by the
of ag= 1—-2"12~0.3, Fora> a, the second term becomes numerical calculations. In Fig. 7 we display the behavior of

intependent oft and the slope saturates &tIn2. In the
weak coupling regime, fo<<a. the growth is still linear,

the rateS as a function of the coupling strengthduring the
regime of linear growth. The agreement between the simple

but the slope depends on the coupling strength and igodel and the exact numerical results is very good, describ-
ing both coupling regimes very accurately. To see the limi-

tations of the model we plot in Fig. 8 the same quantities, but
taken at later times, closer to the point where the entropy

given—for long times—by

S

—-2In(1—a).

(34)
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saturates due to the finiteness of the model. Here the agree-

ment deteriorates as the assumptions of the model break
In this regime the slope of the entropy is then linear withdown.
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FIG. 10. Wigner functioriposition is the hori-
zontal coordinate and momentum is the vertical
one at severals step in the evolution of the Harp-
er's map. The quantum version has diffusion par-

allel to the position axis antN=62, «4=0.5,
M=2.

~

I

)

[*)}

I

H

Classical Qu?mtur.n Quantum .
(No diffusion) (Position diffusion)
B. Quantum classical correspondence: Wigner function fact that our system is finité.e., it hasN orthogonal statgs

We also studied the evolution of the Wigner function for a MPII€s that saturation is achieved and the system approaches
variety of initial states both for the baker's map and the@n equilibrium state. This equilibration takes place for times
Harper's map. In Fig. 9 and 10 we compare the classic hat are a few times IN) as seen in the curves for the en-

. e ropy [thus, as entropy grows linearly, it will approach the
(left), unitary (centey, and quantum diffusivéright) cases . AR
for these two maps. The general features that are observIn N) value relatively sooh Therefore, in this type of system

he followina: Th i foll he classical e quantum classical correspondence is restored but has a
are the following: The unitary map follows the classical evo-5ihar short interesting dynamical regime. The nature of the
lution for up to a time that is of the order of Y. After this

: ; ' final equilibrium state has footprints of the underlying clas-
time quantum interference develops between the differendica) dynamical system that are evident in the presence of

pieces of the Wigner function. These effects are responsiblgecoherence. This is not so transparent by analyzing the final
for the loss of correspondence between quantum and classitate for the Baker map but it is evident for the Harper's
cal evolution that was discussed in Reffg,28—-30. When  map: the final state with decoherence is an equilibrium state
the effect of the coupling to the environment is taken intothat uniformily occupies all the available phase space with
account, it is clear that the correspondence between the quatihe remarkable exceptions of the regular islands.

tum and the classical evolution is restored and holds for a By analyzing the Wigner distribution we can study the
much longer time. However, it is worth pointing out that the differences between the two processes contributing to the

046226-9
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T=5 T=256

FIG. 11. Wigner function for
baker’s map with two diffusion
................ A models: The left plot corresponds
to position diffusion (position is
the horizontal coordinate of the
plot) and the right one to momen-
tum (vertical coordinatg diffu-
sion.

Position diffusion Momentum diffusion

entropy growth that were discussed above. Thus, when ditthe entropy growtisee Ref[31] for another point of view
fusion occurs along the direction of momentum it tends tobased on the use of consistent histori@$ie two processes
prevent the contraction of the Wigner function but does nothat are responsible for such growtkashing out of interfer-
affect the interference fringes. On the other hand, when difénce fringes and smoothing of the positive pieces of the
fusion occurs along the position direction it does not affectVigner function can be studied separately only in the case
the contraction but efficiently destroys the interference®f the baker’s map where stable and unstable manifolds have
fringes. In Fig. 11 we show a comparison of the Wigner@ glob_al nature in phase space. The dlffe_rences between the
function for the cases where diffusion is in position and mo-Pehavior of the entropy as a function of time for both non-
mentum. It is clear that in the first case the width in momen-{nitary models(diffusion along position or along momen-

tum is significantly smaller than in the second while the in-wm():hatrﬁe Igﬂ:?(l)natmrgo:vvlglizgg‘rl Cz\?\ztehsatglegeeltshzi irseglrﬂzl Itr(l)
terference fringegthat are alligned along momentyirare Py g y P 9

- - . . the Lyapunov exponeritvhich is also the folding raje The
wlashe(i] out g‘lum m.?r?d ef::mentl;l/(. Wh_((ajnhtge dIﬁUSIOE Sinitial behavior is different in the two cases: when diffusion
along the stable manifold, the packet width does not shrinks™,,"the position direction the entropy stays small ini-

?n momentum_and approaches a critical width. Besides, thﬁally until the wave packet reaches the boundary of phase
interference fringes are more noticeable. In the case of POSkpace and folding becomes effective. Then every iteration of
Corl’esponds to the WaVeIength of the interference fl’ingeS th@troyed by decoherence_ Thus] the dominant process for en-
are no longer efficiently suppressed by diffusiéimat damps  tropy production iga). When diffusion is along the momen-

all small wavelength fringes tum direction, entropy growth starts at early times. In this
case the growth of entropy is produced by prodgssand is
V. CONCLUSIONS associated with the fact that diffusion tends to balance the

] o . _effect of the contraction of the wave packet along the stable
The main results in this paper come from numerical simuirection giving rise to a critical width. In any case, our study

lations of open quantum maps, particularly the baker’s anghows that entropy growth at a rate fixed by the dynamics of
Harper’s map coupled to a diffusive environment. Our simu-the system rather than the coupling strength to the environ-
lations provide strong numerical evidence supporting thenent is, as first conjectured in RdB], a characteristic of
conjecture put forward in Ref3]: when a quantum system quantum chaos. The differences between this behavior and
whose classical analog is chaotic is subject to decoherencghe one that characterizes integrable systéorsquantum
there is a regime in which the rate of entropy production isstates localized in stability islands such as the ones present in
determined by the system’s dynamical propertigsapunov  Harper's map are quite dramati¢see Ref[32] for related
exponents, folding rates, etcand becomes independent of results.
the strength of the coupling to the environment. Another in-
teresting aspect of our results is the existence of a clear scal- ACKNOWLEDGMENTS
ing for the entropy as a function of the dimensionaliby of

the effective Planck’s constantThe scaled curves for the | 1S Work was partially supported by grants from Ubacyt,

: ; Anpcyt, Conicet and FundagioAntorchas. J.P.P. and M.S.
t b d dent lo= 1/N with t - o
entropy become independen WIER quantum, cor gratefully acknowledge the hospitality of ITP Santa Barbara

rections that decay a grows. We also found qualitative here the final : £ thi ot leted
evidence, looking at the phase-space distributions, that th@here the final version of this manuscript was compieted.

introduction of diffusion extends the time of coincidence be-
tween the classical and quantum evolutions. Our results also
clarify the origin of entropy production allowing us to de-  We use a discrete version of the Wigner function, which
velop new intuitive explanations to understand the origin ofwe describe in more detail in Reff27]. Here we give the

APPENDIX A: DISCRETE WIGNER FUNCTION
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basic definitions to make the paper self-contained. Theise to all the correct marginal distributions when summed

Wigner function is usually defined, for a continuous systemover any set of lines in the phase-space Qgri@ explicitly

as compute this function one can use a variety of formulas
among which we found convenient the following expression:

p

W(q p):—l Jroc<q_x q+ X>el(p/ﬁ)Ydy (Al)
2] 2 2 2 2 ;P

. . . . W(q] ,pi): _slzexp[—lw T—ZXqu ]
This function is the expectation value of the so-called phase- N

space point operators

XE 2 EXF{iZ—W(QJk‘Fpin)
n k N

W(q,p) =tr(pA(q,p)). (A2)

The operatordA(q,p) have a number of interesting proper- Xex;{—i Z_W(n_x )(k—y )}(k|[)|n>.
ties from which the properties of the Wigner function can be N P I

derived (in fact, they are Hermitian operators, they form a (A4)
complete basis, etc; see RE27)). It turns out that in order

to generalize all theie propertiels to the giscret'e cas% it ®n the other hand, it takes a straightforward calculation to
necessary to use a phase-space lattice\sk 2N points an show that theA(q,p) operators transform in the following

to define the phase-space operatprs terms of the shift . . : . .
operators used in the body of the paper and defined in Ea’ayr?c)i/ é\ilgcerr:atiz u\llergg;jtsto translatiofBoth in their continuous

(7)] as

. 1 . .. D A(q,p)D/ =A(q+2Aq,p+2Ap).
A(q,p)=muqRV_pexqup/N). (A3) (ag,Ap)A(d,P) (Ag,Ap) (q a,.p p) (A5)

Using these discrete phase-space point operators the Wignéfe can use this property and the definition of the Wigner
function has all the desired propertiésis real, it can be function given in Eq(A2) to derive Eq.(30) we use in the
used to compute expectation values of operators and givgsper.
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