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Decoherence for classically chaotic quantum maps
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We study the behavior of an open quantum system, with anN-dimensional space of states, whose density
matrix evolves according to a nonunitary map defined in two steps: A unitary step, where the system evolves
with an evolution operator obtained by quantizing a classically chaotic map~baker’s map and Harper’s map are
the two examples we consider!. A nonunitary step where the evolution operator for the density matrix mimics
the effect of diffusion in the semiclassical~largeN) limit. The process of decoherence and the transition from
quantum to classical behavior are analyzed in detail by means of numerical and analytic tools. The existence
of a regime where the entropy grows with a rate that is independent of the strength of the diffusion coefficient
is demonstrated. The nature of the processes that determine the production of entropy is analyzed.
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I. INTRODUCTION

Decoherence has been recognized in recent years as
of the main ingredients needed to understand the origin
the classical world from the fundamental quantum la
@1,2#. Decoherence is a process whose origin is conceptu
simple: It is due to the entanglement between the system
its environment that is created in the course of their inter
tion. As a consequence, the environment keeps a recor
the state of the system, that loses its purity. Only a sm
subset of all possible states of the system~the so-called
pointer states! is relatively stable against the interactio
They are the ones that are less likely to become entan
with the environment. In the vast majority of cases, when
state is a superposition of pointer states, the information
tially stored in the state of the system can never be resto
since it irreversibly flows into the correlations with the env
ronment. A basic question one should ask in this contex
how fast does the information flow away from the syste
This can be studied, for example, by analyzing the evolut
of the entropy obtained from the reduced density matrix
the system. This has been done for a variety of cases~see
Ref. @2# for a review! and it has been recognized that th
process has unique features if the system has a classi
chaotic counterpart. In fact, as conjectured in Refs.@3,4#, the
rate of entropy production in such cases has a regime th
independent of the strength of the coupling between the
tem and the environment and is entirely determined by
dynamical parameters characterizing the chaotic evolut
This conjecture was analyzed in the literature@5# mostly us-
ing numerical tools@6–11#. In this paper we present a stud
of this problem for some systems that are simple enoug
enable both a rigorous numerical treatment and some
lytic estimates. We consider here a quantum system wi
finite-dimensional Hilbert space (N is the number of dimen-
sions, and we are interested in learning about the behavio
the system in the largeN limit !. For such system we defin
an evolution operator for the density matrix in two steps
follows: first we consider a purely unitary evolution definin
an operatorU that is such that it corresponds~in the largeN
limit ! to a classically chaotic map. Then, we define a n
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unitary map for the density matrix in such a way that~again,
in the largeN limit ! it mimics the effect of the interaction
with an environment producing the same effects one
serves for a Brownian particle~namely, diffusion!. For such
system, we developed a numerical code enabling us to
ciently evolve the density matrix and study in particular t
evolution of the entropy. Our aim is to present solid nume
cal evidence supporting the conjecture presented in R
@3,4# and, by combining the numerical calculations with an
lytic calculations, develop new intuition on the main pr
cesses contributing to entropy production for this kind
systems.

The paper is organized as follows. In Sec. II we revie
some basic elements of the theory of quantum maps.
focus, as in the rest of the paper, on two specific examp
baker’s map~the paradigmatic example of a fully chaot
system! and Harper’s map~an example of the wide class o
kicked maps with mixed phase space!. There are no new
results presented in this section and the reader with exp
ence in the theory of quantum maps can easily skip it. In S
III we describe in detail the model for decoherence that
study in this paper. In Sec. IV we present the main res
concerning the behavior of the entropy as a function of ti
and the evolution of the Wigner function. Finally, in Sec. I
we present our conclusions. The Appendix contains techn
details about the phase space representation we use in
paper~the discrete Wigner function!.

II. QUANTUM MAPS

The construction of the quantum analog of a classical m
follows two well-defined steps: a kinematical one, where
nature of the Hilbert space is defined in relation to a spec
phase-space structure, and a dynamical one, where a un
operator defines the evolution of a finite time step. For
study of chaotic behavior, a finite phase space is required
therefore the question of boundary conditions arise. The s
plest case is the torus, where periodic boundary conditi
are assumed for both the coordinate and momentum re
sentations. The most general quasiperiodic boundary co
tions are
©2002 The American Physical Society26-1
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^q11uc&5ei2pxq^quc&, ~1!

^p11uc&5e2 i2pxp^puc&, ~2!

wherexq andxp are fixed, arbitrary real numbers between
and 1 (2pxq and 2pxp are called Floquet angles!. These
conditions result in a finite-dimensional Hilbert space. T
space’s dimensionN is related to\ by the relation

2p\N51, ~3!

which signifies that phase space~of area equal to unity! is
spanned byN states~of area 2p\). The position and mo-
mentum eigenvalues in this finite-dimensional space are

uqn&5Un1xp

N L , n50,1, . . . ,N21, ~4!

upm&5Um1xq

N L , m50,1, . . . ,N21. ~5!

These position and momentum eigenstates are related
discrete Fourier transform:

^pmuqn&5
1

AN
expF2 i

2p

N
~m1xq!~n1xp!G[~GN

xq ,xp!mn.

~6!

The values ofxq andxp specify different Hilbert spaces
In the present paper we usexq5xp5 1

2 , corresponding to
antiperiodic boundary conditions. Cyclic shifts on these t
bases are implemented by unitary operators@12#

Ûuqn&5uqn11&, ~7!

V̂upm&5upm11&. ~8!

These operators and their powers can be combined to
duce unitary displacement operators in phase space

D̂~Dp,Dq!5ÛDqV̂Dpeip/N DpDq ~9!

for integer values ofDp,Dq. These are the analogs of th
Weyl displacement operators in the continuous case. P
space in this context is then assimilated to a discreteN3N
grid that will be useful for the representation of quantu
effects in phase space~see Appendix!.

A. The baker’s map

The baker’s map is one of the simplest systems display
strongly chaotic behavior. In spite of its simplicity, it has
very rich dynamical behavior, both in its classical and
quantum versions. The map is an area preserving transfo
tion defined in the@0,1#3@0,1# phase-space square as

q852q2@2q#, ~10!

p85
1

2
~p1@2q# !, ~11!
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where the square brackets symbolize the integer part of a
number. This evolution has a very simple geometrical int
pretation, as a ‘‘stretching’’ step followed by ‘‘cutting’’ step
as a baker rolling a dough. The map is uniformly hyperbo
with a single Lyapunov exponent, with a value of ln 2. Mor
over, at every point the stable and unstable manifolds
parallel to the coordinate axes. The baker’s map has a
markably simple symbolic dynamics, and can be mapp
into an unrestricted Bernoulli shift on two symbols@13#. If
the phase space coordinatesp and q are written in binary
notation

q50.e0e1e2e3 . . . , p50.e21e22e23e24 . . . ,

~p,q!5 . . . e24e23e22e21•e0e1e2e3 . . . . ~12!

The map’s action on these symbols is to move the m
significant bit ofq to p, shifting to the right the decimal poin
in q,

q850.e1e2e3 . . . , p850.e0e21e22e23 . . . ,

~p8,q8!5 . . . e24e23e22e21e0•e1e2e3 . . . . ~13!

Thus each doubly infinite sequence of binary digits rep
sents a unique trajectory. The phase-space points on this
jectory are obtained by placing the dot somewhere~the
present! and reading off the coordinate and momentum to
right and left of it.

The quantization procedure for the map is not unique
follows closely semiclassical prescriptions. As originally fo
mulated@14#, it used periodic boundary conditions (xq5xp
50) but was later modified to antiperiodic conditions (xq
5xp5 1

2 ) @15#. The full semiclassical theory has been dev
oped in Ref.@16#. The resulting unitary matrix for one ste
of the map is

B̂baker5Ĝ2N
21F ĜN 0

0 ĜN
G . ~14!

A different approach, leading to the same result, was p
posed in Ref.@17# ~see also Ref.@18#! interpreting the map as
the quantization of a Bernoulli shift showing that it could b
implemented by elementary gates and thus would be an
teresting candidate to be run as an algorithm in a quan
computer. This approach is strongly based on the symb
dynamics of the map and runs as follows: as the position
momentum bases are related by a Fourier transform, we
implement the Bernoulli shift—which shifts the most signi
cant bit of the coordinate to the most significant bit
momentum—using the quantum circuit shown in Fig. 1.

FIG. 1. Quantum circuit that performs a Bernoulli shift, i.e.,
iteration of the quantum baker’s map
6-2
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DECOHERENCE FOR CLASSICALLY CHAOTIC QUANTUM MAPS PHYSICAL REVIEW E65 046226
The action of this circuit can be understood as follow
the qubits on the input codify in the usual way the eigenv
ues of the position operator with the most significant bit
the bottom; after applying the split Fourier transform, t
most significant qubit now represents the most significant
of the eigenvalue of the momentum operator. As a final s
an inverse Fourier transform allows us to look at the fi
state in the position basis. This is exactly the circuit rep
sentation of the matrixB̂baker. As is well known@19#, the
Fourier matrices can be further decomposed into elemen
gates leading to a circuit representation in terms of ope
tions on qubits.

B. The Harper’s map

The baker’s map does not capture the full complexity
chaotic motion in Hamiltonian systems. The fact that it h
uniform hyperbolicity and very simple manifolds are n
very generic properties as the most common situation is
of a complex mixture of elliptic islands interspersed by ch
otic regions with locally defined Lyapounov exponents.
address this more general situation a different family of m
can be devised whose characteristic is to alternately prod
‘‘kicks’’ of potential or kinetic energy. The combined actio
of these kicks is equivalent to that of a periodic tim
dependent Hamiltonian and the resulting motion is area
serving and can mimic the full complexity of a generic sy
tem. A wide variety of maps on the sphere~kicked tops!, on
the cylinder~kicked rotors!, or on the torus~Harper’s map!
have been extensively studied in the quantum chaos lit
ture @20,21#.

Here we have studied a specific kicked map, known as
Harper’s map because of its relationship to the Harpe
Hamiltonian in solid-state physics. This map acts on the u
square with periodic boundary conditions in phase space
is defined by the transformation@21#

q85q2gsin~2pp! ~mod 1!, ~15!

p85p1gsin~2pq8! ~mod 1!. ~16!

The behavior of the map is determined by the real param
g. If g!1 the map approaches an infinitesimal transform
tion with approximately conserved energy and its evolut
is regular. If, on the other hand,g'1 the map becomes fully
chaotic. In between, the motion presents the complex m
ture of regular and chaotic motion characteristic of most
alistic systems.

The reason that kicked maps are so popular is that t
are very easy to quantize. In fact the potential and the kin
kicks are respectively diagonal in the coordinate and m
mentum bases and therefore the full evolution consists
these diagonal kicks interspersed by the Fourier transfor
tion between these two bases. One full step of the ma
then the evolution operatorÛ,

Û5ÛqĜN
† ÛpĜN . ~17!
04622
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For the Harper’s map the two diagonal operatorsÛq and
Ûp are

Ûquqn&5expH 2 igN cosF2p

N
~n1xp!G J uqn&, ~18!

Ûpupk&5expH 2 igN cosF2p

N
~k1xq!G J upk& ~19!

andĜN is given by Eq.~6!.
Kicked maps also lead very naturally to a circuit interpr

tation, like in the case of the baker’s map. The diago
interactions are controlled phases that act among all the
bits while the Fourier transformations can again be deco
posed into elementary gates. Some of these maps~the cat
maps, for example! can be efficiently decomposed in term
of elementary operations and have recently been studie
possible candidates to be simulated in a quantum comp
@22#. Figure 2 shows the structure of a quantum circuit th
implements a generic kicked map.

III. DISSIPATIVE MAPS

Our aim is to study the impact of the process of decoh
ence induced by the interaction between our system and
external environment. The system would otherwise evo
according to one of the unitary operators described in
previous section. In general, modeling the coupling to
outside world may be complicated. Here we will not use
microscopic model of this interaction but will describe th
effect of the environment in a phenomenological way
defining a dissipative map for the evolution of the dens
matrix of the system. As decoherence generally induce
loss of purity, the first important point to notice is that th
state of the system should be defined in terms of a den
matrix r. In the absence of any coupling to the environme
the density matrixr evolves unitarily according to the map

r̂85Û r̂Û†. ~20!

The coupling to the environment would induce nonunita
evolution. To correspond to an allowed temporal evoluti
~that should come from a unitary map for the whole Un
verse!, the nonunitary map for the density matrix has to s
isfy some constraints. Assuming that.~i! it is linear and pre-
serves hermiticity,~ii ! it is trace preserving, and~iii ! it
preserves the complete positivity of the density matrix@19#,
the map is strongly constrained. Moreover, if one impo
also Markovian behavior~neglecting all memory effects! one
can show that the most general map for the density matri
the system should be of the form

FIG. 2. Quantum circuit that implements a quantum kicked ma
6-3
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r̂85(
k

Êkr̂Êk
† . ~21!

Equation~21! is known as the operator sum representat
~or Kraus representation! of the superoperator that mapsr̂

onto r̂85$(r̂) ~see Refs.@19,23,24# for a review of this
representation and a derivation of the main formulas!. The
trace preserving nature of the superoperator defines a
straint for the operatorsÊk ,

(
k

Êk
†Êk5 Î , ~22!

where Î is the identity operator. There is no other constra
on these operators, although it is worth noting that this c
straint boils down to plain unitarity if there is only one o
erator. There is a nice physical interpretation for the$Êk%
operators: One can think of Eq.~21! as corresponding to a
process where the stater̂ is converted randomly into the
stateÊkr̂Êk

†/tr(Êkr̂Êk
†) with a probability tr(Êkr̂Êk

†) ~in this
sense, these operators are quantum jump operators!. It is im-
portant to notice that the set of theÊk corresponding to a
given nonunitary evolution is not unique: For example, ifUkl
are the elements of a unitary matrix, we can define the
eratorsÊl8 as

Êl85(
k

UklÊk , ~23!

and show that the set$Êl8% generates the same evolution

the set$Êl8%.
We will use the operator sum representation to defin

specific model to introduce decoherence in our system.
want our model to correspond, in the continuum limit~where
N→`) to a diffusive environment having similar effects
the ones present in the well-studied Brownian motion mo
@25#. For this, we will assume that the temporal evolution
divided into two steps: a unitary step, where the density m
trix evolves unitarily as in Eq.~20!; and a dissipative step
where the density matrix evolves by a map whose oper
sum representation is of the form.

r̂85~12a!r̂1
a

2
@D̂~Dq,Dp!r̂D̂†~Dq,Dp!

1D̂†~Dq,Dp!r̂D̂~Dq,Dp!#, ~24!

wherea is a real number between 0 and 1 measuring
strength of the coupling to the environment andD̂(Dq,Dp)
is the displacement operator defined in Eq.~9!, which from
now on will be denoted simply asD̂. Notice that the con-
straint~22! is automatically satisfied becauseD̂ is unitary. In
fact, in the above equation the three terms appearing in
operator sum representation are

Ê05A~12a! Î , ~25!
04622
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D̂, ~26!

Ê25Aa

2
D̂†, ~27!

which are normalized in such a way that Eq.~22! holds.
The above operator sum representation provides an in

tive interpretation for the evolution: the density matrix is fir
evolved with the unitary quantum map~the unitary step!.
Then, three things can happen:~i! with probability 12a the
state does not change,~ii ! with probability a/2 the state is
displaced in one direction in phase space,~iii ! with probabil-
ity a/2 the state is displaced in the opposite direction
phase space. As the probabilities of both displacements
equal, a localized state does not drift in phase space
consequence of this evolution. The net effect is to smear
state in phase space in the direction of the displacement
erator. Thus, this nonunitary map is a discrete model fo
diffusive process. The diffusive superoperator can be m
more efficient by using not just a single displacement ope
tor but rather a sum of many terms. Thus, we will conside
more general model where

r̂85~12a!r̂1
a

2M (
n51

M

~D̂nr̂D̂n
†1D̂n

†r̂D̂n!, ~28!

whereD̂n5D̂(Dqn ,Dpn) for some displacementsDqn and
Dpn . In particular, it is simplest to consider all displac
ments along the same direction~i.e., Dqn5nDq and Dpn
5nDp). In such case, we can get the following formula f
the evolution of the matrix elements ofr̂ ~in the basis of
eigenstates ofD̂n):

^ i 8ur̂8u i &

^ i 8ur̂u i &
512aF 12cosS p~ i 2 i 8!

N
~M11! D

3

sinS p~ i 2 i 8!

N
M D

MsinS p~ i 2 i 8!

N D G . ~29!

From this equation we see that the effect on the density
trix in this representation is clear: the diagonal elements
not affected by the nonunitary evolution while the nondiag
nal elements are suppressed by a factor that rapidly de
with the distance to the diagonal. In the continuous case
suppression is gaussian@20# but here, due to the discretene
of the Hilbert space, the suppression has the shape of a
fractionlike kernel. Using the above expression it can
shown that ifM5N, the net effect of one step is to com
pletely wipe out all the nondiagonal elements, leaving a
agonal density matrix.

The diffusive character of this nonunitary map is ev
clearer if we represent the quantum state in phase spac
6-4
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using the Wigner functions. As we are dealing with a fini
dimensional Hilbert space we should use a discrete ver
of the ordinary Wigner function that is well adapted to t
finite-phase-space structure@26#. The definition and main
properties are given in the Appendix and more in detail
Ref. @27#. In this representation the Wigner function of th
density operator is a real array defined on a 2N32N lattice
in phase space that shares many of the well-known prope
of the continuous Wigner function. The action of the diff
sive map given in Eq.~28! in the Wigner representations is

W8~q,p!5~12a!W~q,p!1
a

2M (
n51

M

@W~q12nDq,p

12nDp!1W~q22nDq,p22nDp!#. ~30!

This expression shows clearly that the diffusive step sme
the Wigner function in directions specified byDp,Dq ~the
factor of 2 present in the above equation is due to the
that the phase space is an array of size 2N32N rather than
N3N). More general diffusion models involving mixtures
different directions in phase space, or even over whole a
where diffusion occurs, are similarly represented.

IV. RESULTS

In this section we present and discuss our results. T
concern two separate but connected issues: First, we
examine the behavior of entropy as a function of time foc
ing both on understanding the role of the different mec
nisms that make entropy to grow and determining the dep
dence of the rate at which it grows on the parameters of
model ~like the strength of the coupling, etc!. Second, we
analyze the issue of the correspondence between qua
and classical dynamics. The basic tool we used for our s
ies is a highly efficient code to evolve the density matrix th
makes good use of fast Fourier transform routines. With t
running on a personal computer, one can easily compute
density matrix for Hilbert spaces with dimension of abo
N52000 ~larger machines would be required to go abo
that limit but there is no good reason to do that, see belo!.
The source code is available from the authors.

A. Rate of entropy production

For a variety of initial states we studied the evolution
the density matrix under the dissipative map and compu
the linear entropyS52 ln@Tr(r2)#. We did that both for the
baker’s and for the Harper’s map. The diffusion mechani
is as in Eq.~28! and in the plotsap labels diffusion along the
momentum axis (D̂5V̂) while aq labels diffusion along the
coordinate (D̂5Û). Our results clearly establish that in bo
cases, the rate of entropy production becomesindependentof
the parametera provided its value is above a certain thres
old ~that is close to 0.4). This is seen in Fig. 3 where t
plots show the entropy as a function of time for two types
diffusive environments~where diffusion is along either pos
tion or momentum!. It stands out from this graph that all o
the curves witha greater than 0.4 have a linear regime w
04622
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the same slope. This slope turns out to be equal to ln 2,
Lyapunov exponent for the baker’s map.

Similar results are shown in Fig. 4, for which the unita
propagation was provided by the Harper map. Even tho
in this case there is no well-defined linear regime~at least not
so well defined as in the case of the baker’s map!, it is clear
that the rate of entropy production becomes independen
a. Thus, in this regime entropy is produced due to the c
pling with the environment but the rate becomes independ
of the coupling strength~this feature is preserved if we con
sider larger values ofg, the parameter that controls the cha
ticity of the evolution!.

This is one of the main results of the paper, that subst
tiates the conjecture that was originally put forward
Ref. @3# and later tested numerically in various work
@6,10,5#.

FIG. 3. Linear entropy growth for the baker’s map withN
51594 and different values fora. For the top graph diffusion is
along momentum and for the bottom graph along position.

FIG. 4. Same as Fig. 3 but for Harper’s map (g50.45).
6-5
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PABLO BIANUCCI, JUAN PABLO PAZ, AND MARCOS SARACENO PHYSICAL REVIEW E65 046226
We have also studied the dependence of the entr
growth as a function ofN ~the dimensionality of the Hilber
space!. This was done both for small values ofa and in the
regime where the rate of entropy production is independ
of the coupling. These results are shown in Figs. 5 and 6
both cases we have found that—when appropria
rescaled—the entropy growth is quite independent on
value of N and tends to a universal curve in the limitN
→` ~as 1/N is the effective Planck’s constant this corr
sponds to the classical limit!. This result suggests that th
mechanism for entropy growth in quantum maps has a do
nant classical component with corrections that vanish in
classical limit.

Our results show clearly that above some threshold foa,
the rate of entropy production is determined by the dynam
of the unitary quantum map, and in great measure by

FIG. 5. Scaling of the linear entropy growth with dimension
the Hilbert space of the system with diffusion on the position ax
The strength of the diffusion is kept constant by smoothing ove
constant fraction of the system’s phase space. In relationship
Figs. 5 and 6 both axis have been rescaled by ln(N)

FIG. 6. Scaling of the linear entropy growth with dimension
the Hilbert space of the system with diffusion on the moment
axis. The strength of the diffusion is kept constant by smooth
over a constant fraction of the system’s phase space. In relation
with Figs. 5 and 6 both axes have been rescaled by ln(N).
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classical counterpart!. Why is this the case? We will argu
here that it is possible to attribute the entropy production
two interconnected processes whose origin can be bette
plained by using a phase-space representation for the q
tum state. The reason is that in this way we can use som
the intuition we have about the behavior of the classical s
tem. Consider an initial state that is represented by a lo
ized and smooth phase-space distribution~for concreteness
we base our discussion on the Wigner function, see belo!.
The application of the chaotic unitary map will distort th
state in a way that, at least for short times@times smaller than
ln(N)#, will be consistent with the classical evolution. In
hyperbolic region this will mean that the initial wave pack
will be stretched along the unstable manifold and contrac
along the stable one. In the case of the baker’s map~and only
in this case! these two directions are the same all over ph
space: the vertical direction—that we have call
momentum—is stable~contracting! and the horizontal one—
the coordinate—is unstable~expanding!. The rate of expan-
sion is equal to the Lyapunov exponent that in the bake
map ~and only in this case! is constant all over phase spac
and is equal to ln 2. However, this expansion cannot proc
forever. As the phase space is finite, after some time the s
will start experiencing the other essential feature of chao
dynamics: folding. As soon as this process starts the quan
and classical evolutions will start deviating significant
from each other due to the quantum interference between
different folds. In the Wigner function~see below! these in-
terferences appear as rapid oscillations with large nega
values happening in between the folds and oscillating in
rections parallel to them. These oscillations are the footp
of the quantum interference between the different pieces
the delocalized state.

The two interconnected effects generated by the diffus
map are:~a! the destruction of the interference fringes in t
Wigner function,~b! the smoothing and widening of the re
gions where the Wigner function is already positive.
should be clear that the two effects have the same ori
diffusion, but it is worth distinguishing between them b
cause they are effective for different types of states and
be analyzed separately under some special circumstance
fact, process~a! affects states that have a quantum nat
exhibiting important oscillations in the Wigner function. O
the other hand, process~b! is present even for classical sy
tems@in fact, in a classical diffusive map process~b! is the
only source of entropy#. The important point is that even i
we consider an initial state where only process~b! is impor-
tant ~i.e., a classical state!, the dynamics of the system wil
create large-scale quantum interference that will trigger p
cess~a!.

In the baker’s map the two processes can be analy
separately. Thus, if we consider a nonunitary map produc
diffusion only along the momentum@i.e., Dx50 in Eq.~28!#
only process~b! will be relevant. In fact, this is the cas
because an initial phase-space distribution will tend to
contracted in the momentum direction while being expand
in the position direction. Folding will start to occur when th
state reaches the boundary of the phase space. After
quantum interference will develop between the differe
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pieces of the packet and will be characterized by fringes
will be aligned along the vertical direction. Therefore, t
fringes will not be significantly affected by diffusion. On th
contrary, the effect of diffusion will be to fight against th
contraction of the wave packet along the momentum dir
tion. One can see that diffusion will tend to compensate c
traction and the Wigner function will tend to acquire a cri
cal width along momentum. When this happens, the entr
will start growing at a rate fixed by the expansion rate tha
the Lyapunov exponent. This is the scenario originally d
cussed in Ref.@3#: the entropy grows at the rate fixed by th
Lyapunov exponent when the Wigner function reache
critical width along the stable direction~contraction stops bu
expansion continues almost unaffected by diffusion, the
fore the area grows exponentially which implies that the
tropy grows linearly!.

The other extreme case is to consider a nonunitary m
where difussion is along the position direction@i.e., Dp50
in Eq. ~28!#. In that case, diffusion will not prevent the sy
tem from contracting along the stable direction and theref
will not give rise to a critical width in that direction. How
ever, entropy will still grow but its origin is entirely due t
process~a!. In fact, as soon as the phase-space distribu
starts to fold, interference fringes develop. These fringes
aligned along the momentum axis~since they correspond
roughly, to interference between two horizontal strips se
rated by a distance 1/2). As the strips are macroscopic
separated they will be very sensitive to diffusion along po
tion. Thus, if the coupling strengtha is such that the fringes
are washed out in just one iteration, the mechanism will p
duce a mixture of two horizontal strips for every iteration
the map, producing one bit of entropy. The rate associa
with this mechanism is the rate of folding that in the case
the baker’s map~and only in this case! is equal to the globa
Lyapunov exponent. Thus, the fact that both processes~a!
and~b! give rise to the same rate is an accident of the bak
map. In general, the rate will not be the Lyapounov expon
but a combination of such exponent and the global fold
rate. In any case, the general conclusion that is still valid
that the entropy production rate for classically chaotic s
tems will tend to be dominated by dynamical properties
the system becoming independent of the strength of the
pling to the environment.

It is interesting to present a simple analytic model to s
port the above discussion about entropy production. The s
plest case is the one corresponding to process~b!, where
difussion is along the position direction. To simplify ou
model we will assume that the action of the baker’s map
just to transform a momentum eigenstate into a superpos
of two such states,

B̂uk0&5
1

A2
S Uk0

2 L 1Uk011

2 L D ~31!

~this is a rough approximation for the baker’s map that
glects diffraction effects and relative phases but that capt
the essential folding mechanism of the baker’s action in
largeN limit and away from saturation!. In this approxima-
tion, the unitary evolution turns each momentum state int
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coherent superposition of two momentum states separate
a macroscopic distanceN/2. According to Eq.~29!, the mo-
mentum diffusion leaves untouched the diagona
incoherent–elements for the density matrix of this sta
while suppressing, in the largeM limit, the off-diagonal parts
by a factor

^ i ur̂8u i 1N/2&

^ i ur̂u i 1N/2&
'12a. ~32!

With these assumptions it is simple to obtain an equat
for the entropy as a function of time. Thus, aftert iterations
the density matrix has 2t1n21 matrix elements with value
22t(12a)n, with n ranging from 1 tot. Using this, we
showed that the linear entropy is

S~ t !5t ln 22 ln„~12a!2$11@2~12a!2# t%21…. ~33!

FIG. 7. Ṡ2 vs a: Analytic prediction against numerical result
The analytic line and the numerical data points were not taken f
the same iteration, in order to compensate for the fact that the in
state in the simulations was not a momentum eigenstate but a
herent state instead, which takes some iterations to transform
something approximate to a momentum eigenstate.

FIG. 8. Ṡ2 vs a: Anaylytic prediction against numerical resul
some iterations after the ones depicted in graph 7.
6-7
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FIG. 9. Wigner function~position is the hori-
zontal coordinate and momentum is the vertic
one! at several steps in the evolution of the Bak
map. The quantum versions have been compu
with N562.
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The second term in this equation corrects the slope in
smalla regime. The transition is predicted at a critical val
of ac512221/2'0.3. Fora.ac the second term become
intependent oft and the slope saturates atṠ5 ln 2. In the
weak coupling regime, fora,ac the growth is still linear,
but the slope depends on the coupling strength and
given—for long times—by

Ṡ522 ln~12a!. ~34!

In this regime the slope of the entropy is then linear w
04622
e

is

a and independent of the Lyapounov exponent of the m
All the predictions of this simple model are confirmed by t
numerical calculations. In Fig. 7 we display the behavior
the rateṠ as a function of the coupling strengtha during the
regime of linear growth. The agreement between the sim
model and the exact numerical results is very good, desc
ing both coupling regimes very accurately. To see the lim
tations of the model we plot in Fig. 8 the same quantities,
taken at later times, closer to the point where the entro
saturates due to the finiteness of the model. Here the ag
ment deteriorates as the assumptions of the model b
down.
6-8



al
p-
r-

DECOHERENCE FOR CLASSICALLY CHAOTIC QUANTUM MAPS PHYSICAL REVIEW E65 046226
FIG. 10. Wigner function~position is the hori-
zontal coordinate and momentum is the vertic
one! at severals step in the evolution of the Har
er’s map. The quantum version has diffusion pa
allel to the position axis andN562, aq50.5,
M52.
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B. Quantum classical correspondence: Wigner function

We also studied the evolution of the Wigner function fo
variety of initial states both for the baker’s map and t
Harper’s map. In Fig. 9 and 10 we compare the class
~left!, unitary ~center!, and quantum diffusive~right! cases
for these two maps. The general features that are obse
are the following: The unitary map follows the classical ev
lution for up to a time that is of the order of ln(N). After this
time quantum interference develops between the diffe
pieces of the Wigner function. These effects are respons
for the loss of correspondence between quantum and cl
cal evolution that was discussed in Refs.@7,28–30#. When
the effect of the coupling to the environment is taken in
account, it is clear that the correspondence between the q
tum and the classical evolution is restored and holds fo
much longer time. However, it is worth pointing out that t
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fact that our system is finite~i.e., it hasN orthogonal states!
implies that saturation is achieved and the system approa
an equilibrium state. This equilibration takes place for tim
that are a few times ln(N) as seen in the curves for the e
tropy @thus, as entropy grows linearly, it will approach th
ln(N) value relatively soon#. Therefore, in this type of system
the quantum classical correspondence is restored but h
rather short interesting dynamical regime. The nature of
final equilibrium state has footprints of the underlying cla
sical dynamical system that are evident in the presence
decoherence. This is not so transparent by analyzing the
state for the Baker map but it is evident for the Harpe
map: the final state with decoherence is an equilibrium s
that uniformily occupies all the available phase space w
the remarkable exceptions of the regular islands.

By analyzing the Wigner distribution we can study th
differences between the two processes contributing to
6-9
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FIG. 11. Wigner function for
baker’s map with two diffusion
models: The left plot correspond
to position diffusion ~position is
the horizontal coordinate of the
plot! and the right one to momen
tum ~vertical coordinate! diffu-
sion.
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entropy growth that were discussed above. Thus, when
fusion occurs along the direction of momentum it tends
prevent the contraction of the Wigner function but does
affect the interference fringes. On the other hand, when
fusion occurs along the position direction it does not aff
the contraction but efficiently destroys the interferen
fringes. In Fig. 11 we show a comparison of the Wign
function for the cases where diffusion is in position and m
mentum. It is clear that in the first case the width in mome
tum is significantly smaller than in the second while the
terference fringes~that are alligned along momentum! are
washed out much more efficiently. When the diffusion
along the stable manifold, the packet width does not shr
in momentum and approaches a critical width. Besides,
interference fringes are more noticeable. In the case of p
tion diffusion there is also a critical width that in this ca
corresponds to the wavelength of the interference fringes
are no longer efficiently suppressed by diffusion~that damps
all small wavelength fringes!.

V. CONCLUSIONS

The main results in this paper come from numerical sim
lations of open quantum maps, particularly the baker’s a
Harper’s map coupled to a diffusive environment. Our sim
lations provide strong numerical evidence supporting
conjecture put forward in Ref.@3#: when a quantum system
whose classical analog is chaotic is subject to decohere
there is a regime in which the rate of entropy production
determined by the system’s dynamical properties~Lyapunov
exponents, folding rates, etc.! and becomes independent
the strength of the coupling to the environment. Another
teresting aspect of our results is the existence of a clear s
ing for the entropy as a function of the dimensionality~or of
the effective Planck’s constant!. The scaled curves for th
entropy become independent ofh51/N with quantum cor-
rections that decay asN grows. We also found qualitative
evidence, looking at the phase-space distributions, that
introduction of diffusion extends the time of coincidence b
tween the classical and quantum evolutions. Our results
clarify the origin of entropy production allowing us to de
velop new intuitive explanations to understand the origin
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the entropy growth~see Ref.@31# for another point of view
based on the use of consistent histories!. The two processes
that are responsible for such growth~washing out of interfer-
ence fringes and smoothing of the positive pieces of
Wigner function! can be studied separately only in the ca
of the baker’s map where stable and unstable manifolds h
a global nature in phase space. The differences between
behavior of the entropy as a function of time for both no
unitary models~diffusion along position or along momen
tum! are illuminating: in both cases there is a regime
which the entropy grows linearly with a slope that is equal
the Lyapunov exponent~which is also the folding rate!. The
initial behavior is different in the two cases: when diffusio
is along the position direction the entropy stays small i
tially until the wave packet reaches the boundary of ph
space and folding becomes effective. Then every iteration
the map creates new interference fringes that are rapidly
stroyed by decoherence. Thus, the dominant process for
tropy production is~a!. When diffusion is along the momen
tum direction, entropy growth starts at early times. In th
case the growth of entropy is produced by process~b! and is
associated with the fact that diffusion tends to balance
effect of the contraction of the wave packet along the sta
direction giving rise to a critical width. In any case, our stu
shows that entropy growth at a rate fixed by the dynamics
the system rather than the coupling strength to the envir
ment is, as first conjectured in Ref.@3#, a characteristic of
quantum chaos. The differences between this behavior
the one that characterizes integrable systems~or quantum
states localized in stability islands such as the ones prese
Harper’s map! are quite dramatic~see Ref.@32# for related
results!.
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APPENDIX A: DISCRETE WIGNER FUNCTION

We use a discrete version of the Wigner function, whi
we describe in more detail in Ref.@27#. Here we give the
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basic definitions to make the paper self-contained. T
Wigner function is usually defined, for a continuous syste
as

W~q,p!5
1

2p\E2`

1` K q2
y

2Ur̂Uq1
y

2L ei (p/\)ydy. ~A1!

This function is the expectation value of the so-called pha
space point operators

W~q,p!5tr„r̂Â~q,p!…. ~A2!

The operatorsÂ(q,p) have a number of interesting prope
ties from which the properties of the Wigner function can
derived ~in fact, they are Hermitian operators, they form
complete basis, etc; see Ref.@27#!. It turns out that in order
to generalize all these properties to the discrete case
necessary to use a phase-space lattice of 2N32N points and
to define the phase-space operators@in terms of the shift
operators used in the body of the paper and defined in
~7!# as

Â~q,p!5
1

2N
Û qR̂ V̂2pexp~ ipqp/N!. ~A3!

Using these discrete phase-space point operators the W
function has all the desired properties~it is real, it can be
used to compute expectation values of operators and g
s
-
,

.

-

ev
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rise to all the correct marginal distributions when summ
over any set of lines in the phase-space grid!. To explicitly
compute this function one can use a variety of formu
among which we found convenient the following expressio

W~qj ,pi !5
2

N3/2
exp[2 i

2p

N S qj pi

2
22xpxqD ]

3(
n

(
k

expF i
2p

N
~qjk1pin!G

3expF2 i
2p

N
~n2xp!~k2xq!G^kur̂un&.

~A4!

On the other hand, it takes a straightforward calculation
show that theÂ(q,p) operators transform in the following
way when subjected to translations~both in their continuous
and discrete versions!:

D̂ (Dq,Dp)Â~q,p!D̂ (Dq,Dp)
† 5Â~q12Dq,p12Dp!.

~A5!

We can use this property and the definition of the Wign
function given in Eq.~A2! to derive Eq.~30! we use in the
paper.
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