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Shock structures and bunching fronts in excitable reaction-diffusion systems
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We report experimental results on the dynamics of excitation waves in a modified Belousov-Zhabotinsky
reaction. The waves in this system obey nonmonotonic dispersion relations. This anomaly induces the stacking
of excitation fronts into patterns with stable interpulse distances. The stacking process creates either a traveling
shock structure or a cascade of bunching events in which metastable wave packets are formed. The direction
and the speed of the shock are explained in terms of a simple geometrical analysis. We also present experi-
mental evidence for the corresponding instabilities in two-dimensional systems. Here, wave stacking generates
atypical structures in the collision of target patterns and wave bunching is accompanied by complex front

deformations.
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[. INTRODUCTION scribing the dynamics near the stationary solution in comov-

ing coordinate$13]. If this state is a focus in the correspond-

Excitable systems reveal a wealth of spatiotemporal strucing ODE system, the dispersion relation will typically
tures that have fascinated scientists for several deddd8ls  oscillate in the limit of large interpulse spacing. Notice that
Classic examples of these dissipative patterns include rotathe valuec, equals the speed of the solitary pulse. In the case
ing spiral waveq3] and stationary Turing patterid]. The  of anomalous dispersion, stable finite wave trains can exist
point dynamics of excitable systems is characterized by théor a discrete set of interpulse distances The stability
existence of at least one steady state that is locally stable bgtiteria for these distances am\;)=c, and dc/d\>0,
susceptible to perturbations that exceed a particular thresholghich assures that all pulses travel with the velocity of the
value [5]. In response to a sufficiently strong perturbation,leading front and that small perturbations to the relative
the systems carry out a long excursion through phase spageilse positions vanisfil4—16. The impact of these simple
before they eventually return to th@ewly excitable rest  stability criteria on the transport of information through ex-
state. This type of temporal behavior in conjunction with citable media is remarkable, because wave trains in which
appropriate transport processes can give rise to constarthe the interpulse distances equalare error correcting.
amplitude pulses, which have been observed in a variety of Dispersion relations with damped oscillations are known
experimental systems, such as catalytic surf@gégshomo-  to exist in neuronal systems for which the phenomenon is
geneously catalyzed reaction mediH, aggregating slime referred to as supernormal excitabilifi7]. In addition,
mold colonies[7], single cells[8], and yeast extractf9].  some indications for anomalous dispersion have been ob-
Dynamically closely related are waves of excitation in neu-tained in experiments on chemical waves that organize the
ronal and cardiac tissue where pulses of electric activity proaggregation of the cellular slime moRictyostelium discoi-
vide the means for the rapid and undamped relay of informadeum[18]. More concrete evidence, however, is provided by
tion and control signalf5s]. recent studies on the reduction of NO with CO ori1P6)

The dynamics and stability of wave trains in excitable surfaces[19] and the Belousov-Zhabotinsk§8Z) reaction
systems is dictated by the underlying dispersion relation thgi20,21]. The latter system involves the oxidation of an or-
describes the speed of an excitation puts@s a function of  ganic compound by bromate in acidic solution. Recently, we
the distance to its predecessor}10]. In many experimental have shown that this system obeys nonmonotonic, nonoscil-
systems, the dispersion relation is a monotonically increasingtory dispersion relations for a broad range of initial condi-
function that approaches a constant spegdor increasing tions, if the reaction is carried out with 1,4-cyclohexanedione
values of\ [11]. This behavior is known as normal disper- (CHD) as the organic reactafi21,22. Our experiments re-
sion and implies that the solitary pulse is the only stationaryealed accelerating pulses that are the hallmark of anomalous
solution. Accordingly, all wave trains increase their inter- dispersion. Moreover, we observed the stacking of waves at
pulse distances continuously, although this effect becomesarticular interpulse distances that we identified as the stable
less and less pronounced in the course of the prddeds distances\, mentioned above.

In contrast to this normal behavior, anomalous dispersion Here, we present results on the dynamics of excitation
relations involve a single overshoot or damped oscillationspulses derived from experiments with pseudo-one- and two-
that converge to a constant speeg for increasing wave- dimensional CHD-BZ medi@23]. In particular, we analyze
lengths\ [13]. Normal as well as anomalous dispersion arisethe shocklike “absorption” of fast pulses into slow moving,
if the stable homogeneous solution can be represented asstacked wave packets, and a more complex wave train insta-
node in a set of ordinary differential equatiof@DES de-  bility in which the pulses bunch into numerous, metastable

wave packets. To our knowledge, the concept of shocklike
structures in wave patterns of excitable systems was first
* Author to whom correspondence should be addressed. introduced by Howard and Kopell24]. These authors
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found that reaction-diffusion systems have solutions in
which there are rapid transitions in local wave number and
frequency over a localized transition region. In the simplest
case, these shocks manifest themselves in a localized change
in pulse density(i.e., the number of pulses per unit length
Later, Horikawd 25] studied shock dynamics in a FitzHugh-
Nagumo model and revealed a close relation to the shock
wave solution of Burgers equation. Notice that our use of the
term shock does not necessarily imply a strictly discontinu-
ous solution.

II. EXPERIMENT

Our experiments are carried out with the ferroin-catalyzed
Belousov-Zhabotinsky reaction using 1,4-cyclohexanedione
as the organic substrate. The reagents are of the highest grade
commercially available and used without further purification.
The stock solutions are prepared from high-purity water.
Most of our measurements involve ferroin and sulfuric acid
at initial concentrations of 0.5 mmol/l and 2.0 mol/l, respec-
tively. To approximate the conditions of spatially one-and
two-dimensional systems, the BZ solutions are filled into
thin capillary tubeginner diameter 1.1 minor the gap be-
tween glass plates spaced at 0.5 mm, respectively. In contrast
to the classical BZ reaction that employs malonic acid, no
gaseous products and hence no undesired gas bubbles are
generated in the oxidation of CH[26]. The reaction system
is kept at a constant temperature of226°C and is illumi-
nated with white light. The detection of the evolving wave
patterns is performed with a monochrome charge-coupled-
device camera. The optical contrast in the reaction medium
arises from the different absorption spectra of the redox
couple ferroin/ferriin. For further analysis, the video signals
are digitized at a sampling rate of 0.5 Hz during the experi-
ment.

lll. ONE-DIMENSIONAL WAVE PATTERNS FIG. 1. Time-space plots of stacking excitation pulses. The dark

Figure 1 illustrates the typical stacking dynamics of exci-background corresponds to the excitable, chemically reduced, state
tation waves in pseudo-one-dimensional CHD-BZ systems‘?f the reaction medium, whereas the traveling pulses are repre-
The individual frames are time-space plots generated by pi|§ented by bright banFjs. The.ver.tical and horizpntal axes span 480 s
ing up spatial absorption profiles at a constant sampling raté‘.nd 40 mm, respectively, with time evolving in the upward direc-

The vertical and horizontal axes represent time and spac&f’;'o 'Eit(i)‘lalll [cg:%?rltrgtéc;nsr;[?/rlr(c:)n]o 13 r?{cfl /|(T))m8|/1|§ [r:éfn%]
respectively. In these plots each excitation pulse generates ad[NaBrQ,]:0.0B mol/l (a), 0.09 mol/l(b), 0.14 mol/l(c).

bright band that slopes according to the inverse velocity of"
the given pulse. The examples show slow leading pulses that
are followed by numerous fast fronts, all of which propagatewith anomalous dispersion relations and do not occur in sys-
from the left to the right. As the fast pulses encounter theems with normal dispersion.

refractory tail of a slow predecessor, they abruptly decelerate The formation and propagation of the shock point are il-
to form a closely stacked wave packet that moves with théustrated in the schematic drawing shown in Figure 2. Here,
speed of the leading front. In this process, the wave packdhe motion of three excitation fronts and the resulting shock
increases in size, but maintains a constant spacing betweémjectory are depicted as solid and dashed lines, respectively.
its individual members. More importantly, Fig. 1 illustrates This simplified view of the real process assumes an instan-
that the point at which the incoming fronts decelerate itseltaneous deceleration of the pulses as they are incorporated
moves at a characteristic velocity. Because the density dhto the closely stacked wave packet. In the following, we
pulses within the stable wave packet is significantly highedenote the velocities of the leading pulse, the fast incoming
than in the approaching wave train, this point can be considwave train, and the shock point ag, c;, andcg, respec-
ered a shock structure. It should be emphasized that the dyively. The interpulse spacings within the stacked wave pack-
namics shown in Fig. 1 are characteristic for excitable mediats and the fast wave train are referred tolgsand \ 4,
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FIG. 2. Schematic drawing of the formation and propagation of }':::"" 90
a shock point during the abrupt deceleration of excitation pulses. 1-01 . ; . :'3 . "1 . ; .
respectively. In the framework of the assumption above, A

straightforward calculus yields an expression for the velocity

of the shock point: FIG. 4. Shock velocitiess) plotted in the plane of dimension-

less pulse velocities and interpulse distances. Bold numbers indicate
Colr— G\ experimental results. Dotted and solid lines are obtained from
_Cor1™C1ig (1) Eq. (2)
Com——— .(2).
s Ni—Ag

the underlying dependence can be seen more easily by re-
To evaluate the applicability of this equation to the pulse, ying. cep i

L ) writing Eqg. (1) in the dimensionless form
dynamics in the CHD-BZ system, we carried out numerous
experiments for different sets of initial conditions. These ex- A—C

periments yielded a broad range of valuesdgrc,, Ao, and CSZH, 2
\1. The directly measured shock velocities span an interval

between 1.0 and 5.6 mm/min. The resulting data are suMMaghereC = c./c,, C=c;/Cq, andA =\ /\q. ForA>1, this

rized in Fig. 3. The plot employs coordinates for which theexpression indicates the existence of three main cases that
experimental data are expected to show a proportional de:an be summarized as follow&) the excitation pulses and
pendencesolid ling). Despite the simplicity of our model, the accompanying shock point propagate in the same direc-
cates that the deceleration of the pulses is indeed very fagle moving (\ =C); (c) the excitation pulses and the shock
and not complicated by additional processes. point propagate in opposite directions\€C). The ex-

An interesting aspect of Ed1) is that it allows the for-  3mples shown in Fig. 1 belong to the cdgeand up to now
mation of resting shock points and of shocks that moveye could not obtain any convincing evidence for resting or
against the direction of the excitation pulses. The structure gackward traveling shocks in the CHD-BZ system. Never-

theless, one must consider that the cdabesnd(c) are dif-

6 ficult to observe in our experiments, because the excitation
| pulses nucleate from a small, resting pacemaker. In the

5] framework of instantaneously decelerating puléEs. 1),
the shock point would therefore be identical to the location

4 of the pacemaker, ik <C. Hence, the experimental analysis
of resting and/or backward propagating shocks would require
the design of an experiment in which the velocities of the
| excitation pulses are externally perturbed in the course of the
2 reaction. In the simplest case, this could be achieved by a
| sudden change in the system’s overall temperature or by the
14 utilization of the reaction’s photosensitivit26]. In this
1 study, we have not attempted to realize this particular type of
0 —TTT experiment. However, some conclusions regarding the pres-
0 1 2 3 4 5 6 ence or absence of the<C scenario can be drawn from the
cC.A=C A data discussed below.
01 1o The plot in Fig. 4 shows 12 dimensionless shock veloci-
FIG. 3. Comparison of experimental daolid circleg to the  ties (bold numbersaccording to their location in theA(C)
linear dependencesolid line) predicted by Eq(1). Experiments are  Plane. The experimental data are complemented by several
carried out for various initial concentrations of CHD.05 to 0.21  lines that correspond to the functi@=A —C4(A —1) [see
mol/l) and NaBrQ (0.03 to 0.14 molj. Eqg. (2)] at different values ofC;. These values range be-

cs(?\ﬁ-}\‘O)
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FIG. 5. Dispersion relation of stacking pulses in the CHD-BZ
reaction in terms of the dimensionless pulse speéeahd interpulse
distanceA. The initial concentrations of CHD, NaBgQ H,SO,,
and ferroin are 0.15 mol/l, 0.1 mol/l, 2.0 mol/l, and 0.5 mmoll/l,
respectively. The inset shows a schematic drawing of two anoma-
lous dispersion relations. Only cunaewill allow the formation of
backward propagating shocks.

tween 0.0 and 0.9 and are denoted as tilted numbers. The FIG. 6. Time-space plots of wave trains that bunch into clusters
experimental results are in good agreement with Bj.al-  of stable wave packets. The vertical and horizontal axes span 480 s
though some of the lower values seem to be underestimatedhd 40 mm, respectively, with time evolving in the upward direc-
by the theoretical expression. Notice that resting and backion. The initial concentrations of CHD, NaB§QH,S0,, and fer-
ward propagating shock points are characterizedChy: 0 r_oin are 0.15 mol/l, 0.1 mol/l, 2.0 mol/l, and 0.5 mmol/l, respec-
andC.<0, respectively. However, the lowest shock velocity tively.

Cs that we could measure reliably in our experiments is apyjjity known as pulse bunching. This instability affects only
proximately 0.6 and no evidence for velocities below 0.3 wasyaye trains in which the interpulse distance is on the down-
found. _ _ sloping branch of the dispersion curydashed curve seg-
The results above reveal an important connection betweegents in the inset of Fig.)5Two typical examples of this
the shocklike structures and the underlying anomalous dispunching instability in pseudo-one-dimensional CHD-BZ
persion relation of the excitable medium. Figure 5 shows aystems are shown in Fig. 6.
dispersion curve obtained from the transient interaction of The bunching instability was first described in theoretical
stacking excitation pulses in the CHD-BZ systg®i]. The  studies by Rinzel and co-workefd2,13. It involves the
experimental data are rescaled to the dimensionless variabldecay of a wave train into various wave packets that consist
C andA and complemented by a schematic drawing of twoof individual pulses spaced at a stable distankg).( This
nonmonotonic, nonoscillatory dispersion curves. A necessarprocess occurs as a cascade of bunching events in which the
criterion for the existence of non-forward-moving shocks isspatial separation between neighboring clusters increases to
that the dispersion curve intersects e A line for A>1. less unstable distances. In the CHD-BZ system, _the. resulting
This scenario is exemplified by the cureein the inset of mgtastable patterns can.have remarkably long I|f¢t|mes, but
Fig. 5, whereas curvb describes a system in which shocks itis exp_ecteo_l that they will eventually generate a smgl_e wave
and pulses always propagate in the same direction. The mef@cket in which all pulses are stacked in a stable fashion. The
sured dispersion relation is found to stay below the critical u_nchlng |nstab|I!ty applies an additional constraint on the
C=A boundary. All of these findings indicate that the ex- existence of persistent shock structures. Nonethe]ess, s_maller
perimental conditions for non-forward-moving shocks are ei-Segments of a bunching wave frain can s_how Intermittent
ther hard to find or nonexisting in the CHD-BZ reaction. sequences of shock propagation as exemplified by the cluster

Moreover, we should mention that the analogous cases fgPrmation in Fig. &b).
A <1 might imply the destacking of wave trains in shocklike
processes.

The existence of sustained shock structures is subject to The stacking of excitation pulses as well as the formation
an additional limitation that arises from a wave train insta-of the accompanying shock structures is not limited to one-

IV. TWO-DIMENSIONAL WAVE PATTERNS
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patterns. In this image sequence, two target patterns undergo
successive wave collisions. As expected, the collisions occur
on the line connecting the pacemakégel]. The collision
point shifts into the region of lower frequency and eventually
wipes out the slow pacemakfgee Fig. &)]. These dynam-
ics are accompanied by the stacking of wave pulses at the
leading front of the combined pattern. Each collision event
creates a pair of cusp-shaped front segments that depart from
the collision point in opposite directions. The cusps fall on a
curve that bends into the high-frequency region. In contrast
to systems with normal dispersion, these cusps disappear as
they become part of the stacked wave padkee white ar-
row in Fig. 8e)]. In addition, a new cusp forms along the
front which in turns acquires the geometry of the leading
wave pulse. Consequently, the rim of stacked pulses has a
consistent shape that is determined solely by the front geom-
etry created in the very first collision. Notice that this master
front also affects the shape of waves generated after the an-
nihilation of the low-frequency pacemaker.

As described above, one-dimensional wave trains can un-

FIG. 7. Stacking of circular pulses within a target pattern. Thedergo complex cascades of bunching events, if their inter-
initial concentrations of NaBrg) CHD, H,S0O,, and ferr_oin are_0.07 pulse distance is on the unstable branch of the dispersion
mol/l, 0.11 mol/l, 2.0 mol/l, and 0.5 mmol/l, respectively. Field of curve (i.e., dc/dr<0). In the following, we present evi-
view: 2020 mnf. dence for this bunching instability in systems with two spa-

tial dimensions. The image sequence in Fig. 9 shows the

dimensional systems. Figure 7 shows a snapshot of a typicalpper right quadrant of a target pattern and its cascading
target pattern in the CHD-BZ reaction. The leading front ofdecay into complex pulse clusters. Additional, high-
this expanding, two-dimensional wave pattern propagates dtequency wave trains enter the field of view from three di-
a slow speed of 3.6 mm/min, whereas faster pu(Se&mm/  rections. In Fig. @a), the target pattern consists of nearly
min) are found around the pacemaker at the lower left cornecircular wave fronts and the radial symmetry is not yet af-
of the figure. At the time of data acquisition, the five outer-fected. However, this early snapshot already shows the first
most excitation pulses had already stacked at an interpuls#gns of pulse bunching, as exemplified by the relatively
distance of 0.44 mm. In the course of the reaction, additionalarge distances between some of the wave fronts. Approxi-
pulses were incorporated into the expanding annulus ofately 30 s lateffFig. 9b)], two fronts have formed a
closely stacked fronts. The resulting shock line is a circlesmooth wave packet, but the subsequent pulses experience
centered around the pacemaker of the target pattern. Its radidéformations of their initially circular shape. In the course of
velocity (2.8 mm/min equals the shock speed expected fortime, the deformations grow in amplitude and give rise to the
the analogous pseudo-one-dimensional system. Consedggled fronts shown in Fig. @).
quently, Eqs(1) and(2) can be applied for the description of  The last results provide insights into the dynamics of
this highly symmetric wave pattern. bunching waves in two-dimensional CHD-BZ systems. They

Figure 8 presents an example of the effect of anomalouseveal that the bunching instability affects not only the radial
dispersion on the interaction between two-dimensional wavénterpulse spacing, but also the lateral degrees of freedom.

FIG. 8. Colliding waves of tar-
get patterns in the CHD-BZ reac-
tion. Time between shapshots: 120
s. The initial concentrations of
NaBrO,;, CHD, H,S0O,, and fer-
roin are 0.07 mol/l, 0.11 mol/l, 2.0
mol/l, and 0.5 mmol/l, respec-
tively. Field of view: 20
X 15 mnt.
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NP -

FIG. 9. Typical example for wave bunching in
two-dimensional CHD-BZ systems. Time be-
tween snapshots: 30 s. The initial concentrations
of NaBrO;, CHD, H,S0Q,, and ferroin are 0.14
mol/l, 0.25 mol/l, 2.0 mol/l, and 0.5 mmoll/l, re-
spectively. Field of view: 2820 mnt.

-

Our observations suggest that different angular segments (?ropagation would be interesting because the phenomenon

tr}ebuns:]a_lble wave tralr?_ b_e%m to undergo dfllfferen;sequen(.: thplies the transport of information against the direction of

fy of the Unstable viave pattern Lo mintte perturbations suciieve Propagation. More complex dynamics are observed for
wave trains with long interpulse distances. These undergo an

as might arise from intrinsic fluctuations and/or the high-. tability that aenerates metastable wav kets in )
frequency waves at the edges of Fig. 9. However, along yistabiity that generates metastable wave packets in a cas

given front the bunching sequences cannot develop indepe _adeh_of puncfg_r:_g elvents. In t\go-drl]mensmnr?l media, the
dently, because the resulting front deformations alter the loPUnching instability also affects the shape of the front curves

cal velocities according to the well-known eikonal equation2nd generates laterally moving deformations. Although our

[27] and cause changes in the normal directions of the frontEXperimental results are obtained exclusively from the excit-
This coupling induces bumpy wave fronts along which the@ble CHD-BZ reaction, they are most likely characteristic for

deformations can propagate in lateral direction. Recentlyany excitable systems with anomalous dispersion, such as

Steinbock reported a related phenomenon for the front dygertain surface reactions and various biological media

namics in the wake of planar wave pul$€s]. In numerical [18,19. The comprehensive analysis of this class of reaction-

simulations, it was shown that oscillatory dispersion can giveliffusion systems is therefore an important challenge for fu-

fise to stationary solutions that embrace various sigmoidal!® investigations. In particular, it will be interesting to
front geometries. Their inflection point travels in the lateralStudy the impact of anomalous dispersion on the encoding

direction and mediates transitions between different, stabi@d transport of information. Recent neurophysiological
interpulse distances. In our experiments, however, only ongtudies provide growing evidence for neuronal codes that go

stable distance exists and long wavelengths are metastabfgeyond the classic integrate-and-fire scheme by directly uti-
This difference might contribute to the complexity of the lizing the interpulse distances of action potentie&8]. For

front geometries shown in Fig(®. example, it was shown that neurons in the peripheral audi-
tory system can encode information on the basis of indi-
V. CONCLUSIONS vidual pulse interval§30]. From a more general point of

) ) view, these nontraditional codes raise fundamental questions
Our experiments demonstrate the existence of constanfegarding the stability and dynamics of patterned wave
speed shock structures in one- and two-dimensionakains. We believe that the investigation of the CHD-BZ sys-

CHD-BZ media. The shock propagates in the forward directem will provide useful insights into these intriguing aspects
tion and its velocity can be predicted from a simple geo-of excitable systems.

metrical analysis. Nonetheless, this analysis allows for back-
ward traveling shocks, if the overshoot of the dispersion
curve is sufficiently large. An experimental demonstration of
reverse shock This work was supported by the Florida State University.
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