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Shock structures and bunching fronts in excitable reaction-diffusion systems

Chad T. Hamik and Oliver Steinbock*
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390

~Received 16 November 2001; published 8 April 2002!

We report experimental results on the dynamics of excitation waves in a modified Belousov-Zhabotinsky
reaction. The waves in this system obey nonmonotonic dispersion relations. This anomaly induces the stacking
of excitation fronts into patterns with stable interpulse distances. The stacking process creates either a traveling
shock structure or a cascade of bunching events in which metastable wave packets are formed. The direction
and the speed of the shock are explained in terms of a simple geometrical analysis. We also present experi-
mental evidence for the corresponding instabilities in two-dimensional systems. Here, wave stacking generates
atypical structures in the collision of target patterns and wave bunching is accompanied by complex front
deformations.
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I. INTRODUCTION

Excitable systems reveal a wealth of spatiotemporal st
tures that have fascinated scientists for several decades@1,2#.
Classic examples of these dissipative patterns include ro
ing spiral waves@3# and stationary Turing patterns@4#. The
point dynamics of excitable systems is characterized by
existence of at least one steady state that is locally stable
susceptible to perturbations that exceed a particular thres
value @5#. In response to a sufficiently strong perturbatio
the systems carry out a long excursion through phase s
before they eventually return to the~newly excitable! rest
state. This type of temporal behavior in conjunction w
appropriate transport processes can give rise to cons
amplitude pulses, which have been observed in a variet
experimental systems, such as catalytic surfaces@6#, homo-
geneously catalyzed reaction media@1#, aggregating slime
mold colonies@7#, single cells@8#, and yeast extracts@9#.
Dynamically closely related are waves of excitation in ne
ronal and cardiac tissue where pulses of electric activity p
vide the means for the rapid and undamped relay of inform
tion and control signals@5#.

The dynamics and stability of wave trains in excitab
systems is dictated by the underlying dispersion relation
describes the speed of an excitation pulse,c, as a function of
the distance to its predecessor,l @10#. In many experimenta
systems, the dispersion relation is a monotonically increas
function that approaches a constant speedc0 for increasing
values ofl @11#. This behavior is known as normal dispe
sion and implies that the solitary pulse is the only station
solution. Accordingly, all wave trains increase their inte
pulse distances continuously, although this effect beco
less and less pronounced in the course of the process@12#.

In contrast to this normal behavior, anomalous dispers
relations involve a single overshoot or damped oscillatio
that converge to a constant speedc0 for increasing wave-
lengthsl @13#. Normal as well as anomalous dispersion ar
if the stable homogeneous solution can be represented
node in a set of ordinary differential equations~ODEs! de-
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scribing the dynamics near the stationary solution in com
ing coordinates@13#. If this state is a focus in the correspon
ing ODE system, the dispersion relation will typical
oscillate in the limit of large interpulse spacing. Notice th
the valuec0 equals the speed of the solitary pulse. In the c
of anomalous dispersion, stable finite wave trains can e
for a discrete set of interpulse distancesl i . The stability
criteria for these distances arec(l i)5c0 and dc/dl.0,
which assures that all pulses travel with the velocity of t
leading front and that small perturbations to the relat
pulse positions vanish@14–16#. The impact of these simple
stability criteria on the transport of information through e
citable media is remarkable, because wave trains in wh
the the interpulse distances equall i are error correcting.

Dispersion relations with damped oscillations are kno
to exist in neuronal systems for which the phenomenon
referred to as supernormal excitability@17#. In addition,
some indications for anomalous dispersion have been
tained in experiments on chemical waves that organize
aggregation of the cellular slime moldDictyostelium discoi-
deum@18#. More concrete evidence, however, is provided
recent studies on the reduction of NO with CO on Pt~100!
surfaces@19# and the Belousov-Zhabotinsky~BZ! reaction
@20,21#. The latter system involves the oxidation of an o
ganic compound by bromate in acidic solution. Recently,
have shown that this system obeys nonmonotonic, nono
latory dispersion relations for a broad range of initial con
tions, if the reaction is carried out with 1,4-cyclohexanedio
~CHD! as the organic reactant@21,22#. Our experiments re-
vealed accelerating pulses that are the hallmark of anoma
dispersion. Moreover, we observed the stacking of wave
particular interpulse distances that we identified as the st
distancesl0 mentioned above.

Here, we present results on the dynamics of excitat
pulses derived from experiments with pseudo-one- and t
dimensional CHD-BZ media@23#. In particular, we analyze
the shocklike ‘‘absorption’’ of fast pulses into slow moving
stacked wave packets, and a more complex wave train in
bility in which the pulses bunch into numerous, metasta
wave packets. To our knowledge, the concept of shock
structures in wave patterns of excitable systems was
introduced by Howard and Kopell@24#. These authors
©2002 The American Physical Society24-1
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found that reaction-diffusion systems have solutions
which there are rapid transitions in local wave number a
frequency over a localized transition region. In the simpl
case, these shocks manifest themselves in a localized ch
in pulse density~i.e., the number of pulses per unit length!.
Later, Horikawa@25# studied shock dynamics in a FitzHugh
Nagumo model and revealed a close relation to the sh
wave solution of Burgers equation. Notice that our use of
term shock does not necessarily imply a strictly disconti
ous solution.

II. EXPERIMENT

Our experiments are carried out with the ferroin-catalyz
Belousov-Zhabotinsky reaction using 1,4-cyclohexanedi
as the organic substrate. The reagents are of the highest g
commercially available and used without further purificatio
The stock solutions are prepared from high-purity wa
Most of our measurements involve ferroin and sulfuric a
at initial concentrations of 0.5 mmol/l and 2.0 mol/l, respe
tively. To approximate the conditions of spatially one-a
two-dimensional systems, the BZ solutions are filled in
thin capillary tubes~inner diameter 1.1 mm! or the gap be-
tween glass plates spaced at 0.5 mm, respectively. In con
to the classical BZ reaction that employs malonic acid,
gaseous products and hence no undesired gas bubble
generated in the oxidation of CHD@26#. The reaction system
is kept at a constant temperature of 2561°C and is illumi-
nated with white light. The detection of the evolving wa
patterns is performed with a monochrome charge-coup
device camera. The optical contrast in the reaction med
arises from the different absorption spectra of the red
couple ferroin/ferriin. For further analysis, the video sign
are digitized at a sampling rate of 0.5 Hz during the expe
ment.

III. ONE-DIMENSIONAL WAVE PATTERNS

Figure 1 illustrates the typical stacking dynamics of ex
tation waves in pseudo-one-dimensional CHD-BZ syste
The individual frames are time-space plots generated by
ing up spatial absorption profiles at a constant sampling r
The vertical and horizontal axes represent time and sp
respectively. In these plots each excitation pulse generat
bright band that slopes according to the inverse velocity
the given pulse. The examples show slow leading pulses
are followed by numerous fast fronts, all of which propag
from the left to the right. As the fast pulses encounter
refractory tail of a slow predecessor, they abruptly decele
to form a closely stacked wave packet that moves with
speed of the leading front. In this process, the wave pa
increases in size, but maintains a constant spacing betw
its individual members. More importantly, Fig. 1 illustrate
that the point at which the incoming fronts decelerate its
moves at a characteristic velocity. Because the density
pulses within the stable wave packet is significantly hig
than in the approaching wave train, this point can be con
ered a shock structure. It should be emphasized that the
namics shown in Fig. 1 are characteristic for excitable me
04622
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with anomalous dispersion relations and do not occur in s
tems with normal dispersion.

The formation and propagation of the shock point are
lustrated in the schematic drawing shown in Figure 2. He
the motion of three excitation fronts and the resulting sho
trajectory are depicted as solid and dashed lines, respecti
This simplified view of the real process assumes an ins
taneous deceleration of the pulses as they are incorpor
into the closely stacked wave packet. In the following, w
denote the velocities of the leading pulse, the fast incom
wave train, and the shock point asc0 , c1, and cs , respec-
tively. The interpulse spacings within the stacked wave pa
ets and the fast wave train are referred to asl0 and l1,

FIG. 1. Time-space plots of stacking excitation pulses. The d
background corresponds to the excitable, chemically reduced,
of the reaction medium, whereas the traveling pulses are re
sented by bright bands. The vertical and horizontal axes span 4
and 40 mm, respectively, with time evolving in the upward dire
tion. Initial concentrations:@ferroin# 5 0.5 mmol/l, @H2SO4#
52.0 mol/l, @CHD#50.05 mol/l~a!, 0.13 mol/l~b!, 0.19 mol/l~c!,
and @NaBrO3#50.03 mol/l ~a!, 0.09 mol/l ~b!, 0.14 mol/l ~c!.
4-2
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SHOCK STRUCTURES AND BUNCHING FRONTS IN . . . PHYSICAL REVIEW E65 046224
respectively. In the framework of the assumption abo
straightforward calculus yields an expression for the veloc
of the shock point:

cs5
c0l12c1l0

l12l0
. ~1!

To evaluate the applicability of this equation to the pu
dynamics in the CHD-BZ system, we carried out numero
experiments for different sets of initial conditions. These e
periments yielded a broad range of values forc0 , c1 , l0, and
l1. The directly measured shock velocities span an inte
between 1.0 and 5.6 mm/min. The resulting data are sum
rized in Fig. 3. The plot employs coordinates for which t
experimental data are expected to show a proportional
pendence~solid line!. Despite the simplicity of our model
the data are in excellent agreement with Eq.~1!, which indi-
cates that the deceleration of the pulses is indeed very
and not complicated by additional processes.

An interesting aspect of Eq.~1! is that it allows the for-
mation of resting shock points and of shocks that mo
against the direction of the excitation pulses. The structur

FIG. 2. Schematic drawing of the formation and propagation
a shock point during the abrupt deceleration of excitation pulse

FIG. 3. Comparison of experimental data~solid circles! to the
linear dependence~solid line! predicted by Eq.~1!. Experiments are
carried out for various initial concentrations of CHD~0.05 to 0.21
mol/l! and NaBrO3 ~0.03 to 0.14 mol/l!.
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the underlying dependence can be seen more easily by
writing Eq. ~1! in the dimensionless form

Cs5
L2C

L21
, ~2!

whereCs5cs /c0 , C5c1 /c0, andL5l1 /l0. ForL.1, this
expression indicates the existence of three main cases
can be summarized as follows:~a! the excitation pulses and
the accompanying shock point propagate in the same di
tion (L.C); ~b! the shock point rests, although the puls
are moving (L5C); ~c! the excitation pulses and the shoc
point propagate in opposite directions (L,C). The ex-
amples shown in Fig. 1 belong to the case~a! and up to now
we could not obtain any convincing evidence for resting
backward traveling shocks in the CHD-BZ system. Nev
theless, one must consider that the cases~b! and ~c! are dif-
ficult to observe in our experiments, because the excita
pulses nucleate from a small, resting pacemaker. In
framework of instantaneously decelerating pulses~Fig. 1!,
the shock point would therefore be identical to the locat
of the pacemaker, ifL<C. Hence, the experimental analys
of resting and/or backward propagating shocks would req
the design of an experiment in which the velocities of t
excitation pulses are externally perturbed in the course of
reaction. In the simplest case, this could be achieved b
sudden change in the system’s overall temperature or by
utilization of the reaction’s photosensitivity@26#. In this
study, we have not attempted to realize this particular type
experiment. However, some conclusions regarding the p
ence or absence of theL<C scenario can be drawn from th
data discussed below.

The plot in Fig. 4 shows 12 dimensionless shock velo
ties ~bold numbers! according to their location in the (L,C)
plane. The experimental data are complemented by sev
lines that correspond to the functionC5L2Cs(L21) @see
Eq. ~2!# at different values ofCs . These values range be

f

FIG. 4. Shock velocities (Cs) plotted in the plane of dimension
less pulse velocities and interpulse distances. Bold numbers ind
experimental results. Dotted and solid lines are obtained fr
Eq. ~2!.
4-3
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CHAD T. HAMIK AND OLIVER STEINBOCK PHYSICAL REVIEW E 65 046224
tween 0.0 and 0.9 and are denoted as tilted numbers.
experimental results are in good agreement with Eq.~2!, al-
though some of the lower values seem to be underestim
by the theoretical expression. Notice that resting and ba
ward propagating shock points are characterized byCs50
andCs,0, respectively. However, the lowest shock veloc
Cs that we could measure reliably in our experiments is
proximately 0.6 and no evidence for velocities below 0.3 w
found.

The results above reveal an important connection betw
the shocklike structures and the underlying anomalous
persion relation of the excitable medium. Figure 5 show
dispersion curve obtained from the transient interaction
stacking excitation pulses in the CHD-BZ system@21#. The
experimental data are rescaled to the dimensionless varia
C andL and complemented by a schematic drawing of t
nonmonotonic, nonoscillatory dispersion curves. A necess
criterion for the existence of non-forward-moving shocks
that the dispersion curve intersects theC5L line for L.1.
This scenario is exemplified by the curvea in the inset of
Fig. 5, whereas curveb describes a system in which shoc
and pulses always propagate in the same direction. The m
sured dispersion relation is found to stay below the criti
C5L boundary. All of these findings indicate that the e
perimental conditions for non-forward-moving shocks are
ther hard to find or nonexisting in the CHD-BZ reactio
Moreover, we should mention that the analogous cases
L,1 might imply the destacking of wave trains in shockli
processes.

The existence of sustained shock structures is subjec
an additional limitation that arises from a wave train ins

FIG. 5. Dispersion relation of stacking pulses in the CHD-B
reaction in terms of the dimensionless pulse speedC and interpulse
distanceL. The initial concentrations of CHD, NaBrO3 , H2SO4,
and ferroin are 0.15 mol/l, 0.1 mol/l, 2.0 mol/l, and 0.5 mmo
respectively. The inset shows a schematic drawing of two ano
lous dispersion relations. Only curvea will allow the formation of
backward propagating shocks.
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bility known as pulse bunching. This instability affects on
wave trains in which the interpulse distance is on the dow
sloping branch of the dispersion curve~dashed curve seg
ments in the inset of Fig. 5!. Two typical examples of this
bunching instability in pseudo-one-dimensional CHD-B
systems are shown in Fig. 6.

The bunching instability was first described in theoretic
studies by Rinzel and co-workers@12,13#. It involves the
decay of a wave train into various wave packets that con
of individual pulses spaced at a stable distance (l0). This
process occurs as a cascade of bunching events in which
spatial separation between neighboring clusters increase
less unstable distances. In the CHD-BZ system, the resu
metastable patterns can have remarkably long lifetimes,
it is expected that they will eventually generate a single wa
packet in which all pulses are stacked in a stable fashion.
bunching instability applies an additional constraint on t
existence of persistent shock structures. Nonetheless, sm
segments of a bunching wave train can show intermitt
sequences of shock propagation as exemplified by the clu
formation in Fig. 6~b!.

IV. TWO-DIMENSIONAL WAVE PATTERNS

The stacking of excitation pulses as well as the format
of the accompanying shock structures is not limited to o

a-

FIG. 6. Time-space plots of wave trains that bunch into clust
of stable wave packets. The vertical and horizontal axes span 4
and 40 mm, respectively, with time evolving in the upward dire
tion. The initial concentrations of CHD, NaBrO3 , H2SO4, and fer-
roin are 0.15 mol/l, 0.1 mol/l, 2.0 mol/l, and 0.5 mmol/l, respe
tively.
4-4
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SHOCK STRUCTURES AND BUNCHING FRONTS IN . . . PHYSICAL REVIEW E65 046224
dimensional systems. Figure 7 shows a snapshot of a typ
target pattern in the CHD-BZ reaction. The leading front
this expanding, two-dimensional wave pattern propagate
a slow speed of 3.6 mm/min, whereas faster pulses~5.8 mm/
min! are found around the pacemaker at the lower left cor
of the figure. At the time of data acquisition, the five oute
most excitation pulses had already stacked at an interp
distance of 0.44 mm. In the course of the reaction, additio
pulses were incorporated into the expanding annulus
closely stacked fronts. The resulting shock line is a cir
centered around the pacemaker of the target pattern. Its r
velocity ~2.8 mm/min! equals the shock speed expected
the analogous pseudo-one-dimensional system. Co
quently, Eqs.~1! and~2! can be applied for the description o
this highly symmetric wave pattern.

Figure 8 presents an example of the effect of anomal
dispersion on the interaction between two-dimensional w

FIG. 7. Stacking of circular pulses within a target pattern. T
initial concentrations of NaBrO3, CHD, H2SO4, and ferroin are 0.07
mol/l, 0.11 mol/l, 2.0 mol/l, and 0.5 mmol/l, respectively. Field
view: 20320 mm2.
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patterns. In this image sequence, two target patterns und
successive wave collisions. As expected, the collisions oc
on the line connecting the pacemakers@24#. The collision
point shifts into the region of lower frequency and eventua
wipes out the slow pacemaker@see Fig. 8~f!#. These dynam-
ics are accompanied by the stacking of wave pulses at
leading front of the combined pattern. Each collision eve
creates a pair of cusp-shaped front segments that depart
the collision point in opposite directions. The cusps fall on
curve that bends into the high-frequency region. In contr
to systems with normal dispersion, these cusps disappea
they become part of the stacked wave packet@see white ar-
row in Fig. 8~e!#. In addition, a new cusp forms along th
front which in turns acquires the geometry of the leadi
wave pulse. Consequently, the rim of stacked pulses ha
consistent shape that is determined solely by the front ge
etry created in the very first collision. Notice that this mas
front also affects the shape of waves generated after the
nihilation of the low-frequency pacemaker.

As described above, one-dimensional wave trains can
dergo complex cascades of bunching events, if their in
pulse distance is on the unstable branch of the disper
curve ~i.e., dc/dl,0). In the following, we present evi
dence for this bunching instability in systems with two sp
tial dimensions. The image sequence in Fig. 9 shows
upper right quadrant of a target pattern and its cascad
decay into complex pulse clusters. Additional, hig
frequency wave trains enter the field of view from three
rections. In Fig. 9~a!, the target pattern consists of near
circular wave fronts and the radial symmetry is not yet
fected. However, this early snapshot already shows the
signs of pulse bunching, as exemplified by the relativ
large distances between some of the wave fronts. Appr
mately 30 s later@Fig. 9~b!#, two fronts have formed a
smooth wave packet, but the subsequent pulses experi
deformations of their initially circular shape. In the course
time, the deformations grow in amplitude and give rise to
wiggled fronts shown in Fig. 9~c!.

The last results provide insights into the dynamics
bunching waves in two-dimensional CHD-BZ systems. Th
reveal that the bunching instability affects not only the rad
interpulse spacing, but also the lateral degrees of freed
-
0
f

FIG. 8. Colliding waves of tar-
get patterns in the CHD-BZ reac
tion. Time between snapshots: 12
s. The initial concentrations o
NaBrO3, CHD, H2SO4, and fer-
roin are 0.07 mol/l, 0.11 mol/l, 2.0
mol/l, and 0.5 mmol/l, respec-
tively. Field of view: 20
315 mm2.
4-5
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FIG. 9. Typical example for wave bunching i
two-dimensional CHD-BZ systems. Time be
tween snapshots: 30 s. The initial concentratio
of NaBrO3, CHD, H2SO4, and ferroin are 0.14
mol/l, 0.25 mol/l, 2.0 mol/l, and 0.5 mmol/l, re
spectively. Field of view: 20320 mm2.
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Our observations suggest that different angular segmen
the unstable wave train begin to undergo different sequen
of bunching events. This inhomogeneity reflects the sens
ity of the unstable wave pattern to minute perturbations s
as might arise from intrinsic fluctuations and/or the hig
frequency waves at the edges of Fig. 9. However, alon
given front the bunching sequences cannot develop inde
dently, because the resulting front deformations alter the
cal velocities according to the well-known eikonal equati
@27# and cause changes in the normal directions of the fro
This coupling induces bumpy wave fronts along which t
deformations can propagate in lateral direction. Recen
Steinbock reported a related phenomenon for the front
namics in the wake of planar wave pulses@28#. In numerical
simulations, it was shown that oscillatory dispersion can g
rise to stationary solutions that embrace various sigmo
front geometries. Their inflection point travels in the late
direction and mediates transitions between different, sta
interpulse distances. In our experiments, however, only
stable distance exists and long wavelengths are metast
This difference might contribute to the complexity of th
front geometries shown in Fig. 9~c!.

V. CONCLUSIONS

Our experiments demonstrate the existence of const
speed shock structures in one- and two-dimensio
CHD-BZ media. The shock propagates in the forward dir
tion and its velocity can be predicted from a simple ge
metrical analysis. Nonetheless, this analysis allows for ba
ward traveling shocks, if the overshoot of the dispers
curve is sufficiently large. An experimental demonstration
reverse shock
hy
,

r-
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propagation would be interesting because the phenome
implies the transport of information against the direction
wave propagation. More complex dynamics are observed
wave trains with long interpulse distances. These undergo
instability that generates metastable wave packets in a
cade of bunching events. In two-dimensional media,
bunching instability also affects the shape of the front cur
and generates laterally moving deformations. Although
experimental results are obtained exclusively from the ex
able CHD-BZ reaction, they are most likely characteristic
many excitable systems with anomalous dispersion, suc
certain surface reactions and various biological me
@18,19#. The comprehensive analysis of this class of reacti
diffusion systems is therefore an important challenge for
ture investigations. In particular, it will be interesting
study the impact of anomalous dispersion on the encod
and transport of information. Recent neurophysiologi
studies provide growing evidence for neuronal codes tha
beyond the classic integrate-and-fire scheme by directly
lizing the interpulse distances of action potentials@29#. For
example, it was shown that neurons in the peripheral au
tory system can encode information on the basis of in
vidual pulse intervals@30#. From a more general point o
view, these nontraditional codes raise fundamental quest
regarding the stability and dynamics of patterned wa
trains. We believe that the investigation of the CHD-BZ sy
tem will provide useful insights into these intriguing aspe
of excitable systems.
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