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Lyapunov exponents, noise-induced synchronization, and Parrondo’s paradox
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We show that Lyapunov exponents of a stochastic system, when computed for a specific realization of the
noise process, are related to conditional Lyapunov exponents in deterministic systems. We propose to use the
term stochastically induced regularity instead of noise-induced synchronization and explain the reason why.
The nature of stochastically induced regularity is discussed: in some instances, it is a dynamical analog of
Parrondo’s paradox.
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The apparent counterintuitive discovery that stocha
terms may increase coherence and induce order in a l
variety of nonlinear systems has recently received consi
able attention. Examples of such noise-induced order p
nomena include stochastic resonance@1#, coherence reso
nance @2#, noise-induced synchronization@3,4#, noise-
induced pattern formation@5#, spatiotemporal stochasti
resonance@6#, doubly stochastic resonance@7#, to mention
only a few. Noise-induced synchronization has been a ra
controversial subject since its appearance@3,4#. In this paper
~i! we explain that Lyapunov exponents of a stochastic s
tem are related to conditional Lyapunov exponents int
duced in the context of chaos synchronization by Pecora
Carroll @8#; ~ii ! we propose to use the termstochastically
induced regularityinstead of noise-induced synchronizatio
and explain the reason why; and~iii ! we discuss the nature o
stochastically induced regularity: in some instances, it i
dynamical analog of Parrondo’s paradox@9#.

Many natural phenomena can be described as

u̇5F~u!,
~1!

v̇5G~v,u!,

where both u and v are assumed for simplicity to b
d-dimensional vectors. We assume that Eq.~1! has an attrac-
tor A and the driving system has an attractorAdr . We write
a i , i 51, . . . ,d, for d Lyapunov exponents that correspon
to the natural measure of the drive attractor. The system~1!
has 2d Lyapunov exponentsa i andl i ; l i are often referred
to as conditional Lyapunov exponents.

It might happen and we argue below that this in fact
very common that, when the drive is chaotic, the influence
this chaotic behavior to the response is effectively rando
For example, consider the case for which the dynamics of
response is reduced to the following map:

xn115 f ~xn ,jn!, ~2!

wheref :M→M is a ~chaotic! mapping defined on the man
fold M, and the second argument inf arises becausef is
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chosen randomly at each iteraten according to some rule. We
view jn as the limit of a deterministic process, e.g., we co
siderjn5u1(nT) to be the value of one of the coordinates
the trajectoryu(t), sayu1, at timet5nT. If the dependence
of u(t) on t is chaotic andT is greater than some suitab
correlation time of the flow, we may assume the variation
f with jn to be effectively random and call Eq.~2! a random
dynamical system@10#. With this point of view it makes
sense to characterize the dynamics of Eq.~2! by Lyapunov
exponents evolved under the same realization of the ran
processjn , or equivalently, under the same initial conditio
of the flow dynamicsu. These exponents are exactly th
conditional Lyapunov exponents. We stress that the larg
Lyapunov exponent of Eq.~2! is either not well-defined
quantity or is infinity large number. In contrast, the larges
conditional Lyapunov exponent of Eq.~2! may be positive as
well as negative. When the largest conditional Lyapunov
ponent is negative for the stochastic system~2!, we term this
phenomenon asstochastically induced regularityin random
dynamical systems. The case when the largest conditio
Lyapunov exponent is negative for the deterministic syst
~1! is referred to as generalized synchronization@11#.

One possible motivation for studying the stochastic mo
els ~2! comes from consideration of particles floating on t
surface of a fluid whose flow velocity has a complicated tim
dependence@10#. Yu, Ott, and Chen has shown that in
particular example of Eq.~1!, response can be reduced to
two-dimensional~2D! mapping known as Zaslavsky ma
@12# ~when jn50), wherejn is independent random vari
ables with uniform probability density in 0<j<2p. Another
motivation comes from biology. We may think that the driv
term in Eq.~1! represents the effect of environmental flu
tuation on the response, and model the response as add
and/or multiplicative stochastic process. In particular, we
cus onperiodic dichotomous noiseprocessa(t) defined as
follows: After lapses of fixed durationt, a(t) takes the value
a0 with probabilityp or a1 with probability 12p. Examples
of such biologically motivated stochastic models can
found in Ref.@13#.

We start our discussion with periodic dichotomous no
process; we consider the case, in which the dynamics of
response may be reduced to the following stochastic mo

v̇5
1

2
@12n~ t !#G0~v!1

1

2
@11n~ t !#G1~v!, ~3!
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where n(t) is the continuous-time periodic dichotomou
noise process

n~ t !5(
i 50

`

j iu~ t2 i t!u„~ i 11!t2t…, t>0,

driven by the discrete~Bernoulli trial! noise processj i de-
fined asj i51 with probabilityp andj i521 with probabil-
ity 12p. In the last equation,u is the Heaviside function
The stochastic differential equation~3! can be integrated
over the time intervalt to give the two branches stochast
map, which can be rewritten as

xn115f i~xn!, ~4!

wherei 50,1 and one of the mapsf0 ,f1 is applied randomly
at each iteration with probabilityp and 12p, respectively.
Stochastic processes~4! have been studied extensively
connection with stochastically induced coherence in bista
systems; a popular model of such process consists of
maps of the interval@0,1# given by f i5cx1 i (12c), where
0,c,1 is a parameter@14#. Unfortunately, it has been lon
known @15# that there are many values ofc for which the
invariant density of Eq.~4!, with f i5cx1 i (12c), does not
exist. However, in any experiment the dynamical state of
system cannot be precisely known and thus the station
state can only be determined to a finite precision. A we
defined coarse-grained-invariant densitydoes exist for the
process~4! @16#, and this is the quantity used here for a
computations.

We now show that stochastically induced regularity c
be observed in Eq.~4!, when bothf i are chaotic. The follow-
ing example is a dynamical analog of Parrondo’s para
@9#. We start by considering two maps of the interval@0,1#
defined as

f 055
x

a
, 0,x,a,

ax

12a
2

a2

12a
, a,x,1,

~5!

and

f 155
ax

12a
112a, 0,x,12a,

x

a
2

12a

a
, 12a,x,1,

~6!

where 0,a,1. Both maps are chaotic with Lyapunov e
ponent:

m5
1

22a
lnS 1

aD1
12a

22a
lnS a

12aD .

In the last equationm is the~ordinary! Lyapunov exponent of
the deterministic systemxn115 f i(xn) wherei is either 0 or
1. The stochastic process~4! has one conditional Lyapuno
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exponents. Figure 1 shows the density of the natural~coarse-
grained-invariant! measure fora50.2 andp50.5. The cor-
responding conditional Lyapunov exponent isl520.158.
Figure 2 shows the conditional Lyapunov exponent of E
~4! versus the parametersa and p. We now explain why
conditional Lyapunov exponent is negative. LetA5(0,a)
andB5(a,1) be two subsets of the phase space off 0. In a
similar way, letC5(0,12a) andD5(12a,1) be two sub-
sets of@0,1# for the mapf 1. When only one map is applied
say f 0, the probability of a trajectory to visit the regionsA
and B is pA51/(22a) and pB5(12a)/(22a). Thus, for
a50.2 we havepA50.556, pB50.444, andm50.556 ln 5
10.444 ln 0.2550.278. The probability of visiting the re
gionsA,B,C, andD when the switching is allowed become
for a50.2 and p50.5, pA5pD50.205, and pB5pC
50.295. Therefore, l5230.205 ln 51230.295 ln 0.25
520.158. Without switching, a trajectory tends to spend
longer time in the left regionA than in the right regionB for
the mapf 0, and vice versa for the second mapf 1: a trajec-
tory tends to spend a longer time in the right regionD than in
the left regionC. The coin flip erases this asymmetry. As
result of the flipping, the trajectory spends on average

FIG. 1. Probability density of Eq.~4! with f i given by Eqs.~5!
and ~6! in the phase space@0,1# of the map f 0. The probability
density in the phase space@0,1# of the mapf 1 is symmetric to the
one shown here with respect to 1/2. Inset figure: the probab
density of the mapf 0 without switching.

FIG. 2. Conditional Lyapunov exponent of Eq.~4! with f i given
by Eqs. ~5! and ~6! versus the parametersa and p. Inset figure:
conditional Lyapunov exponentl(a) vs a for p50.5.
5-2
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longer time in the region with slopea/(12a), which results
in negative conditional Lyapunov exponent.

The apparent paradox of the above example—that fl
flopping between two subsystems of a system, each of w
independently has a propertyA ~for example, is chaotic!, can
allow a system to have a propertyB ~for example, to become
nonchaotic! also applies to Brownian ratchets@20# and
games of chance@21#. For instance, consider the game th
illustrate Parrondo’s paradox@21#. The game is played on 1
35 checkerboard with a black squarein the middle. T
player moves the piece either forward or backward by roll
a pair of dice and consulting two rule sets. The object is
start in the middle and get to the right~winning! side before
the left ~losing! side. The first rule set is the piece mov
forward from black if the sum of pair of rolling dice is 11
and from white if the sum is 7 or 11; the piece moves ba
ward from black if the sum is 2,4 or 12, and from white if th
sum is 2,3 or 12. The second rule set is identical to fi
except for reversing the roles of black and white. In oth
words, the second rule set is the piece moves forward f
white if the sum is 11, and from black if the sum is 7 or 1
the piece moves backward from white if the sum is 2,4 or
and from black if the sum is 2,3 or 12. If the player us
either set of rules, the player tends to lose. The relative p
ability of winning equals the number of ways to move fo
ward from white to black times the number of ways to mo
forward from black to white, which is equal to 832. Losing
involves moving backward twice, and the relative probabil
is equal to 534. Therefore, the player can expect to mo
forward only 80 times for every 100 backward moves.

However, randomly switching between the sets rever
the direction and the player tends to win. Now, the relat
probability of winning is the average number of forwa
moves:@(812)/2#@(812)/2#525, while the relative prob-
ability of losing is@(415)/2#@(415)/2#520.25. Therefore,
the player can expect to move forward 100 times for ev
81 backward moves. The explanation is exactly the sam
in our example with chaotic maps. Without switching, t
piece tends to spend a longer time on a black square tha
a white one and vice versa for the second set of rules.
coin flip erases this asymmetry. As a result of the flippin
two losing games become winning.

The phenomenon that has been just described is also
served for different nonlinear systems and/or stochastic
cesses. For example, instead of Eqs.~5! and ~6! we usef 0

54x(12x) and f 15121/A2A12(12u122xu)2, which are
both chaotic and observe that periodic dichotomous no
with p50.5 results in a negative conditional Lyapunov e
ponent,l520.11 @17#.

A deterministic systemẋ5F(x) is called regular if its
largest Lyapunov exponent is negative. In analog with t
notion a stochastic process for which the largest conditio
Lyapunov exponent is negative, is calledconditionally regu-
lar stochastic process. For such system and for the s
realization of the stochastic process, two different initial co
ditions will converge to thesame~stochastic! trajectory. This
explains the termstochastically induced regularityused
04621
-
ch

t

e
g
o

-

t,
r
m
;
,

b-

s
e

y
as

on
e
,

b-
o-

e
-

s
al

e
-

through the paper. Therefore, in order to characterize
chastically induced regularity we define

s~n!5ux~n!2y~n!u,

wherex(n) andy(n) are two trajectories of Eq.~4! evolved
under the same realization of the random processjn . When
conditional Lyapunov exponent is negative,s(n) approaches
zero asn goes to infinity. However, due to finite precision o
computers,s(n) may become zero for finite time. To avoi
this artificial result, small noise of the order of 10210 is
added to obtain results in Fig. 3. Figure3 showss(n) as a
function of timen for Eq. ~4! with f i given by Eqs.~5! and
~6! anda50.2 andp50.5. We note that there are intervals
time wheres is small, punctuated by the shorter interva
wheres is of order 1. We can now offer a simple explanatio
of this behavior. An infinite random sequence of 0’s and
contains arbitrary long but finite strings of only 0’s~or 1’s!.
If we interpret 0 and 1 asf 0 and f 1, respectively, the las
statement means that in a typical stochastic trajectory of
~4! one can always find a finite sequence$xi% i 5 l

i 5 l 1k obtained
only through the iteration of the mapf 0 : xi 115 f 0(xi). In
such a case, since the mapf 0 is chaotic, two very close
trajectories~of order 10210) will rapidly diverge from each
other and, therefore,s will become of the order 1. Note tha
above conclusion holds for alla,ac50.297, for which the
conditionl Lyapunov exponent is negative~Fig. 2!. We have
found ~not reported here! the same intermittent behavior an
explanation for different nonlinear systems and/or stocha
processes. Therefore, for conditionally regular stocha
processess(n) always approaches zero through the interm
tent bursts~in which s is of the order of the size of the
attractor@18#!, even when the largest conditional Lyapuno
exponent is an arbitrary large negative number.

We now discuss the relation between stochastically
duced regularity and synchronization. Two coupled identi
chaotic systems, e.g.,x(t) andy(t), exhibit synchronization
of chaos if~i! the largest Lyapunov exponent along the ma
fold x5y is positive and~ii ! the largest Lyapunov exponen
normal to this manifold is negative. Both oscillators befo
and after the synchronization are chaotic, however, in
synchronous statex5y, which is different from the asyn-
chronous state. In this light consider two 1D maps

xn115 f ~xn!1ejn ,

yn115 f ~yn!1ejn , ~7!

FIG. 3. s(n) vs n for Eq. ~4! with f i given by Eqs.~5! and ~6!
anda50.2 andp50.5.
5-3
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driven by a common stochastic function of time. The syst
~7! has two ~conditional! Lyapunov exponents that areal-
ways equal to each other: both equations are exactly
same. Any ‘‘synchronization’’ in Eq.~7! is a consequence o
the fact that the Lyapunov exponents associated with Eq~7!
are both negative,two different initial conditions will con-
verge to the same attractor.It cannot happen that th
Lyapunov exponent along the manifoldx5y is positive and,
at the same time, the Lyapunov exponent normal to
manifold is negative@19#. Therefore, stochastically induce
regularity is a phenomenon that does not have any com
properties with synchronization of periodic and/or chao
signals. It may be also called suppression of chaos in
d.

ev
,

,

t.

h

v

s.
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chastic processes and is characterized by nonchaotic be
ior of the deterministic part of the system~negative condi-
tional Lyapunov exponents!, while as a whole, the system i
stochastic and, therefore, random and erratic.

To conclude, in this paper we have described a no
induced order phenomenon that we term stochastically
duced regularity. It is characterized with negative conditio
Lyapunov exponents and intermittent behavior, it is related
Parrondo’s paradox but not to synchronization phenomen
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