PHYSICAL REVIEW E, VOLUME 65, 046215
Lyapunov exponents, noise-induced synchronization, and Parrondo’s paradox
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We show that Lyapunov exponents of a stochastic system, when computed for a specific realization of the
noise process, are related to conditional Lyapunov exponents in deterministic systems. We propose to use the
term stochastically induced regularity instead of noise-induced synchronization and explain the reason why.
The nature of stochastically induced regularity is discussed: in some instances, it is a dynamical analog of
Parrondo’s paradox.
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The apparent counterintuitive discovery that stochastichosen randomly at each iterat@ccording to some rule. We
terms may increase coherence and induce order in a largeew &, as the limit of a deterministic process, e.g., we con-
variety of nonlinear systems has recently received considesider£,=u,(nT) to be the value of one of the coordinates of
able attention. Examples of such noise-induced order phehe trajectoryu(t), sayu;, at timet=nT. If the dependence
nomena include stochastic resonard coherence reso- of u(t) ont is chaotic andT is greater than some suitable
nance [2], noise-induced synchronizatiofi3,4], noise- correlation time of the flow, we may assume the variation of
induced pattern formatiorf5], spatiotemporal stochastic fwith &, to be effectively random and call E€R) a random
resonancg6], doubly stochastic resonan¢é], to mention  dynamical systenf10]. With this point of view it makes
only a few. Noise-induced synchronization has been a rathegense to characterize the dynamics of E).by Lyapunov
controversial subject since its appearaf@d]. In this paper exponents evolved under the same realization of the random
(i) we explain that Lyapunov exponents of a stochastic sysprocesss,,, or equivalently, under the same initial condition
tem are related to conditional Lyapunov exponents introof the flow dynamicsu. These exponents are exactly the
duced in the context of chaos synchronization by Pecora angonditional Lyapunov exponents. We stress that the largest
Carroll [8]; (ii) we propose to use the terstochastically Lyapunov exponent of Eq(2) is either not well-defined
induced regularityinstead of noise-induced synchronization quantity or is infinity large numberin contrast, the largest
and explain the reason why; afii) we discuss the nature of conditional Lyapunov exponent of E(2) may be positive as
stochastically induced regularity: in some instances, it is avell as negative. When the largest conditional Lyapunov ex-

dynamical analog of Parrondo’s parad®. ponent is negative for the stochastic sysi@n we term this
Many natural phenomena can be described as phenomenon astochastically induced regularitin random
) dynamical systems. The case when the largest conditional
u=F(u), Lyapunov exponent is negative for the deterministic system
(1) (1) is referred to as generalized synchronizatfjib].
v=G(V,u), One possible motivation for studying the stochastic mod-

els (2) comes from consideration of particles floating on the

where bothu and v are assumed for simplicity to be surface of a fluid whose flow velocity has a complicated time
d-dimensional vectors. We assume that B.has an attrac- dependencé10]. Yu, Ott, and Chen has shown that in a
tor A and the driving system has an attractly, . We write  particular example of Eq(1), response can be reduced to a
a;, i=1,...d, for d Lyapunov exponents that correspond two-dimensional(2D) mapping known as Zaslavsky map
to the natural measure of the drive attractor. The system [12] (when ¢,=0), where¢, is independent random vari-
has 21 Lyapunov exponenta; and\; ; \; are often referred ables with uniform probability density in9&<2 . Another
to as conditional Lyapunov exponents. motivation comes from biology. We may think that the drive

It might happen and we argue below that this in fact isterm in Eq.(1) represents the effect of environmental fluc-
very common that, when the drive is chaotic, the influence ofuation on the response, and model the response as additive
this chaotic behavior to the response is effectively randomand/or multiplicative stochastic process. In particular, we fo-
For example, consider the case for which the dynamics of theus onperiodic dichotomous noisprocessa(t) defined as

response is reduced to the following map: follows: After lapses of fixed duration, a(t) takes the value
a, with probability p or a; with probability 1—p. Examples
Xne1=F(Xn,&n), (2 of such biologically motivated stochastic models can be
found in Ref.[13].
wheref:M—M is a(chaotig mapping defined on the mani- We start our discussion with periodic dichotomous noise

fold M, and the second argument fnarises becauséis  process; we consider the case, in which the dynamics of the
response may be reduced to the following stochastic model:
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where »(t) is the continuous-time periodic dichotomous
noise process

wnzg%gmp4ﬂmu+nf—u t=0,

driven by the discretéBernoulli trial) noise procesg; de-
fined as& =1 with probabilityp and &= — 1 with probabil-
ity 1—p. In the last equationd is the Heaviside function.
The stochastic differential equatiof3) can be integrated
over the time interval to give the two branches stochastic
map, which can be rewritten as

(4)

wherei=0,1 and one of the magg,f, is applied randomly
at each iteration with probabilitp and 1—p, respectively.
Stochastic processdd) have been studied extensively in

Xn+1=fi(Xn),
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FIG. 1. Probability density of Eq4) with f; given by Egs(5)
and (6) in the phase spacgD,1] of the mapf,. The probability
density in the phase spaf@,1] of the mapf, is symmetric to the
one shown here with respect to 1/2. Inset figure: the probability
density of the mag, without switching.

connection with stochastically induced coherence in biStabl%xponents. Figure 1 shows the density of the natio@drse-
systems; a popular model of such process consists of tW@rained-invariar)tmeasure fom=0.2 andp=0.5. The cor-

maps of the intervdl0,1] given by f,=cx+i(1—c), where
0<c<1 is a parametdrl4]. Unfortunately, it has been long
known [15] that there are many values offor which the
invariant density of Eq(4), with f;=cx+i(1—c), does not

responding conditional Lyapunov exponentNs- —0.158.
Figure 2 shows the conditional Lyapunov exponent of Eq.
(4) versus the parametews and p. We now explain why
conditional Lyapunov exponent is negative. L&t (0,a)

exist. However, in any experiment the dynamical state of the, 4 B=(a,1) be two subsets of the phase spacdofin a
system cannot be precisely known and thus the stationary:iiar wa7y letC=(0,1-a) andD=(1—a,1) be two sub-

state can only be determined to a finite precision. A well-

defined coarse-grained-invariant densityes exist for the
process(4) [16], and this is the quantity used here for all
computations.

sets off 0,1] for the mapf,. When only one map is applied,
say fq, the probability of a trajectory to visit the regiors
andB is py=1/(2—a) and pg=(1—a)/(2—a). Thus, for
a=0.2 we havep,=0.556, pg=0.444, andu=0.5561In5

We now show that stochastically induced regularity €an; 0.4441n0.250.278. The probability of visiting the re-

be observed in Eq4), when bothf; are chaotic. The follow-

ing example is a dynamical analog of Parrondo’s parado

[9]. We start by considering two maps of the interj/@|1]
defined as

X
i~ 0<x<a,
a
fo=1{ ax a? 5
—_— . a<x<1,
l-a 1-a
and
ax
fi= X —a (6)
- 1—-a<x<l1,
a a

where 0<a<1. Both maps are chaotic with Lyapunov ex-
ponent:
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In the last equatiop is the(ordinary) Lyapunov exponent of
the deterministic system,,, ;=f;(x,) wherei is either O or
1. The stochastic proce$4) has one conditional Lyapunov

>?ionsA,B,C, andD when the switching is allowed becomes,

or a=0.2 and p=0.5, pa=pp=0.205, and pg=pc
=0.295. Therefore, N=2X0.205In5+2%0.295In0.25

= —0.158. Without switching, a trajectory tends to spend a
longer time in the left regioi than in the right regiorB for

the mapf,, and vice versa for the second mép a trajec-
tory tends to spend a longer time in the right regidthan in

the left regionC. The coin flip erases this asymmetry. As a
result of the flipping, the trajectory spends on average a
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FIG. 2. Conditional Lyapunov exponent of Ed) with f; given
by Egs. (5 and (6) versus the parametees and p. Inset figure:
conditional Lyapunov exponeit(a) vs a for p=0.5.
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longer time in the region with slop&/(1—a), which results 10°
in negative conditional Lyapunov exponent. s(n)
The apparent paradox of the above example—that flip- 1072
flopping between two subsystems of a system, each of which
independently has a property (for example, is chaotj¢c can 10~
allow a system to have a propety(for example, to become |
nonchaoti¢ also applies to Brownian ratche{®0] and jos L | |
games of chancg1]. For instance, consider the game that 0 5000 10000 n 15000

illustrate Parrondo’s paradd21]. The game is played on 1 FIG. 3. s(n) vs n for Eq. (4) with f; given by Eqs(5) and (6)
X5 checkerboard with a black squarein the middle. The;nga=0.2 andp=0.5.

player moves the piece either forward or backward by rolling

a pair of dice and consulting two rule sets. The object is tqhrough the paper. Therefore, in order to characterize sto-
start in the middle and get to the rigiwinning) side before chastically induced regularity we define
the left (losing side. The first rule set is the piece moves

forward from black if the sum of pair of rolling dice is 11, s(n)=|x(n)—y(n)|,
and from white if the sum is 7 or 11; the piece moves back-
ward from black if the sum is 2,4 or 12, and from white if the wherex(n) andy(n) are two trajectories of Eq4) evolved
sum is 2,3 or 12. The second rule set is identical to firstunder the same realization of the random proggsswhen
except for reversing the roles of black and white. In otherconditional Lyapunov exponent is negatiwgén) approaches
words, the second rule set is the piece moves forward fronaero asn goes to infinity. However, due to finite precision of
white if the sum is 11, and from black if the sum is 7 or 11; computerss(n) may become zero for finite time. To avoid
the piece moves backward from white if the sum is 2,4 or 12this artificial result, small noise of the order of 189 is
and from black if the sum is 2,3 or 12. If the player usesadded to obtain results in Fig. 3. Figure3 shosgs) as a
either set of rules, the player tends to lose. The relative prodfunction of timen for Eq. (4) with f; given by Egs(5) and
ability of winning equals the number of ways to move for- (6) anda=0.2 andp=0.5. We note that there are intervals of
ward from white to black times the number of ways to movetime wheres is small, punctuated by the shorter intervals
forward from black to white, which is equal to&. Losing Wher_es is of qrder 1._V\/_e can now offer a simple explanation
involves moving backward twice, and the relative probability ©f this behavior. An infinite random sequence of 0's and 1's
is equal to 5<4. Therefore, the player can expect to movecontams arbitrary long but finite strings of oply Qsr 1's).
forward only 80 times for every 100 backward moves. If we interpret 0 and 1 ag a_nd f1, respec_:tlvely, the last
However, randomly switching between the sets reverse?,tatement means th‘"?‘t n a Fy_p ical StOChaStilf I'irkajector y of Eq.

the direction and the player tends to win. Now, the relative 4) one can always find a finite sequer{oe}izl obtained
probability of winning is the average number of forward only through the iteration of the matb._ Xi+1=fo(X)). In
moves:[(8+2)/2][(8+2)/2] =25, while the relative prob- o' @ C&%€, SInce [he mdp is chaotic, two wery close
ability of losing is[ (4--5)/2][ (4 + 5)/2]— 20.25. Therefore, lajectories(of order 10 will rapidly diverge from eac

: other and, therefores will become of the order 1. Note that
the player can expect to move foryvarq 100 times for €V€Nabove conclusion holds for all<a.=0.297, for which the
81 backward moves. The e_xplanatlon is exactly_the_ same g ditionl Lyapunov exponent is negatiig. 2). We have
in our example with chaotic maps. Without switching, the ¢ nq (not reported hepethe same intermittent behavior and

piece tends to spend a longer time on a black square than ypjanation for different nonlinear systems and/or stochastic
a white one and vice versa for the second set of rules. Thgrgcesses. Therefore, for conditionally regular stochastic
coin flip erases this asymmetry. As a result of the flipping,processes(n) always approaches zero through the intermit-
two losing games become winning. tent bursts(in which s is of the order of the size of the
The phenomenon that has been just described is also ofttractor[18]), even when the largest conditional Lyapunov
served for different nonlinear systems and/or stochastic praexponent is an arbitrary large negative number.
cesses. For example, instead of E@.and (6) we usef We now discuss the relation between stochastically in-
=4x(1-x) andf,;=1—1/y2J1—(1—[1—2x])?, whichare  duced regularity and synchronization. Two coupled identical
both chaotic and observe that periodic dichotomous noisehaotic systems, e.gx(t) andy(t), exhibit synchronization
with p=0.5 results in a negative conditional Lyapunov ex-of chaos if(i) the largest Lyapunov exponent along the mani-
ponentA=—0.11[17]. fold x=vy is positive and(ii) the largest Lyapunov exponent
A deterministic Systen‘)'(z F(X) is called regu|ar if its normal to this manifold is negative. Both oscillators before
largest Lyapunov exponent is negative. In analog with thigand after the synchronization are chaotic, however, in the
notion a stochastic process for which the largest conditiona$ynchronous statg=y, which is different from the asyn-
Lyapunov exponent is negative, is callednditionally regu- ~ chronous state. In this light consider two 1D maps
lar stochastic process. For such system and for the same

realization of the stochastic process, two different initial con- Xn+1= F(Xp) + €&y,
ditions will converge to theame(stochastittrajectory. This
explains the termstochastically induced regularityused Ynr1=f(Yn) +€én, (7)

046215-3



LJUPCO KOCAREV AND ZARKO TASEV PHYSICAL REVIEW E65 046215

driven by a common stochastic function of time. The systenthastic processes and is characterized by nonchaotic behav-
(7) has two(conditiona) Lyapunov exponents that aid- ior of the deterministic part of the systefnegative condi-
ways equal to each other: both equations are exactly th¢ional Lyapunov exponeniswhile as a whole, the system is
same. Any “synchronization” in Eq(7) is a consequence of stochastic and, therefore, random and erratic.

the fact that the Lyapunov exponents associated with(Bq. To conclude, in this paper we have described a noise-
are both negativetwo different initial conditions will con- induced order phenomenon that we term stochastically in-
verge to the same attractoilt cannot happen that the duced regularity. It is characterized with negative conditional
Lyapunov exponent along the manifole-y is positive and, Lyapunov exponents and intermittent behavior, it is related to
at the same time, the Lyapunov exponent normal to thifarrondo’s paradox but not to synchronization phenomena.
manifold is negativg19]. Therefore, stochastically induced

regularity is a phenomenon that does not have any common We thank M. R. Roussel, L. llling, and H. D. I. Abarbanel
properties with synchronization of periodic and/or chaoticfor discussions. This work has been in part supported by
signals. It may be also called suppression of chaos in staNSF, DOE, and ARO.
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