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It was shown that localization in one-dimensional disordef@aantum electronic system is destroyed
against coherent harmonic perturbations and the delocalized electron exhibits an unlimited diffusive motion
[Yamada and Ikeda, Phys. Rev.5®, 5214(1999]. The appearance of diffusion implies that the system has
potential for irreversibility and dissipation. In the present paper, we investigate dissipative property of the
dynamically delocalized state, and we show that an irreversible quasistationary energy flow indeed appears in
the form of a “heat” flow when we couple the system with another dynamical degree of freedom. In the
concrete we numerically investigate dissipative properties of a one-dimensional tight-binding electronic system
perturbed by time-dependent harmonic forces, by coupling it with a quantum harmonic oscillator or a quantum
anharmonic oscillator. It is demonstrated that if the on-site potential is spatially irregular an irreversible energy
transfer from the scattered electron to the test oscillator occurs. Moreover, the test oscillator promptly ap-
proaches a thermalized state characterized by a well-defined time-dependent temperature. On the contrary, such
a relaxation process cannot be observed at all for periodic potential systems. Our system is one of the minimal
guantum systems in which a distinct nonequilibrium statistical behavior is self-induced.
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I. INTRODUCTION If we can design some more simple and numerically ac-
cessible systems that exhibit localization and delocalization
Localization problem has attracted much interest forbehaviors, the study of delocalization behavior will be much
many years$1,2]. Scaling theory of localization suggests that more advanced. One class of such examples are the one-
the dimension of disordered systems is directly related to theimensional incommensurate potential systems that have
nature of localizatiof3]. In two-dimensional disordered sys- been studied extensively by a number of authérs7].
tem (2DDS) the localization length is much enhanced in  Another class of systems may be introduced by shifting
comparison with the one-dimensional disordered systenour viewpoint: the spatial dimension of the disordered sys-
(1DDS), but the localization is not still destroyed. In three- tems is nothing more than the number of degrees of freedom,
dimensional disordered systeff@DDS) there exists the mo- which implies that we may construct a class of systems ex-
bility edge in the energy domain above which the localizedhibiting localization and delocalization behaviors by adding
state is spatially extended. From quantum dynamical and starew dynamical degrees of freedom instead of increasing the
tistical points of view, the state that appears after the destrucspatial dimensiori8—11]. Based upon such an idea, we in-
tion of the localized state, which may be called ttedocal-  troduced the 1DDS that is perturbed by the time-dependent
ized stateto distinguish from coherently extended state suchharmonic force containing several number of frequency com-
as the Bloch state, seems to support a complex motion. Iponentd11-14. In our model the number of colors, i.e., the
other words, the delocalized system, whose eigenbases amember of different frequencies, can be interpreted as the
almost delocalized, seems to provide with one of the simnumber of additional degrees of freedom, because the system
plest examples of quantudeterministicsystems that allow can be mathematically transformed into the 1DDS coupled
complex stochastic behavidré], but its quantum dynamical with the quantum linear oscillators oscillating at the same set
and quantum statistical properties have not been so extewnf frequencied11,13. We succeeded in demonstrating that
sively investigated. The reason will be that, unlike the local-transition between localized state and the delocalized state
ized state to which the renormalization-group-type techniqueeally occurs by changing the number of frequency compo-
is applicable, it is essentially difficult to device any theoret-nents and/or the perturbation strenptd]. A great advantage
ical ideas to clarify the delocalized state. Further, the 3DDSf our system is that it is essentially a one-dimensional quan-
that exhibits a typical delocalization do not allow precisetum system that allows a very long time scale numerical
numerical studies if the system size is taken large enough toomputations with an extreme numerical accuracy, and is
investigate the fully extended states. very convenient for the quantum statistical and dynamical
studies for delocalized stafé5].
The time-dependent perturbation itself provides a realistic
*Email address: hyamada@cc.niigata-u.ac.jp physical mechanism that much influences the localization
"Email address: ahoo@mp0tw009.bkc.ritsumei.ac.jp properties. Thouless first supposed that the dynamical pertur-
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bations by phonons break the localization and brings abounemory, and the energy relaxation to the reservoir takes
diffusion even in strongly localized systems such as 1DD%lace in the second step. Under such a situation, the abso-
[16]. An electron, which has a well-defined momentum in thelutely continuous spectrum of the infinite number of degrees
initial stage, loses its memory on the momentum and finallyof freedom composing the heat reservoir plays an essential
moves like a Brownian particle. However, it has not beenrole in the occurrence of irreversible energy transfer from the
very clear what kind of dynamical perturbation destroys theelectron to the reservojR7]. In other words, the irreversibil-
localization mechanism and results in a stationary diffusiority is caused by the loss of dynamical memory due to the
in the disordered systems. absolutely continuous spectrum of the resery@8]. In this

If we suppose that the perturbation is due to the phononsituation the quality of the energy emitted to wards the res-
composed of infinitely large number of modes, the perturbaervoir is not considered. The excess energy is surely ab-
tion must be an incoherent stochastic force with a finite corsorbed by the reservoir, but we cannot have any information
relation time. It seems quite natural that the incoherent forcéo answer the questiomtoes the energy flow in the form of
destroys the quantum coherence that is necessary for thfaat or in some other form of energy such as radiation that is
emergence of localization effect. Indeed some authors pra-gnvertible to work?
posed analytically soluble stochastic models of 1DDS, but The aim of the present paper is to demonstrate that only a
the realized diffusion is controlled only by the nature of thegmail number of degrees of freedom is sufficient for the oc-
stochastic perturbgtion and is not significantly influenced by, ,.rence of diffusion(the first step and energy relaxation
the nature of localizatiopl7,18. (the second stgpn 1DDS. We couple the delocalized 1DDS

corlgrtehnet pr;:;ﬁ%?atﬁ)ipiﬂﬁ]étwfegeegnscz;rr]St:‘itre?h(tah?(g(:tgl?z;i-o erturbed by a harmonic perturbation with a simple test
P . Y X . uantum system that is prepared in its ground state, and

effect to be destroyed: a coherent harmonic perturbation tha . . .
show that the delocalization of the electron results in an ir-

containsmore than one frequency componentg., more ) N
q Y hone feverS|bIe quasistationary energy transfer from the electron

than one phonon modes, is sufficient for the destruction o h 0 f similar i iol
the localization. Under such a simple dynamical perturba:[Ot e test system. Onset of similar irreversible energy trans-

tion, the electron exhibits an unlimited diffusive motion, and f€" in systems with a few degrees of freedom was studied in
the diffision constant is related to the localization length agietail by one of the present authors for a class of classically
was predicted by Thouless provided that the perturbatioghaotic quantum systen29], and it was shown that under
strength is weak enough. This fact implies that AndersorPpropriate conditions quantum map systems can absorb en-
localization mechanism is converted into a diffusion mecha®rgy stationarily without any quantum recurrence. An impor-
nism with the help of only a small number of dynamical tant result in the present paper is that, in addition to the
degrees of freedom. Our system is a deterministic quanturamergence of irreversible energy transfer, we obtain a strong
system with a few degrees of freedom that is isolated fronevidence that the energy transfer occurs in the form of a heat
the external world. Appearance of diffusion in our systemflow. In short, the delocalized electron dissipates the excess
implies that the dynamically perturbed electron of 1DDSenergy in the form of heatlelocalization dissipation and
“spontaneously” acquires irreversible dynamical propertiesheatbeing the three keywords of the present paper. There-
without introducing any dynamical randomness from the exfore, the 1DDS coupled with a small number of degrees of
ternal world. freedom provides a minimal deterministic quantum dynami-

Similar phenomena are known also in classically chaotical system that models the whole process of nonequilibrium
guantum dynamical systems that exhibit chaotic diffusion inenergy transport in electronic systems.
the classical limit. In the quantum systems, the classical cha- The outline of the present paper is as follows. In Sec. Il
otic diffusion is suppressed by the localization mechanismmodel systems investigated in the present paper are intro-
but the diffusion is restored by coupling these systems witlduced. The model we treat here is a one-dimensional tightly
each other at a classically negligible very weak couplingbinding electron system on irregular or regular on-site ener-
strength[19,20. gies. In the former case the system is 1DDS that exhibits

Appearance of diffusion in 1DDS means that if the elec-Anderson localization, whereas the latter case models the
tron initially has a definite momentum it can lose the mo-Bloch electron. The system is further coupled with harmonic
mentum through the interaction with the dynamically per-perturbation containing a few frequency components. Such a
turbed irregular scatterers. However, it is not sufficient forsystem is equivalent to an autonomouge., time-
the stationary conduction of electron to be realized. The kiindependentquantum system in which the harmonic pertur-
netic energy initially possessed by the electron should alsbations are transformed into linear quantum oscillators with
be dissipated akeat Just this energy dissipation problem is the same set of frequencies. Furthermore, we briefly review
the subject of the present paper. the phenomenon callethe dynamical delocalizatigrwhich

In the traditional theory of transport phenomena, it is im-was observed numerically in the above-mentioned harmoni-
plicitly and/or explicitly supposed that the electronic systemcally perturbed 1DDS and was extensively studied in our
is coupled with a heat reservdi21—-26. The electron loses previous paper.
the momentum that it gained through the acceleration pro- In Sec. lll, we propose the simple test that we chdisi-
cess, by the impurity scattering, and in the next step theation testo investigate dissipative property of any quantum
excess energy is absorbed by the heat reservoir. In the firsystem, which is done by coupling the quantum system to be
step of the impurity scattering the electron loses the phastested with a simple test system such as a harmonic oscillator
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that is prepared in a ground state. Further in Sec. Ill, we L

examing the dissi_pation test _for thellDDS driven by poly.— H,a“tzHe,JrZ QJj+HoscL({ D5}, 4
chromatic harmonic perturbations. It is shown that under this =1

condition the system is delocalized if the excess energy ini-

tially stored in the electronic system is transported irreversWhere the source of the external harmonic perturbation in the

ibly to the test system in the form of a quasistationary onemodel (1) is taken into account by the linear oscillators de-

way flow. scribed by the angle variable operatefs and their conju-

In Sec. IV, results of the dissipation test for periodic po-9at€ action variable operators
tential system are given and compared with the result of

1DDS. The energy flow exhibits a recurrent behavior and no J=—ih i_ (5)
one-way flow of energy can be observed in the periodic sys- J P
tem.

In Sec. V, we focus our attention to the quantum statisticslhen it follows that the time-evolution unitary operator of
of the test system, and it is demonstrated that the statisticil€ autonomous system is related to the unitary time-
distribution of test system very promptly approaches€volution operator of the autonomous system
Boltzmann-type distribution characterized by a well-defined
K . L
time-dependent temperature. Such a remarkable thermaliza- iau )
tion occurs only when the electron exhibits a complete delo- XX —iH| t/h}= exp{ - ';1 Qj‘]it/ﬁ]
calization and dissipation. The significance of the thermali-
zation and a possible underlying mechanism are also A (t
discussed rather in detail. xTexp[ —I JOdSHI(QjS"' ‘751)/4’

The last section is devoted to summaries and discussions.

Some numerical results in the main text are given in appen- (6)
dixes.

whereT means time-ordering operator. If we take the eigen-
state of the angle operators with the eigenvalyg as the
initial state of the linear oscillator, then the action of the

In this section we introduce the model systems treated ievolution operator of the autonomous model is equivalent to
the present paper. The first model is a nonautonomous sy#hat of the original nonautonomous model perturbed with the
tem of 1DDS perturbed by oscillating harmonic faigethe  harmonic force with the initial phaseg;,.
second one is the autonomous 1DDS coupled with finite It is well-known that almost all the eigenstates are expo-
number of harmonic oscillators, and the third one is thenentially localized in 1DDS without the perturbatidne.,
1DDS perturbed by harmonic perturbation and coupled withej=0) [1]. The finite localization length means that if the
guantum harmonic oscillators. initial wave packet is spatially localized, the wave packet
does not spread over the space, and the memory on the initial
wave packet do not disappear. In other words, there are no
stochastization process that result in any statistical behavior,

We consider a tightly binding Hamiltonia,(t) for the  and the 1DDS is not ergodic and, of course, does exhibit no
1DDS perturbed by classical driving forces oscillating at themixing property, i.e., no decay of correlation. Such features

Il. MODELS

A. Nonautonomous model

mutually incommensurate frequencig@;}. may be, however, drastically changed if the localized system
_ is perturbed by the harmonic forcgésos(;t)} [12-14. We
Hi() =Hei+Hose L ({Q4t}), @ will give a brief summary of the nonautonomous system in

Sec. Il B, which describes the key features to understand the
N N motivation of the present paper.
He':nz‘l [mV(n)(n|+ En: ([n}n+1|+|n+1)n)), For the sake of simplicitye; common values are taken for
) the perturbation parameters, such that

€
€= = (7)

T

. , . ) in the present paper, and the parametatharacterizes the
The basis sef|n)} is an orthonormalized one aM{n) is the perturbation strength.

on-site energy of electron at the sitewhich varies at ran-
dom in the rang¢ —W,W] from site to site and the transfer
energy vanishes unless the sites are adjacent.

The time-dependent nonautonomous system can be trans- In our previous papefl4] we showed that the 1DDS
formed into a time-independent autonomous system. As thexhibits a remarkable delocalization behavior when it is per-
autonomous counterpart of the mod&), we consider the turbed by classical oscillating forces with several frequency
autonomous Hamiltonian components. Since such a delocalization phenomenon is a

N L
Hose ({2)th =2 24 € cos@pvmImnl. (3)

B. Dynamical delocalization in nonautonomous system
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key to understand the occurrence of irreversibility and dissi- N M fo;
pation that are the main subjects of the present paper, we  H, y= > 2 In)V(n)(n|Bi(al +a) \/T, (12
review it rather in detail. n=1i=1
When oscillatory harmonic perturbations are applied to h —b./
1DDS, an initially localized wave packet of electrpw (t erefi=bi/w;. .
—0)=6, 0] spreads unlimitedly, and we called such a quan- Now we make cI(_aar the relation _between the two mode_ls
tum statedynamically delocalized staté is very interesting Hh(.t)hanl? Hh” ' Tr? this end,dwe consider ﬂ:je extrergehcasFe mk
that such a nonlocalized state can be easily realized only b ich all the phonon modes are eXC'Ee. around the Foc
applying a weak coherent perturbation. The delocalizatior?!2€S With large quantum numberSlf(j=1,2,...M).
property can be quantitatively characterized by the mea hen only the Fock states close to such states are relevant for

square displacementMSD) of the wave packetma(t) the interaction process, and the matrix elements of the inter-
~s A ON . " action Hamiltonian can be looked upon as a constant because
=(W(t)|n?|¥(t)), wheren==__,n|n){n| is the position

operator and¥ (t) is the time-dependent wave packet. (NX+nq, ... N5 +nyHinew NS +nL, NS +nd)
It is found that the wave packet, which is localized with- ’
out the interaction with the oscillatory perturbation, spreads NoM N}*h
beyond the original localization length as time elapses. The ~nEl ,21 MV )(nlb; \/5 =n, /=1 (13
=1j= j

diffusive behavior is observed within the time scale acces-
sible by numerical computations, and the diffusion process i
not in general the normal diffusion but a subdiffusion, which
is characterized by a power law increase,

Yor n; ,nj’<N}c . Under the approximation, the autonomous
systemH,, becomes equivalent to the autonomous counter-
part H"" of the nonautonomous model,(t). Indeed, if we
my(t)~t* (0<a<1). (8)  use the action eigenstates of the action operators such that
Jjlm;)=m;A|m;) (m;: integer$ as the basis for the model

aut . . . .
The subdiffusive behavior approach the normal diffusionti » the phase variable representation of the action eigen-

(a=1) promptly as the numbdr of the frequency and/or States is given bx{‘f’JHj{miD:H}\A=lelmjfﬁj/‘/_2_7" and the
the perturbation strength increase. However, we note that Matrix elements of the interaction Hamiltonih,s. with
in the monochromatic casé & 1) the diffusive behavior is '€Spect to the action eigenstatg|{m;}), which is given by
suppressed at a certain level that is much longer than the

N oL
original localization length. We investigate the property of L
the delocalized states in the following sections. (M Hose (¢ DM, }>_n§1 121 [mV(n)(n|

C. Autonomous model X€ 5”‘1 mj =112, (14)
Let us consider the model of the 1DDS coupled with finitejs equivalent toH;,, ,, under the following identifications:

number of harmonic oscillator modes with incommensurate

frequencieqw;}, NS +nih e [{m}), (15

Hi=He+Hpnmt Hintm C) TN
€ \/%. (16)

where Hyp, v represents the harmonic oscillator Hamilto- ]

nans Thus the harmonically perturbed nonautonomous system is

R R equivalent to the autonomous system coupled with harmonic

V(PP il oscillators when all the harmonic oscillators are excited to

Hph,m :JZ >t (10 large-quantum-number states.
If the number of phonon modes goes to infinity with an

absolutely continuous spectrum suchags:i, then the pho-
non system becomes a boson heat bath that has been used as
the model of heat reservdi27], but the number of phonon
modes is kepfinite throughout our treatment.

N M
Hint,M:nZ:l ]2::1 |n>V(n)<n|bjaj . (11 D. Mixed model

If some of the harmonic oscillators are highly excited, we
Physically such additional harmonic oscillators can becan replace them by the time-dependent harmonic perturba-
looked upon as the phonon modes that perturb the electronton. In this paper we mainly treat with a conventional model
system, and so we often call them “phonon modes.” Byin which most of the harmonic oscillatofghe number id )
using the creation and annihilation operator of Fock states cdre replaced by time-dependent harmonic perturbations with
the harmonic oscillators, the interaction Hamiltonian is re-the same frequency, but a very few number of oscillatthrs
written as number isM) are in the ground state and so they cannot be

and the interaction Hamiltonian with coupling strength}
is given by
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replaced by the time-dependent harmonic perturbation. The The key parameters controlling the dissipation test are the
significance of treating such a type of mixed model will befrequencyw,;(=w) and the coupling strengti,(=b). In
discussed in detail in Sec. lll. The model Hamiltonian is thusour simulation the parametéiw is chosen as 0.1, and Planck
given by constant is fixed. The periodic boundary condition is im-
posed on both electron and the test phonon mode in order to
Hin=HertHpnu®Hingm + Hose (151h). - (17) apply the fast Fourier transformation, where the site number
We solve the Schidinger equation for the three sorts of of electron and the number of meshes of the test mode are
Hamiltonians taken typicallyN=128 andN,,=64, respectively. We did
not take the ensemble average over different configurations
W (t) of the disordered system because of the limitation of our
ih—g— =HY(®  (H=H;, Hy orHy), (18 computer power. We mainly used 60000 step, i.e., the total
time T=1500.
numerically. We prepare the electron initially in a highly excited state,
and compute the time-dependent electronic endfgyt)
IIl. DISSIPATION TEST CASE OF DYNAMICALLY =(W(t)[Hel¥(t)), MSD and the energy stored in the test
DELOCALIZED STATES mode, i.e., Epp(t)=(¥(t)|Hpnm|¥(t)), by the time-
. . . dependent wave packe¥(t). We number the localized
We propose a simple test to examine whether a give

SRS . ) L .réigenstates of the isolated 1DDS from the top of the energy
system is dissipative or not. Since the notion of dissipation I$Savels and denote the number by,. We mainly use the

not very clear particularly in microscopic quantum systems,, . . _ L
we give a definition of thelissipationthat we adapted in the third eigenstaterfe=3) as the initial state of the electron

present paper. system.
Let us consider a quantum syste$nsuch as the 1DDS,
and make it contact with a test quantum systémwhich is B. Unperturbed case(M=1,L=0)
composed of only 1 degree of freedom and is prepared in the
ground state. As a typical example @f we may present a  |n this section, we examine the dissipation test for isolated

harmonic oscillator. We say thatis dissipativewith respect 1pps by coupling it with a harmonic oscillator, which is

to 7, if a one-way flow of energy fron§ to Tis induced until  taxen as7. Since the systens is Anderson localized in the

an equilibrium is achieved betweeh and 7. Most of the  rasent case, we may expect that there is no dissipation when
quantum systems composed of a small number of degrees @fiq ¢ njed with7, However, an interesting problem in the

free<_jom will be nond_|35|pat|\(e, although_ there are some e present case is whether the back action from the exdted
ceptional examples in classically chaotic quantum system . : .
itself works for the localized electron like an oscillatory per-

[29] . Lo L turbation and may significantly change the localization prop-
What we wish to show in this section is whether or not the fies

delocalized systems discussed in the previous section, whicH The time d d ¢ ol . d oh .
is a single electron system coupled with a small number of e time dependence of electronic energy and phononic

oscillatory perturbations, idissipativein the above sense. If €nergy of the test mode together with MSD of electron are
the delocalized state, which is realized by perturbing théd®SPectively displayed in Figs(d,b,q for several values df
Anderson-localized state very weakly, becomes dissipative2d the fixed value»=0.8. In this case the energy of the
we can attribute the essential origin of the dissipation to thd0tal system is conserved and the decrease in the electronic
generic nature of the Anderson localized states. In the sens@Nergy transfers to the increase of the phononic energy. At a

the Anderson-localized state is paedissipativestate as is Very weak coupling strengttb¢=0.2), there is no significant
used in the title of the present paper. transfer of energy from the electron to the phonon. But as the

coupling strength exceeds a critical levbH0.5), the trans-
ferred energy to the phonon suddenly increases, and at rela-
tively strong coupling strength9& 0.9 and 1.1 the energy

In the present case the quantum sysigroonsists of an  of electron decreases monotonically, and so the energy emit-
electron and oscillatory perturbation, which is represented byed to the phonon mod& does not return to the electron
the HamiltonianH,(t). In order to investigate whether the system. The energy transferred from the excited electron is
system is dissipative or not, we set the test mode at thalmost stored in the phonon mo@see Fig. 2 Correspond-
ground state and couple it with. Since we use a harmonic ingly, the wave packet also spreads suddenly from the origi-
oscillator as the test mode, the whole system relevant for theal Anderson-localization length to the level comparable to
dissipation test is equivalent to the mixed moég|, of L the system size. We can interpret that such a type of transi-
=2 andM =1 introduced in Sec.ll D. tion is due to the self-induction of the oscillatory perturba-

First we examine the dissipation test with the Anderson+tion by 7. In this sense it seems that the systSmttains a
localized 1DDS without any oscillatory perturbation dissipative property above the threshold, but the decrease in
(L=0-system. Second, we try the dissipation tests for the electronic energy is not complete and does not reach the
dynamically delocalized states that are observed irzero level. This fact implies that the achieved dissipation is
L=2-systems. not still complete. Correspondingly, the growth of MSD de-

A. Technical remarks
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1DDS cannot show the delocalized behavior although the

localization length is enhancgd4]. The dissipation test for
the monochromatically perturbed 1DDS is given in Appen-
dix A.
Typical examples of time-dependent energy transfer be-
tween a polychromatically perturbed systeln=5) and the
test mode are depicted in Figs. 3 and 4. Figure 3 shows the
time-dependent features observed at various values of pertur-
bation strengthe with the fixed coupling strengthh=0.4,
whereas Fig. 4 shows the results at various valuds with
) the fixed perturbation strengi~ 0.4.
T T In all cases the MSD grows up to the maximum scale and
0 20 400 800, 8OO 1000 7200 1400 so a complete delocalization is achieved, and the electronic
energy shows a very nice relaxation behavior. In the early
FIG. 1. Time dependence df&) an electronic energyb) a  stage of time evolution, the electron loses its energy linearly
phononic energy, antt) MSD of electron for variou®=0.2, 0.5,  in time, which is observed as the linear increase of the
0.9, and 1.1, wher&V/=0.9, 7:=1/8, andw=0.8 in autonomous  phonpnic energy. In such a quasistationary regime the emis-
systems without any perturbatior< 0.0). The energy and the spa- gjo rate of energy per unit time can be well defined. Mono-
tial length are scaled in units of transfer energy and lattice constanty hic increase of phonon energy continues until the wave
of the electronic system, respectively, throughout the present papeﬁ'acket spreads over the system size and the electronic energy
picted in Fig. 1 terminates at the level smaller than the Sysggrr])roaches zero level, which indicate a complete delocaliza-
tem size, and so the localization length is drastically en- It seems that the dissipative nature is not lost even at very

hanced but the localization is not still destroyed. small €, but the energy transfer rate depends linearlyodh
As a result, we can conclude that the electron energy ir- ’ gy P *

reversibly flows to the phonon mode if the coupling strengtheo'rfstsanr:ﬂl enough. It is also proportional to the coupling
exceeds a critical value, but the flow of the energy saturate® o I
In conclusion, all the above features indicate that a com-

before the system reaches a fully relaxed state. plete dissipation is realized in caselob2.

Finally, we overview theL dependence of the time-
dependent behavior in Fig. 5. It is evident that as the number

In this section we examine dissipation test for the poly-L of the frequency components increases, the localization is
chromatically perturbed 1DDS. When the number of the fre-destroyed and simultaneously a nice one-way transfer of en-
quency components of the perturbation is larger than oergy from the electron to the phonon appears. In the limit of
equal to 2 (=2), the 1DDS exhibits typical sign of dynami- L—o the “oscillatory” perturbation becomes a random
cal delocalization. Note that monochromatically perturbedforce, and it seems to be no wonder that such a stochastic

C. Polychromatically perturbed case(M=1,L=2)
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FIG. 4. Time dependence dB) an electronic energy(b) a
phononic energy, an@c) MSD of electron in polychromatically

FIG. 3. Time dependence dB) an electronic energyb) a
perturbed casesLE5), whereW=0.9, 2=1/8, €=0.4, ®=0.8,

phononic energy, andc) MSD of electron in polychromatically
perturbed casesL&5), whereW=0.9, #=1/8, b=0.4, »=0.8, and various coupling strengti=0.2, 0.4, 0.8, 1.1. The frequency

and various perturbation strengties=0.1, 0.2, and 0.4. The fre- components of the perturbatigif);} are chosen within a range
quency components of the perturbatiff;} are chosen within a [0.5,1.5 randomly.

range[0.5,1.5 randomly.
Bloch electron in periodic systems and compare the results

perturbation destroys the localization phenomenon that isvith those of the delocalized system investigated in the pre-
just a manifestation of quantum coherence. Indeed, we showious sections.

in Appendix B 1 that very similar results are obtained in the First we consider the simplest periodic case in which all

dissipation test of stochastically perturbed 1DDS. Howeverthe on-site energie¥, are the same. Then the total system,

we have to emphasize that only a small number of differentonsisting of the electronic part and the test harmonic oscil-
frequencies is sufficient for the system to exhibit completelator, becomes separable, thus the test sysfedoes not

delocalization and complete dissipation. couple with the electron system. We, therefore, consider a
binary periodic system, in which the on-site energy varies
IV. DISSIPATION TEST CASE OF BLOCH STATES periodically as V,=W, V,,1=—W, V,.,=W, V.3

. : . .. =—W... from site to site.
If the on-site energy of electronic system varies periodi-

cally, the eIecFron is in Bloch states that are fL_lIIy extended A. Monochromatically perturbed case (M=1, L=1)
over all the sites on the one-dimensional lattice. We may
We perturb the binary periodic 1D electron system with a

expect quite different dissipation property for such periodic
systems. In this section we examine the dissipation test tononochromatic perturbation and regard it&adt is evident

046211-7
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FIG. 5. Time dependence dB) an electronic energyb) a
phononic energy, an¢c) MSD of electron in monochromatically
and polychromatically perturbed casek=1,2,4,5), whereW
=0.9,2=1/8,b=0.4, »=0.8, ande=0.4. The frequency compo-
nents of the perturbatiof();} are chosen within a rand®.5,1.5
randomly.

FIG. 6. Time dependence dB) an electronic energyb) a
phononic energy, antt) MSD of electron in unperturbede& 0)
and monochromatically perturbed= 0.4) binary periodic systems,
where W=0.9, 2=1/8, b=1.0, and the frequencie®=0.8, (1,

— 2.

fyveen electron and the test mode, and net energy transfer
cannot be observed even in the cases where we use many
dLtequency componentsee Fig. 7.

However, if the polychromatic perturbation is replaced by
a stochastic perturbation, which corresponds to the Ilmit
—oo, the energy transfer from electron to the test mode is

served, and the test system can absorb energy from elec-
fronic state, where the absorption rate increases approxi-
mately proportional to the perturbation strength. This is a
quite natural result that the random force externally intro-
duced destroys the quantum coherence that yields the quan-
tum recurrence. The result is given in Appendix B 2.

The essential behavior of the time dependence is almost As a result we cannot observe any one-way energy trans-
the same as monochromatically perturbed case except féer between the perturbed spatially periodic system and the
periodic pattern of the recurrence. The energy oscillates beest mode: the electron and tiephonon mode exchange

that such a system is not separable when it is coupled wit
the7mode, and energy in general transfers betwgand7.

The time dependence of electronic and phononic energi
together with MSD of electron are respectively displayed in
Fig. 6. The figure shows the energy recurs betwgamd the
test modeZ, which is initially prepared in the ground state.
Furthermore, such properties of the time dependence do
not depend on whether the time-dependent oscillatory pertu
bation L=1) exists or not.

B. Polychromatically perturbed case(M=1, L=2)

046211-8
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with the oscillatory perturbation. It is of great interest to

) _ investigate the quantum statistical property of the radiated
FIG. 7. Time dependence ¢8) an electronic energy anth) a  qguanta.

phononic energy in polychromatically perturbed<5) binary pe- First we show in Fig. 8 the case of a polychromatic per-
riodic system, wh(;ereivj_o.g, h=1/8,b=0.3,€=04, and the fre- 1, iation (L=5) that exhibits a typical dynamical delocal-
quenciesw=0.8, ;= 2. ization. The semilog plots of probability distribution with

_ 2
energy quasiperiodically over all the time scale. We may thusresPect to the Fock spa@é(l;nph) (ol ¥ (1))]* of the test
conclude that spatial irregularity of the on-site energy is esPhonon mode versus the eigenvalue of endggy are de-

sential for the onset of dissipation. picted at several time steps, whén%h> is the number state
of the phonon mode. A remarkable fact is that the plots all
V. STATISTICAL PROPERTY OF TEST MODE ride on a straight lines very well, and so the distribution in

the Fock space is well fitted by the Boltzmann-type distribu-
In the original sense of dissipation, the irreversible transtion characterized by the time-dependent temperakt,
port of energy is not sufficient condition for the onset of
dissipation. More precisely, a dissipation process is taking P(Ep ) >exp{—En  /T(1)}. (19
place if the two features are observétt) a one-way flow
of energy occurs fron® to 7, and,(*2) the energy is trans- . . .
ported in the form ofa heat flow In the present section, we We show in Fig. 9 that the off-diagonal element

pay attention to quantum state of the harmonic oscillator aE(.mPh’nph).:<mph|qf(t)><q’(t).|r.'9h> (npn#Mpp)  decays
other degrees of freedom during the time evolution. quickly in time and finally exhibits a rapidly fluctuating mo-

tion around zero, which vanishes if averaged over a longer
time scale.

Figure 10 shows the time-dependent temperature evalu-

In this section we return to the dissipation test for theated by the data in Fig. 8. The phonon temperal(t9 rises
periodically perturbed 1DDS. The polychromatic perturba-in accordance with the energy of the test phonon mode, and
tion destroys Anderson localization, and a one-way transfewhen the phononic energy saturates the temperature also
of energy occurs from the delocalized system if the system iseaches an equilibrium temperature. When the polychromatic
coupled with another degree of freedd@mwhich is taken as  perturbation is replaced by a stochastic perturbation, a simi-
a harmonic oscillator mode in our simulation. Such a procestar Boltzman-type distribution can also be observed. The re-
can be regarded as a spontaneous emission of quargalt is given in Appendix B 1. In this way, the polychromatic
(phonons generated by a radiation source composed of thgerturbation composed of only finite number of frequency
electronic degree of freedom. Roughly speaking, the quasisomponents gives rise to the same effect as the stochastic
tationariness of the irreversible emission of phonons will beperturbation. On the other hand, the Boltzmann-like statistics
attributed to the decoherence of the radiation source, whichf the 7 mode is not observed when the oscillatory perturba-
is self-generated through the interaction process of the 1DD§on contains less than two frequency components and the

A. Dissipation and Boltzmann-type distribution

046211-9
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oot B works as a radiation source for tHemode. It then immedi-
ately follows that

t )
dse (t=9IRT(s). (22
0

0 100 200 300 400 500 t
t a'=

FIG. 9. Time dependence ¢) real part andb) imaginary part

of some off-diagonal element:(,=0,1) of the density matrix As is described in Sec. I, the phonon number increases in

P(Nph.Npnt1)=(npn| ¥ (t))(¥(t)|n,n+1). The parameters are proportion tot in the initial stationary stage, which can be

the same as in Fig. 8. explained by supposing that the correlation function
(RT(t))R(ty))=d(t,,t,—t;) depends weakly oty and de-

systemsS does not exhibit a complete delocalization. FigureCays Very rapidly as time intervat,—t,| exceeds a short

11 shows such an example. Indeed, the semilog plot of theharacteristic timei.. Neglecting the weak dependence of

distribution function significantly deviates from the straight the correlation function or,, the expectation value of”

line of the Boltzmann-type distribution. increases in proportion to time,

We can therefore conclude that the emergence of com- .
plete dissipation is obviously correlated with the formation (aTa>=tf e 1P (s)ds. (23)
of the Boltzman-type distribution in the test phonon mode. 0

Further, from Eq(20), a' is an integration over the stochas-
tic source with the very short characteristic tihe The
Why the Boltzmann-type distribution emerges when theamplitudea' is a sum over statistically independent quanti-
system is dissipative? We can give a simple phenomenologties and hence should obey a Gaussian stochastic pro-
cal interpretation. To the end, we derive the Heisenbergess[22]. Regardinga’ asc number, the distribution func-
equation of motion for the annihilation operatt) of the7  tion of a' should be the Gaussian distributid?(a,a’)

B. Generality of thermalization

mode: «exp{—constx |a|2}, which is equivalent to the Boltzmann-
type distribution.
dat) Therefore it seems that the thermalization together with
=—iwa(t)+R(1), (20 L - ; ) .
dt the quasistationary emission of phonons is a manifestation of
a rapid destruction of quantum coherence, which is repre-
where the ternR(t), given by sented by the decay of correlation. If the above interpretation

is true, the origin of the Boltzmann distribution is due to the
fact that the field amplitude is expressed by an integration

R(t)=—ib 1 /12 U(t)|n)V,(n|ut(t) (21) over the stochastic source, which happens as a result of the
2h <5 " ’ particular choice of the system Indeed, if we choose an
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FIG. 12. Phonon distributiorf—’(Enph)=|(nph|\If)|2 at several
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LT T . the frequency components of the perturbatidn;} are chosen

T within a range[0.5,1.9 randomly. The mesh of the test mode is

SRR takenNp,=128.

T .,., - shows the time dependence of the energy stored in the quar-
1 2 3 4 tic oscillator. It again shows a nice linear growth until the

Mo saturation effect due to the finite available energy becomes
FIG. 11. Phonon distributiorP(Enph):|(nph|\P)|2 at several Significant. These facts imply that the thermalization _effect
times (=100,200,300,400,500) in monochromatically perturbedca””Otbe attributed to the combined effect due to the linear-

case [ =1) with (a) e=0.1 and(b) e=0.4. ity of the test modeZ and the rapid decay of correlation in
the radiation source.

anharmonic oscillator instead of the harmonic oscillator as We still do not have a definite physical idea to explain
the test system, the integral relatit@2) do no longer holds such distinct features, but we will argue on a possible under-
correct, and the statistics Gfmay significantly deviate from lying mechanism in the following section.
the Boltzmann-type distribution.

To answer the question we examined a simulation in
which the harmonic oscillator is replaced by an anharmonic ~ C. Anderson localized state as a pre-dissipative state
oscillator. We take the quartic oscillator that does not have | the course of the emission of quanta into the ma@de

the harmonic potential components as the test syStem  he energy offincreases as if the system has a well-defined
s temperature, and the temperature rises from zero to some
Hpn lezp_+ga4. (24) finite valueT(t). Thg only naturgl way to prepare a simple
’ 2 integrable systen?Y in a thermalized state is to couple the
L ) _ initial 7 at zero temperature virtually with a heat reservoir
We may expect that the statistics of the quartic oscillatoh,ying the same temperatufie=T(t) and infinitely large
deviates significantly from the Boltzmann-type distribution heat capacity. If the whole system, i.e., reservdiris er-
even though the (_:orrglat|on of _the source term deca}’ﬁodic, the quantum statistics @fshould approach the Bolt-
promptly. We show in Fig. 12 a typical example of the SEMI"zmann distribution. In the process through whighap-
log plot of the probabilityP(E,, )=|(ny,| ¥ (t))|? for a sig- ins : -

o ph proaches an equilibrium state with the heat reservoir, the
nificant energy range, whet@y,) and En,, are thenyuth  energy is transported from the reservoirZan the form of
eigenstate and its energy, respectively. Contrary to the firstheat.” The fact that temperature is well defined fdmeans
expectation, the plot is again almost on a straight line, whictthat the transfer of energy from the electron to the m@de
indicate that the distribution of obeys the Boltzmann-type occurs in the form of “heat.” In short we are allowed to
distribution even in case of the quartic oscillator. Figure 13interpret that the electronic energy is dissipated as heat.
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energy eigenvalue of the isolated 1DDS, amére deviation

of the quantum number of the linear oscillators from the
initial quantum numbeiN* , and they are arbitrary integer
(may be negative If the number of colord is larger than
one, the nonperturbative energy eigenvalues form a dense set
in an arbitrary energy sheE<E(i,{n;})<E+ JE. If the
interaction between the electron and phonons allows the
transition among arbitrary states contained in the energy
shell E<Eg(i,{n;})<E+ SE, the system is described by a
microcanonical ensemble. Such a feature is maintained if we
extend the total system so as to incluffeandS+ 7 forms a
quantum ergodic system. Then it is quite natural that the
system7 is described by Boltzmann-type distribution, be-
cause” forms a relatively small subsystem of the ergodic
system. The essential problem is whether or not the interac-
tion between the electron and the oscillators enables a global
connection between the unperturbed quantum states, which
will be strongly correlated with the occurrence of delocaliza-
tion. We note further thatS is composed of only a small
number of degrees of freedom and do not have infinitely
large heat capacity. Further detailed studies along the idea
mentioned above will be reported elsewhg38].

Anderson localization is destroyed even by a very weak
interaction with a few dynamical degrees of freedom, which
is simulated by polychromatic perturbation in the present
paper, and it releases the stored energy as “heat.” This is the
very reason why we termed Anderson-localized state a “pre-
dissipative” state in the title of the paper. We emphasize here
again that our system is a small deterministic quantum sys-
tem. The “heat” has been considered as a macroscopic con-
cept connected with the loss of microscopic information to
control the associated system. It will be of fundamental in-
terest to investigate how the concept of heat can be extended
to microscopic quantum systems. Our system provides with
an example to study the fundamental problem.

VI. SUMMARY AND DISCUSSION

Dissipation property of 1DDS perturbed by time-
dependent harmonic driving force, which exhibits a remark-
able delocalization behavior, is numerically investigated by
coupling the system with another simple system prepared in

Therefore, the irreversible energy transfer process observatle ground state. We have regarded that the system is dissi-

in our system has the second feat(t2) of the onset of

dissipation in a more rigorous sense.

pative if an irreversible transfer of energy occurs from the
electronic system to the test system in the form of a one-way

The above consideration suggests an idea on thenergy flow. It has been demonstrated that the dynamically

physical mechanism that makes

the systefh to
relax to the thermalized state. Namely, the syst&rmay
play the role of a “reservoir” forZ, which can be realized if

perturbed 1DDS is dissipative when the electron is com-
pletely delocalized, and moreover the quantum statistics of
the test system becomes Boltzmann distribution with a well-

the total systemS+7 forms a quantum ergodic system. defined time-dependent temperature. The latter fact allows us
This conjecture seems to be supported by theo interpret that the energy transferred from the 1DDS is

following considerations. The autonomous version of thedissipated as heat. The complete dissipation takes place
model Hamiltonian ofS, namely, Eq.(3) has the energy when the number of frequency component is more than one

spectrum of

L

and a complete delocalization occurs in the polychromati-
cally perturbed 1DDS.

Dissipative behavior is not observed at all if the 1DDS is
replaced by periodic potential systems that have Bloch
eigenstate. The energy transferred to the test system changes
quasiperiodically around the zero level, and no net energy

Es(i,{nj})in+;1 niQ;, (25
if we neglect the interaction Hamiltonian, whekg is the
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transfer can be observed. The spatial irregularity in the pomechanism that can create sufficient complexities to induce
tential plays a critical role in the actualization of dissipationan apparently irreversible behavior in closed quantum sys-
(and also delocalization tems. As is demonstrated in the present paper, spatial irregu-
The origin of the irreversibility may be attributed to the larity can also be an origin of quantum irreversibility in sys-

complexity in the phase relation peculiar to the localizedtems with a small number of degrees of freedom. In
eigenfunction[31,28. The localization is dynamically de- particular, the thermalization effect is a quite new result that
stroyed even by weak dynamical perturbations, and the phad®s not still been reported in quantum chaos systems. It will
complexity manifests itself, resulting in dissipation and de-be of interest to explore whether similar thermalization do
localization. In this sense the localized state can be regardeztcur also in quantum chaos systems that exhibit dissipative
as a pre-dissipative state. The potential for mixing and dissibehavior.

pation in localized systems resembles the characteristics of We may expect that our idea might be extended to the
classically chaotic quantum systefi®2,29. Indeed, as dis- delocalized state in the 3DDS. In this case, the localized state
cussed in Introduction, a quantum chaos system also exhibits already destroyed above mobility edge without the cou-
dissipative behavior under a very weak coupling with dy-pling taking place with any other dynamical degrees of free-
namical perturbation§29]. Chaos provides a promising dom. If we prepare the electronic system in an energetically
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FIG. 16. Time dependence ¢8 an electronic energyb) a  particular, investigation of the meaning of heat and dissipa-
phononic energy, andc) MSD of electron in stochastically per-  tjon in microscopic quantum system will be of fundamental
turbed cases, whetd/=0.9, 7. =1/8, b=0.4, and the perturbation jmportance when we evaluate the upper bound of efficiency
strengthe=0.2, 0.3, 0.4, and 0.6. and controllability of microscopic quantum devices.
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be expected that the stored electronic energy is spontane- The authors express thanks to Dr. Shoji Tsuji for his hos-
ously and irreversibly converted into heat and flows into thepitality in providing a location for our discussions, where

test system. If this is the case, the 3DDS is the minimaimportant progress in the idea of the present paper was made.
deterministic quantum system in which dissipation and ther-

mahzat!on'are self-organized. Thus far, the _Io_cah;atmn_/ APPENDIX A: MONOCHROMATICALLY PERTURBED

delocalization phenomena have not been explicitly investi- CASES (M=1, L=1)

gated from the viewpoint of dissipation and thermalization. '

The significance of dissipation and thermalization in small In this appendix we observe how the dissipative property

deterministic quantum systems must be investigated moref the 1DDS changes by applying a monochromatic oscilla-

extensively. tory perturbation to the system. As has been discussed in
It is expected that such kind of studies become importanSec. 1l B, the additional monochromatic perturbation en-

in statistical physics of systems with a few degrees of freehances the localization length, and therefore we may expect

dom such as mesoscopic devi@—36, molecular machine that a more complete dissipation will be observed when the

systemq 37|, quantum computdi38] and so or{39-41]. In  system7 is coupled withS. We may further expect that the
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times ¢=100,200,300,400,500) in stochastically perturbed 1DDS. FIG. 20. Increasing rat®,, of the phononic energy estimated
The parameters ate=0.4 ande=0.4. by data in Fig. 19 as a function of the perturbation strength.

test modeT itself plays the role of an additional perturbation, perturbation is not strong enough to destroy the localization

and the total system becomes equivalent to a dichromaticallpompletely.

perturbed 1DDS in which an unlimited diffusion takes place In fact, as shown in Fig. 14, when the coupling strergth

[14]. However, if the coupling betwee&§ and 7 is weak is small enoughlf=0.1), the growth of MSD does not reach

enough, the mode is not well excited, and the self-induced the level of the system size and the localization still remains.
The increases in the phonon energy, which are shown in

1 1 1 1 —3 Figs. 14a,b, also terminate as the electron energy stops to
1.6-4(a) b=0.3 L B S decrease and in turn begin to increases before reaching the
1.4 - il n zero level. Figure 14 also shows examples of MSD at larger

4 perturbation strengthe=0.2 and 0.4). Delocalization and
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FIG. 21. Phonon distributiorf—’(Enph)=|(n,£,h|\If)|2 at several
FIG. 19. Time dependence @¢&) an electronic energyb) a times {=100,200,300,400,500) in a stochastically perturbed binary
phononic energy in stochastically perturbed binary periodic systemperiodic system. The parameters d&re 0.3 ande=0.2, 0.3, and
whereW=0.9, #=1/8, b=0.3, ¢=0.2, 0.3, and 0.5. 0.5.
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transfer of energy from electron to phonon seem to continuergy transfer from electron to the test phonon mode occurs in
on a longer time scale, and an apparently one-way energstrong connection with the delocalizing behavior.
transfer occurs frons to 7. However, the electron does not ~ The increasing rat®,, of the phononic energy of the test
emit all the possible energy. In this sense the system benode is shown in Fig. 1@) as a function of the perturbation
comes partially dissipative but a complete relaxation of enstrength, and Fig. 1B) shows the diffusion rat® estimated
ergy is not still realized. by the data depicted in Fig. 1@ for some perturbation
On the other hand, as shown in Fig. 15, if the couplingstrength. With the increase in the perturbation strength, both
strength is large enough&1.0) the diffusion and a one- Rpn @ndD exhibit a clear linear growth.
way energy transfer continues until it reaches a fully relaxed Figure 18 shows the semilog plots of the probability dis-
state even at smaller values of perturbation strength. Theibution in the Fock space of the test phonon mode, which is
MSD also approaches the maximum length allowed by théneasured at several time steps. Apparently, all the plots ride
finite system sizerfi,~ 1400). The final electronic state with ©On straight lines very well. Hence the distribution in the Fock
almost zero energy can be regarded as an equi”brium stafgace is also well fitted by the Boltzmann-type distribution.
that contains all the localization bases, whose energies are
distributed symmetrically around zero, with even statistical 2. Binary periodic system

weight. We can judge that the system is delocalized and be- g\ ap, in cases of Bloch electron a quasistationary one-way

cpmescomplete_ly dissipativin such a coupling _strength re- energy transfer can be realized by applying stochastic pertur-

gime. The flowing rate of energy increases in accordancgyiinn 1o the system. Figure 19 shows a result of the energy

with the increment in the perturbation strength exchange between the electron and the test mode in cases of
In conclusion, if the coupling strength is small enough, e sochastically perturbed Bloch electron. An irreversible

the localization is not still destroyed and the irreversible e”'energy transfer can be observed: the energy of the phonon

ergy relaxation takes place partially. On the other hand, ag,,de increases almost linearly. Correspondingly the energy

the coupling betweers and 7'becomes strong, a complete ot gjectron decreases on average, but it is accompanied by a
delocalization and a complete dissipation are both realizeds,~tuation around the zero level.

In Fig. 20 we show the increasing rag, of the mode
APPENDIX B: DISSIPATION TEST FOR energy as a function of the perturbation streng®yy, in-
STOCHASTICALLY PERTURBED CASES creases almost linearly in proportion to the perturbation

In this appendix we summarize results of dissipation tesB'€ngth. _ _ _
for stochastically perturbed delocalized and Bloch states in Ve recall that in the disordered system the polychromatic
disordered and binary periodic systems, respectively. perturbation [ =4) gives rise to almost the same effect as

the stochastic perturbation. On the contrary, in case of the

periodic system the polychromatic perturbation brings no ir-
reversible energy transfer, but the stochastic perturbation re-
Figure 16 shows time dependence of the energy in theults in an apparently irreversible behavior although the en-
cases of the stochastically perturbed localized state for variergy transfer process is accompanied by an enormous
ous perturbation strength. In comparison with the polychrofluctuation.
matically perturbed cases with the same perturbation strength Furthermore, it should be noted that in the case of peri-
€=0.4in Fig. 10, we can see that the effect of the polychro-odic system the statistical behavior of the phonon mode
matic perturbationl(=4) are almost the same as that of the seems not to be well fitted by the Botzmann-type distribu-
stochastically perturbed one. In the stochastic cadsgsin-  tion. Indeed, the distribution fluctuates so violently that the
creases andt,, decreases linearly until the states are fully temperature can no longer be well-defiede Fig. 21 It is
relaxed. Generally, we may say that the quasistationary era remarkable difference from the disordered system.
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