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Measuring the Lyapunov exponent using quantum mechanics
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We study the time evolution of two wave packets prepared at the same initial state, but evolving under
slightly different Hamiltonians. For chaotic systems, we determine the circumstances that lead to an exponen-
tial decay with time of the wave packet overlap function. We show that for sufficiently weak perturbations, the
exponential decay follows a Fermi golden rule, while by making the difference between the two Hamiltonians
larger, the characteristic exponential decay time becomes the Lyapunov exponent of the classical system. We
illustrate our theoretical findings by investigating numerically the overlap decay function of a two-dimensional
dynamical system.
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[. INTRODUCTION choice of a Gaussian wave pack@gtith finite width o)
Over the last two decades the quest for quantum fingemakes the theoretical considerations tractable within the
prints of classical chaotic behavior has been a key subject afemiclassical approximation.
investigation in quantum chagd§,2]. As a result, signatures The amplitude overlap in Eq1l) can be interpreted in the
of the classical underlying dynamics were identified in thefollowing two different, though formally equivalent, ways.
spectra, wave functions, and time evolution of a large set of (a) A wave packet is prepared at the tirhe 0 and al-
quantum systems. However, one of the simplest indicationfowed to evolve undei till a time t>0. The resulting state
of classical chaos, namely, the Lyapunov exponent, remaineid then propagated backwards in time under the Hamiltonian
unrelated to the quantum dynamil3]. A clear advance in  H till t=0. Under such constructiofQ(t)|? gives the return
this direction has been made recently by Jalabert and Pastayrobability. This is the picture described by Rgf] that was
ski [4], who proposed that the classical Lyapunov exponeninspired by some recent nuclear magnetic resonance experi-
is measured by the decay rate of an overlap between pements[9,10]. These experiments explore the scenario that,
turbed and unperturbed quantum states evolving from thander certain circumstances, it is possible to evolve back-
same initial state. Their work triggered several numericalwards in time a complex quantum system. This is in the spirit
studies[5—8] whose results are not always in line with the of the gedankerexperiment at the origin of the Boltzmann-
original predictions of Refl4]. The main goal of this paper Loschmidt controversy11] and, for that reason, we call
is to discuss the range of applicability of these predictiongO(t)|? the Loschmidt echo. Due to the difference between
and to understand under which conditions it is possible tahe Hamiltoniansd andH,, |O(t)|? is expected to decay as
extract a classical Lyapunov exponent from the quantum increases. The construction given by Ed) can be re-
evolution of a system. garded as a way to capture the physical effect of coupling the
The object of study is the comparison between the timeystem to a complex time-dependent environment, and hence
evolution of a wave packet under a given system Hamiltelate|O(t)|? to dephasing12,13.
tonian Hy and the corresponding evolution for a different  (b) Alternatively, one can regar@(t) as the overlap am-
HamiltonianH=H+ V. Formally, this can be quantified by plitude of an initial state¢) propagated forward in time

the overlap amplitude underH,, with the same initial statpy) propagated witi.
This interpretation is closely related to the concept of fidelity
O(t)={(y|exp(iHt/h)exp(—iHt/h)| ), (1) [14-16,7,8

Let us now state the main finding of Ré#]. There it is
where for the initial statéy)=|4(0)), the Gaussian wave Was shown that, after a suitable averagimdich shall be
packet discussed in the foregoing sectjpthe return probability or

fidelity can be separated into two contributions,

1 i (r—rg)? e
w(r,t=0)=mex;{%po.(r—ro)—T'(z) M (1) =]O(1)[2= M, (1) + M), 3

(2)  both described in the long-time limit as
is chosen, centered g and with initial momentunp,. The M;(t)cexp — a;t). (4)
purpose of such parametrization is twofold: The initial mo-

mentump, sets the wave packet mean energy range at whiciihe decay rater; depends on the properties of the perturba-
we define(classically the Lyapunov exponent, whereas the tion V=H —H,, while «, is the classical Lyapunov exponent
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associated with the dynamics i, providedV is classically
weak. Depending ok and\ the decay can be dominated by
eitherM ((t) or M,(t). In this paper we show under which
conditions it is possible to extraat from the analysis of the
average fidelityM (t).

The structure of this paper is as follows. In Sec. Il we
describe the model we use to obtainfrom the quantum
time evolution. Section Il presents the analysis of the differ-
ent decay processes that govern the fideMitgt). There we
show thatM (t) is nothing else than the Fermi golden rule.
The classical and quantum relevant scales to the problem ar
discussed. In particular, we show under which circumstance:
is it possible to observe the Lyapunov decay. The numerical
results verifying a Lyapunov decay for our dynamical system
are presented in Sec. IV. We then conclude in Sec. V by
relating our findings to the recent papers mentioned above.

Il. THE MODEL

To investigate the dependence of the Loschmidt echo or
the magnitude of an external perturbation, we use the smootl
stadium “billiard” introduced in Ref.[17,18 as the unper-
turbed system. This model consists of a two-dimensionalPy
HamiltonianH,=p?/2m+ U(r) with the potential given by

o, x<0
U(r)=U, (y/R)?, o=x<d (5)
{[(x=d)*+y*J/R?}, x=d. y

FIG. 1. Poincaresurface of section for the smooth stadium bil-
In addition,U(r)=c whenevery<<0. The exponent sets liard for E=1, R=d=1 and(a) »=1.5, (b) »=2, and(c) »v=3.
the slope of the confining potential. Fer=1 the smooth (Momentum and position are measured in arbitrary units.
stadium is separable and thus integrable. As the valueisf ) )
increased, the borders become steeper. In the limitefe, ~ Symplectic algorithn{20]. We computed the Lyapunov ex-
the stadium gains hard walls, becoming the well-knownPonent for several values of At E=1, A\ varies smoothly
Bunimovich billiard, one of the paradigms of classical cha-as @ function ofv, as shown in Fig. 2. As expected, as
otic systems(Actually, we consider a quarter of a stadium in becomes very large, approaches the value of the Lyapunov
order to avoid features related to parity symmetiigp.  exponent for the Bunimovich stadium billiard, namely,
Thus, by varyingr, we can tune the system dynamics from Mharg™= 0.86.
integrable to chaotic.

In order to make the presentation more concise, through-

out the paper we choose units such tgt=1, m=1/2, and 081
R=d=1. This defines units for other quantities as well, such
as time. Thus, the equipotentibl(x,y)=1 corresponds to 0.6
the border of the stadium with unit radius and unit length.
For any value of the enerdgy the equipotential(x,y)=E A o4

gives the classical turning points, defining the allowed area
A= A(E). This area is an important parameter in the discus-
sion of our numerical and analytical results. Any exponent in 0.24
the range X v=<2 already leads to a mixed phase space, i.e.,
a situation with both regular and chaotic motions present. In
particular, forv=2, d=1, and total energ=1 the classi- 0.0- .
cal dynamics is predominantly ergodic, although small rem- 5 10 15 20
nants of integrability still exist. These observations are illus- v
trated by the Poincarsurfaces of section displayed in Fig. 1. g 2. Lyapunov exponent of the smooth stadiumEor 1 as

The global Lyapunov exponerk for two-dimensional  a function ofv. The circles are the results of our computation, while
systems can be easily computed by standard methods, suge continuous line serves as a guide to the eye. The dashed line
as that proposed by Benettt al.[19]. The evolution of the  corresponds to the billiard limith,,=0.86. The unit ofA was
classical trajectories was carried out numerically using dixed by the choice ofJ,, m, R, andd.
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The work of Ref[4] used a Gaussian random background cl2 i i
potential as the perturbation that, once suddenly switched on, KY(r,r';t)= >, —exp - SY(r,r' ;) — — sl
mimics the effects of external sources of irreversibility in the s(r.r;t) 9
time evolution of a real system. Thus, static disorder played ©)

the role of the external perturbatiah Our strategy is essen- where SV denotes the action given by the integral of the
tially the same: we investigatil(t) numerically taking an | agrangian, SY(r,r’;t)=/idt'L(V). The superscriptV
ensemble average over different realizations of a disorderegtands for the perturbation potential, its absence indicétes
potentialV(r). For the later we choose a superpositiol\¢f =g The Maslov index corresponding to the trajectsrig
independent Gaussian impurities, as in Rpds21]: given by . and Cszldet(aZSS/ari’arm accounts for the
N conservation of classical probability in going from the initial
i . _p.J2 . " . ; .
Y _E uj B Ir—Ry] 5 to the final position componentsand j, respectively. To
(r)—': 28X 2 | ©®) proceed analytically, it is necessary to restrict the calcula-
i=12m¢ 2¢ : S o ) :
tions to a situation where it is possible to neglect the influ-
ence of the perturbatioV in the coefficientsCg [22]. In
\% ’. H
impurities are uniformly distributed over an arehof the genlertal, the bplropag?r;[d( (rt,r 0 descrlb;as the Iquar]['_[um
two-dimensional plane where the stadium resides, with cong volution probiem with great accuracy up 1o very fong imes,

centrationn;=\;/ A. The strengthsl; are Gaussian distrib- though shortgr than the _He|senberg “fﬁfs]- Since th_e fea-
U= u2s ith 0.=0. Th tures we are interested in are manifest in a short time scale,

uted and uncorrelated, i.ayu;, =ug;;,, with u;=0. The (}he semiclassical propagator is an adequate approximation.

impurity potential defined above is statistically characterize We useKY(r,r’;t) to propagate the wave packgtr’,t

by the correlation function =0) given by Eq.(2) att=0 up to an arbitrary time. After
a simple integration, one obtains

The vectorR; denotes the position of thgh impurity. All

clr-rh == g - | :
r—r'N=V(r r')y= exp —
pyye 48 P(r=\ama? 3 KY(rroiexn - ~—(ps—po)?|,
s(r,rg;t) Zﬁz
(implicitly assumingé< \/70. Notice that impurity averag- (10)

ing yieldsV(r)=0.
whereps is defined byaS/&r’|r/:,0= —ps. Equation(10) is
. THEORETICAL BACKGROUND obtained under the assumptige- o>k, constraining the

initial wave packet to be spatially concentrated over a region

This section is devoted to the analysis of the time depengier in diameter than the correlation length of the fluctua-
dence of the fidelityM (t), explaining the origin of its differ- ;< in V(r).

ent decay laws. We discuss the relation between the decay We can now calculate the overl@(t) as defined by Eq.

regimes associated td(t) and the different time and per- 1y by writing an analytical semiclassical expression for
turbation strength scales of the system. These con5|derat|onr§v]

PV(t)|¥(t)). For times shorter than the Heisenberg time,
solve the recent controversy between Lyapunov versus Fermy.c iq possible through the diagonal approximafiéh This
golden rule decay?7,8].

X . . approximation is standarf24] and neglects contributions
L?t us start giving a more precise definitionMg(t) ap-  fom pairs of trajectories that are different, namedy: s’.
pearing in Eq(3), namely, The resulting expression reads

M1()=[0(D|* and My(t)=[0(D)P~[O(MV)%. (©) _ o p(‘ )
O(t)—%f drs(r%;t) Csexpl - AS,

As it was already shown semiclassicdly}, bothM,(t) and

M,(t) exhibit an exponential decay in time, but different in o _ 5
nature. We show in the sequel that the prevailing decay law xXexg — ﬁ(ps_po) ; (11)
is determined by the perturbation strength, as well as the
time range under consideration. where the action differenc&S; is just
t
A. The semiclassical approximation scheme AS,=-— f dt'V[gs(t)]. (12
0

The best way to identify imO(t) manifestations of the
classical underlying dynamics is to use a semiclassical apNotice that phase difference accumulated along a trajestory
proximation. This is the essence of Ref], which presents a is solely due to the perturbation potential
complete calculation scheme fox(t) in the case of a chaotic At this level, the fidelityM (t) is trivially written by tak-
Ho and a “weak” perturbationV. The starting point is the ing the modulus squared @f(t), which implies in summing
Van Vleck semiclassical propagator, casted in terms of a suraver pairs of trajectories and s’ taking into account the
over all classical trajectoriesgoing fromr’ tor in the time  interference between phasedy§—AS/)/#. It is easy to
interval t: check thatV=0 leads toM(t)=1, as expected4]. The
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double sum we refer to can be split in two kinds of terias: 2 /—Wﬁzvzg

. . . , . 0 Vo
the diagonal ones, when the trajectoriesind s’ remain == (17)
close to each other ant) the off-diagonal terms, corre- uTn; *1

sponding to an unrelated pair of trajectorgeands’. In Ref. _ o )
[4] it was shown that after disorder averaging thiagonal ~ This quantity is known as the elastic mean free path. Equa-
contribution renders tion (17) corrects a minor mistake ingiven by Refs[25,4],
namely, a missing factor of 1/26]. In the sequel, we show
1 the relation between this semiclassical result and the stochas-
M ,(t)or ?exrx—)\t), (13)  tic theory.

where\ is the classical Lyapunov coefficient. In the long- B. The random-matrix approach

time limit t>1/\, the exponential decay dominates and The computation oM (t) by the statistical approach is a
M,(t) reduces to Eq(4). It is not within our scope to give standard random-matrix resi#tee, for instance, Ref27] or
details of this derivation, but it is worth mentioning that, Appendix B of Ref.[28]). A somewhat similar calculation
after impurity averaging21,25, the calculations leading to was also recently carried out by Mello and collaborators
Eq. (13) rely solely on generic assumptions about the classit29]. Notwithstanding, it is instructive to describe how this is
cal dynamics oH,. done. The connection to the random-matrix theory is made
The contribution to the fidelity coming from off-diagonal by the Bohigas’ conjecturi80] and the fact that the classical
termsM,(t), can be computed using the impurity averagedynamics ofH, is chaotic. Consequently, the matrix ele-
technique of Refd.21,25. It amounts to computing the vari- ments
ance of the phase appearing in Efjl). Assuming thatA Sg
are Gaussian distributed, which is reasonable for trajectories
longer than&, one readily writes

Vnn’:<n|v(r)|n,> (18)

with respect to the eigenstates ldf, are Gaussian distrib-
uted, regardless the form ®f(r). With this in mind, we can

ox i_ASS Cexd - LA_SZ (14 calculate the averaged propagator
f 212 2|’ .
K(t)=e M g(t). (19

where, by recalling Eq(12), the impurity averageﬁ_sg is

X This task is usually carried out in the energy representation
written as

by introducing the Green function operator

- t t
3= [Lav [ averrwen, 15 G(E) - with 70", (20

E+in—H
The distance in the impurity autocorrelation functinis ~ The formal expansion o in powers ofV and the rules for
r(t’',t")=|gs(t") —qs(t")|. It is useful to change integration averaging over products of Gaussian distributed matrix ele-
variables to the center of masg<{q’)/2 and differenceg ments give

—q’ coordinates, witlg=vot andq’=v,t’. For £< /A, it

is a good approximation to extend the integral over the co- G-G 1
ordinate difference to infinity. We can make further analyti- N Ol—VG VG,
cal progress if we specialize the discussion to hard-wall bil- 0% =0

liard systems, which are good approximations to our model _ , _1 . N
Hamiltonian, particularly ag is increased. In this case, the WheréGo=(E+i7n—Ho) . The matrix representation &

integral over §+q')/2 yieldsL=vt. As a result, one ob- is particularly simple. In the eigenbasis ld§, it becomes

(21)

tains[4]
G (E)= O (22)
u?n, " E+in—E,—3n(E)’
MS{(t)cexp(—agt) Wwith ay=—————. (16)
! ! Y omhuge whereE,, is thenth eigenvalue oH, and

Notice that the Gaussian ansatz 8 is not justified for

very short times in the range éfvy, which in our case is of

the same order as=/A/v,. Thus, we are unable to make
predictions aboutM(t<7) and, consequently, about the with
constant factor multiplying exp{a;t) in Eq. (16). The expo-

SA(E)=3 VEy(Gola=An(E) - 5TH(E), (23

nential decay can also be characterized by the typical length V2
at which the quantum phase is not modified by the presence A (E)= PE nn’
of impurities, n = E—-E,’
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Recalling Eq.(18), we can write the off-diagonal squared

Fn(E):Z’”; V2., 8(E—Ey). (24 matrix elements averaged over the impurity realizations as
Here P stands for principal value. The real pag(E) only Vﬁn,:f d2f1f A2r 5t () Yn(2) e
causes a small shift to the eigenenekgyand will thus be
neglected. Whenever the average matrix eIem\zﬁ,qs show X (I )t (F)V(r)V(ro). (29)
a smooth dependence on the indicgsit is customary to
replacel’, by its average value, By changing variables t®=(r,+r4)/2 andr=r,—r, and

o with the help of Berry’s conjecture, it is straightforward to
I'=2xV?/A, (250 reduce the integral in Eq29) to

whereA is the mean level spacing of the unperturbed spec-

trum. In most practical caseB,andA can be viewed as local

energy averaged quantities. Hence, the average propagator in

the time representation becomes The correlation functiorC is given by Eq.(7). For a suffi-
ciently large billiard,é< .42, we obtain[33]

V2, =] dnadknaanen. @

nt

_ E I't
Ko (1) = 6 €X _|7_E o(t). (26) 2

Vin’% n'_u
A

exif — (K3 + kp) €11 o(2kokn €%),  (31)

It worth stressing thatl’ arises from a nonperturbative

scheme; nonetheless, it is usually associated to the Fermiherely(x) is the modified Bessel function of the first kind.

golden rule due to its structure. For high-energy eigenstates, such tkag>1, and for states
The average propagator obtained in E2f) is easily re-  within an energy window corresponding do (k,~k,), the

lated toM(t) by calculating({|K|). This step gives us above expression is further simplified to

also a more precise meaning to the smooth energy depen-

dence ofl'(E): In our construction the latter has to change —— nu? 1

2
little in the energy window corresponding to the energy un- Vi ™ A 2k & (32
certainty of (r,t), which is determined byr. Thus, the "
(random-matrix theonyRMT final expression foM(t) is We can now inserv2_. into the left-hand side of Eq(25)
nn’ .
M ?MT(t):exp(—Ft/ﬁ), 27) Recalling that the mean level spacing for a two-dimensional

billiard is A =27#2/(Am) and usingik=mu,, we obtain
with T given by Eq.(25). Equation(27) does not hold for

very short times, since we neglected the smooth energy r u®n,

variations ofl", andA,,. It is beyond the scope of RMT to h 2\ Th2uoE (33
remedy this situation, since for that purpose nonuniversal

features of the model have to be accounted for. This is exactly the same decay rate of ELf). It also agrees

Despite sharing the same formal structure, it remains to bgjith the quantum diagrammatic perturbation theory for the
shown that both semiclassical and random model theory angylk in the disordered modgp5.

strictly equivalent. This is what we do next by deriving an
expression for the Fermi golden rule in terms of the classical
guantities used in Eq16).

For chaotic systems, we can calculate the average off- By employing the semiclassical approach we were able to
diagonal perturbation matrix elements using the universal avaddress in detail two very distinct regimes Mf(t). Such
tocorrelation function of eigenstates first conjectured byapproximation is the most appropriate tool to studyt)
Berry [31]. For two-dimensional billiards this function reads provided two conditions are met.is (a) classically weak, in

the sense that classical perturbation theory applies(and
1 quantum mechanically strong, meaning that one can treat the
(Un(r1) ¢n(ra))= ZJO(kn“l_rZD’ (28 actions in Eq(14) as Gaussian variables. In such cases, for
t>\"1, it was found that(a) In M,(t)x—A\t, independently
where Jy(X) is the Bessel function of zero ordd, is the of the strength of the perturbation arftd) In M(t)—TIt,
wave number associated to thih eigenstate ofl,, and.Ais  where I'«u?. As one varies the perturbation strength
the billiard area. Her¢- - -) can be regarded as the averageu, M(t) is dominated by the smallest afandI". In other
Un(r) n(r,) obtained by sweepingR=(r,+r;)/2 over a words, within the semiclassical regime, for small valuesi of
region containing several de Broglie wave lengths. Equivathe Fermi golden rule applies. The dependenceMdft)
lently, one could also average over a large number of levels;rosses over to IN(t)=—\t, whenI’>\. Equationg13) and
provided thatk, does not change much on that interval. For(16) predict for which value ofi this transition occurs.
a rigorous discussion on the validity of E(qR8) and the It remains to be discussed what happendii@) whenu
different averaging procedures, see R8g]. does not meet neithén) nor (b), namely, eitheu is below

C. Fermi golden rule and Lyapunov decay
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Ar system. However, the basis has to be such that the Hamil-

y tonian matrix elements needs to involve only short term in-

i teractions. We thus found it useful to work on a lattice and to
represent the kinetic energy with a nearest-neighbor hopping

- term. Within the energy range we explored, we found that a
two-dimensional lattice of area RX 1.1R provided very
g accurate results when we employBld=180 sites per unit

distanceR (with the intersite distance given by=R/N),
corresponding to a total number of 37898 lattice sites.

The range of parameter values explored in our simulations
FIG. 3. Sketch of the expected behavior foMit) as a function ~ was limited by computational cost. Moreover, our choice of
of the perturbation strength for a fixed value oft. The shaded parameters was guided by the constraints imposed by the
fields indicate the regimes af where the semiclassical approach semiclassical calculations of Sec. Il A. First, in order to in-
fails. clude a large number of randomly located impurities, their

correlation widthé had to be taken much smaller th&h

the Fermi golden rule regime ar is in the very opposite S€cond, the semiclassical regime where &a.applies re-

limit of strong perturbations, above the Lyapunov regime. duiresé to be larger than the wave packet widthwhich, in

Let us first discuss the limit of “extremely” weak pertur- tUrn, has to be much larger than the particle wavelength
bations, wherd&/ neither significantly mixes the statesidf Other constraints arise from finite-size effects. For instance,
nor causes level crossing84,35. Here, M(t) can be ob- the large-time saturation yalue of the Loschmidt emg
tained by standard quantum perturbation theory. This limit— ) depends on the ratio/N. Thus, for a fixedN, it is
was studied a long time ago by Perést], who found a necessary to make as small as possible in order to guaran-
Gaussian decay, namely, M(t)<—(ut)2 It turns out, as il- €€ @ small value foM(t— ). In addition, let us recall that
lustrated by our numerical study, that this limit is very hard (e energy spectrum of thepen boundariesliscretized sys-

to observe, since for very short timbi(t) decays as?in all €M is given by

In M(t)

Inu

cases.
At the opposite end there is the case of “strong” pertur- 2h? 2
bations, for which classical perturbation theory breaks down. Ek:m_az T ma [cogkya) +cogkya)]. (34)

As u is augmented the Lyapunov exponentsHyf and H
becor_ne mcrea_smgly_ different. Lacking a theoretical under"I'herefore, we can only accurately recover the dispersion re-
standing for this regime, we can only speculate thg(tt)

. : : lation of the free particleE,=#%2k?/2m, whenka<1. All

gsgiéf,yfgzt;rrginnTh(tah:pléyc%‘?(lzjzg\t/airli %&rfrn;e Heret) will these constraints are summarized by the inequalities

Figure 3 summarizes the principal predictions of this sec-
tion. The main feature of this diagram is the plateau in
—InM(t) vs u, characterizing the Lyapunov regime. For a ) _
given specific system we can predict where the plateau starts 1€ compromise between good accuracy and a feasible
at low values ofu. To use a quantum system to measure the'mulation time led us to sef=0.2R, o=0.1&, \¢
Lyapunov exponent, it is crucial to know where it ends, and=0:07R, andN=180. This choice, combined with the values
classical perturbation theory breaks down. For that purpos&f the classical model parametems=1/2 andE=1, gave
numerical simulations were performed for the smooth sta!!S€ t0 units such that =0.01R. Thus, the inequalities of
dium by varying its classical Lyapunov exponentnd the Eqg. (35 were approximately observed in our simulations.

. . 2 _
perturbation strength. The results are presented in the fol- FOr tf‘f quantum evolution, a time stép=2ma“/10h=2.8
lowing section. X 10 "E/# proved to be sufficiently small.

It is important to make a few remarks about the averaging
procedure. In the simulations, besides averaging over impu-
rity configurations, we also found important to average over

In this section we present a numerical studyMoft) for initial positionsry and directiong,. The main reason is that
the smooth stadium model with Gaussian impurity disordenumerical simulations of billiards deal with relatively small,
introduced in Sec. Il. Before showing the results, howeverconfined systems and directionality has a strong influence in
we describe some technical details about the numericdhe short-time dynamics.
method employed in the simulations. The initial conditions for the quantum evolution were

The quantum evolution of wave packets, as defined byhosen from a subset that also minimized finite-size effects.
Eq. (2), was carried out through the fourth-order Trotter- That is, we chose initial conditions that allowed for the ob-
Suzuki algorithm[36]. It is worth noticing that a more servation of an exponential decay before the saturation time.
straightforward approach, based on a matrix representatiofor that purpose, we took (R5<xy<R, 0.2R<yy<0.5R,
of the evolution operator in terms of the eigenvectorélgf  and initial momentunp, such that the first collision with the
would be far less efficient. boundary occurred ax>R, avoiding trajectories close to

The method does not require spatial discretization of thdouncing ball-like modes along. (Such trajectories were

a<Ap<o<{¢<R. (35)

IV. NUMERICAL RESULTS
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0.1

M(t)

RN S
v=15 SN
—— - y=2 £ RN A

0.01]--- v=3 T SN

In M(t)

FIG. 5. Fidelity as a function of timeu=0.01 for v=1.5, 2,
and 3. The number of samples used in the averaging behind the
=1.5 curve was 80. 100 samples were used in the two other cases.

tion for M (t) scaled with the perturbation strengthThat is,
the larger the perturbation, the larger the fluctuations! {th)
were. This fact sets another practical limit to the range of
perturbation strengths, we could investigate in our numeri-
cal simulations.
t [Rm/p ] In Fig. 5, we show the fidelity curves for the same pertur-
0 bation strength, but different steepness of the confining po-
FIG. 4. M(t) for »=1.5(a), 2 (b), and 3(c) for different values  tential. Notice that the fluctuations around tfexponential
of the perturbation strengthi=0.002, 0.005, 0.01, 0.02, 0.03, 0.04, fitted curve increase as the billiard walls become softer.
0.05, and 0.06the units ofu are fixed by the choice df,, m, R, In Fig. 6, we have plotted the inverse characteristic decay
andd). times 1f, obtained in the fittings as a function of the impu-
rity strengthsu for the three values of. For comparison, we

found to lead to strong nonexponential decaysvifit) for
time intervals shorter than the saturation time.

In Fig. 4 we showM (t) for v=1.5, 2, and 3 for different
values of the perturbation strength. In all graphs we see that
the asymptotic decays are approximately exponential within
a certain ranges ofi, as predicted in Refl4]. In order to 1 +
obtain the characteristic decay times, we fittetifh) to the 0.454 _
function IfAexp(-t/7,)/t+M..]. The fit was performed for - \
timest>R/v, wherev=+2E/m=2 is the wave packet ve- e 1 o)
locity, to exclude the initial, nonuniversénd nonexponen- ™ 0.304
tial) time evolution. It is worth noticing that the usual non- i

0.75

— (07 $
| v=1.5
0.60 v=2
v=3

[ Yol 4

linear fitting procedures are rather insensitive to certain
combinations of parameters, and A. Thus, while the pa- 0.154 A A T I
rameterM ., could be fixed by averaging the long-time tail of i i
the data, we avoided the uncertaintyAnand 7, by fixing ]
the value of the fitted curve at the initial point to be exactly 0.00 : : .
equal to the respective data value. We checked that such 0.00 0.02 0.04 0.06 0.08
procedure yield values fok that are proportional ta™?, as
expected. u

The typical number of samples used in the averaging pro- FIG. 6. Characteristic decay rates obtained from Fig. 4 as a
cedureffor each trace of théA(t) shown was in the range function of perturbation strength. The solid curves correspond to the
80-100. In fact, we observed that the number of sampleghenomenological expressid86). The units of 1#, and u were
needed to obtain comparable statistical mean squares fluctuiixed by the choice ofJ,, m, R, andd.
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plotted the phenomenological curve velocity @y =vg/l, the second decay law is characterized by
the Lyapunov exponent, namely,=\(E). By estimating
- (u)= l " 1 (36) the variance oV, , we showed that, is nothing else than
pheno N oap(u)’ the Fermi golden rule of Ref7]. Our analytical findings are

in quantitative agreement with the numerical results obtained
whereX is the classical Lyapunow(independentand a;  from the smooth stadium.
=uvo/l is the characteristic decay rate obtained in Sec. IIl A. Finally, for sufficiently long times we were able to quali-
Such curve matches the expected asymptotic behaviors f%tively understand the behavior of the fideliy(t) as a
1/74 at small and large values of function of the strengthu of V. For very weaku, quantum
The most pronounced feature shared by all data sets is tf}%rturbaﬁon theory applies andM(t)e=—(ut)2 [14]. Increas-
existence of a plateau around the classical Lyapunov expGng u, one enters in a regime where although quantum per-
nent\, as expected. The semiclassical thep#y predicts  tyrbation theory breaks down, the classical one still holds.
that this saturation should appear when the perturbation ige call this the semiclassical regime. Here, we quantified the
quantum mechanically strong, but classically weak. Thisrossover from the Fermi golden rule decay to the Lyapunov
condition, already presented in E(5), can be translated gecay. Finally, by further increasing classical perturbation
into the inequalityx <v/I. Indeed, the results of the simula- s no longer valid and the semiclassical approximation ceases
tions, as presented in Fig. 6, are consistent with the existenag pe useful. This picture is illustrated by Fig. 3 and nicely
of a plateau in 17, for u within this range. For weak pertur- numerically verified by Fig. 6. The plateaus obtained in the
bations, the data is also consistent with the quadratic behagimulations show that it is possible to measure the classical
ior of a;. Lyapunov exponent with quantum mechanics over a broad
range of perturbation strengths.
V. CONCLUSIONS Recently, Benenti and Casd87] investigated the func-
tion M(t) for a different dynamical system. Their numerical

ax;/g z'tutﬂl:(lg:et:mgaT\é(t):lal:ZO:ngf tmg V;i\t/ee\?;(\:/:(r?tsu%rgzanalysis gives results similar to ours, thus providing further
P ’ 9 gupport to our conclusions.

slightly different Hamiltonians, namelydy andH=Hy+ V.
For those systems for which the Hamiltoniby is classi-
pall_y chaaotic, th.e wave packet.overlgp decays exponentially ACKNOWLEDGMENTS
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