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Measuring the Lyapunov exponent using quantum mechanics
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We study the time evolution of two wave packets prepared at the same initial state, but evolving under
slightly different Hamiltonians. For chaotic systems, we determine the circumstances that lead to an exponen-
tial decay with time of the wave packet overlap function. We show that for sufficiently weak perturbations, the
exponential decay follows a Fermi golden rule, while by making the difference between the two Hamiltonians
larger, the characteristic exponential decay time becomes the Lyapunov exponent of the classical system. We
illustrate our theoretical findings by investigating numerically the overlap decay function of a two-dimensional
dynamical system.
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I. INTRODUCTION
Over the last two decades the quest for quantum fing

prints of classical chaotic behavior has been a key subjec
investigation in quantum chaos@1,2#. As a result, signature
of the classical underlying dynamics were identified in t
spectra, wave functions, and time evolution of a large se
quantum systems. However, one of the simplest indicati
of classical chaos, namely, the Lyapunov exponent, rema
unrelated to the quantum dynamics@3#. A clear advance in
this direction has been made recently by Jalabert and Pas
ski @4#, who proposed that the classical Lyapunov expon
is measured by the decay rate of an overlap between
turbed and unperturbed quantum states evolving from
same initial state. Their work triggered several numeri
studies@5–8# whose results are not always in line with th
original predictions of Ref.@4#. The main goal of this pape
is to discuss the range of applicability of these predictio
and to understand under which conditions it is possible
extract a classical Lyapunov exponent from the quant
evolution of a system.

The object of study is the comparison between the ti
evolution of a wave packet under a given system Ham
tonian H0 and the corresponding evolution for a differe
HamiltonianH5H01V. Formally, this can be quantified b
the overlap amplitude

O~ t !5^cuexp~ iHt /\!exp~2 iH 0t/\!uc&, ~1!

where for the initial stateuc&[uc(0)&, the Gaussian wave
packet

c~r ,t50!5
1

~Aps!d/2
expF i

\
p0•~r2r0!2

~r2r0!2

2s2 G
~2!

is chosen, centered atr0 and with initial momentump0. The
purpose of such parametrization is twofold: The initial m
mentump0 sets the wave packet mean energy range at wh
we define~classically! the Lyapunov exponent, whereas th
1063-651X/2002/65~4!/046209~9!/$20.00 65 0462
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choice of a Gaussian wave packet~with finite width s)
makes the theoretical considerations tractable within
semiclassical approximation.

The amplitude overlap in Eq.~1! can be interpreted in the
following two different, though formally equivalent, ways.

~a! A wave packet is prepared at the timet50 and al-
lowed to evolve underH0 till a time t.0. The resulting state
is then propagated backwards in time under the Hamilton
H till t50. Under such construction,uO(t)u2 gives the return
probability. This is the picture described by Ref.@4# that was
inspired by some recent nuclear magnetic resonance ex
ments@9,10#. These experiments explore the scenario th
under certain circumstances, it is possible to evolve ba
wards in time a complex quantum system. This is in the sp
of the gedankenexperiment at the origin of the Boltzmann
Loschmidt controversy@11# and, for that reason, we ca
uO(t)u2 the Loschmidt echo. Due to the difference betwe
the HamiltoniansH andH0 , uO(t)u2 is expected to decay a
t increases. The construction given by Eq.~1! can be re-
garded as a way to capture the physical effect of coupling
system to a complex time-dependent environment, and he
relateuO(t)u2 to dephasing@12,13#.

~b! Alternatively, one can regardO(t) as the overlap am-
plitude of an initial stateuc& propagated forward in time
underH0, with the same initial stateuc& propagated withH.
This interpretation is closely related to the concept of fide
@14–16,7,8#.

Let us now state the main finding of Ref.@4#. There it is
was shown that, after a suitable averaging~which shall be
discussed in the foregoing section!, the return probability or
fidelity can be separated into two contributions,

M ~ t ![uO~ t !u25M1~ t !1M2~ t !, ~3!

both described in the long-time limit as

Mi~ t !}exp~2a i t !. ~4!

The decay ratea1 depends on the properties of the perturb
tion V5H2H0, while a2 is the classical Lyapunov exponen
©2002 The American Physical Society09-1
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F. M. CUCCHIETTI et al. PHYSICAL REVIEW E 65 046209
associated with the dynamics ofH0, providedV is classically
weak. Depending onV andl the decay can be dominated b
either M1(t) or M2(t). In this paper we show under whic
conditions it is possible to extractl from the analysis of the
average fidelityM (t).

The structure of this paper is as follows. In Sec. II w
describe the model we use to obtainl from the quantum
time evolution. Section III presents the analysis of the diff
ent decay processes that govern the fidelityM (t). There we
show thatM1(t) is nothing else than the Fermi golden rul
The classical and quantum relevant scales to the problem
discussed. In particular, we show under which circumstan
is it possible to observe the Lyapunov decay. The numer
results verifying a Lyapunov decay for our dynamical syst
are presented in Sec. IV. We then conclude in Sec. V
relating our findings to the recent papers mentioned abo

II. THE MODEL

To investigate the dependence of the Loschmidt echo
the magnitude of an external perturbation, we use the sm
stadium ‘‘billiard’’ introduced in Ref.@17,18# as the unper-
turbed system. This model consists of a two-dimensio
HamiltonianH05p2/2m1U(r ) with the potential given by

U~r !5U0H `, x,0

~y/R!2n, 0<x,d

$@~x2d!21y2#/R2%n, x>d.

~5!

In addition,U(r )5` whenevery,0. The exponentn sets
the slope of the confining potential. Forn51 the smooth
stadium is separable and thus integrable. As the value ofn is
increased, the borders become steeper. In the limit ofn→`,
the stadium gains hard walls, becoming the well-kno
Bunimovich billiard, one of the paradigms of classical ch
otic systems.~Actually, we consider a quarter of a stadium
order to avoid features related to parity symmetries@1#!.
Thus, by varyingn, we can tune the system dynamics fro
integrable to chaotic.

In order to make the presentation more concise, throu
out the paper we choose units such thatU051, m51/2, and
R5d51. This defines units for other quantities as well, su
as time. Thus, the equipotentialU(x,y)51 corresponds to
the border of the stadium with unit radius and unit leng
For any value of the energyE the equipotentialU(x,y)5E
gives the classical turning points, defining the allowed a
A[A(E). This area is an important parameter in the disc
sion of our numerical and analytical results. Any exponen
the range 1,n<2 already leads to a mixed phase space,
a situation with both regular and chaotic motions present
particular, forn>2, d51, and total energyE51 the classi-
cal dynamics is predominantly ergodic, although small re
nants of integrability still exist. These observations are illu
trated by the Poincare´ surfaces of section displayed in Fig.

The global Lyapunov exponentl for two-dimensional
systems can be easily computed by standard methods,
as that proposed by Benettinet al. @19#. The evolution of the
classical trajectories was carried out numerically using
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symplectic algorithm@20#. We computed the Lyapunov ex
ponent for several values ofn. At E51, l varies smoothly
as a function ofn, as shown in Fig. 2. As expected, asn
becomes very large,l approaches the value of the Lyapuno
exponent for the Bunimovich stadium billiard, name
lhard50.86.

FIG. 1. Poincare´ surface of section for the smooth stadium b
liard for E51, R5d51 and ~a! n51.5, ~b! n52, and~c! n53.
~Momentum and position are measured in arbitrary units.!

FIG. 2. Lyapunov exponent of the smooth stadium forE51 as
a function ofn. The circles are the results of our computation, wh
the continuous line serves as a guide to the eye. The dashed
corresponds to the billiard limit,lhard50.86. The unit ofl was
fixed by the choice ofU0 , m, R, andd.
9-2
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MEASURING THE LYAPUNOV EXPONENT USING . . . PHYSICAL REVIEW E65 046209
The work of Ref.@4# used a Gaussian random backgrou
potential as the perturbation that, once suddenly switched
mimics the effects of external sources of irreversibility in t
time evolution of a real system. Thus, static disorder pla
the role of the external perturbationV. Our strategy is essen
tially the same: we investigateM (t) numerically taking an
ensemble average over different realizations of a disorde
potentialV(r ). For the later we choose a superposition ofNi
independent Gaussian impurities, as in Refs.@4,21#:

V~r !5(
j 51

Ni uj

2pj2
expF2

ur2Rj u2

2j2 G . ~6!

The vectorRj denotes the position of thej th impurity. All
impurities are uniformly distributed over an areaA of the
two-dimensional plane where the stadium resides, with c
centrationni5Ni /A. The strengthsuj are Gaussian distrib
uted and uncorrelated, i.e.,ujuj 85u2d j j 8 , with ū j50. The
impurity potential defined above is statistically characteriz
by the correlation function

C~ ur2r 8u![V~r !V~r 8!5
u2ni

4pj2
expF2

ur2r 8u2

4j2 G ~7!

~implicitly assumingj!AA). Notice that impurity averag-
ing yieldsV(r )50.

III. THEORETICAL BACKGROUND

This section is devoted to the analysis of the time dep
dence of the fidelityM (t), explaining the origin of its differ-
ent decay laws. We discuss the relation between the de
regimes associated toM (t) and the different time and per
turbation strength scales of the system. These considera
solve the recent controversy between Lyapunov versus F
golden rule decay@7,8#.

Let us start giving a more precise definition toMi(t) ap-
pearing in Eq.~3!, namely,

M1~ t ![uO~ t !u2 and M2~ t ![uO~ t !u22uO~ t !u2. ~8!

As it was already shown semiclassically@4#, bothM1(t) and
M2(t) exhibit an exponential decay in time, but different
nature. We show in the sequel that the prevailing decay
is determined by the perturbation strength, as well as
time range under consideration.

A. The semiclassical approximation scheme

The best way to identify inO(t) manifestations of the
classical underlying dynamics is to use a semiclassical
proximation. This is the essence of Ref.@4#, which presents a
complete calculation scheme forO(t) in the case of a chaotic
H0 and a ‘‘weak’’ perturbationV. The starting point is the
Van Vleck semiclassical propagator, casted in terms of a s
over all classical trajectoriess going fromr 8 to r in the time
interval t:
04620
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KV~r ,r 8;t !5 (
s(r ,r8;t)

Cs
1/2

2p i\
expF i

\
Ss

V~r ,r 8;t !2
ip

2
msG ,

~9!

where SV denotes the action given by the integral of t
Lagrangian, Ss

V(r ,r 8;t)5*0
t dt8L(V). The superscript V

stands for the perturbation potential, its absence indicateV
50. The Maslov index corresponding to the trajectorys is
given by ms and Cs5udet(]2Ss /]r i8]r j )u accounts for the
conservation of classical probability in going from the initi
to the final position componentsi and j, respectively. To
proceed analytically, it is necessary to restrict the calcu
tions to a situation where it is possible to neglect the infl
ence of the perturbationV in the coefficientsCs @22#. In
general, the propagatorKV(r ,r 8;t) describes the quantum
evolution problem with great accuracy up to very long time
though shorter than the Heisenberg time@23#. Since the fea-
tures we are interested in are manifest in a short time sc
the semiclassical propagator is an adequate approximati

We useKV(r ,r 8;t) to propagate the wave packetc(r 8,t
50) given by Eq.~2! at t50 up to an arbitrary timet. After
a simple integration, one obtains

cV~r ,t !5A4ps2 (
s(r ,r0 ;t)

Ks
V~r ,r0 ;t !expF2

s2

2\2
~ps2p0!2G ,

~10!

whereps is defined by]S/]r 8ur85r0
52ps . Equation~10! is

obtained under the assumptionj@s@k21, constraining the
initial wave packet to be spatially concentrated over a reg
smaller in diameter than the correlation length of the fluct
tions in V(r ).

We can now calculate the overlapO(t) as defined by Eq.
~1! by writing an analytical semiclassical expression f
^cV(t)uc(t)&. For times shorter than the Heisenberg tim
this is possible through the diagonal approximation@4#. This
approximation is standard@24# and neglects contribution
from pairs of trajectories that are different, namely,sÞs8.
The resulting expression reads

O~ t !5
s

p\2E dr (
s(r ,r0 ;t)

CsexpS i

\
DSsD

3expF2
s2

\2
~ p̄s2p0!2G , ~11!

where the action differenceDSs is just

DSs52E
0

t

dt8V@qs~ t8!#. ~12!

Notice that phase difference accumulated along a trajectos
is solely due to the perturbation potentialV.

At this level, the fidelityM (t) is trivially written by tak-
ing the modulus squared ofO(t), which implies in summing
over pairs of trajectoriess and s8 taking into account the
interference between phases, (DSs2DSs8)/\. It is easy to
check thatV50 leads toM (t)51, as expected@4#. The
9-3
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double sum we refer to can be split in two kinds of terms:~a!
the diagonal ones, when the trajectoriess and s8 remain
close to each other and~b! the off-diagonal terms, corre
sponding to an unrelated pair of trajectoriess ands8. In Ref.
@4# it was shown that after disorder averaging thediagonal
contribution renders

M2~ t !}
1

t
exp~2lt !, ~13!

wherel is the classical Lyapunov coefficient. In the lon
time limit t@1/l, the exponential decay dominates a
M2(t) reduces to Eq.~4!. It is not within our scope to give
details of this derivation, but it is worth mentioning tha
after impurity averaging@21,25#, the calculations leading to
Eq. ~13! rely solely on generic assumptions about the cla
cal dynamics ofH0.

The contribution to the fidelity coming from off-diagona
terms M1(t), can be computed using the impurity avera
technique of Refs.@21,25#. It amounts to computing the vari
ance of the phase appearing in Eq.~11!. Assuming thatDSs
are Gaussian distributed, which is reasonable for trajecto
longer thanj, one readily writes

expS i

\
DSsD5expS 2

1

2\2
DSs

2D , ~14!

where, by recalling Eq.~12!, the impurity averageDSs
2 is

written as

DSs
25E

0

t

dt8E
0

t

dt9C@r ~ t8,t9!#. ~15!

The distance in the impurity autocorrelation functionC is
r (t8,t9)5uqs(t8)2qs(t9)u. It is useful to change integratio
variables to the center of mass (q1q8)/2 and differenceq
2q8 coordinates, withq5v0t andq85v0t8. For j!AA, it
is a good approximation to extend the integral over the
ordinate difference to infinity. We can make further analy
cal progress if we specialize the discussion to hard-wall
liard systems, which are good approximations to our mo
Hamiltonian, particularly asn is increased. In this case, th
integral over (q1q8)/2 yields L5v0t. As a result, one ob-
tains @4#

M1
sc~ t !}exp~2a1t ! with a15

u2ni

2Ap\2v0j
. ~16!

Notice that the Gaussian ansatz forDSs is not justified for
very short times in the range ofj/v0, which in our case is of
the same order ast[AA/v0. Thus, we are unable to mak
predictions aboutM1(t,t) and, consequently, about th
constant factor multiplying exp(2a1t) in Eq. ~16!. The expo-
nential decay can also be characterized by the typical len
at which the quantum phase is not modified by the prese
of impurities,
04620
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2Ap\2v0

2j

u2ni

5
v0

a1
. ~17!

This quantity is known as the elastic mean free path. Eq
tion ~17! corrects a minor mistake inl given by Refs.@25,4#,
namely, a missing factor of 1/2@26#. In the sequel, we show
the relation between this semiclassical result and the stoc
tic theory.

B. The random-matrix approach

The computation ofM1(t) by the statistical approach is
standard random-matrix result~see, for instance, Ref.@27# or
Appendix B of Ref.@28#!. A somewhat similar calculation
was also recently carried out by Mello and collaborato
@29#. Notwithstanding, it is instructive to describe how this
done. The connection to the random-matrix theory is ma
by the Bohigas’ conjecture@30# and the fact that the classica
dynamics ofH0 is chaotic. Consequently, the matrix el
ments

Vnn85^nuV~r !un8& ~18!

with respect to the eigenstates ofH0 are Gaussian distrib
uted, regardless the form ofV(r ). With this in mind, we can
calculate the averaged propagator

K~ t !5e2 iHt /\u~ t !. ~19!

This task is usually carried out in the energy representa
by introducing the Green function operator

G~E!5
1

E1 ih2H
with h→01. ~20!

The formal expansion ofG in powers ofV and the rules for
averaging over products of Gaussian distributed matrix e
ments give

Ḡ5G0

1

12VG0VG0

, ~21!

whereG05(E1 ih2H0)21. The matrix representation ofḠ
is particularly simple. In the eigenbasis ofH0, it becomes

Ḡnn8~E!5
dnn8

E1 ih2En2Sn~E!
, ~22!

whereEn is thenth eigenvalue ofH0 and

Sn~E!5(
n8

Vnn8
2

~G0!n8[Dn~E!2
i

2
Gn~E!, ~23!

with

Dn~E!5P(
n

Vnn8
2̄

E2En
,

9-4
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Gn~E!52p(
n

Vnn8
2̄ d~E2En!. ~24!

Here P stands for principal value. The real partDn(E) only
causes a small shift to the eigenenergyEn and will thus be
neglected. Whenever the average matrix elementsVnn8

2 show
a smooth dependence on the indicesn, it is customary to
replaceGn by its average value,

G52pV̄2/D, ~25!

whereD is the mean level spacing of the unperturbed sp
trum. In most practical cases,G andD can be viewed as loca
energy averaged quantities. Hence, the average propaga
the time representation becomes

K̄nn8~ t !5dnn8 expS 2 i
Ent

\
2

Gt

2\ D u~ t !. ~26!

It worth stressing thatG arises from a nonperturbativ
scheme; nonetheless, it is usually associated to the F
golden rule due to its structure.

The average propagator obtained in Eq.~26! is easily re-
lated to M1(t) by calculating^cuK̄uc&. This step gives us
also a more precise meaning to the smooth energy de
dence ofG(E): In our construction the latter has to chan
little in the energy window corresponding to the energy u
certainty of c(r ,t), which is determined bys. Thus, the
~random-matrix theory! RMT final expression forM1(t) is

M1
RMT~ t !5exp~2Gt/\!, ~27!

with G given by Eq.~25!. Equation~27! does not hold for
very short times, since we neglected the smooth ene
variations ofGn andDn . It is beyond the scope of RMT to
remedy this situation, since for that purpose nonunive
features of the model have to be accounted for.

Despite sharing the same formal structure, it remains to
shown that both semiclassical and random model theory
strictly equivalent. This is what we do next by deriving a
expression for the Fermi golden rule in terms of the class
quantities used in Eq.~16!.

For chaotic systems, we can calculate the average
diagonal perturbation matrix elements using the universal
tocorrelation function of eigenstates first conjectured
Berry @31#. For two-dimensional billiards this function read

^cn~r1!cn~r2!&5
1

A J0~knur12r2u!, ~28!

whereJ0(x) is the Bessel function of zero order,kn is the
wave number associated to thenth eigenstate ofH0, andA is
the billiard area. Herê•••& can be regarded as the avera
cn(r1)cn(r2) obtained by sweepingR5(r21r1)/2 over a
region containing several de Broglie wave lengths. Equi
lently, one could also average over a large number of lev
provided thatkn does not change much on that interval. F
a rigorous discussion on the validity of Eq.~28! and the
different averaging procedures, see Ref.@32#.
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Recalling Eq.~18!, we can write the off-diagonal square
matrix elements averaged over the impurity realizations

V̄nn8
2

5E d2r 1E d2r 2cn~r1!cn~r2!cn8

3~r1!cn8~r2!V~r1!V~r2!. ~29!

By changing variables toR5(r21r1)/2 and r5r22r1 and
with the help of Berry’s conjecture, it is straightforward
reduce the integral in Eq.~29! to

Vnn8
2

5
1

AE d2rJ0~knr !J0~kn8r !C~r !. ~30!

The correlation functionC is given by Eq.~7!. For a suffi-
ciently large billiard,j!A 1/2, we obtain@33#

Vnn8
2 '

niu
2

A exp@2~kn
21kn8

2
!j2#I 0~2knkn8j

2!, ~31!

whereI 0(x) is the modified Bessel function of the first kind
For high-energy eigenstates, such thatknj@1, and for states
within an energy window corresponding tos (kn'kn8), the
above expression is further simplified to

Vnn8
2 '

niu
2

A
1

2Apknj
. ~32!

We can now insertVnn8
2 into the left-hand side of Eq.~25!.

Recalling that the mean level spacing for a two-dimensio
billiard is D52p\2/(Am) and using\k5mv0, we obtain

G

\
5

u2ni

2Ap\2v0j
. ~33!

This is exactly the same decay rate of Eq.~16!. It also agrees
with the quantum diagrammatic perturbation theory for t
bulk in the disordered model@25#.

C. Fermi golden rule and Lyapunov decay

By employing the semiclassical approach we were able
address in detail two very distinct regimes ofM (t). Such
approximation is the most appropriate tool to studyM (t)
provided two conditions are met:V is ~a! classically weak, in
the sense that classical perturbation theory applies and~b!
quantum mechanically strong, meaning that one can trea
actions in Eq.~14! as Gaussian variables. In such cases,
t@l21, it was found that:~a! ln M2(t)}2lt, independently
of the strength of the perturbation and~b! ln M1(t)}2Gt,
where G}u2. As one varies the perturbation streng
u, M (t) is dominated by the smallest ofl andG. In other
words, within the semiclassical regime, for small values ou
the Fermi golden rule applies. The dependence ofM (t)
crosses over to lnM(t)}2lt, whenG.l. Equations~13! and
~16! predict for which value ofu this transition occurs.

It remains to be discussed what happens toM (t) whenu
does not meet neither~a! nor ~b!, namely, eitheru is below
9-5
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F. M. CUCCHIETTI et al. PHYSICAL REVIEW E 65 046209
the Fermi golden rule regime oru is in the very opposite
limit of strong perturbations, above the Lyapunov regime

Let us first discuss the limit of ‘‘extremely’’ weak pertur
bations, whereV neither significantly mixes the states ofH0,
nor causes level crossings@34,35#. Here, M (t) can be ob-
tained by standard quantum perturbation theory. This li
was studied a long time ago by Peres@14#, who found a
Gaussian decay, namely, lnM(t)}2(ut)2. It turns out, as il-
lustrated by our numerical study, that this limit is very ha
to observe, since for very short timesM (t) decays ast2 in all
cases.

At the opposite end there is the case of ‘‘strong’’ pertu
bations, for which classical perturbation theory breaks do
As u is augmented the Lyapunov exponents ofH0 and H
become increasingly different. Lacking a theoretical und
standing for this regime, we can only speculate thatM (t)
decays faster than in the Lyapunov regime. HereM (t) will
strongly depend on the specific details ofV(r ).

Figure 3 summarizes the principal predictions of this s
tion. The main feature of this diagram is the plateau
2 ln M(t) vs u, characterizing the Lyapunov regime. For
given specific system we can predict where the plateau s
at low values ofu. To use a quantum system to measure
Lyapunov exponent, it is crucial to know where it ends, a
classical perturbation theory breaks down. For that purp
numerical simulations were performed for the smooth s
dium by varying its classical Lyapunov exponentl and the
perturbation strengthu. The results are presented in the fo
lowing section.

IV. NUMERICAL RESULTS

In this section we present a numerical study ofM (t) for
the smooth stadium model with Gaussian impurity disor
introduced in Sec. II. Before showing the results, howev
we describe some technical details about the numer
method employed in the simulations.

The quantum evolution of wave packets, as defined
Eq. ~2!, was carried out through the fourth-order Trotte
Suzuki algorithm @36#. It is worth noticing that a more
straightforward approach, based on a matrix representa
of the evolution operator in terms of the eigenvectors ofH0
would be far less efficient.

The method does not require spatial discretization of

FIG. 3. Sketch of the expected behavior for lnM(t) as a function
of the perturbation strengthu for a fixed value oft. The shaded
fields indicate the regimes ofu where the semiclassical approac
fails.
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system. However, the basis has to be such that the Ha
tonian matrix elements needs to involve only short term
teractions. We thus found it useful to work on a lattice and
represent the kinetic energy with a nearest-neighbor hopp
term. Within the energy range we explored, we found tha
two-dimensional lattice of area 2.1R31.1R provided very
accurate results when we employedN5180 sites per unit
distanceR ~with the intersite distance given bya5R/N),
corresponding to a total number of 3783198 lattice sites.

The range of parameter values explored in our simulati
was limited by computational cost. Moreover, our choice
parameters was guided by the constraints imposed by
semiclassical calculations of Sec. III A. First, in order to i
clude a large number of randomly located impurities, th
correlation widthj had to be taken much smaller thanR.
Second, the semiclassical regime where Eq.~4! applies re-
quiresj to be larger than the wave packet widths, which, in
turn, has to be much larger than the particle wavelengthlF .
Other constraints arise from finite-size effects. For instan
the large-time saturation value of the Loschmidt echoM (t
→`) depends on the ratios/N. Thus, for a fixedN, it is
necessary to makes as small as possible in order to guara
tee a small value forM (t→`). In addition, let us recall tha
the energy spectrum of the~open boundaries! discretized sys-
tem is given by

Ek5
2\2

ma2
2

\2

ma2
@cos~kxa!1cos~kya!#. ~34!

Therefore, we can only accurately recover the dispersion
lation of the free particle,Ek5\2k2/2m, when ka!1. All
these constraints are summarized by the inequalities

a!lF!s,j!R. ~35!

The compromise between good accuracy and a feas
simulation time led us to setj50.25R, s50.18R, lF
50.07R, andN5180. This choice, combined with the value
of the classical model parametersm51/2 andE51, gave
rise to units such that\50.011R. Thus, the inequalities o
Eq. ~35! were approximately observed in our simulation
For the quantum evolution, a time stepdt52ma2/10\52.8
31024E/\ proved to be sufficiently small.

It is important to make a few remarks about the averag
procedure. In the simulations, besides averaging over im
rity configurations, we also found important to average o
initial positionsr0 and directionsp0. The main reason is tha
numerical simulations of billiards deal with relatively sma
confined systems and directionality has a strong influenc
the short-time dynamics.

The initial conditions for the quantum evolution we
chosen from a subset that also minimized finite-size effe
That is, we chose initial conditions that allowed for the o
servation of an exponential decay before the saturation ti
For that purpose, we took 0.5R,x0,R, 0.2R,y0,0.5R,
and initial momentump0 such that the first collision with the
boundary occurred atx.R, avoiding trajectories close to
bouncing ball-like modes alongy. ~Such trajectories were
9-6
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found to lead to strong nonexponential decays inM (t) for
time intervals shorter than the saturation time.!

In Fig. 4 we showM (t) for n51.5, 2, and 3 for different
values of the perturbation strength. In all graphs we see
the asymptotic decays are approximately exponential wi
a certain ranges ofu, as predicted in Ref.@4#. In order to
obtain the characteristic decay times, we fitted lnM(t) to the
function ln@Aexp(2t/tf)/t1M`#. The fit was performed for
times t.R/v, wherev5A2E/m52 is the wave packet ve
locity, to exclude the initial, nonuniversal~and nonexponen
tial! time evolution. It is worth noticing that the usual no
linear fitting procedures are rather insensitive to cert
combinations of parameterstf and A. Thus, while the pa-
rameterM` could be fixed by averaging the long-time tail
the data, we avoided the uncertainty inA and tf by fixing
the value of the fitted curve at the initial point to be exac
equal to the respective data value. We checked that s
procedure yield values forA that are proportional tou22, as
expected.

The typical number of samples used in the averaging p
cedure@for each trace of theM (t) shown# was in the range
80–100. In fact, we observed that the number of samp
needed to obtain comparable statistical mean squares flu

FIG. 4. M (t) for n51.5 ~a!, 2 ~b!, and 3~c! for different values
of the perturbation strength:u50.002, 0.005, 0.01, 0.02, 0.03, 0.0
0.05, and 0.06~the units ofu are fixed by the choice ofU0 , m, R,
andd).
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tion for M (t) scaled with the perturbation strengthu. That is,
the larger the perturbation, the larger the fluctuations inM (t)
were. This fact sets another practical limit to the range
perturbation strengthsu, we could investigate in our numeri
cal simulations.

In Fig. 5, we show the fidelity curves for the same pert
bation strength, but different steepness of the confining
tential. Notice that the fluctuations around the~exponential!
fitted curve increase as the billiard walls become softer.

In Fig. 6, we have plotted the inverse characteristic de
times 1/tf obtained in the fittings as a function of the imp
rity strengthsu for the three values ofn. For comparison, we

FIG. 5. Fidelity as a function of time.u50.01 for n51.5, 2,
and 3. The number of samples used in the averaging behind tn
51.5 curve was 80. 100 samples were used in the two other ca

FIG. 6. Characteristic decay rates obtained from Fig. 4 a
function of perturbation strength. The solid curves correspond to
phenomenological expression~36!. The units of 1/tf and u were
fixed by the choice ofU0 , m, R, andd.
9-7
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plotted the phenomenological curve

tphenom~u!5
1

l
1

1

a1~u!
, ~36!

wherel is the classical Lyapunov (u independent! and a1
5v0 / l is the characteristic decay rate obtained in Sec. III
Such curve matches the expected asymptotic behaviors
1/tf at small and large values ofu.

The most pronounced feature shared by all data sets is
existence of a plateau around the classical Lyapunov ex
nent l, as expected. The semiclassical theory@4# predicts
that this saturation should appear when the perturbatio
quantum mechanically strong, but classically weak. T
condition, already presented in Eq.~35!, can be translated
into the inequalityl!v/ l . Indeed, the results of the simula
tions, as presented in Fig. 6, are consistent with the existe
of a plateau in 1/tf for u within this range. For weak pertur
bations, the data is also consistent with the quadratic be
ior of a1.

V. CONCLUSIONS

We studied the time evolution of two wave packets p
pared at the same initial state and time, but evolving un
slightly different Hamiltonians, namely,H0 andH5H01V.
For those systems for which the HamiltonianH0 is classi-
cally chaotic, the wave packet overlap decays exponenti
in time, according to the semiclassical theory@4#. For the
model Hamiltonian introduced in Sec. II, we numerica
verified that the exponential decay is indeed observed fo
broad range of typical strengths ofV.

Within the regime of perturbations that are quantum m
chanically strong, but classically weak, the semiclass
theory predicts two decay laws@4#. While the first one is
governed by the mean free path and the wave packet m
b
d

tin
m

nt

hy

et
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velocity a15v0 / l , the second decay law is characterized
the Lyapunov exponent, namelya25l(E). By estimating
the variance ofVnn8 , we showed thata1 is nothing else than
the Fermi golden rule of Ref.@7#. Our analytical findings are
in quantitative agreement with the numerical results obtai
from the smooth stadium.

Finally, for sufficiently long times we were able to qual
tatively understand the behavior of the fidelityM (t) as a
function of the strengthu of V. For very weaku, quantum
perturbation theory applies and lnM(t)}2(ut)2 @14#. Increas-
ing u, one enters in a regime where although quantum p
turbation theory breaks down, the classical one still hol
We call this the semiclassical regime. Here, we quantified
crossover from the Fermi golden rule decay to the Lyapun
decay. Finally, by further increasingu, classical perturbation
is no longer valid and the semiclassical approximation cea
to be useful. This picture is illustrated by Fig. 3 and nice
numerically verified by Fig. 6. The plateaus obtained in t
simulations show that it is possible to measure the class
Lyapunov exponent with quantum mechanics over a br
range of perturbation strengths.

Recently, Benenti and Casati@37# investigated the func-
tion M (t) for a different dynamical system. Their numeric
analysis gives results similar to ours, thus providing furth
support to our conclusions.
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