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Iterated conformal dynamics and Laplacian growth
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The method of iterated conformal maps for the study of diffusion limited aggre¢fates) is generalized
to the study of Laplacian growth patterns and related processes. We emphasize the fundamental difference
between these processes: DLA is grown serially with constant size particles, while Laplacian patterns are
grown by advancing each boundary point in parallel, proportional to the gradient of the Laplacian field. We
introduce a two-parameter family of growth patterns that interpolates between DLA and a discrete version of
Laplacian growth. The ultraviolet putative finite-time singularities are regularized here by a minimal tip size,
equivalently for all the models in this family. With this we stress that the difference between DLA and
Laplacian growth is not in the manner of ultraviolet regularization, but rather in their deeply different growth
rules. The fractal dimensions of the asymptotic patterns depend continuously on the two parameters of the
family, giving rise to a “phase diagram” in which DLA and discretized Laplacian growth are at the extreme
ends. In particular, we show that the fractal dimension of Laplacian growth patterns is higher than the fractal
dimension of DLA, with the possibility of dimension 2 for the former not excluded.
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[. INTRODUCTION (cuspsg in finite time[3]. In DLA the ultraviolet regulariza-
tion is provided by the finite size of the random walkers.
This paper had been motivated by the opinion expressedowever, many researchers belieyédd that this difference,
by a number of researchers that DLA and Laplacian growttwhich for very large clusters controls only the smallest scales
patterns are in the same universality class in terms of theiof the fractal patterns, were not relevant, expecting the two
asymptotic fractal dimensiorfd]. We present here a theory models to lead to clusters with the same asymptotic dimen-
of these processes in two dimensions that clarifies the differsions. We define below a discrete analog of Laplacian growth
ences between these processes, proposing in particular tiatwhich the ultraviolet regularization is identical to DLA.
their asymptotic fractal dimensions differ. We further propose that these two problems fall in two uni-
Laplacian growth patterns are obtained when the boundversality classes. Since we regularize them in the same way,

portional to the gradient of a Laplacian figkl Outside the versality classes for different reasons, which are connected to

domainV2P=0, and each point of is advanced at a rate their different growth rules.

; ee - : In this paper we construct a family of growth processes
proportional toVP [2,3]. In diffusion limited aggregation . g : :
(DLA) [4] a two-dimensional cluster is grown by releasingthat includes DLA and the aforementioned discrete version

fixed size random walkers from infinity, allowing them to of Laplacian growth as extreme members, using the same

K d unil thev hit icle belonaing to the cl ultraviolet regularization. We thus expose the essential dif-
walk around untit they nit any particie belonging 1o the ClUs-¢o o yca petween DLA and Laplacian growth. DLA is grown
ter. Since the particles are released one by one and may tal

20 - . e ey Srially, with the field being updated after each particle
arb|Frar|Iy long tllme to hit the cluster, the probability field is growth. On the other hand, all boundary points of a Laplac-
stationary and in the complement of the cluster we haveyn pattern are advanced in parallel at ofeportional to
again V°P=0. The boundary condition at infinity is the yp) \we propose that this difference is fundamental to the
same for the two problems; in radial geometryras= the  asymptotic dimension, putting the two problems in different
flux is VP=consixr/r. Since the probability for a random universality classes. An announcement of these results was
walker to hit the boundary is again proportional¥d®, one  presented in Ref6].
could think that in the asymptotic limit when the size of the  To reach these conclusions we formulate a theory of La-
particle is much smaller than the radius of the cluster, replacian growth patterns in terms of iterated conformal maps.
peated growth events lead to a growth process that is simils@uch a theory was successfully advanced recently for DLA
to Laplacian growth. Of course, the ultraviolet regulariza-[7-9,13, providing for unprecedented analytic control of the
tions in the two processes were different; in studying Laplacproperties of DLA[14,15. By generalizing it to Laplacian
ian growth one usually solves the problem with the boundaryrowth patterns we can enjoy similar advantages, allowing
condition P=o« whereo is the surface tension arklthe  us to address delicate points that are beyond the scope of
local curvature ofl” [5]. Without this(or some otherultra-  direct numerical simulations and previous analytic attempts.
violet regularization Laplacian growth reaches a singularity In Sec. Il we extend the iterated conformal maps approach
to parallel processes of layer-by-layer growth with varying
local growth rates. In Sec. Il we construct a two-parameter
*Present address: Corporate Strategic Research, ExxonMobil Réamily of parallel growth processes that includes DLA and
search and Engineering, Route 22, Annandale, NJ 08801. the discrete Laplacian growth as spedehd distinct cases.
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We demonstrate the relevance of the two parameters in dée the image of the unit circle unddr(w). The bumps in
termining the asymptotic fractal properties of the resultingthe z plane simulate the accreted particles in the physical
patterns. In Sec. IV we consider our algorithm for Laplacianspace formulation of the growth process. For the height of
growth and compare it to the exact dynamics without surfaceéhe bump to be proportional tW P(z(s))|#"? we need to
tension. We study the correspondence between these modelsoose its area proportional t (™’ (e'n+1)|~# [see Eq.
for the early dynamicgbefore the appearance of finite-time (1)], or

singularities in the latter In Sec. V we offer concluding 5

remarks. No

)\n+1:|¢)(n)/(ei0n+l)|ﬁ+2'

©)
II. ITERATED CONFORMAL MAPS FOR PARALLEL

GROWTH PROCESSES HereXo=A{"2"2 and)\, is a fixed typical area. With this
choice\,, is dimensionless. Witl8=0 these rules produce a
DLA cluster. Next, to growp (nonoverlapping particles in
parallel, we accrete them without updating the conformal
which conformally maps the exterior of the unit cira in map. In other wo_rds, to "’?dd a new layerpparticles when
the mathematicab plane onto the complement of tiisim- the cluster contalnm~ particles, we need to choogeangles

ply connectelcluster ofn particles in the physicat plane.  0n the unit circle{6y,,}k_,. At these angles we grow
The unit circle is mapped onto the boundary of the cluster. Ifoumps that in the physical space are proportional in size to
what follows we use the fact that the gradient of the Laplacthe gradient of the field around time-particle cluster,

ian field VP(z(s)) is

The method of iterated conformal maps for DLA was in-
troduced in Ref[7]. Here we present a generalization to
parallel growth processes. We are interested®iff)(w),

Xo
|Cb(m)r(ei”om+k)|g|q)(m+k—1)r(ei 9m+k)|2’

Nnk=

VP(z(s))= z(s)=dM(e'?). (1)

oM/ (git)’
(€9 k=1,2...p. (6)
Heresis an arc-length parametrization of the boundary. The ] ] - o
map ®M(w) is constructed recursively. Suppose that we@t this momen# is not defined; onlyg is. This is due to the
have alreadyb™(w), which maps to the exterior of a cluster reparametrization that needs to be taken into account as ex-
of n particles in the physical plane and we want to find thePlained next. o o
map® ™ P)(w) afterp additional particles were added to its Of course, every composition effects a reparametrization
boundaryat once each proportional in size to the local value ©f the unit circle, which has tpo be taken into account. To do
of |[VP|#2 To grow one such particle we employ the el- this, we define a serie®p, -, according to
ementary mapp, ,, which transforms the unit circle to a
circle with a "bump” of linear sizey/\ around the pointw
=e¢'’. In this paper we employ the elementary njap

q)(m)(ei?)erk)E(I)(m‘*'k_l)(ei 0m+k)_ (7)

After the p particles are added, the conformal map and the

(14)) 1 field should be updated. In updating, we will use&ompo-
— 1+ 1+ wtol 1+ — sitions of the elementary mag), ¢(w). We define t_he con-
rle) \/E{ 20 (1+) @re w? formal map used in the next layer growth according to
1/2 1/2 (M+P)( ) =P (Mo 0...0
3 E 1-X\ 3 @ PP (@)= Doy s d’emw,)\mp(w)-
w 1+ ' (8)
y L In this way we achieve the growth at the images urbi€p
br (@) =€y o8 w). 3 of the points{@py.JP_,. To compute thed series from a

This map has the obvious advantage of being analyticallpiven ¢ series, we use E@8) to rewrite Eq.(7) in the form

invertible, and is therefore preferred here on a map that 6 -1 1 B

grows bumps of bigger aspect ratio. One needs to make sure e ¢0m+k—1')‘m+k—10. ' .O¢0m+l*)‘m+l(e S RINC)

that steps that add spurious area to the cluster do not occur ) P ) 1

[8]. We do so routinely in all the algorithms described below. The nverse map boi is given by ¢;(w)
If we update the field after the addition of this single =€ “¢o, (€™ "®) with

particle, then

L1 Ne?E Wo'l- 01— (14N 0’][w’— (1+)\)]
OO (W) =0 g, (w)], 4) box= (1t n)e? :
(10

whered®(M(e'n+1) is the point on which ther(+ 1)th par-

ticle is grown and‘/)\nJrl is the size of the grown partide where the pOSitive root is taken for Re>0 and the neg~ative
added to the circle in the mathematical plane at the pointoot for Rew<<0. We stress that if we had takei=6,,
6, 1. The mapd(""1(w) adds on a new semicircular bump neglecting the effects of reparametrization, we would find
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@~ plane z- plane choosing a uniform distribution of{6;}"_, instead of
{6;}7_,. Note that here and below when we say a “uniform
distribution” we mean that the series was created without

(m) any preference for any region of the unit circle. It may very
o well be that after avoiding overlaps the resulting distribution
- may be unevenly represented over the unit circle. Anyway

we make use of an ordered series of compositions of the
basic map¢ to construct one layer. In the following section
we will show that the serial aspect of the layer growth is not
(m+4) important in terms of the asymptotic fractal dimension of the
clusters. In other words, the order of placing the bumps is not
relevant as long as the same field is used as in(&q.
0} ooo¢4 The details of the algorithm, including how to choose the

1 ~
series{ 6+ 1k, to avoid overlaps, are presented in Appen-

O dix A.
q)(m) ll. TWO-PARAMETER FAMILY
_— OF GROWTH PROCESSES
Q
Evidently, a discretized Laplacian growth calls for choos-
ing the serieg 6, P, such as to have full coverage of the
U unit circle (implying the same for the boundafy). On the

other hand, DLA calls for growing a single particle before
updating the field. Since it was shown that in DLA growth
FIG. 1. Schematic diagram of parallel growth with four par- decreases on average wheincreases, in the limit of large
ticles. Points 1-4 in the mathematicab plane stand for clusters DLA is consistent with vanishingly small coverage
01 .. . 64, and are mapped unddr™ to the appropriate images in of the unit circle. To interpolate between these two cases we
the physical2) plane. The sizes of the bumps were chosen to simuintroduce a parameter that serves to distinguish one growth
late 8>0. model from the other, giving us a one-parameter coritha
other parameter i®). This parameter is thdegree of cov-
abnormally small bumps on the tips. The reparametrizatiorage Since the area covered by the preimage of ritte
tends to move arcs that have to be mapped to fjords to resarticle on the unit circle is approximately/,, we intro-
gions that are mapped to tips. Then bumps that were sURtuce the parameter
posed to grow in fjords where their size were normal would
be pushed to tips where their size becomes extremely small; 1P
small bumps would appear where they do not belong. _ = N
In Fig. 1 we present a schematic diagram of the parallel ¢ ™ g’l Mok - )
growth described above.

It is important to note that on the face of it the conformal (In Appendix A we show how to measure the coverage ex-
map (8) appears very similar to the one obtained in DLA 504y ‘since this is the fraction of the unit circle that is

[7,8]. But this is deceptive. Here we summarize the thre&,ered in each layer, the limit of Laplacian growth is ob-
major differences betv\ieen DLA and the new growth mOdeIstained withC=1. DLA is asymptotically consistent witf

(1) The distribution{6;};,_,, (which is chosen uniformin  =0. Of course, the two models differ also in the size of the
DLA and related growth mode[€]) is transformed to a non- growing bumps, with DLA having fixed size particl¢sg
uniform (and maybe even singu)adistribution of the angles =0 in Eq. (5), and Laplacian growth having particles pro-
{61y - portional toVP (8=2 in Eq.(6))]. Together withC we have

(2) The field by which we calculatg,, (i.e., the derivative a two-parameter control on the parallel growth dynamics,
of the conformal mapis not updated after each step, but with DLA and Laplacian growth occupying two corners of
only after growing a number of particles, and in the limit athe 8,C plane, at point$0,0) and(2,1), respectively.
whole layer. We should note that our two-parameter model differs from

(3) The parameteg in Eq.(6) can be taken to be different previously studied generalizations of the DLA algorithm, cf.
from O (which is the value used to grow DLA clust@rén [10,11. In the latter one allows a density of particles to
particular, with@=2 the size of the bump is proportional to random walk towards the cluster, and there is no guarantee
the gradient of the local field, as is appropriate for Laplaciarthat two particles do not hit the same boundary point one
growth. after the other. In our algorithm we do not allow repeated

Note that our algorithm is not purely parallel, as the com-hits, keeping the added layer of particles strictly proportional
position in Eq.(8) indicates. The parallel aspect is in using in width to the gradient of the field. The parallel algorithm of
the samefield to compute the values of,, in Eq. (6) and [12] comes closer to our model, but only f6r0. We are
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not aware of another previously studied model that attempted '
to interpolate between DLA and Laplacian growth.

Needless to say, with our partially serial growth within the
layer, we introduced an extra freedom that is trder of
placement of the bumps on the unit circle. In order for the
model to have a physical meanifige., to simulate true La- F
placian growth, it must not depend on the specific itinerary

of {6;}™ P , used to cover the unit circle as long as it is
uniformly distributed on the unit circle. We will show that
for a fixed value of\, this extra freedom has no conse-
guence with regards to the asymptotic dimension of the re-
sulting cluster. For fixeg3 the dimension depends only on 1 . .
the value ofC. To demonstrate this, we will consider various 1 10 100
itineraries to achieve a uniform coverage S
One way is to construct the “golden-mean trajectory” FIG. 2. Log-log plots ofF; versusS of six individual clusters
with =2, using three different itineraries for layer construction,
7 D 420 with two values ofC. ¢=0.3 (upper group and C=0.5 (lower
mk+ 17 YmEk P group. Here we use the golden-mean, random, and the period dou-
bling itineraries(see Ref[9]). We note that these log-log plots are
where p:(ﬁ_ 1)/2. At each step we check whether the more fluctuating(between different itineraries and between differ-
newly grown bump may overlap a previous one in the layerent runs of the same itinerarywhenC is small. These fluctuations
If it does, this growth step is skipped and the orbit continueglecrease rapidly whed increases, and presumably become insig-
until a fractionC is covered. The first bump of the next layer nificant whenC—1.
is grown at a random position in order to eliminate correla-
tions induced by the arbitrary itinerary chosen to grow the

previous layer. Another method is random choice9qf ,

with the same rule of skipping overlaps. A third method is

what was termed in Ref9] the “period doubling” itinerary ~ The coefficient of the linear term is the Laplace radius, and
was shown to scale likg7,8],

F)
q><n><w):Fg">w+an>+Tl+.... (13)

Fg_n)"’Sl/D, (14)

~ ~ ~ 2m N
GO:O, 02n+k: 0k+ W, Oo<sk<?2 , n=0.

(12) whereSis the area of the cluster,

n
In all these methods we cannot reath 1, since there are s=> N DU (€1)]2, (15)
gaps left between the bumps. These are excluded from fur- =1

ther growth in the present layer since their sizes are smalle,{Iote that for =0, this and Eq.(5) imply that S=nx
— VU, . — 0-

than the corresponding value aik, as calculated in the Indeed, for8=0 this estimate had been carefully analyzed

middle of the gap. We can estimate the maximal valué tof . :
be of the order of 0.65. Nevertheless, to be an acceptab end substantiatedlp to a factoy in Ref.[13]. On the other

m o :

model of parallel growth the fractal dimension of the result- and,F(l is given analytically by

ing cluster should be invariant to the itinerary. This invari- n

ance is demonstrated beloyv. In the following section we treat F(ln): F(lo)H m (16)

the caseC=1 by constructing an ordered series with extra k=1

care. In the rest of this section we demonstrate the irrel-

evance of the itinerary. The reader should note that becaugd therefore can be determined very accurately. We assign

of the gaps that cannot be filled up in finite time, there can béhe dimension of length t6(”), and therefore t&{" .

a dependence of the growth pattern on the valua pfiWe In Fig. 2 we showr, of clusters grown by choosing the

do not claim that for given values @ andC the asymptotic three different itineraries discussed above to produce the lay-

dimension does not depend ag. Nevertheless, and impor- ers and for two values af. We note that the curves super-

tantly, this variance reduces whehincreases, and is ex- pose for the three different clusters with the higher value of

pected to disappear altogether in the lidit: 1. We thus feel  C; for different values ofC a different behavior ofF; is

confident to consider thg-C plane as a two-parameter fam- manifested. We conclude that, for givag, the dimension

ily of models that interpolate between DLA and Laplacian(determined by the asymptotic behaviorrof versusS) does

growth. not depend on the itinerary used to form the layers buf on
With the present technique it is straightforward to deter-only. For small values of the fluctuations from cluster to

mine the dimension of the resulting cluster. The conformalkluster are more significant, but they reduce rapidly upon

map®™(w) admits a Laurent expansion increasingC.
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100

1 10 100
S

FIG. 4. Log-log plots of-, versusSfor =2 and 3 values of:
0.1 (upper curve, one cluster0.3 (middle curve, one clustgrand
0.55 (lower curve, three clustersThe slopes of the curves for the
large values ofS imply dimensionsD~1.28, D~1.56, andD
~1.86, respectively. The three clusters shown in the lower curve
give an indication of the expected typical spread in the estimated
dimension for the higher values 6f which is not larger than 3%.

In Fig. 3 we show three fractal patterns grown with three
different values ofC>0. We draw the reader’s attention to
the fact that drawing clusters like the one in paf®lis not
entirely trivial. Simply mapping the unit circle will not work
since many of the fjords will be lost. In fact, in Appendix C
we develop a reliable and effective method to produce the
border of the fractal cluster.

Even a visual observation of these patterns should con-
vince the reader that the dimension of these patterns grows
upon increasing’. For a quantitative determination of the
dimension we averagdt; of clusters produced by a random
itinerary, each with another random initial angle in each
layer. We find that without averaging the spread in the esti-
mated dimensions is small, not more than 3%. Plotsofor
three values o’ are presented in Fig. 4. We conclude that
the dimension of the growth pattern increases monotonically
] RN with C, with D~1.86 whenC=0.55.
= 9 3G . In Fig. 5 we present thg,C “phase diagram” that results

o 3 18 o ) 1.86 discrete LG
[T 128 T 156 T 175 T 7 '

1Y

Ob, 4 1988 05 o T

PlAT0 02 04 06 08 1

C
FIG. 3. Patterns grown witj3=2, and three different values of
C by using the golden-mean itinerarfg) C=0.1, (b) C=0.3,(c) C FIG. 5. “Phase diagram” in which the fractal dimensi@nis
=0.5. displayed for selected values of the parametkand 3.
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from calculations for a variety of values @f and 8. The
conclusion from these calculations is that the fractal dimen-
sion of the clusters depends continuously on the parameters,
growing monotonically upon decreasiggor increasing’. It

is quite obvious why increasingshould increase the dimen-
sion, we simply force particles into the fjords not allowing
them to hit the tips only as is highly probable. Also decreas-
ing B to B=0 increases the dimension, since we grow equal
size particles into the fjords, whereas increasmgeduces

the size of particles added to fjords and increases the size of
particles that accrete onto tips. In particular, it is obvious that
DLA and our discretized Laplacian Growth cannot have the
same dimensions, putting them in different universality
classes: the dimensioD~1.86 obtained for3=2 and(C
=0.55 is a lower bound for the dimension of Laplacian
growth patterns. This is because the dimension increases
with C andC=1 for Laplacian growth patterns. In the fol-
lowing section we present evidence, by reconside€irdl, FIG. 6. Evolution of cusps starting from smooth initial condi-
that the crucial difference between DLA and Laplaciantions, with F;(0)=1, F_5(0)=0.24. Curves are shown at initial
growth is not in the discretization or in the ultraviolet regu- time t=0, an intermediate time, and at the critical tivet. .
larization, but rather stems from the different valuegafnd

C.

1
Before turning to models witll=1 we note in passing F_a(t)= F(Fi— VIFi—4FZ,]°—8tF2,). (20
that the present family of models warrants further study on -2
its own right, independent of the relation between DLA and
Laplacian growth. The wealth of growth structures seen irAS t—tc=[Fi—4F2,]%/8F%,, F(t)/F_,(t)—2, and a
electrodeposition, dielectric breakdown models, and bacterigiusp is developed at the images of 1, exp(2ri/3), and
colony growth[16] may very well justify two-parameter €xp(4mi/3), see Fig. 6. This simple example motivated at-
families of models. The present one is not less physical thatempts to understand the role of surface tension as an ultra-
any other that had been studied so far in the literature, but iiolet regularization; see Relf17]. We will use this result to

enjoys the benefit of easily obtained conformal formulation.study further the correspondence between our discretized La-
placian growth and the continuous counterpart, and to so-

IV. DISCRETE VERSUS CONTINUOUS lidify the fundamental difference between the latter process
LAPLACIAN GROWTH and DLA.
As explained in Sec. lll, reaching=1 is impossible with
Continuous Laplacian growth without surface tension hasiny of the itineraries discussed above. We can achieve this
been studied using dynamics of conformal maps in Refslimit by growing in an ordered fashion, adding bumps in a
[2,3]. The dynamical equation for the conformal map reads controlled manner, precisely such as to glue one branch cut
- to its neighboring one. How to do this while imposing the
Rfo®P'(w,t)Py(w,t)}=1. (17)  appropriate symmetries is explained in detail in Appendices
. . . _ A and B. We discover that the growth patterns constructed in
A.‘S. IS _vveII k_nown,_t_he solutions of tr_us__equatmn generatey,;q way tend to fractalize rapidly due to the existence of the
finite-time singularities from smooth initial data. The sim- ,.500hcyts, in agreement with our statement above that the
plest example is the initial condition result of our process is a faithful lower bound to the dimen-
sion of continuous Laplacian growth. An example of the pat-
P(w,0)=F,(0)w+ F—Zio) _ (18 terns grown by our d_iscr(_atized process from the initial con-
1) ditions (18) is shown in Fig. 7.
The idea of this section is to isolate the effects of the
The number of Laurent coefficients is preserved by %)  parameteiC and 8 from effects of discretization and ultra-
with violet regularization. To this end we eliminate the instabili-
) ties caused by the bumpiness by keeping track of the two
Fi(t) — const (19) Laurent coefficientd=;, and F_,. We start with the initial
F_o(t) ' conditionsF;(0)w+F _,(0)/w?. Every layer is then grown
by our algorithm with a chosen values®&nd 3, computing
The finite-time Singularity is seen from the ana|ytiC resultthe new values OFl and F_Z' using the ana'ytic formulas

[writing F;=F;(0)] presented in Ref8]. Discarding all the other Laurent coef-
F ficients we have an updated conformal map in the form
1 (n) M)/.,2
Fa(t) = o= (Fi—J[F1-4F2, "~ 8tF%)'?, Filo+Fo/ o _ _ _ _ _
-2 We find the results of this exercise quite revealing. In Fig.
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S

FIG. 9. F; andF _, for the smooth growth process described in
the text withC=1 and three different values 0f,. Circles Aq
=104, triangles\o=5*10"2, and squares,=10"°. The solid
line results from solving Eq(17) with the same initial conditions.

deviation being monotonic in the difference in valuesCof
from unity and ofB from 2.
. . o It is not uninteresting to note the effect of the finite-size
FIG. 7. Cluster grown witiC=1 starting from the same initial haticles as an ultraviolet regularization parameter. This is
condm_ons_ as in Fig. 6. Notice that the branch cuts lead to spuriou§is iy onstrated in Fig. 9. The deviation from the analytic so-
fractalization of the smooth envelope. lution depends on,. The smaller the latter is, the deeper we
go into the cusp formation, and the closer we get to the
8 we show the computed values B{” and F") and the  singularity timet,. We estimate the time of deviation by
ratio (19) for C=1 andB=2, together with other values of comparing the radius of curvature to the physical size of our

these parameters. particle at the tip. This means that at the tip
For C=1 and B=2 the solution approximates rather

closely the exact results up to the creation of the finite-time

singularity, with large deviations appearing only when the Mo %i

tip radius of curvature is of the order qf\,. The degree of |’ (tip)|2  «2’

approximation improves wheR, is reduced. On the other

hand, the same procedure with other valueg of 8 devi- Wwherex is the curvature at the tip. The right-hand side van-

ates from the exact results immediately, with the degree ofshes whent—t., inhibited here by the value of,. The
time of deviation is, therefore, when \g

5.0 . . =|®'(tip)|?(t)/x?(t). We can compute the quantities in-

(21

volved analytically,
Cbr(tip):Fl_ZF_z, (22)
ecea ] F.+4F
o ~ k=—t— (23)
40T ] (F1—2F )

Accordingly, we can estimate the time of deviation and com-
pare it with the numerics. The agreement is excellent.

At this point it is worthwhile to reexamine the consensus
formed in favor of DLA and Laplacian growth being in the
same universality class. Superficially one could say that in
3.0 . . . . . DLA the update of the harmonic measure after each particle

0.0 0.5 1.0 is not so crucial, since the effect of such an update is rela-
tively local [18]. Thus it may just work that a full layer of
S particles would be added to the cluster before major interac-

FIG. 8. F2/F_, as a function ofS for the smooth process de- tion between different growth events takes place. However,
scribed in the text, and for the following values®andg: circles,  this view is completely wrong. An incoming random walker
C=1 andB=2; squaresC=1 and8=0; diamondsC=1 andg lands on top of a previously attached orexy often To see
=4, trianglesC=0.5 and3=2. The solid line represents the initial this, consider how many angglg;} can be choserandomly
conditions that remain constant, H4.9). on the unit circle before the first overlap between bumps of
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3.0 T T recaptures in the first order the Shraiman-Bensimon equa-
tions for continuous Laplacian growth without surface ten-
sion [3]. For the fundamental maf2), we have the formal
expansion

i0

2.0

by o(0) =0+ 1)\(» +0O(N\?). (24)

2 w—eio

1::1’ F-2

Note that this series fails to reproduce the conforggl, in

the neighborhood of its branch cuts. This is expected since
we are seeking the continuous limit. Next, to lowest order in
\o the composition of maps that produce the layer is

o...o¢)\ P ((1))

m+1:Om+1 m+p ' %m+p

0.0 . . . ! . 1 mp i6:
0.0 05 1.0 15 cotre S NS

2 j=m+1 w—e'l
S
FIG. 10. Growth patterns as in Fig. 9, starting from the SameUsmg this expression we can write the recursion relation Eq.

initial conditions but growing particle by particle according to the (8) in a first-order Taylor expansion
DLA rules, preserving only; andF _,. The inset shows a zoom of 1 m+p il
i ; ; wt+e’
F, close to the time singularity. DD () =DM () + = wd’ () E \, .
2 j=m+1 w—e 0

1.0

+0O(N\?). (25

linear SiZESEj:\/)\n(elzgj). To get the order of magnitude
take ej=e=<\/)\—n>. The average number of times that we
can choose randomly an angle before the first overlap i%Vith C=1 we can reorder the angles to be consecutive.
N(e)fll\/z. The length of the unit circle that is covered at g, smallx,, the separation between adjacent values i

that time by the already chosen bumps J¢e)=eMe)  given by 2J\;, therefore, the sum overcan be replaced by

~+ye. It was shown in Ref.[8] that for DLA (\\p) ; ; : :
an integral over the angles with the Jacobian given by/a/2
~n~ P2/ implying M(n)~nP2?®. Notice that this result g g g /

means, in particular, that for a DLA cluster of®1particles

+0O(N\?). (26)

only less than 50 random walkers can be attached before two do

of them will arrive at the same site. Moreove£(n) > = § , (27)
~n~P220_,0 for n—o, which means that as the DLA clus- P 2N (0)

ter grows, significant changes of the measure occur long be- _

fore a full coverag€=1 is achieved. This argument clarifies Using\,=Xo/|®'™M|* i.e., =2, we get

the profound difference between growing a whole layer si- -

multaneously and particle by particle. We will now show that (n+p) - 1 \/)\—0 ‘)

if we eliminate the basic instability that stems from particles o (0) =P (w)= P qu’ () § de
landing on each otheéhenDLA and Laplacian growth coin-

cide. To do so we start again with the initial conditions 1 w+el’ )
F1(0)w+F_,(0)/w? grow one particle with the DLA X|<I>’(“)(e“")|2 w—e‘9+o()\ )

rules, compute the new value &f; andF_,, and use the
new mapF{Vw+F")/w? as “initial conditions” for an ad- (28)
ditional particle growth. The results of this process are = | ] )
shown in Fig. 10, which is now indistinguishable from La- Dividing this equation by the constant area grown by the
placian growth withC=1. In fact, when the instability pro- layer we finally obtain
duced by particles landing one on top of the other is elimi- 0
nated, the growth of fixed size bumps at positions according IP(w) % wd’ (o) fﬁ de 1 wte
to the harmonic measure simulates the growth of a layer, as 4t o |D'(e'%)]? w—e'?
was expected by many researchers. The presence of the in- (29)
stability that is intimately linked to the DLA growth rules
makes it fundamentally different from the parallel layer One can show that this equation is equivalent to ()
growth of Laplacian dynamics. [5,19]. We see how the combined effect of the existence of a
Finally, to clarify further the connection between our dis- full layer and the choice ok, with =2 reduces our dy-
crete Laplacian growth model pertaining =1 and the namics to the Shraiman-Bensimon equation in the lixgit
standard continuous model, we consider our model in the-0. In contrast, the growth rules of DLA cannot lead to this
limit A\g—0. We will show that a formal expansion i, continuous equation even in the limi— 0. Following the

+0O(N\?).
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rules of DLA, if we grow just one particle instead of a layer understand how to interpret the rich phenomenology of elec-
with =0, we do not have the sum in E@®6) and in addi- trodeposition and bacterial colony growth.

tion A, takes on the valua,=X\,/|®'(™M|2. Therefore, we
will get Eq. (29 without the integral. This equation was ACKNOWLEDGMENTS

discussed in Ref§.7,19] as the continuous version of DLA. ) . .
$7,19) It is a pleasure to thank Mitchell J. Fiegenbaum and H.

Introducing an average over the harmonic meagthat is G E N hel for invaluable di : q

uniform in ) we recover Eq(29). But as was discussed .eorgg =" lenr:sc ke or |(;1va uaA ed 'SCESS'OnS an fsuggles—

above, the growth of DLA strongly favors the tips, and doesf“ons' pecia t anks are due to Anders Levermann or help-
ing all along this work. This work has been supported in part

not follow an “average” growth with respect of its harmonic y the European Commission under the TMR program and
measure. After every growth event the measure is update . "
Yy 9 P e Naftali and Anna Backenroth-Bronicki Fund for Re-

g:/saﬁjsn?r\wl\é :ﬁ\or:.jom walker will be again attracted rnoStlyzzearch_ in Chaos and Cqmplexity. FB thanks the Israeli
We believe that with this discussion we have offered0UNcil for Higher Education for financial support.

strong evidence of the fundamental difference between DLA

and Laplacian growth. The issue of regularization of the con- APPENDIX A: DETAILS OF THE ALGORITHM

tinuous dynamics will appear naturally in this discussion

. . 2 -
upon considering th&(A7) that was neglected above. While plain how the absence of overlaps between grown particles

it is not expected that th|§ regulanzatlor) will take on thecan be defined in terms of the conformal map. In the second
exact form of surface tension regularization, we do not ex-

. ; ; art we explain how the serig#,,, }k_, introduced in Sec.
pect the difference to change the universality class of Lapla_ [ is constructed by using the inverse map. The third part of
ian growth. Nevertheless the careful assessment of the di h

- . X is appendix is dedicated to a detailed description of the
ferent regularizations needs to be considered in futureI ithm th . duced i he | b
research. algorithm that was introduced in Sec. Il. In the last subsec-

tion we explain the algorithm used to achieve full coverage
(C=1) at each layer.

This appendix consists of four parts. In the first we ex-

V. CONCLUSIONS AND REMARKS

We have introduced a two-parameter family of growth 1. Overlaps in terms of iterated conformal maps
patterns with the aim o_f clearly separating_DLA from Lapl_ac— Suppose that the first particle in a new layer is the (
ian growth. We explained how to grow in parallel, taking +1)th particle in the growth process, and that there are no
care of the delicate issue of reparametrization. For the lattegverlaps between the firktparticles grown in this layer. In
issue we needed the inverse map as explained in Sec. Il. Thgder to express this in terms of the iterated conformal map
tools developed to StUdy and control the reparametrizatio%rma|ism, let us make the fo"owing def|n|t|0m§|- are the
were further employed to develop symmetry preservingwo pranch points of the magp, , , denoted as “right” and

growth algorithms(Appendix B and efficient methods to ., .. . . . .
construct the interface of fractal clustgisppendix Q. We left,” respectively. The map¢9n,)\n will be denoted in the
argued that the paramete€sand 3 are relevant for the S€duel asp, for brevity. Let us further denote

asymptotic dynamics, whereas the order of placing the
bumps is not. The dimensions of the resulting growth pat-
terns were shown to depend continuously on the two param- RL . _ o
eters. Besides providing us with a new model that is interNOte that|ay —ag|/(2m) is the fraction of the unit circle
esting by itself, we could reach the following main covered by the particle. _
conclusions. If the kth particle does not overlap any of the previously

(1) DLA and Laplacian growth are not in the same uni- 991 particles OfL the IayRer, then all the points
versality class. OMTk= (el with ak, < 6<al,, are in the image of the
(2) The dimension of Lap|acian growth patterns had beeﬂ,lnit circle unde@(m). In particular, this means that the two
bounded from below by 1.85. We do not have a sharp estiedge points of the particlen+k, i.e., @™ (w.,) and
mate of this dimension, and cannot excluble: 2. dM (LR ) are in the image of the unit circle under
(3) The difference between DLA and Laplacian growth ®(™,
models is not in the ultraviolet regularization. We explained This condition is satisfied if in the composition
that the deep difference is between the serial and parallel ,
growth events, leading to increased tendency to form spikes @™oy 10 cdmik-1(e"), ap, < O< aﬁJrk!( .
in DLA. A
(4) The leading order in a formal expansiong—0 of ) i
our process a8=2 andC=1 yields the standard continuous the argument of each ma‘fmﬂ (1$'R$k_ 1) is not con-
dynamics for Laplacian growth without surface tension.  tained in the intervalarg(wp,. i), arg(@m.;)]-
In future work it may be worthwhile to attempt to find a  Therefore, we have to check the followitkg-1 condi-
sharper estimate of the dimension of Laplacian growth pattions for eachoy, . < 0<ap .
terns. It seems also worthwhile to study the connection of the ) L R
present model to models with noise reduction, and to further arge'’) ¢ [arg wp 1), &g Om 1)1,

e =y (wRY). (A1)
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ard ¢k 1(e) ] e [arg oh o). ard ol )],
(A3)

ard dmsoo chmik—1(e) ] e[arg wn, 1), arg o, 1)1
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(10) After a series ofp “good” angles {6, }b_, was
found, such thaf,=C, update the conformal map according
to Eq. (8).

4. Full coverage(C=1) growth algorithm

To reachC=1, we construct recursively a series of con-

secutive angle@& }C s 1 such that the left branch cut of the

jth particle commdes with the right branch cut of the (

In pract|ce itis enough to check this condition for the two + 1)th particle. This reads

points ak,, and R, . A failure of any of these X—1)
conditions means that theh particle is overlapping at least
one of the previouk—1 particles. It is clear that if the two

edge points of the particle are on the boundary of thedr

m-particles cluster, so must be its fipxcept very rare fill-up
events[8] that we can safely neglect here

2. Constructing the series{ @+ k=1

Upon choosing an anglé,,. . we must check that Eq9)
is solvable. Since the inverse functign * is analytic on the
unit circle only on the arc outside the interyat? , %] (and
maps this arc to itself a solvability criterion for Eq(9) can
be expressed through the followitkg- 1 conditions:

7 L R
0m+k¢[am+1!am+l]v

ard ¢ 1(Ome )1 €[ @bz, aR 5],
(A4)

S (00 | 1= - P A |

-1
ard ¢pyk-2° - -°

3. Growth algorithm for C<1

‘b(j“)(wﬁl):q)(j)(w}'), (A5)
R _ R 71— L
ai=arqd ¢y (o), ) ]=ard o ]. (A6)
Given a pair ¢;,\;) (and hencegu anda] R) we have to

choose#); ., such that the value 0&J+1, which is deter-

mined by ¢;,, and the value of\;,,; computed at0,+1
coincides with the previously computed b&gﬂ. Numeri-
cally this is obtained as follows. We start wit} , far
enough fromé; . Then, using Eqs6),(9),(A1), we calculate

the appropriate values cTﬁfJH, \j+1, and aR+l This pro-
cess is repeated until a value @f,, is found such that 0
\aHl arg[w]]<0 01\/)\— We proceed until the whole
circle is covered.

APPENDIX B: IMPOSING SYMMETRIES ON THE
ITERATION SCHEME

In this appendix we explain how to use iterations of con-
formal maps to describe growth in geometries less symmet-
ric than the radial. In addition we show how to preserve
symmetries of the continuous Laplacian dynamics along the
iterations. The basic idea will be demonstrated through the
important example of growth in channel geometry, and

The algorithm for growing one layer whose preimage un-straightforwardly employed to growth from initial conditions

der ®(™ covers a fractior of the unit circle, on the cluster
made up ofm particles, is defined as follows.

(1) Choose a serief,, .}, uniformly distributed on
the interval[ 0,27].

(2) Define s 1= O 1-
(©)] Calculate)xm+ , from Eq. (6).
(4) Calculateaerl from Eq.(Al) and store them.

(5 Let Cl_|am+1 am+1|/(277)-

Fork>1,

(6) Check thek— 1 solvability conditions in Eq(A4) for
Bk If any of them is violated, choose anoth&f. , and
repeat from stage 6.

(7) Calculate 8,4 from Eq. (9). Next, calculate)\mk
from Eq. (6), and find the two branch poinisit, .

(8) Use Eq.(Al) to calculateaerk Check the 2k—1)
conditions, given in Eq(A3). If any of them is violated
(which means that thkth particle overlaps one of the former
k—1 particles in the layér choose anothefi,, . and repeat
from stage 6.

(9) Let Cy=Cy—1+|am = amyil/(27).

with reflection symmetry on-fold symmetry in radial geom-
etry.

1. Growth in a channel

The simplest symmetry that is preserved in the iterations
scheme is 2z  periodicity.  Clearly, ¢, (€9
=, (€'@?™9). Therefore, if the initial conditiongi.e.,
<1>(°)) have the property

<I>(0)(ei(2”+9))=¢>(0)(ei9)+L, (Bl)
whereL is the channel width, the®™ will have this prop-
erty for anyn>0. The simplestb(®) that has the periodicity
property is of cours@(®)(w) = (2/7)In(w) corresponding to
(L=1), which describes a growth starting from a flat curve.
Notice that the boundary conditions of the Laplacian field
VP=&M'/|dM| at infinity will be automatically changed
from VP~r/r? to VP~ consix X.

Suppose now that we want to describe a growth in a chan-
nel with no-flow boundary conditions at the walls. This
means that the Laplace problem has to be solved at each
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q)(n)(w)
— q’(o)"d’ol,)\l" ¢§1 PULIEE o¢0n A0 q&;n Y}\n( ). (B4)

Naively, one may think thab= — 6. However, constructing
the symmetric map as a composition of two nonsymmetric
maps leads to some complication. In order to have a sym-

%5 55 @ %y 055 metric image of the unit circle, one would like to have the
second bump in the image of the unit circle to be located
exactly symmetrically to the first bump,

o,

________________________ o pon(e)=e""". (B5)
J/ J’EW\ Equation(B5) implies choosing?according to
— 1 i
FIG. 11. Iterative conformal function that maps at each stage o=ard ¢,;(e”")]. (B6)

the unit circle and the real axis in the mathematical plane to the _

evolving interface and the channel walls in the physical plane, reThe difference| 6—(— )| becomes smaller with, and is
spectively. The two rays ar@]=0,7 are mapped undety, zero at the point®=0,, = /2 for every value of\.

oy, to themselves, and under the operationddf) to the walls

y=0L. 2. Preserving symmetries of the Laplacian dynamics

stage with the extra boundary conditions that the two walls 1N€ Simple technique that was developed in the previous
y=0 andy=L are streamlines of the scalar fieRl (i.e. subsection can be generalized for cases in which a symmetry

PI13yl,_o.=0). Preimages of streamlines ¢ in the of the Shraiman-Bensimon Eql7) is known for specific

physical plane are raysrg(w)=consi in the mathematical initie_ll conditions and we want to preserve it upon using it-
plane. Therefore, imposing no-flow boundary conditions afrations of conformal maps.
the walls amounts to demanding that the two rays ajg{
+¢e (e—0) are mapped undeb(™ to the wallsy=0 and
y=L respectively, for every. Suppose that the initial interface has a reflection symme-
Clearly, the elementary mag,,,(») does not have this try with respect to some axis. Without loss of generality we
property. Except fo= 0,7 the ray arge) =0 is mapped to can take the symmetry axis to be tReaxis, which is the
a curved line in thez plane. Therefore, the appropriate image underd(® of the real axis in the mathematical plane.
boundary conditions at the walls are not respected by thdhen
iteration process. ©O) %\ _ e (0) .
We can overcome this difficulty in an analogous way to (™) =[P (w)]". (B7)
the image method used in electrostatics. Given initial condi- ) )
tions defined by som@© we construct ourd© by Itis easy to prove that this symmetry will be preserved under
the Shraiman-Bensimon dynamics.

In order to respect this symmetry in our iterative scheme
we use again the elementary mép3) that has reflection
symmetry with respect to the real axis. Thds{" (), de-
fined by Eq.(B4) with ®(© that has the propert{B7) will

Under®(© each half of the unit circle is mapped to another Préserve reflection symmetry.
copy of the original interface with reflection symmetry
around the real axis (drg]=0,7). The preimage of the two

a. Reflection symmetry in radial geometry

OO w)=dO(2w)ard w]<,

OO (w)=dO (27— w)+Lard w]= . (B2)

b. n-fold symmetry in radial geometry

walls y=0 andy=L under ®©~1 are the rays argf) The Shraiman-Bensimon equations preserve alsold
=0" and argp)= [or arglw)=0" and argfp)=m] re- Symmetry. Therefore, if the initial interface, defined &y’
spectively. has this symmetry, so should do(™. For simplicity let us

Now we construct an elementary conformal function thatconsider threefold symmetry of the form,
maps the rays arg()=0,7 onto themselves. This can be o) 2mi/3 o ifan (0
achieved by choosing the elementary map to be DO)(e2™By) =e*mRp(O)(w). (B8)

dorodor(w), (B3) In order for this symmetry to be preserved, the elementary
map must be threefold symmetric as well. Following the dis-
such that the image of the unit circle will have the real line ascussion in the first part of this appendix this can be achieved
a symmetry axis. This is shown schematically in Fig. 11. by choosing the elementary map to be
Since the rays arg{) = 0,77 are mapped to the walls under
®© they will be mapped to the walls undé‘™ defined by borodaredpr(@)m (B9)
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where The key idea is to focus attention on the edge points of the
_ _ particles, which are the images of the branch points of the
o=ard ¢, (€°™0)], map ®™ on the unit circle. Each growing particle adds on
two new branch points to the evolving map and may remove
9= arq¢§io¢;’)l\(e4ﬂi/3g)]_ (B10)  some old ones due to overlafsee discussion in Appendix
’ A). Therefore, the number of “exposed” branch points of
The evolution equation fo® (™ now reads &M is bounded by 8. Let us denote these points
M (0) B ) {w"}R_, . An exposed branch poimi- was added to the
P (@) =Dy \, 2 b, 22 Py 00 conformal map by théth growing particle, and since this
_ . particle was not overlapped by any of the naxtk particles
Xor oo, n 2 by 0,0 Poy (@) (BN i ins as a branch point of the m@™. Nevertheless,
The extension to higher symmetries is straightforward. the_reparam_etrizqtion of the unit circle_ induced by the fol-
lowing n— Kk iterations changes the preimage of each branch
point from wi'" to wiyy . The connection between" and

APPENDIX C: CONSTRUCTING AN OUTLINE FROM RL : . o
oy is given, similarly to Eq(7) by,

BRANCH POINTS

The common method8] to produce the outline of PO (RN =dM (), (C1)
n-particles cluster constructed by the iterated conformal map ’
technique is to sample the unit circlekangles{ 6,}k_, and ~ which can be rewritten as
to plot their images under the mgd(M(e'%)}X_ . This
simple method is problematic since a uniform sefiég! opE=¢,t L ooyt L (0RY). (C2
will sample the tips much more than the fjords, and thus in ’ i e
order to have a reasonable image of the fidmigich are the  The solvability of Eq(C2) determines whether the appropri-
major part of the fractal clustgra huge numbelK>n has to  ate edge point of th&th particle remains exposed under the
be used. Since calculation of each image pairif)(e'%)  addition of the nexh—k particles. Checking the solvability
calls for O(n?) operations, this turns out to be a very ineffi- conditions and calculating the reparametrized branch points
cient method. wRr from Eg. (C2) is performed in the same way as in
Here we propose an algorithm @¥(n?) complexity to  Appendix A, and it consists 0®([k—n]?) operations. The
produce an exhaustive real-space image of the whole clustental complexity of the algorithm is therefo@(n?).
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