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Iterated conformal dynamics and Laplacian growth

Felipe Barra, Benny Davidovitch,* and Itamar Procaccia
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 30 May 2001; published 11 April 2002!

The method of iterated conformal maps for the study of diffusion limited aggregates~DLA ! is generalized
to the study of Laplacian growth patterns and related processes. We emphasize the fundamental difference
between these processes: DLA is grown serially with constant size particles, while Laplacian patterns are
grown by advancing each boundary point in parallel, proportional to the gradient of the Laplacian field. We
introduce a two-parameter family of growth patterns that interpolates between DLA and a discrete version of
Laplacian growth. The ultraviolet putative finite-time singularities are regularized here by a minimal tip size,
equivalently for all the models in this family. With this we stress that the difference between DLA and
Laplacian growth is not in the manner of ultraviolet regularization, but rather in their deeply different growth
rules. The fractal dimensions of the asymptotic patterns depend continuously on the two parameters of the
family, giving rise to a ‘‘phase diagram’’ in which DLA and discretized Laplacian growth are at the extreme
ends. In particular, we show that the fractal dimension of Laplacian growth patterns is higher than the fractal
dimension of DLA, with the possibility of dimension 2 for the former not excluded.

DOI: 10.1103/PhysRevE.65.046144 PACS number~s!: 64.60.2i, 47.27.Gs, 47.27.Jv
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I. INTRODUCTION

This paper had been motivated by the opinion expres
by a number of researchers that DLA and Laplacian gro
patterns are in the same universality class in terms of t
asymptotic fractal dimensions@1#. We present here a theor
of these processes in two dimensions that clarifies the di
ences between these processes, proposing in particular
their asymptotic fractal dimensions differ.

Laplacian growth patterns are obtained when the bou
ary G of a two-dimensional domain is grown at a rate pr
portional to the gradient of a Laplacian fieldP. Outside the
domain¹2P50, and each point ofG is advanced at a rat
proportional to“P @2,3#. In diffusion limited aggregation
~DLA ! @4# a two-dimensional cluster is grown by releasi
fixed size random walkers from infinity, allowing them
walk around until they hit any particle belonging to the clu
ter. Since the particles are released one by one and may
arbitrarily long time to hit the cluster, the probability field
stationary and in the complement of the cluster we h
again ¹2P50. The boundary condition at infinity is th
same for the two problems; in radial geometry asr→` the
flux is “P5const3 r̂ /r . Since the probability for a random
walker to hit the boundary is again proportional to“P, one
could think that in the asymptotic limit when the size of t
particle is much smaller than the radius of the cluster,
peated growth events lead to a growth process that is sim
to Laplacian growth. Of course, the ultraviolet regulariz
tions in the two processes were different; in studying Lapl
ian growth one usually solves the problem with the bound
condition P5sk wheres is the surface tension andk the
local curvature ofG @5#. Without this~or some other! ultra-
violet regularization Laplacian growth reaches a singula
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~cusps! in finite time @3#. In DLA the ultraviolet regulariza-
tion is provided by the finite size of the random walke
However, many researchers believed@1# that this difference,
which for very large clusters controls only the smallest sca
of the fractal patterns, were not relevant, expecting the
models to lead to clusters with the same asymptotic dim
sions. We define below a discrete analog of Laplacian gro
in which the ultraviolet regularization is identical to DLA
We further propose that these two problems fall in two u
versality classes. Since we regularize them in the same w
this will underline the fact that they fall into different un
versality classes for different reasons, which are connecte
their different growth rules.

In this paper we construct a family of growth process
that includes DLA and the aforementioned discrete vers
of Laplacian growth as extreme members, using the sa
ultraviolet regularization. We thus expose the essential
ference between DLA and Laplacian growth. DLA is grow
serially, with the field being updated after each partic
growth. On the other hand, all boundary points of a Lapl
ian pattern are advanced in parallel at once~proportional to
“P). We propose that this difference is fundamental to
asymptotic dimension, putting the two problems in differe
universality classes. An announcement of these results
presented in Ref.@6#.

To reach these conclusions we formulate a theory of
placian growth patterns in terms of iterated conformal ma
Such a theory was successfully advanced recently for D
@7–9,13#, providing for unprecedented analytic control of th
properties of DLA@14,15#. By generalizing it to Laplacian
growth patterns we can enjoy similar advantages, allow
us to address delicate points that are beyond the scop
direct numerical simulations and previous analytic attemp

In Sec. II we extend the iterated conformal maps appro
to parallel processes of layer-by-layer growth with varyi
local growth rates. In Sec. III we construct a two-parame
family of parallel growth processes that includes DLA a
the discrete Laplacian growth as special~and distinct! cases.
e-
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We demonstrate the relevance of the two parameters in
termining the asymptotic fractal properties of the result
patterns. In Sec. IV we consider our algorithm for Laplac
growth and compare it to the exact dynamics without surf
tension. We study the correspondence between these m
for the early dynamics~before the appearance of finite-tim
singularities in the latter!. In Sec. V we offer concluding
remarks.

II. ITERATED CONFORMAL MAPS FOR PARALLEL
GROWTH PROCESSES

The method of iterated conformal maps for DLA was i
troduced in Ref.@7#. Here we present a generalization
parallel growth processes. We are interested inF (n)(v),
which conformally maps the exterior of the unit circleeiu in
the mathematicalv plane onto the complement of the~sim-
ply connected! cluster ofn particles in the physicalz plane.
The unit circle is mapped onto the boundary of the cluster
what follows we use the fact that the gradient of the Lapl
ian field“P„z(s)… is

“P„z~s!…5
1

F (n)8~eiu!
, z~s!5F (n)~eiu!. ~1!

Heres is an arc-length parametrization of the boundary. T
map F (n)(v) is constructed recursively. Suppose that
have alreadyF (n)(v), which maps to the exterior of a cluste
of n particles in the physical plane and we want to find t
mapF (n1p)(v) afterp additional particles were added to i
boundaryat once, each proportional in size to the local valu
of u“Pub/2. To grow one such particle we employ the e
ementary mapfl,u , which transforms the unit circle to
circle with a ‘‘bump’’ of linear sizeAl around the pointv
5eiu. In this paper we employ the elementary map@7#

fl,0~v!5AvH ~11l!

2v
~11v!F11v1vS 11

1

v2

2
2

v

12l

11l D 1/2G21J 1/2

, ~2!

fl,u~v!5eiufl,0~e2 iuv!. ~3!

This map has the obvious advantage of being analytic
invertible, and is therefore preferred here on a map t
grows bumps of bigger aspect ratio. One needs to make
that steps that add spurious area to the cluster do not o
@8#. We do so routinely in all the algorithms described belo

If we update the field after the addition of this sing
particle, then

F (n11)~v!5F (n)@fln11 ,un11
~v!#, ~4!

whereF (n)(eiun11) is the point on which the (n11)th par-
ticle is grown andAln11 is the size of the grown particle
added to the circle in the mathematical plane at the p
un11. The mapF (n11)(v) adds on a new semicircular bum
04614
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to the image of the unit circle underF (n)(v). The bumps in
the z plane simulate the accreted particles in the phys
space formulation of the growth process. For the height
the bump to be proportional tou“P„z(s)…ub/2 we need to
choose its area proportional touF (n)8(eiun11)u2b @see Eq.
~1!#, or

ln115
l̃0

uF (n)8~eiun11!ub12
. ~5!

Here l̃0[l0
(b12)/2, andl0 is a fixed typical area. With this

choiceln is dimensionless. Withb50 these rules produce
DLA cluster. Next, to growp ~nonoverlapping! particles in
parallel, we accrete them without updating the conform
map. In other words, to add a new layer ofp particles when
the cluster containsm particles, we need to choosep angles
on the unit circle$ũm1k%k51

p . At these angles we grow
bumps that in the physical space are proportional in size
the gradient of the field around them-particle cluster,

lm1k5
l̃0

uF (m)8~ei ũm1k!ubuF (m1k21)8~eium1k!u2
,

k51,2 . . . ,p. ~6!

at this momentu is not defined; onlyũ is. This is due to the
reparametrization that needs to be taken into account as
plained next.

Of course, every composition effects a reparametrizat
of the unit circle, which has to be taken into account. To
this, we define a series$um1k%k51

p according to

F (m)~ei ũm1k![F (m1k21)~eium1k!. ~7!

After the p particles are added, the conformal map and
field should be updated. In updating, we will usep compo-
sitions of the elementary mapfl,u(v). We define the con-
formal map used in the next layer growth according to

F (m1p)~v![F (m)+fum11 ,lm11
+•••+fum1p ,lm1p

~v!.
~8!

In this way we achieve the growth at the images underF (m)

of the points$ũm1k%k51
p . To compute theu series from a

given ũ series, we use Eq.~8! to rewrite Eq.~7! in the form

eium1k5fum1k21 ,lm1k21

21 +•••+fum11 ,lm11

21 ~ei ũm1k!. ~9!

The inverse map fu,l
21 is given by fu,l

21(v)
5eiuf0,l

21(e2 iuv) with

f0,l
215

lv26Al2v42v2@12~11l!v2#@v22~11l!#

12~11l!v2
,

~10!

where the positive root is taken for Rev.0 and the negative
root for Rev,0. We stress that if we had takenun5 ũn ,
neglecting the effects of reparametrization, we would fi
4-2
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abnormally small bumps on the tips. The reparametriza
tends to move arcs that have to be mapped to fjords to
gions that are mapped to tips. Then bumps that were s
posed to grow in fjords where their size were normal wo
be pushed to tips where their size becomes extremely sm
small bumps would appear where they do not belong.

In Fig. 1 we present a schematic diagram of the para
growth described above.

It is important to note that on the face of it the conform
map ~8! appears very similar to the one obtained in DL
@7,8#. But this is deceptive. Here we summarize the th
major differences between DLA and the new growth mode

~1! The distribution$ũ i%$ i 51%
n ~which is chosen uniform in

DLA and related growth models@9#! is transformed to a non
uniform ~and maybe even singular! distribution of the angles
$u i%$ i 51%

n .
~2! The field by which we calculateln ~i.e., the derivative

of the conformal map! is not updated after each step, b
only after growing a number of particles, and in the limit
whole layer.

~3! The parameterb in Eq. ~6! can be taken to be differen
from 0 ~which is the value used to grow DLA clusters!. In
particular, withb52 the size of the bump is proportional t
the gradient of the local field, as is appropriate for Laplac
growth.

Note that our algorithm is not purely parallel, as the co
position in Eq.~8! indicates. The parallel aspect is in usin
the samefield to compute the values ofln in Eq. ~6! and

FIG. 1. Schematic diagram of parallel growth with four pa
ticles. Points 1–4 in the mathematical (v) plane stand for

ũ1 . . . ũ4, and are mapped underF (m) to the appropriate images i
the physical~z! plane. The sizes of the bumps were chosen to sim
late b.0.
04614
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choosing a uniform distribution of$u ĩ% i 51
n instead of

$u i% i 51
n . Note that here and below when we say a ‘‘unifor

distribution’’ we mean that the series was created with
any preference for any region of the unit circle. It may ve
well be that after avoiding overlaps the resulting distributi
may be unevenly represented over the unit circle. Anyw
we make use of an ordered series of compositions of
basic mapf to construct one layer. In the following sectio
we will show that the serial aspect of the layer growth is n
important in terms of the asymptotic fractal dimension of t
clusters. In other words, the order of placing the bumps is
relevant as long as the same field is used as in Eq.~6!.

The details of the algorithm, including how to choose t
series$ũm1k%k51

p to avoid overlaps, are presented in Appe
dix A.

III. TWO-PARAMETER FAMILY
OF GROWTH PROCESSES

Evidently, a discretized Laplacian growth calls for choo
ing the series$ũm1k%k51

p such as to have full coverage of th
unit circle ~implying the same for the boundaryG). On the
other hand, DLA calls for growing a single particle befo
updating the field. Since it was shown that in DLA growthln
decreases on average whenn increases, in the limit of large
clusters DLA is consistent with vanishingly small covera
of the unit circle. To interpolate between these two cases
introduce a parameter that serves to distinguish one gro
model from the other, giving us a one-parameter control~the
other parameter isb). This parameter is thedegree of cov-
erage. Since the area covered by the preimage of thenth
particle on the unit circle is approximately 2Aln, we intro-
duce the parameter

C5
1

p (
k51

p

Alm1k . ~11!

~In Appendix A we show how to measure the coverage
actly.! Since this is the fraction of the unit circle that
covered in each layer, the limit of Laplacian growth is o
tained withC51. DLA is asymptotically consistent withC
50. Of course, the two models differ also in the size of t
growing bumps, with DLA having fixed size particles@b
50 in Eq. ~5!, and Laplacian growth having particles pro
portional to“P „b52 in Eq.~6!…#. Together withC we have
a two-parameter control on the parallel growth dynami
with DLA and Laplacian growth occupying two corners
the b,C plane, at points~0,0! and ~2,1!, respectively.

We should note that our two-parameter model differs fro
previously studied generalizations of the DLA algorithm,
@10,11#. In the latter one allows a density of particles
random walk towards the cluster, and there is no guaran
that two particles do not hit the same boundary point o
after the other. In our algorithm we do not allow repeat
hits, keeping the added layer of particles strictly proportio
in width to the gradient of the field. The parallel algorithm
@12# comes closer to our model, but only forC→0. We are

-

4-3
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not aware of another previously studied model that attemp
to interpolate between DLA and Laplacian growth.

Needless to say, with our partially serial growth within t
layer, we introduced an extra freedom that is theorder of
placement of the bumps on the unit circle. In order for t
model to have a physical meaning~i.e., to simulate true La-
placian growth!, it must not depend on the specific itinera
of $ũ i% i 5m11

m1p used to cover the unit circle as long as it
uniformly distributed on the unit circle. We will show tha
for a fixed value ofl0 this extra freedom has no cons
quence with regards to the asymptotic dimension of the
sulting cluster. For fixedb the dimension depends only o
the value ofC. To demonstrate this, we will consider variou
itineraries to achieve a uniform coverageC.

One way is to construct the ‘‘golden-mean trajectory’’

ũm1k115 ũm1k12pr,

where r5(A521)/2. At each step we check whether th
newly grown bump may overlap a previous one in the lay
If it does, this growth step is skipped and the orbit continu
until a fractionC is covered. The first bump of the next lay
is grown at a random position in order to eliminate corre
tions induced by the arbitrary itinerary chosen to grow
previous layer. Another method is random choices ofũm1k
with the same rule of skipping overlaps. A third method
what was termed in Ref.@9# the ‘‘period doubling’’ itinerary

ũ050, ũ2n1k5 ũk1
2p

2n11
, 0<k,2n, n>0.

~12!

In all these methods we cannot reachC51, since there are
gaps left between the bumps. These are excluded from
ther growth in the present layer since their sizes are sma
than the corresponding value ofAln as calculated in the
middle of the gap. We can estimate the maximal value ofC to
be of the order of 0.65. Nevertheless, to be an accept
model of parallel growth the fractal dimension of the resu
ing cluster should be invariant to the itinerary. This inva
ance is demonstrated below. In the following section we tr
the caseC51 by constructing an ordered series with ex
care. In the rest of this section we demonstrate the ir
evance of the itinerary. The reader should note that beca
of the gaps that cannot be filled up in finite time, there can
a dependence of the growth pattern on the value ofl0. We
do not claim that for given values ofb andC the asymptotic
dimension does not depend onl0. Nevertheless, and impor
tantly, this variance reduces whenC increases, and is ex
pected to disappear altogether in the limitC→1. We thus feel
confident to consider theb-C plane as a two-parameter fam
ily of models that interpolate between DLA and Laplaci
growth.

With the present technique it is straightforward to det
mine the dimension of the resulting cluster. The conform
mapF (n)(v) admits a Laurent expansion
04614
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F (n)~v!5F1
(n)v1F0

(n)1
F21

(n)

v
1•••. ~13!

The coefficient of the linear term is the Laplace radius, a
was shown to scale like@7,8#,

F1
(n);S1/D, ~14!

whereS is the area of the cluster,

S5(
j 51

n

l j uF ( j 21)8~eiu j !u2. ~15!

Note that for b50, this and Eq.~5! imply that S5nl0.
Indeed, forb50 this estimate had been carefully analyz
and substantiated~up to a factor! in Ref. @13#. On the other
hand,F1

(n) is given analytically by

F1
(n)5F1

(0))
k51

n

A~11lk!, ~16!

and therefore can be determined very accurately. We as
the dimension of length toF1

(0) , and therefore toF1
(n) .

In Fig. 2 we showF1 of clusters grown by choosing th
three different itineraries discussed above to produce the
ers and for two values ofC. We note that the curves supe
pose for the three different clusters with the higher value
C; for different values ofC a different behavior ofF1 is
manifested. We conclude that, for givenl0, the dimension
~determined by the asymptotic behavior ofF1 versusS) does
not depend on the itinerary used to form the layers but oC
only. For small values ofC the fluctuations from cluster to
cluster are more significant, but they reduce rapidly up
increasingC.

FIG. 2. Log-log plots ofF1 versusS of six individual clusters
with b52, using three different itineraries for layer constructio
with two values ofC. C50.3 ~upper group! and C50.5 ~lower
group!. Here we use the golden-mean, random, and the period d
bling itineraries~see Ref.@9#!. We note that these log-log plots ar
more fluctuating~between different itineraries and between diffe
ent runs of the same itinerary! whenC is small. These fluctuations
decrease rapidly whenC increases, and presumably become ins
nificant whenC→1.
4-4
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FIG. 3. Patterns grown withb52, and three different values o
C by using the golden-mean itinerary:~a! C50.1, ~b! C50.3, ~c! C
50.5.
04614
In Fig. 3 we show three fractal patterns grown with thr
different values ofC.0. We draw the reader’s attention t
the fact that drawing clusters like the one in panel~c! is not
entirely trivial. Simply mapping the unit circle will not work
since many of the fjords will be lost. In fact, in Appendix
we develop a reliable and effective method to produce
border of the fractal cluster.

Even a visual observation of these patterns should c
vince the reader that the dimension of these patterns gr
upon increasingC. For a quantitative determination of th
dimension we averagedF1 of clusters produced by a random
itinerary, each with another random initial angle in ea
layer. We find that without averaging the spread in the e
mated dimensions is small, not more than 3%. Plots ofF1 for
three values ofC are presented in Fig. 4. We conclude th
the dimension of the growth pattern increases monotonic
with C, with D'1.86 whenC50.55.

In Fig. 5 we present theb,C ‘‘phase diagram’’ that results

FIG. 4. Log-log plots ofF1 versusS for b52 and 3 values ofC:
0.1 ~upper curve, one cluster!, 0.3 ~middle curve, one cluster!, and
0.55 ~lower curve, three clusters!. The slopes of the curves for th
large values ofS imply dimensionsD'1.28, D'1.56, andD
'1.86, respectively. The three clusters shown in the lower cu
give an indication of the expected typical spread in the estima
dimension for the higher values ofC, which is not larger than 3%.

FIG. 5. ‘‘Phase diagram’’ in which the fractal dimensionD is
displayed for selected values of the parametersC andb.
4-5
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from calculations for a variety of values ofC and b. The
conclusion from these calculations is that the fractal dim
sion of the clusters depends continuously on the parame
growing monotonically upon decreasingb or increasingC. It
is quite obvious why increasingC should increase the dimen
sion, we simply force particles into the fjords not allowin
them to hit the tips only as is highly probable. Also decre
ing b to b50 increases the dimension, since we grow eq
size particles into the fjords, whereas increasingb reduces
the size of particles added to fjords and increases the siz
particles that accrete onto tips. In particular, it is obvious t
DLA and our discretized Laplacian Growth cannot have
same dimensions, putting them in different universa
classes: the dimensionD'1.86 obtained forb52 and C
50.55 is a lower bound for the dimension of Laplaci
growth patterns. This is because the dimension increa
with C and C51 for Laplacian growth patterns. In the fo
lowing section we present evidence, by reconsideringC51,
that the crucial difference between DLA and Laplaci
growth is not in the discretization or in the ultraviolet reg
larization, but rather stems from the different values ofb and
C.

Before turning to models withC51 we note in passing
that the present family of models warrants further study
its own right, independent of the relation between DLA a
Laplacian growth. The wealth of growth structures seen
electrodeposition, dielectric breakdown models, and bacte
colony growth @16# may very well justify two-paramete
families of models. The present one is not less physical t
any other that had been studied so far in the literature, b
enjoys the benefit of easily obtained conformal formulatio

IV. DISCRETE VERSUS CONTINUOUS
LAPLACIAN GROWTH

Continuous Laplacian growth without surface tension h
been studied using dynamics of conformal maps in R
@2,3#. The dynamical equation for the conformal map rea

Re$vF8~v,t !F t~v,t !%51. ~17!

As is well known, the solutions of this equation genera
finite-time singularities from smooth initial data. The sim
plest example is the initial condition

F~v,0!5F1~0!v1
F22~0!

v2
. ~18!

The number of Laurent coefficients is preserved by Eq.~17!
with

F1
2~ t !

F22~ t !
5const. ~19!

The finite-time singularity is seen from the analytic res
@writing F j[F j (0)#

F1~ t !5
F1

2F22
~F1

22A@F1
224F22

2 #228tF22
2 !1/2,
04614
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F22~ t !5
1

4F22
~F1

22A@F1
224F22

2 #228tF22
2 !. ~20!

As t→tc5@F1
224F22

2 #2/8F22
2 , F1(t)/F22(t)→2, and a

cusp is developed at the images ofv51, exp(2pi/3), and
exp(4pi/3), see Fig. 6. This simple example motivated
tempts to understand the role of surface tension as an u
violet regularization; see Ref.@17#. We will use this result to
study further the correspondence between our discretized
placian growth and the continuous counterpart, and to
lidify the fundamental difference between the latter proc
and DLA.

As explained in Sec. III, reachingC51 is impossible with
any of the itineraries discussed above. We can achieve
limit by growing in an ordered fashion, adding bumps in
controlled manner, precisely such as to glue one branch
to its neighboring one. How to do this while imposing th
appropriate symmetries is explained in detail in Appendi
A and B. We discover that the growth patterns constructed
this way tend to fractalize rapidly due to the existence of
branch cuts, in agreement with our statement above that
result of our process is a faithful lower bound to the dime
sion of continuous Laplacian growth. An example of the p
terns grown by our discretized process from the initial co
ditions ~18! is shown in Fig. 7.

The idea of this section is to isolate the effects of t
parameterC and b from effects of discretization and ultra
violet regularization. To this end we eliminate the instab
ties caused by the bumpiness by keeping track of the
Laurent coefficientsF1 and F22. We start with the initial
conditionsF1(0)v1F22(0)/v2. Every layer is then grown
by our algorithm with a chosen values ofC andb, computing
the new values ofF1 and F22, using the analytic formulas
presented in Ref.@8#. Discarding all the other Laurent coe
ficients we have an updated conformal map in the fo
F1

(n)v1F22
(n) /v2.

We find the results of this exercise quite revealing. In F

FIG. 6. Evolution of cusps starting from smooth initial cond
tions, with F1(0)51, F22(0)50.24. Curves are shown at initia
time t50, an intermediate time, and at the critical timet5tc .
4-6
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8 we show the computed values ofF1
(n) and F22

(n) and the
ratio ~19! for C51 andb52, together with other values o
these parameters.

For C51 and b52 the solution approximates rathe
closely the exact results up to the creation of the finite-ti
singularity, with large deviations appearing only when th
tip radius of curvature is of the order ofAl0. The degree of
approximation improves whenl0 is reduced. On the othe
hand, the same procedure with other values ofC or b devi-
ates from the exact results immediately, with the degree

FIG. 7. Cluster grown withC51 starting from the same initia
conditions as in Fig. 6. Notice that the branch cuts lead to spur
fractalization of the smooth envelope.

FIG. 8. F1
2/F22 as a function ofS for the smooth process de

scribed in the text, and for the following values ofC andb: circles,
C51 andb52; squares,C51 andb50; diamonds,C51 andb
54; triangles,C50.5 andb52. The solid line represents the initia
conditions that remain constant, Eq.~19!.
04614
e
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deviation being monotonic in the difference in values ofC
from unity and ofb from 2.

It is not uninteresting to note the effect of the finite-si
particles as an ultraviolet regularization parameter. This
demonstrated in Fig. 9. The deviation from the analytic
lution depends onl0. The smaller the latter is, the deeper w
go into the cusp formation, and the closer we get to
singularity time tc . We estimate the time of deviation b
comparing the radius of curvature to the physical size of
particle at the tip. This means that at the tip

l0

uF8~ tip!u2
'

1

k2
, ~21!

wherek is the curvature at the tip. The right-hand side va
ishes whent→tc , inhibited here by the value ofl0. The
time of deviation is, therefore, when l0
5uF8(tip)u2(t)/k2(t). We can compute the quantities in
volved analytically,

F8~ tip!5F122F22 , ~22!

k5
F114F22

~F122F22!2
. ~23!

Accordingly, we can estimate the time of deviation and co
pare it with the numerics. The agreement is excellent.

At this point it is worthwhile to reexamine the consens
formed in favor of DLA and Laplacian growth being in th
same universality class. Superficially one could say tha
DLA the update of the harmonic measure after each part
is not so crucial, since the effect of such an update is re
tively local @18#. Thus it may just work that a full layer o
particles would be added to the cluster before major inter
tion between different growth events takes place. Howe
this view is completely wrong. An incoming random walk
lands on top of a previously attached onevery often. To see
this, consider how many angels$u j% can be chosenrandomly
on the unit circle before the first overlap between bumps

s

FIG. 9. F1 andF22 for the smooth growth process described
the text with C51 and three different values ofl0. Circles l0

51024, trianglesl055*1025, and squaresl051025. The solid
line results from solving Eq.~17! with the same initial conditions.
4-7
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linear sizese j5Aln(eiu j). To get the order of magnitud
take e j5e5^Aln&. The average number of times that w
can choose randomly an angle before the first overlap
N(e);1/Ae. The length of the unit circle that is covered
that time by the already chosen bumps isL(e)5eN(e)
;Ae. It was shown in Ref.@8# that for DLA ^Aln&
;n2D2 /D, implying N(n);nD2/2D. Notice that this result
means, in particular, that for a DLA cluster of 106 particles
only less than 50 random walkers can be attached before
of them will arrive at the same site. Moreover,L(n)
;n2D2/2D→0 for n→`, which means that as the DLA clus
ter grows, significant changes of the measure occur long
fore a full coverageC51 is achieved. This argument clarifie
the profound difference between growing a whole layer
multaneously and particle by particle. We will now show th
if we eliminate the basic instability that stems from partic
landing on each otherthenDLA and Laplacian growth coin-
cide. To do so we start again with the initial conditio
F1(0)v1F22(0)/v2, grow one particle with the DLA
rules, compute the new value ofF1 and F22, and use the
new mapF1

(n)v1F22
(n) /v2 as ‘‘initial conditions’’ for an ad-

ditional particle growth. The results of this process a
shown in Fig. 10, which is now indistinguishable from L
placian growth withC51. In fact, when the instability pro
duced by particles landing one on top of the other is elim
nated, the growth of fixed size bumps at positions accord
to the harmonic measure simulates the growth of a layer
was expected by many researchers. The presence of th
stability that is intimately linked to the DLA growth rule
makes it fundamentally different from the parallel lay
growth of Laplacian dynamics.

Finally, to clarify further the connection between our d
crete Laplacian growth model pertaining toC51 and the
standard continuous model, we consider our model in
limit l0→0. We will show that a formal expansion inl0

FIG. 10. Growth patterns as in Fig. 9, starting from the sa
initial conditions but growing particle by particle according to t
DLA rules, preserving onlyF1 andF22. The inset shows a zoom o
F1 close to the time singularity.
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recaptures in the first order the Shraiman-Bensimon eq
tions for continuous Laplacian growth without surface te
sion @3#. For the fundamental map~2!, we have the formal
expansion

fl,u~v!5v1
1

2
lv

v1eiu

v2eiu
1O~l2!. ~24!

Note that this series fails to reproduce the conformalfl,u in
the neighborhood of its branch cuts. This is expected si
we are seeking the continuous limit. Next, to lowest order
l0 the composition of maps that produce the layer is

flm11 ,um11
+•••+flm1p ,um1p

~v!

5v1
1

2
v (

j 5m11

m1p

l j

v1eiu j

v2eiu j
1O~l2!. ~25!

Using this expression we can write the recursion relation
~8! in a first-order Taylor expansion

F (n1p)~v!5F (n)~v!1
1

2
vF8(n)~v! (

j 5m11

m1p

l j

v1eiu j

v2eiu j

1O~l2!. ~26!

With C51 we can reorder the anglesu j to be consecutive.
For smallln , the separation between adjacent values ofu j is
given by 2Al j , therefore, the sum overp can be replaced by
an integral over the angles with the Jacobian given by 1/2Al,
i.e.,

(
p

5 R du

2Al~u!
. ~27!

Using ln5l̃0 /uF8(n)u4 i.e., b52, we get

F (n1p)~v!2F (n)~v!5
1

2

Al̃0

2
vF8(n)~v! R du

3
1

uF8(n)~eiu!u2
v1eiu

v2eiu
1O~l2!.

~28!

Dividing this equation by the constant area grown by t
layer we finally obtain

]F~v!

]t
}vF8~v! R du

1

uF8~eiu!u2
v1eiu

v2eiu
1O~l2!.

~29!

One can show that this equation is equivalent to Eq.~17!
@5,19#. We see how the combined effect of the existence o
full layer and the choice ofln with b52 reduces our dy-
namics to the Shraiman-Bensimon equation in the limitl0
→0. In contrast, the growth rules of DLA cannot lead to th
continuous equation even in the limitl0→0. Following the

e

4-8
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rules of DLA, if we grow just one particle instead of a lay
with b50, we do not have the sum in Eq.~26! and in addi-
tion ln takes on the valueln5l̃0 /uF8(n)u2. Therefore, we
will get Eq. ~29! without the integral. This equation wa
discussed in Refs.@7,19# as the continuous version of DLA
Introducing an average over the harmonic measure~that is
uniform in u) we recover Eq.~29!. But as was discusse
above, the growth of DLA strongly favors the tips, and do
not follow an ‘‘average’’ growth with respect of its harmon
measure. After every growth event the measure is upda
and a new random walker will be again attracted mos
towards the tips.

We believe that with this discussion we have offer
strong evidence of the fundamental difference between D
and Laplacian growth. The issue of regularization of the c
tinuous dynamics will appear naturally in this discussi
upon considering theO(l2) that was neglected above. Whi
it is not expected that this regularization will take on t
exact form of surface tension regularization, we do not
pect the difference to change the universality class of Lap
ian growth. Nevertheless the careful assessment of the
ferent regularizations needs to be considered in fut
research.

V. CONCLUSIONS AND REMARKS

We have introduced a two-parameter family of grow
patterns with the aim of clearly separating DLA from Lapla
ian growth. We explained how to grow in parallel, takin
care of the delicate issue of reparametrization. For the la
issue we needed the inverse map as explained in Sec. II.
tools developed to study and control the reparametriza
were further employed to develop symmetry preserv
growth algorithms~Appendix B! and efficient methods to
construct the interface of fractal clusters~Appendix C!. We
argued that the parametersC and b are relevant for the
asymptotic dynamics, whereas the order of placing
bumps is not. The dimensions of the resulting growth p
terns were shown to depend continuously on the two par
eters. Besides providing us with a new model that is in
esting by itself, we could reach the following ma
conclusions.

~1! DLA and Laplacian growth are not in the same un
versality class.

~2! The dimension of Laplacian growth patterns had be
bounded from below by 1.85. We do not have a sharp e
mate of this dimension, and cannot excludeD52.

~3! The difference between DLA and Laplacian grow
models is not in the ultraviolet regularization. We explain
that the deep difference is between the serial and par
growth events, leading to increased tendency to form sp
in DLA.

~4! The leading order in a formal expansion inl0→0 of
our process atb52 andC51 yields the standard continuou
dynamics for Laplacian growth without surface tension.

In future work it may be worthwhile to attempt to find
sharper estimate of the dimension of Laplacian growth p
terns. It seems also worthwhile to study the connection of
present model to models with noise reduction, and to furt
04614
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understand how to interpret the rich phenomenology of e
trodeposition and bacterial colony growth.
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APPENDIX A: DETAILS OF THE ALGORITHM

This appendix consists of four parts. In the first we e
plain how the absence of overlaps between grown parti
can be defined in terms of the conformal map. In the sec
part we explain how the series$um1k%k51

p introduced in Sec.
II is constructed by using the inverse map. The third part
this appendix is dedicated to a detailed description of
algorithm that was introduced in Sec. II. In the last subs
tion we explain the algorithm used to achieve full covera
(C51) at each layer.

1. Overlaps in terms of iterated conformal maps

Suppose that the first particle in a new layer is them
11)th particle in the growth process, and that there are
overlaps between the firstk particles grown in this layer. In
order to express this in terms of the iterated conformal m
formalism, let us make the following definition:vn

R,L are the
two branch points of the mapfun ,ln

, denoted as ‘‘right’’ and

‘‘left,’’ respectively. The mapfun ,ln
will be denoted in the

sequel asfn for brevity. Let us further denote

eian
R,L

[fn~vn
R,L!. ~A1!

Note that uan
R2an

Lu/(2p) is the fraction of the unit circle
covered by the particle.

If the kth particle does not overlap any of the previous
grown particles of the layer, then all the poin
F (m1k21)(eiu) with am1k

L ,u,am1k
R are in the image of the

unit circle underF (m). In particular, this means that the tw
edge points of the particlem1k, i.e., F (m1k)(vm1k

L ) and
F (m1k)(vm1k

R ) are in the image of the unit circle unde
F (m).

This condition is satisfied if in the composition

F (m)+fm11+•••+fm1k21~eiu!, am1k
L ,u,am1k

R ,
~A2!

the argument of each mapfm1 i (1< i<k21) is not con-
tained in the interval@arg(vm1 i

L ),arg(vm1 i
R )#.

Therefore, we have to check the followingk21 condi-
tions for eacham1k

L ,u,am1k
R :

arg~eiu!¹@arg~vm1k21
L !,arg~vm1k21

R !#,
4-9
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arg@fm1k21~eiu!#¹@arg~vm1k22
L !,arg~vm1k22

R !#,

~A3!

A

arg@fm12+•••+fm1k21~eiu!#¹@arg~vm11
L !,arg~vm11

R !#.

In practice, it is enough to check this condition for the tw
points am1k

L and am1k
R . A failure of any of these 2(k21)

conditions means that thekth particle is overlapping at leas
one of the previousk21 particles. It is clear that if the two
edge points of the particle are on the boundary of
m-particles cluster, so must be its tip~except very rare fill-up
events@8# that we can safely neglect here!.

2. Constructing the serieŝ um¿k‰kÄ1
p

Upon choosing an angleũm1k we must check that Eq.~9!
is solvable. Since the inverse functionfn

21 is analytic on the
unit circle only on the arc outside the interval@an

R ,an
L# ~and

maps this arc to itself!, a solvability criterion for Eq.~9! can
be expressed through the followingk21 conditions:

ũm1k¹@am11
L ,am11

R #,

arg@fm11
21 ~ ũm1k!#¹@am12

L ,am12
R #,

~A4!

A

arg@fm1k22
21 +•••+fm11

21 ~ ũm1k!#¹@am1k21
L ,am1k21

R #.

3. Growth algorithm for CË1

The algorithm for growing one layer whose preimage u
derF (m) covers a fractionC of the unit circle, on the cluste
made up ofm particles, is defined as follows.

~1! Choose a series$ũm1k%k51
p uniformly distributed on

the interval@0,2p#.
~2! Defineum115 ũm11.
~3! Calculatelm11 from Eq. ~6!.
~4! Calculateam11

R,L from Eq. ~A1! and store them.
~5! Let C15uam11

R 2am11
L u/(2p).

For k.1,
~6! Check thek21 solvability conditions in Eq.~A4! for

ũm1k . If any of them is violated, choose anotherũm1k and
repeat from stage 6.

~7! Calculateum1k from Eq. ~9!. Next, calculatelm1k

from Eq. ~6!, and find the two branch pointsvm1k
R,L .

~8! Use Eq.~A1! to calculateam1k
R,L . Check the 2(k21)

conditions, given in Eq.~A3!. If any of them is violated
~which means that thekth particle overlaps one of the forme
k21 particles in the layer!, choose anotherũm1k and repeat
from stage 6.

~9! Let Ck5Ck211uam1k
R 2am1k

L u/(2p).
04614
e
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~10! After a series ofp ‘‘good’’ angles $um1k%k51
p was

found, such thatCp>C, update the conformal map accordin
to Eq. ~8!.

4. Full coverage„CÄ1… growth algorithm

To reachC51, we construct recursively a series of co
secutive angles$u j% j 5m11

m1p such that the left branch cut of th
j th particle coincides with the right branch cut of thej
11)th particle. This reads

F ( j 11)~v j 11
R !5F ( j )~v j

L!, ~A5!

or

a j 11
R 5arg@f j 11~v j 11

R !#5arg@v j
L#. ~A6!

Given a pair (u j ,l j ) ~and hence,v j
L,R anda j

L,R) we have to
chooseu j 11 such that the value ofa j 11

R , which is deter-

mined by u j 11 and the value ofl j 11 computed atũ j 11

coincides with the previously computed arg@v j
L#. Numeri-

cally this is obtained as follows. We start withu j 11 far
enough fromu j . Then, using Eqs.~6!,~9!,~A1!, we calculate
the appropriate values ofũ j 11 , l j 11, anda j 11

R . This pro-
cess is repeated until a value ofu j 11 is found such that 0
<a j 11

R 2arg@v j
L#<0.01Al j . We proceed until the whole

circle is covered.

APPENDIX B: IMPOSING SYMMETRIES ON THE
ITERATION SCHEME

In this appendix we explain how to use iterations of co
formal maps to describe growth in geometries less symm
ric than the radial. In addition we show how to preser
symmetries of the continuous Laplacian dynamics along
iterations. The basic idea will be demonstrated through
important example of growth in channel geometry, a
straightforwardly employed to growth from initial condition
with reflection symmetry orn-fold symmetry in radial geom-
etry.

1. Growth in a channel

The simplest symmetry that is preserved in the iteratio
scheme is 2p periodicity. Clearly, fu,l(ei z)
5fu,l(ei (2p1z)). Therefore, if the initial conditions~i.e.,
F (0)) have the property

F (0)~ei (2p1u)!5F (0)~eiu!1L, ~B1!

whereL is the channel width, thenF (n) will have this prop-
erty for anyn.0. The simplestF (0) that has the periodicity
property is of courseF (0)(v)5(2/p)ln(v) corresponding to
(L51), which describes a growth starting from a flat curv
Notice that the boundary conditions of the Laplacian fie
“P5F (n)8/uF (n)u at infinity will be automatically changed
from “P;rW/r 2 to “P;const3 x̂.

Suppose now that we want to describe a growth in a ch
nel with no-flow boundary conditions at the walls. Th
means that the Laplace problem has to be solved at e
4-10
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stage with the extra boundary conditions that the two w
y50 and y5L are streamlines of the scalar fieldP ~i.e.,
]P/]yuy50,L50). Preimages of streamlines ofP in the
physical plane are rays@arg(v)5const# in the mathematica
plane. Therefore, imposing no-flow boundary conditions
the walls amounts to demanding that the two rays arg(v)5
6e (e→0) are mapped underF (n) to the wallsy50 and
y5L respectively, for everyn.

Clearly, the elementary mapfu,l(v) does not have this
property. Except foru50,p the ray arg(v)50 is mapped to
a curved line in thez plane. Therefore, the appropria
boundary conditions at the walls are not respected by
iteration process.

We can overcome this difficulty in an analogous way
the image method used in electrostatics. Given initial con
tions defined by someF̃ (0) we construct ourF (0) by

F (0)~v!5F̃ (0)~2v!arg@v#<p,

F (0)~v!5F̃ (0)~2p2v!1Larg@v#>p. ~B2!

UnderF (0) each half of the unit circle is mapped to anoth
copy of the original interface with reflection symmet
around the real axis (arg@v#50,p). The preimage of the two
walls y50 and y5L under F (0)21 are the rays arg(v)
501 and arg(v)5p @or arg(v)502 and arg(v)5p# re-
spectively.

Now we construct an elementary conformal function th
maps the rays arg(v)50,p onto themselves. This can b
achieved by choosing the elementary map to be

fu,l+fū,l~v!, ~B3!

such that the image of the unit circle will have the real line
a symmetry axis. This is shown schematically in Fig. 11.

Since the rays arg(v)50,p are mapped to the walls unde
F (0) they will be mapped to the walls underF (n) defined by

FIG. 11. Iterative conformal function that maps at each stagn
the unit circle and the real axis in the mathematical plane to
evolving interface and the channel walls in the physical plane,
spectively. The two rays arg@v#50,p are mapped underfu,l

+fū,l to themselves, and under the operation ofF (0) to the walls
y50,L.
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F (n)~v!

5F (0)+fu1 ,l1
+fū1 ,l1

+•••+fun ,ln
+fūn ,ln

~v!. ~B4!

Naively, one may think thatū52u. However, constructing
the symmetric map as a composition of two nonsymme
maps leads to some complication. In order to have a s
metric image of the unit circle, one would like to have th
second bump in the image of the unit circle to be loca
exactly symmetrically to the first bump,

fu,l~ei ū !5e2 iu. ~B5!

Equation~B5! implies choosingū according to

ū5arg@fu,l
21~e2 iu!#. ~B6!

The differenceuū2(2u)u becomes smaller withl, and is
zero at the pointsu50,p,6p/2 for every value ofl.

2. Preserving symmetries of the Laplacian dynamics

The simple technique that was developed in the previ
subsection can be generalized for cases in which a symm
of the Shraiman-Bensimon Eq.~17! is known for specific
initial conditions and we want to preserve it upon using
erations of conformal maps.

a. Reflection symmetry in radial geometry

Suppose that the initial interface has a reflection symm
try with respect to some axis. Without loss of generality w
can take the symmetry axis to be thex axis, which is the
image underF (0) of the real axis in the mathematical plan
Then

F (0)~v* !5@F (0)~v!#* . ~B7!

It is easy to prove that this symmetry will be preserved un
the Shraiman-Bensimon dynamics.

In order to respect this symmetry in our iterative sche
we use again the elementary map~B3! that has reflection
symmetry with respect to the real axis. Thus,F (n)(v), de-
fined by Eq.~B4! with F (0) that has the property~B7! will
preserve reflection symmetry.

b. n-fold symmetry in radial geometry

The Shraiman-Bensimon equations preserve alson-fold
symmetry. Therefore, if the initial interface, defined byF (0)

has this symmetry, so should doF (n). For simplicity let us
consider threefold symmetry of the form,

F (0)~e2p i /3v!5e2p i /3F (0)~v!. ~B8!

In order for this symmetry to be preserved, the element
map must be threefold symmetric as well. Following the d
cussion in the first part of this appendix this can be achie
by choosing the elementary map to be

fu,l+fū,l+fû,l~v!m ~B9!

e
-

4-11
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where

ū5arg@fu,l
21~e2p i /3u!#,

û5arg@fū,l
21

+fu,l
21~e4p i /3u!#. ~B10!

The evolution equation forF (n) now reads

F (n)~v!5F (0)+fu1 ,l1
+fū1 ,l1

+fû1 ,l1
+•••+

3+•••+fun ,ln
+fūn ,ln

+fûn ,ln
~v!. ~B11!

The extension to higher symmetries is straightforward.

APPENDIX C: CONSTRUCTING AN OUTLINE FROM
BRANCH POINTS

The common method@8# to produce the outline o
n-particles cluster constructed by the iterated conformal m
technique is to sample the unit circle atK angles$uk%k51

K and
to plot their images under the map$F (n)(eiuk)%k51

K . This
simple method is problematic since a uniform series$uk%
will sample the tips much more than the fjords, and thus
order to have a reasonable image of the fjords~which are the
major part of the fractal cluster!, a huge numberK@n has to
be used. Since calculation of each image pointF (n)(eiuk)
calls for O(n2) operations, this turns out to be a very inef
cient method.

Here we propose an algorithm ofO(n2) complexity to
produce an exhaustive real-space image of the whole clu
. A

C

ia

L.

I
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The key idea is to focus attention on the edge points of
particles, which are the images of the branch points of
mapF (n) on the unit circle. Each growing particle adds o
two new branch points to the evolving map and may remo
some old ones due to overlaps~see discussion in Appendi
A!. Therefore, the number of ‘‘exposed’’ branch points
F (n) is bounded by 2n. Let us denote these point
$vk

R,L%k51
n . An exposed branch pointvk

R,L was added to the
conformal map by thekth growing particle, and since thi
particle was not overlapped by any of the nextn2k particles
it remains as a branch point of the mapF (n). Nevertheless,
the reparametrization of the unit circle induced by the f
lowing n2k iterations changes the preimage of each bra
point from vk

R,L to vk,n
R,L . The connection betweenvk

R,L and
vk,n

R,L is given, similarly to Eq.~7! by,

F (k)~vk
R,L!5F (n)~vk,n

R,L!, ~C1!

which can be rewritten as

vk,n
R,L5fun21 ,ln21

21 +•••+fuk11 ,lk11

21 ~vk
R,L!. ~C2!

The solvability of Eq.~C2! determines whether the appropr
ate edge point of thekth particle remains exposed under th
addition of the nextn2k particles. Checking the solvability
conditions and calculating the reparametrized branch po
vk,n

R,L from Eq. ~C2! is performed in the same way as
Appendix A, and it consists ofO(@k2n#2) operations. The
total complexity of the algorithm is thereforeO(n2).
. E

H.
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