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The probability density functioPDF) of the roughness, i.e., of the temporal variance, 6f hoise signals
is studied. Our starting point is the generalization of the model of Gaussian, time periddiojse, discussed
in our recent LettefPhys. Rev. Lett87, 240601(2001)], to arbitrary power law. We investigate three main
scaling regions ¢<1/2, 1/2<a<1, and K «), distinguished by the scaling of the cumulants in terms of the
microscopic scale and the total length of the period. Various analytical representations of the PDF allow for a
precise numerical evaluation of the scaling function of the PDF foraandy simulation of the periodic process
makes it possible to study also nonperiodic, thus experimentally more relevant, signals on relatively short
intervals embedded in the full period. We find that fex 1/2 the scaled PDFs in both the periodic and the
nonperiodic cases are Gaussian, but éor 1/2 they differ from the Gaussian and from each other. Both
deviations increase with growing. That conclusion, based on numerics, is reinforced by analytic results for
a=2 and a—o, in the latter limit the scaling function of the PDF being finite for periodic signals, but
developing a singularity for the aperiodic ones. Finally, an overview is given for the scaling of cumulants of the
roughness and the various scaling regions in arbitrary dimensions. We suggest that our theoretical and numeri-
cal results open a different perspective on the data analysid dfptdcesses.
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[. INTRODUCTION neric mechanisms leading to scale invariant fluctuations, a
notable example being the concept of self-organized critical-
The power spectra of fluctuations scale with frequency asty [18,19. It is clear, however, that not all the systems
S(f)~1/f* in a large variety of physical, chemical, and bio- showing a 1 noise fit into a single scheme and, perhaps, at
logical system$2]. This power-law behavior 1f often per-  this stage one should pursue a less ambitious aim of devel-
sists over several orders of magnitude with cutoffs present aiping more detailed characterizations of nonequilibrium uni-
both high and low frequencies, and with typical valuesrof versality classes.
in the range 0.& @<4 [2]. In a somewhat loose terminol- In equilibrium systems, the static universality classes are
ogy, all these systems are said to displafy idise although determined by thdi) dimensionality,(ii) symmetry of the
good quality data withe very close to 1 exist only for the order parameter, angii) the range of the interactions. Fur-
voltage fluctuations when a current is flowing through a re-ther specifying the conservation laws and the coupling of the
sistor[3,4]. Phenomena witlv+# 1, however, are abundant, order parameter to conserved quantities defines then the dy-
examples being the white-dwarf light emissid], the flow  namical universality classes. The statics and dynamics are,
of sand through an hourglals), ionic current fluctuations in  however, intertwined in nonequilibrium systems and an ex-
membrane channel&’], the number of daily trades in the ponent in the 1f/* behavior carries information about both.
stock markef8], water flows of riverg9], the spike trains of Thus, measuring a single exponenia characteristic situa-
nerve cell{10], the occurrence of earthquakdd], the traf-  tion when measuring time series of ngisees not determine
fic flow on a highway[12,13, the electric noise in carbon the universality class of the system even within the frame-
nanotubeg14] and in nanoparticle film§15], the interface  work of an equilibrium-type theory. Having a single expo-
fluctuations[16], and dissipation in turbulent systerfis7].  nent, however, one can still go on and try to ascertain
The list could be continued. whether or not two systems belong to the same universality
A well-understood example of flY type behavior is the class. This can be done by using the data to measure and
dynamic scaling observed at equilibrium critical points compare the scaling functions associated with the finite-size
where the power-law correlations in time are generated bgcaling of some global physical quantity such as, e.g., the
the infinite-range correlations in space. Most of the examplesrder parameter in a critical system or the roughness of an
listed above, however, are related to nonequilibrium pheinterface.
nomena and a similar level of understanding does not exist. The remarkable features of scaling functions are that they
There have been many attempts at identifying possible geare obtained without any fitting procedure and, furthermore,
they usually converge fast as the system size is increased.
Thus one can build a picture gallery that can be effectively
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Electronic address: Michel.Droz@physics.unige.ch class. Indeed, such an approach has been useful in establish-
*Electronic address: gyorgyi@glu.elte.hu ing connections among rather diverse processes such as mas-
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d=2 Fisher-Kolmogorov equatiof1], dissipation fluctua- which values ofe this effect is absent or negligible.

tions in a turbulence experimefi22,23, and the interface As we show below, the scaling functions can be derived
fluctuations in thed=2 Edwards-Wilkinson model, which is analytically in the case of PBC. Similar analytical treatment
equivalent to theXY model treated if24,25. This scaling for WBC were achieved only for=2 and in thea—c
function approach has also helped to clear up some questiofigit, otherwise we had to resort to simulations in order to
about the upper critical dimension of the Kardar-Parisi-obtain the finite alpha results. Observing the scaling func-

Zhang equatiofi26]. tions (displayed on the figures belgvone can deduce the
In our attempts to expand the picture gallery, we havefollowing qualitative trends a# is decreased:
recently derived1] the following result: The scaling func- (1) The PBC scaling functions change smoothly apart

tion for the roughness distribution of a Gaussian periodic 1/ from a~1 where the function is sensitive to small changes
noise signal is one of the extreme value distributions, thén « since a singularity develops at=1. Even this singular
Fisher-Tippet-Gumbel distributiof27,28. This is a rather behavior can be smoothed out, however, by an appropriate
unexpected and interesting result and we feel that it is imchange of the scaling variable. The scaling function ap-
portant to explore its generality and limitations. First, be-proaches a Gaussian as-1/2 and it remains a Gaussian for
cause ideas about extreme statistics playing a role in strongly<<1/2.
correlated, scale-invariant systems have been much dis- (2) The WBC scaling functions display strong depen-
cussed29-31,45,44 and this result may provide a founda- dence at larger. The dependence becomes weaker dor
tion to those speculations. Second, because this is the first2 and, similarly to the PBC case, thedependence disap-
instance when one of the distributions associated with expears entirely fora<1/2 where the function becomes a
treme statistics emerges naturally, and in a mathematicallsaussian.
precise manner, for a quantity which is not of extremal char- (3) Comparing the PBC and WBC scaling functions, one
actera priori. can observe that their difference is large éor: 4, it is easily
There are three elements underlying the above extremeoticeable in the range between 1 and 4, while it becomes
statistics results: Gaussianityf Jpower spectrum, and peri- harder to distinguish the functions far<1, and the func-
odicity. Thus the problem can be generalized by consideringions become identical Gaussians fo< 1/2.
effects of(1) non-Gaussianity,2) a generalized power spec- In order to demonstrate the above observations, we shall
tra of the form 1f¢, and(3) nonperiodicity(the experimen- introduce a model of £ noise in Sec. Il where the rough-
tally realistic situatioi In this paper, we shall concentrate on ness distribution, the appropriate choice of scaling variables,
points(2) and(3) leaving the more difficult problem of non- and some general scaling properties will also be discussed.
gaussianity to a later study. Section Il contains the analytical calculations for the case of
One expects that changing the exponentill change the  PBC while Sec. IV is devoted to presenting both the simula-
roughness distribution of a signal and, indeed, there are an&on and analytical results for the WBC case. We close with
lytical results[1,32,33 for «=1,2,4 which demonstrate this discussing generalizations to higher dimensions in Sec. V.
explicitly for periodic signals §=1 dimensional systems
Similar results exist also for higher dimensions where the || PROBABILITY DISTRIBUTION OF PERIODIC 1 /f¢
roughness of @=1 signal is replaced by the roughness of a SIGNALS AND THEIR ROUGHNESS
higher-dimensional interfacg24,25,34,3% Thus the ques-
tions we address in connection with thedependence is not
about its existence but about its magnitudéservability. Noisy signals are in principle fully characterized by their
More specifically, we ask if there is an interval @fwhere  path probability density functional. However, the most often
the a dependence is absent or negligible from an experimendsed characterization is by the power spectrum, whose ex-
tal point of view? perimental recording is straightforward. This leaves several
The other problem of our concern is the question of theproperties unspecified, such as the distribution of the phases,
effect of the boundary condition®Cs). When analyzing a and whether the noise is Gaussian. Furthermore, the usual
signal and building a distribution function, one usually di- Fourier expansion of the signal in an interval implies period-
vides the signal into equal “time” intervals and measures theicity outside the interval. While that expansion can be used
quantity of interest in every interval. Thus the signal within awell for data analysis, the physical implication for the outer
given interval is not periodi¢usually the total signal is not part of the signal, which influences by long-time correlations
periodic either and the question arises whether the experithe inner part, is obviously nonrealistic. Accordingly, the role
mentally used BC, i.e., when one studies a “window” within of initial and final conditions in time, a property that we shall
the signal, would affect the scaling functions or not. Thiscall boundary condition(BC), are generically neglected.
shall be a central issue in this paper, so we introduce th®#hereas it is arguable that in a stationary process, a long
abbreviations PBC and WBC, for periodic and “window” time after the turning on of the experimental device, the
BC, respectively. boundary conditions should not have much influence, when a
The dependence of scaling functions on the boundarynodel is constructed for 7 noise, the boundary conditions
conditions has been discussed in equilibrium critical pheshould be defined with care.
nomena and it is known that such dependence ¢3&87. We now describe the main properties of the model treated
Thus our aim here again is not to show its presence but to this paper. It should be emphasized that we do not study
gauge its magnitude for various values and investigate for the underlying microscopic mechanism that may lead t6 1/

A. Model for periodic, perfectly 1/f¢, Gaussian noise
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noise, this has been done on many different levels of simplieven if this were a singular limit, we shall wind up with

fication for a large number of systems, for a review E8e  scaling functions not containing the microscopic time unit,

Rather, we construct a stochastic model, where the noisgo the value ofr may be left undetermined.

signal is given by its path probability density functional, hav-  The stochastic properties of a sigrdlt) are fully char-

ing the generic properties of observed“lhoises. In a sense acterized by our specifying the probability density functional

it will be a minimal model tailored to exhibit a few proper-

ties we prescribe. P[h(t)]=eSI"O], ()
First, the noise we consider is periodic. While this is ob-

viously not valid in a real experimental situation over theOr, equivalently, the probability density functidPDF) for

time interval of the measurement, as we have seen recentifie Fourier coefficients, forn=0...N as

[1], it yields theoretical predictions not very far from what is ~Sten))

measured in a real signal. Furthermore, the periodic bound- P({Cap)=Ae =17, ©)

ary condition(PBC) allows for the straightforward numerical o . . )

simulation of the noise, thus making it possible to study nu-Our m(_)del for periodic, perfectly 17 signals is defined by

merically the statistics in cut-out time intervals that are mucHn€ action

smaller than the entire period. Such a “window” boundary N

condition(WBC) is, we surmise, a more faithful representa- _ 1-a al~ |2

tion of experimentally realistic BCs. Indeed, while the effect Se)=20T nzl nelcal @

of the outer signal onto the inner part is important due to

long-time correlations, probably it depends little on whether N

the signal was simply turned on a long time ago, or is peri- A= H 20n°Tr a1 (5)

odic on a time scale much larger than the “window.” Look- n=1

ing at it from another angle we can say that the PBC is here the probabilistic variables are the real and imaginar
equivalent to saying that the signal is best expanded in th¥’ P gihary

usual Fourier basis, thus what remains is to specify the prolJ[-)arts OfCy-S. We' assume translation invariancefirspace,
ability distribution of the Fourier coefficients. Note that the therefore the action must not depend on the constantcgart
noisy signal in a “window” should not be expanded in such and we se_t that to zero he_reafter. Note_ furthermore that the
a basis in theory, because the noise is manifestly aperiodicz.ibove action means that d|fferenf[ Four_|er modes are uncor-
Second, we restrict ourself to Gaussian noise and assu glated. The coeff|C|err_Ir makesS_dlmensmr_ﬂess and can b?
that the Fourier modes are independent random variabIeH.nderStoooI as the remprqcal noise intensity parameter. Since
we are after scaling functions, the valuedofvill not matter.

The reasons for this working hypothesis are that many e b i i that th t .
perimental data concern power spectrum measurements pe above action was set up so that the power spectrum IS

Gaussian noises and provide no information about the cou-
pling between the modes. (e |2>oci 6)
Third, we assume that the phase of each complex Fourier . a’
component is random and uniformly distributed[id,27].
Hence, the probability distribution will depend only on the thus the process is indeed of thd Ltype.
modulus.
Last but not least, we consider perfectlyf Lhoise. Here
we understand that the variance of the independent Fourier
amp“tudes Of a path is a pure power with exponenFur_ Our aim is to characterize the Signals by some glObal
thermore, there are no upper- and lower-cutoff frequenciegroperties. As the time averagg in Eqg. (1) was set to zero,
other than the natural ones determined by the observatioite simplest quantity worth considering is the mean-square
time and the microscopic characteristic time unit’ respecWidth, i.e., rOUghness of the Signal. This has been studied for
tively. the 1f noise (@=1) in Ref.[1], the Wiener processqf
The above ingredients specify the path probability of the=2) in Ref. [32], and for curvature-driven interfaces (
stochastic time signal, this will be our model, as discussed irF4) in Ref.[33]. Its general definition is
detail below.(Note that it is a generalization of the case B —
=1 [1] to arbitrarya.) w,=[h(t)—h(t)]*=h?(t) = h(t)?, (8)
The stochastic trajectoriels(t) are periodic,h(t)=h(t
+T), thus the trajectory can be expanded as

B. Roughness of a signal

!In time representation the action is of the form

’_l @ da/Zh 2

= J:d‘(—dth) ' "
Here we have used a cutdff meaning that the time scale is where the fractional derivative is understood on the Fourier repre-
not resolved belowr=T/N. This is needed to deal with sentation so that it acts upon the phase factordée®"/dt?

some singularities and may have microscopic physical ori=(ia)?e'®. Dimensional analysis on E) yields the scaling bjr
gin. Whenever possible we shall, however, téke>o, and  used in Eq(4).

N
h(t)= ZN c,e?mMT cr=c_,. (o Sh(t)]=2c

n=—
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where overbar means time average over the entire périod

N
Note that nowh(t)=0. In Fourier representation we get K= (W3)—(w )2— Tl o ; Z % (170
N
szznzl |cal?, €) The PDF corresponding to the generatbd) will be the
main concern of this paper. We shall also discuss the “win-
hencew, is in fact the integrated power spectrum. dow” boundary condition, WBC, so in case of ambiguity the

The roughnessv, is associated with a giveh(t) trajec- above quantities, pertaining to PBC, will get a subscript like
tory, it varies when different instances of the paths are takefPp(S)-
from their ensemble. Thusy, is a probabilistic variable,
whose PDF can be expressed as C. Scaling of averages

o The generating function of the PDF of the roughness still
P(W2)=f S(wy—h2(t)+h(t)?)P[h(t)]Dh(t). (10)  contains two scales, the observation tifigmultiplied by
o179} and the microscopic time uni=T/N. If N di-
In the more practical Fourier representati®w,) assumes Verges, physical quantities will exhibit various scaling for
the form different a-s. Whereas the above model is a very simple one
from the viewpoint of the statistical mechanics of critical

phenomena, as it is Gaussian and massless, it is worth sum-
P(Wz)zf 5( Wo—2 |Cn|2) P({ca}) marizing the scaling properties of averaged quantities, be-
=t cause they contain important information about the PDF.
N The kth roots of thekth cumulants(15) for all k-s have
X H dRec,dImc,. (11)  the dimensionality of the roughness, however, their scaling
n=1

in the lengthT of the time interval may be different. Fdr
=1,2 these are the average and the mean deviation there
from, respectively. First, foe>>1 all cumulants converge in

the limit N—oc and we have

It is useful to introduce the generating function of the mo-
ments ofP(w,) as

G(s)= JodezF’(Wz)e‘SWz, (12) Kl Te L, (18)

If =1 then the averages,, logarithmically diverges irN
=T/7 while all higher cumulants remain of unit order, inde-
s ) -1 pendent oflT and 7. This corresponds to a critical dimension

which by Eq.(11) gives

N

G(s)=11

(13 in second-order phase transitions, but here we have a critical
a=1 where the logarithmic singularity occurs. Fe« 1 the

. . . average no longer depends ®nrather it is proportional to

The cur_nulant generating functioit(s) can be obtained by 717% and for 1/2< a<1 thek>1 cumulants still exhibit the

expanding the logarithm as scaling(18). The second critical value af is at 1/2, where

the second cumulant has a logarithmic singularity. kor

oo k N
V(s)=InG(s) :2 %( S ) D i (14) <12 the¥/x, becomes proportional t& "2 while

oTi en«

k= oTi @] =1 nek higher-than-second order cumulants still satisfy B@) un-
_ til the third critical value ofa=1/3 is reached. Continuing
Hence thekth cumulant of the roughness is the reasoning shows that ag= 1/k the kth-order cumulant

develops a logarithmic singularity. A significant change oc-
curs ata,=1/2, because for lessers the scale of the mean
deviation k=2) will dominate over the scale from higher
k-s. This means that the PDF of the roughness on the scale of

Note that forak>1 the cumulants can be expressed in termdts mean deviation becomes Gaussian in bhe-oo limit.

(19

of Riemann’s zeta function in the limit of largé as Thereby the effect of the sequence of critiagls fork>2 is
suppressed. Table | summarizes the scaling of the cumulants.
(k—1)! Note that the powers of and 7 add up toa—1 for each
K= o S(ak). (16)  entry to produce the right time dimensionality.
(6T As mentioned above and can be seen in Table I, for

<1/2 the mean deviation goes with thel/2-th power of
e sizeT. This result would follow if the central limit theo-
rem could be applied to the roughness as given in (Ep.

The low-order cumulants have the usual meaning of averagt%1
and variance

1 N This is analogous to the mean-field behavior beyond the up-
= = - per critical dimension of a statistical mechanical system ex-
K1 <W2> 1 ) (1759 . .
oT " *n=1n* hibiting a second-order phase transition.
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TABLE I. Scaling of the cumulants for various-s. The dots indicate that the last formula is valid from then on, f.e.,.” extends the
validity to higherk-s and vertical dots to lowet-s.

Range or
value of K1 Jiz s Yen
(1) To !
L " o(1)
T
(1/2,1) 7—“_1 Ta—l
1/2 : T-12 InI T-12
T
(1/3,1/2) Fa—l2 7112 Ta-1 o
He : -|——2/33 ,InI T-218
T

(1/4,1/3) a1 7213 Te-1

Since theae=1 value is a threshold in the sense that forlll. SCALING FUNCTION FOR PERIODIC BOUNDARY
a>1, the scales of all cumulants diverge &S 2, while for CONDITION
a<1 the average becomes independenT @ind higher cu-

mulants vanish, the natural scaling for the two cases is dif- _ o _ _
ferent. If «>1 the scaled quantity Knowing the explicit form of the generating function

(13), the roughness distribution for any finité can be ob-
tained by inverting the Laplace transformati@®)

A. Analytic approach for general «

x= 2 (19 = ds O
K1 Pp(a,WZ,T)Zf —evs[] |1+
n=1

—ioo2’7Ti

(21)

has, in the limitN=c, a convergent PDF, devoid of any From here we concentrate on the—« limit. In this limit

adjustable parameter. In the following, we shall refer to the . . . .
use of variablex as scaling by the average. Far1 the the PDF of the scaling variableor y, defined in Eqs(19)

same PDF would be a Dirac delta centered on one, so o nadt(iZSO)L,J:iicotrr?esvg]r?aet?lgnciegt gg)cilglsgtﬁg ?;V\;?]rtgng%
rather resorts to a scaling that effectively widens the delt ’ g thy q4<Y), 9

. : yield smooth PDFs for alkx-s. We refer to this type of scal-
peak. One can do that by introducifigd, 2 ing by the label 2 on the PDF. Far>1/2 that PDF is

Do @,y) =Pl @,W,,T)
_ Wom Ky

y_ ’ (20) iv ds ) es/n"‘
Viez =V{(2a) —e/{Zays] | :
—ioo2'7T| n=1 S
1+ —
na

that is, scaling the roughness by the variance. The PDF as a

function of y will clearly become Gaussian below=1/2, (22
but develop a nontrivial shape for H2v. This variable was
used in our recent Letter on the=1 case[1], where we
used the notatiorx for it. We will adopt the notation that
functions ofx andy carry the labels 1 and 2, respectively.

The integrand has simple poles along the real axes and their
contributions can be easily collected

So, e.g., the PDF of the scaled quantit®) will be denoted Dy a,y) = [(2a) Y mee M T@ay-1y, (o m),
by ®,(x). m=1
The two scalingg19) and (20) can lead to dramatically (23

different shapes. For instance, far—1 from above, Eg.

(19) yields a peak centered a1 and leads to a Dirac delta where

atx=1 for a<1. However, Eq(20) gives smooth functions = g (i)

continuously changing whear passes through one and ac- Yy(am= [ —— (24)
cordingly, we will use sometimes E@20) in the regiona n=1#m 1_(@)

>1 for the sake of comparison. n
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1 . . . . .
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FIG. 1. Roughness distribution of periodic signals, E8), for FIG. 3. Roughness distribution of periodic signals for different
different values ofx as a function of the scaling variabl20). Note  values ofa as a function of the scaling variab{#9). Note that as
that the PDF is a smooth function ef for all a-s. a—1 the PDF dramatically sharpens and converges to a Dirac delta

function centered at=1.

This series can be considered as the largegansion of the ]
PDF. Itis a general formula for any>1/2 and can be evalu- With
ated numerically. First, the precise numerical values of
Y,(a,m) should be determined up to a certaig,,,. Greater v B H 1— m “

Mmax IS Needed for smaller values gf Since the sign of 1(a,m)—n:1’#m n

Y,(a,m) is known to be £1)™ 1 it suffices to evaluate

|Y2|. The logarithm of Y,| can be written as an infinite sum, Note that it is more appropriate for numerical evaluation to
which can be tackled numerica”y. Once the values Ofuse EQS(ZS) and (24) and then Change the Variawao X.
Yz(a,m) are given, the summation in ER3) can be done  The PDFs on Fig. 3 were calculated this way. One can ob-
eaSin due to the eXponential cutoff m. The reSUlting PDF serve the Singu|arity at=1 emerging asy approaches 1.

is depicted on Figs. 1 and 2 for several valuesrofOn the For integer values af>1 the infinite product26) can be
Fig. 2 logarithmic scale was used for the ordinate to makeyritten in a closed form

the tails visible for several decades. It is clearly seen on these

©

-1
(26)

figures that the shape of the PDF depends smoothly on the m!(—1)m‘1“71
value of a. Yi(a,m=——F"——]] T'(1—a*m), (27)
Whena>1, the natural choice for scaling variablexisf @ k=1

Eqg. (19), and the PDF in terms ok can be obtained by .
changing the variable in Eq23) and making some simpli- Wherea=exp(2mi/a). Fora=2 we recover the random walk
fications result of Ref[32]

—o(_1ym-1
Dy, X) =KDy, W,,T) Yi(2m)y=2(—-1)™ " (28)

% In the a=4 case there are three factors in the product and
={(a) 2 mee XM UaY, (a,m) (25) using some basic properties of thefunction one obtains
m=1

V.4 _47rm(—1)m‘1 08
1 — oI 1(4m)= “entam) (29
a result which agrees with that of R¢83].
_ 0.1 Using Eq.(27), we can write the roughness distribution
;: for any integera>1 in the relatively simple form
& : o 1
S ; (=)™ 'm“
0.01 = P —
, Crax)=al(e) X —
a—1
0.001 x e MU 1 (1-akm). (30)
k=1
Y The curves for PBC in all figures with integer>1 were
FIG. 2. The same as Fig. 1 but on log-linear scale. drawn based on this formula.
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B. Special cases value distribution functions for-s other than one. So our
1. ¥f noise (@=1) result raises the problems of why thef Ioise is distin-

) o ] ~guished among alk-s and how extreme value selection
Here we briefly revisit the case offlhoise presented in  -omes about there rather than resolves them.

our recent Lettef1]. The natural scaling goes now by the
variance as in Eq20). From Eq.(22) the generator of the 2. Wiener processd=2)

caling function®, (1) i . . . .
scaling functi 2(1Y) is For the Wiener process with PBC the generating function

»  eslan as well as the asymptotics of the PDF for small and large

Goy(ls)= 11 , (31)  has been derived ir82]. Interestingly, the distribution can be
"oy S expressed in terms of a known function. The normalization

an (19), natural fora>1, will be used. For the integrated den-

ity with a=2 t f Eq(25
where the upper limit of the productcouldsafelybetakentoSIyWI “ we get from Eq(25)

infinity and a==/+/6. This formula produces the gamma X o > -
function as Mlp(Z,X)Zf @, (2x)dx=1+ zkzl (—1)ke~ K6
0 =
S oo
Gop(15)=e"r| 1+ | = f Jdue(u e, (32 =940 ™), (34)

9, is Jacobi’s fourth theta functidr88] and its second argu-
ment is now the relevant variab[89].

The PDF can also be written in a closed, implicit form in
terms of complete elliptic integrals of the first and second

where y is Euler’s constant and we also displayed Euler’s
integral formula for the gamma functidr8]. Introducing
the variabley= — (In u++y)/a we finally get

" kind [K(k) andE(k)]
Gt~ [ dye vy, (3% 1
@1 2x(k)]= —=(1-K)VKIAK)[K(k) —E(K)],
By Ly)=a e @vF) - @, (33b) 3vam (358
The inverse Laplace transformation on Eg§3a gives Eq. >
(33D, so ®,,(1y) is the sought PDF of the roughness x(K)= 6K(v1—k?) (35h)
scaled by the variance. Note that strictly speaking B2 7K(k)

is not a Laplace transformation anymore, due to the shift of ) )

the average ofb,,(1,y) to zero, but the inverse transforma- The sum over poles described in Sec. Il Afor a general
tion can still be performed. In such cases the Fourier transe@n be understood as the langexpansion of the distribu-
formation is better suited for the generating function, be-ion. On the other hand, we also have a smagkries for the
cause the variablg of Eq. (20) is not restricted to non- SPeciala=2 case. This can be constructed by scaling the
negative numbers, but we could still derive the scalingdenerating functiorf13) according to Eq(19), expanding it

function (33b) within the Laplace formalism. as

The formula(33b) is a special case of what is known as -
the Fisher-Tippet-Gumbel function that emerges in extreme Gyy(25)= Vs _ \/6—52 o~ (2k+1)y6s (36)
value statistic§27,28. This comes about in a nutshell as pt e sinhy/6s =0 '

follows. Suppose we have a random variable with some ge-
neric PDF, and we draw times independently from this and using the inverse Laplace transform
distribution. The PDF of théth largest of all those values,

that is, the extreme value PDF, will be centered around a c+ie ds o Ak a?—2x a2
median increasing wittM. Obviously, for M—c and k ff. 2 ¢ Vser® YN : (37
. ) . . c—iw £I 4\mx®
fixed, the extreme value PDF will be determined by the tail
of the original PDF. In this limit, an appropriate linear re- The result is
scaling of the kth largest value vyields generally an
M-independent scaling function for the extreme value PDF. ctie ds
Now, in practical terms, if the original PDF has a tail decay- ~®P1p(2X)= i Z—WiesxGlp(Z,S)
ing faster than any power law, then the scaling function is the
Fisher-Tippet-Gumbel distribution. Our scaling function 6 .
(33b) corresponds to thk=1 case, scaled to have zero av- =\ =52 [3(2k+1)?—x]e 3172
erage and unit variance. mXk=0
The fact that Eq(33b) is related to extremal value statis- (38)

tics does not reveal automatically the mechanism of selection
of extremes in the case of the roughness of a signal. Also, iDne recovers here the nonanalytic smxallasymptotics
should be emphasized that we do not have the usual extremsthown in[32], and one also has the corrections to it. Three
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terms from the sum suffice to produce the PO (2x) 16 F
with a uniform error bound ot=4x10"° in the sense that
either the approximation is withie from the PDF, or the
PDF is less thare. The precision of this approximation is, 12 ¢
however, much better when the PDF is of order unity. To

14

(I)2W(OC, }’)

give a feeling of that, one gets 29 digits of the PDFxat 08 1
=1. The series can be considered as the smabpansion 06 | i
of the derivative of the theta functiof®4), not available in 0'4
[38]. The formulas of Secs. IlIB 1 and Ill B 2 can help to an |
test the numerical evaluation of the seri@8)—(26). 02 1
0 .....
3. Large e limit -3 4
For large a the lowest-frequency mode dominates. In- y

deed, in the actiofd) the coefficiente, with n>1 will have FIG. 4. Roughness distribution with WBC for different values of

very small variance compared to tine=1 case, S0 practi- , a5 5 function of the scaling variabi20). Note that thex=0.5, 2,
cally they are zero. The corresponding generator function ignge curves are exact results.

obtained from Eq(13) by omitting alln>1 factors. Apply-

ing the scaling19) we get transform it back. In this way the modes have amplitudes

_ -1 fluctuating around the desiredft/value, and have random
Cpf(,9)=(1+9) ", (39 phases. Calculating the roughness distribution of such peri-
whence inverse Laplace transformation yields lec S|gnals_ma!de it possible to check our theoretical preo_llc-
tions for periodic signals. The main advantage of generating
Dy (0,X)= e X, (40) periodic 1f“ signals is, however, that one can simulate WBC
this way.

Recently, in Ref[35] a PDF was introduced and defined by =~ Having the desired periodic signal of length one can
cumulants for arbitrary dimensions. Its special casel construct easily the PDF of the roughness of nonoverlapping
corresponds to our cumulants in EG5). There they? den-  parts of sizeT. The value ofT, was chosen to be at least®2
sity with 2d degrees of freedom for large was found, that ~ while T varied between 2and 2'8, The PDF converged to a

for d=1 indeed gives Eq40). size-independent shape for each values ofe have studied.
The finite-size effect was larger for smaller valuesaoffor
IV. SCALING FUNCTION FOR WINDOW BOUNDARY a=1 the PDF forT=26 was already within a linewidth to
CONDITION the limit curve, however, forr=1/2 such precision was only
reached forT =218
A. Simulations The results for a few values of alpha are depicted on Figs.

A|though periodic 1« Signa's exist1'32’331 most of the 4 and 5 tOget!’]eI‘ W|th the two analytical results for WBC of
experimental signals displayingft/ spectrum are not peri- Sec. IV B, which provided a good test for the numerics. One
odic. Having a long experimental signal, however, the roughobserves that the curves are changing continuously with al-
ness can be calculated for small uncorrelated segntitse ~ Pha in the whole range ¢fl/22]. For a=1/2 we recovered
are called the Windonnd the roughness distribution can the Gaussian PBC result. It is also interesting to note that the
be constructed for this “window” boundary condition, ab- @—© convergence is noticeably faster than that in the PBC
breviated as WBC. It is a plausible assumption that this PDEase. For WBC already the=3 PDF can be well approxi-
does not depend on the BCs of the original signal providednated by that for=c.
that the size of the windowvif, is much smaller than the size
of the entire signal’,. Having uncorrelated windows would 1
require large distances between them, however, in our expe-
rience the PDF remained unchanged even for overlapping
windows. In the simulations of this chapter always nonover-
lapping, but neighboring windows were used. Therefore it
appears that the PDF of a Gaussian, perfekct &ignal with
WBC can be computed having a long periodic signal of the
same type. This method was applied numerically for general 0.01 ¢/
a and we report analytical results only far=2 anda =«
in Sec. IV B.

The most accepted numerical way of generating a Gauss- 0.001
ian 1 signal is to generate a Gaussian white noise first, 3
filter the Fourier spectrum of it in order to get the desired
1/f* behavior(i.e., after a fast Fourier transformation its real
and imaginary parts are multiplied by %), and finally FIG. 5. The same as Fig. 4 but on log-linear scale.

0.1 ¢

(I)2w(a/’ Y)
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1.2 where the normalizatio,,' (2,8)|s—o=—1 was used, cor-
responding to scaling by the averagk9). This yields the
= 1 i PDF ®,,(2x) by inverse Laplace transformation. E@.1)
Y can be understood if one notes that free BC means that the
2 action is diagonalized by cosine eigenfunctions, having zero
i 0.6 - derivatives at the endpoints. So the spectrum is labeled by
> integers, like for PBC, but there is no degeneracy. The gen-
é& 0.4 ] erating function is in essence the reciprocal square-root de-
e terminant. While for PBC the square root disappears due to
0.2 | the twofold degeneracy, in free BC the root remains. A more
rigorous derivation will be presented [#1].

4 The smallx series of the PDR,,(2,x) can be obtained
by expanding Eq(41) as

FIG. 6. Comparison of PBQhick lineg and WBC(thin lineg ” —-1/2\ —
for different values ofx as a function of the scaling variab{20). le(Z,S)IZ%kZO (— 1)k( K |© RFDVSS - (42)

In Fig. 6 PDFs with different BCs are compared for sev-
eral values ofe. As we have already mentioned before, for and using the Laplace transform of a single term in the sum
a=1/2 both BC result in a Gaussian PDF. ke 1, as we as
already reported in Ref1], the difference between the PDFs
are relatively small, namely, it was comparable to the preci- ctio ds _ g%2 5
sion of the experimental values. On Fig. 6 one can observe f e*4seas=— g @M%

that the difference between the PDF with PBC and WBC are c—ie 27 2\2mx?

larger for larger values of.

We should emphasize that the thresholds 1 and o X 2,:0( o3 4_X)
=1/2 were found to play the same role for PBC and WBC. 4° 47 F2)’
Namely, the natural scaling of the roughness goes by the 43)

average and by the variance far>1 and 1> «, respec-
tively, and fora§1/2 Fhe scaled PDF becomes a Gaussquhere -F is a hypergeometric function in standard notation
for both BCs. This evidence strongly supports our expectar];38]_ Based on these relations we finally get
tion that the scaling of cumulants for PBC, as summarized i

Table |, also applies to WBC. ctiz ds

It is worth recalling that critical exponents in second- ¢1W(2,X)=j 5—€G1,(25)

order phase transitions are generally believed not to depend c-ice 2771

on BC, but the scaling functions do vary below the upper

critical dimension, the threshold for mean-field behavior, for _ 3 2 (4k+1)3/2(2k_ D!
different BCs[36,37,4Q. The aforementioned BC indepen- x2\27 k=0 2Kk1
dence of the scaling of the cumulants on the one hand, and 5
the BC dependence of the scaled PDF for the roughness on x p(— 3(4k+1)
. " ex _—
the other one, show a close analogy with critical phenomena. 4x
The threshold for mean-field-type behavior is naw 1/2,
because below that the PDF is Gaussian. < £ - 1 3 & (a4
20 4 4 3uk+1)?)

B. Analytic results in special cases

Although this can be considered as the smadixpansion, it

) _ ] is enough to retain the first three terms to get an estimation
Since the increments of the Wiener process are uncorreyf ®,,(2x) to a uniform precision oé=6x 10" ° for anyx.

lated, the trajectory in a window is coupled to the path out-gimilar to the PBC case, this is understood such that either

side only by its two endpoints. However, if the length of the the approximation deviates from the PDF by less thaar,

outer trajectory is much larger than that of the window thenthe PDF is smaller thas. To illustrate the accuracy of three

the endpoints appear essentially as unconstrained on thgms from Eq/(44) for reasonable-s, atx=1 they happen

scale of the inner trajectory. Thus the WBC corresponds tqq give 53 digits of the PDF correctly. Serié$4) has been
the free BC in thew=2 case. The generating function for ,sed to draw thev=2 curve of Figs. 4, 5, and 6.

free BC is, apart from scaling of, the square root of the

1. Wiener processd=2)

generating function for PBC as given below 2. Large a limit
4/12s As it has been discussed in Sec. Il B 3, for lagenly
Giw(25)= , (41  the lowest-frequency mode dominates the trajectory. In the
Vsinhy12s full time interval with PBC,T,, this means that
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2t

h(t)=r cos{ -

where c,=re'¢/2 is the Fourier coefficient of tha=1
mode. The fact that the real and imaginary partpfare
independent, identically distributed, Gaussian variables h
the consequence that the PDF for the polar parameters is

+ol, (45) S{cah) =20V 24> |n|7|c |2, (50)

p

Here prime means that the summation excludes the origin
a%nd counts only half of the remaining index space so that if
a vectorn is included then—n is not. Fora=2 this is the
action associated with the stationary distribution of the
" , Edwards-Wilkinson mod€]l42]. In the case of generai-s,
p(r,@)==——e "2 (46) Eqg. (50) is the long-range interaction part of the single-
2ma component version of the generalizen) Hamiltonian of
[43], for a recent reference sgé4]. We shall briefly review
some scaling properties for arbitrary dimensions in order to
put 1/“ noise, as discussed in previous sections, in a broader
perspective.
The roughness of a surface is a random variable, whose

where we do not specify the varianeeas it will disappear
from the final formula anyhow.

Now we consider within the overall periodic sigriglt) a
small window of lengthT<T,. Since we shall average over
the phase, we cazn take the window to[BeT]. An expansion  ppe can pe derived similarly to thee=1 case discussed in
of Eq. (45) up tot~ shows that the roughness of the trajectorygee | B. The short-range interaction cases 2, has been

within the window is in leading order studied in detail by Ref§24,25,34 for d=2 and by[45] for
arbitrary dimension. The generating function of the PDF

2 H
wp=r?bsir’e, @7 P(w,) is obtained as

whereb is a constant depending dhandT,, whose value

will turn out to be immaterial. We thus have for the PDF of , S -1

the roughness =1l |1+ —F—pr] . (51

n oV @b |«
0 2
— _ 2 H
PlW(OO‘WZ)_fO dr 0 de p(1,¢) S(W,—bsirre). whence the cumulants are
(48)
Inserting expression46) for p(r,¢) we get for the scaled Py (k=1)! r 1 (52)

variablex=w,/{w,) the PDF (gVimald)k o |p|ak’

—X/2
e (49) Note that the cumulants derived here were used to define the

V2mx’ model of Ref[35]. The sum converges fark>d, diverges

logarithmically as IlNxIn(V/v) for ak=d and like a power

Note that, similar to the Wiener process, the larsgbmit ~ function as N9~ kec(V/p)1~ K4 for ak<d. The scaling
of the generating function for the WBC is essentially theproperties of the cumulants are summarized in Table II.
square root of that for PBC, apart from a scale change due to For fixedd, in the largea limit, the modes with/n|=1
normalization. Indeed, the generating function for PBC isdominate and so the roughness obeys they? distribution,

given by Eq.(39), while the Laplace transform for the above as observed in Ref35]. For finite «, the threshold dimen-

(I)IW(OO!X):

PDF is (1+2s) %2 sion where the mean logarithmically divergesdis a. For
d>«a, however,P(w,) becomes a Dirac delta, but if one
V. 1/f* SURFACES IN ARBITRARY DIMENSIONS looks at it on the scale of the variance for large but filte

then a nontrivial function emerges fd2a. At d=2a« the

So far we have considered random fields of one composcale of the variance becomes larger than the scale of all
nent that were functions of time, that is, & 1-dimensional higher cumulants, and thus fdr> 2« the scaling function is
system. A natural generalization is to considerGaussian. This represents normal finite-size scaling with
d+ 1-dimensional random surfaces, where the substrate hdgictuations of the order 0¥ %2 Table Il is in accordance
d-dimensional coordinates and the fielch(x) still has one  with the known fact thatl= « andd=2a« can be viewed as
component. Imposing PBC now means that the substrate isthe lower and upper critical dimension of the system, respec-
d-dimensional torus. Again, we define the probability densitytively [43].
functional of a surface through an action that depends on the |t is reasonable to assume that the scaling of the cumu-
Fourier components, of the surfacen=(ny, ...ng), n;  lants as described above is not specific to the PBC used here,
=—N, ...N being integers, and,=c* ,. The spatial unit but generally characterizess+ 1-dimensional Gaussian sur-
is /, the length of a period =N/, the unit volumev=/9,  faces with dispersion exponeatfor any BCs. Note that here
and the totab-dimensional volum&/=L9Y. (In the case of a only the scaling of averages were considered, the evaluation
usual surfacal=2 andV is the area of the substratéflhe  of distribution functions in arbitrary dimensions is beyond
action is the scope of the present paper.
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TABLE II. Scaling of the cumulants for various-s for general dimension. The dots indicate that the last formula is valid from then on,

i.e., “..." extends the validity to highdt-s and vertical dots to highel-s.

Range or

value ofd K1 NS 3/ks Uiy
(O,a) Va/d—l

a Y o(1)

1%
(a,za) Ua/d—l Va/d—l
2a Ve 1/2 |nY Vill2
[
(261/,361/) Ua/d*l/Z V*1/2 Va/d*l .
3a : 23 3, /In\—/ Vs
v
(3(1 4(1) va/dfll3 V72/3 Va/dfl
VI. FINAL REMARKS investigate models where PBC is used preferentially as well

. .. as experimental systems where WBC is usually obtained.
As we have shown, the roughness distribution of periodiz  hermore, the gallery can also be helpful in establishing

Gaussian ¥F* signals can be calculated for arbitraty The 1o presence of non-Gaussian effects. It should be clear,
final expression is simple enough that it can be easily,gyever, the non-Gaussian effects are on the unfinished end
handled numerically and the scaling functions can be dispf our study of roughness distributions. One can investigate
played in the relevant range of their argument. Also for WBCthe non-Gaussian effects in a given system by simulations
we provide a simple method to generate the scaling functiop26,34 but the real question one should answer here is this:
by numerical simulation. Examining these scaling functionsCan one find a classification of nonlinear theories which pro-
we found an important feature in thei# dependence. duce a giveny, and can one find the roughness distributions
Namely, the shape of the functions varies noticeably withfor the various classes? Judging from the perspective of a
alpha in the physically rather interesting range efd<2. related topic of critical dynamics this appears to be a highly
This observation underlies the usefulness and effectiveneg®ntrivial question.
of the roughness distribution as a tool for establishing com-
mon or distinct origins of scale-invariant behavior in differ- ACKNOWLEDGMENTS
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