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Roughness distributions for 1Õf a signals
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The probability density function~PDF! of the roughness, i.e., of the temporal variance, of 1/f a noise signals
is studied. Our starting point is the generalization of the model of Gaussian, time periodic, 1/f noise, discussed
in our recent Letter@Phys. Rev. Lett.87, 240601~2001!#, to arbitrary power law. We investigate three main
scaling regions (a<1/2, 1/2,a<1, and 1,a), distinguished by the scaling of the cumulants in terms of the
microscopic scale and the total length of the period. Various analytical representations of the PDF allow for a
precise numerical evaluation of the scaling function of the PDF for anya. A simulation of the periodic process
makes it possible to study also nonperiodic, thus experimentally more relevant, signals on relatively short
intervals embedded in the full period. We find that fora<1/2 the scaled PDFs in both the periodic and the
nonperiodic cases are Gaussian, but fora.1/2 they differ from the Gaussian and from each other. Both
deviations increase with growinga. That conclusion, based on numerics, is reinforced by analytic results for
a52 and a→`, in the latter limit the scaling function of the PDF being finite for periodic signals, but
developing a singularity for the aperiodic ones. Finally, an overview is given for the scaling of cumulants of the
roughness and the various scaling regions in arbitrary dimensions. We suggest that our theoretical and numeri-
cal results open a different perspective on the data analysis of 1/f a processes.

DOI: 10.1103/PhysRevE.65.046140 PACS number~s!: 05.70.Ln, 64.60.Cn, 82.20.2w
a
o-

t

l-

re
t,

e

ts
b
le

he
xis
g

, a
al-
s

, at
vel-
ni-

are

r-
the
dy-

are,
ex-
.

-

e-
o-
ain
lity
and
ize
the
f an

hey
re,
sed.
ely
lity
blish-
mas-
I. INTRODUCTION

The power spectra of fluctuations scale with frequency
S( f );1/f a in a large variety of physical, chemical, and bi
logical systems@2#. This power-law behavior 1/f a often per-
sists over several orders of magnitude with cutoffs presen
both high and low frequencies, and with typical values ofa
in the range 0.8<a<4 @2#. In a somewhat loose termino
ogy, all these systems are said to display 1/f noise although
good quality data witha very close to 1 exist only for the
voltage fluctuations when a current is flowing through a
sistor @3,4#. Phenomena withaÞ1, however, are abundan
examples being the white-dwarf light emission@5#, the flow
of sand through an hourglass@6#, ionic current fluctuations in
membrane channels@7#, the number of daily trades in th
stock market@8#, water flows of rivers@9#, the spike trains of
nerve cells@10#, the occurrence of earthquakes@11#, the traf-
fic flow on a highway@12,13#, the electric noise in carbon
nanotubes@14# and in nanoparticle films@15#, the interface
fluctuations@16#, and dissipation in turbulent systems@17#.
The list could be continued.

A well-understood example of 1/f a type behavior is the
dynamic scaling observed at equilibrium critical poin
where the power-law correlations in time are generated
the infinite-range correlations in space. Most of the examp
listed above, however, are related to nonequilibrium p
nomena and a similar level of understanding does not e
There have been many attempts at identifying possible
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neric mechanisms leading to scale invariant fluctuations
notable example being the concept of self-organized critic
ity @18,19#. It is clear, however, that not all the system
showing a 1/f a noise fit into a single scheme and, perhaps
this stage one should pursue a less ambitious aim of de
oping more detailed characterizations of nonequilibrium u
versality classes.

In equilibrium systems, the static universality classes
determined by the~i! dimensionality,~ii ! symmetry of the
order parameter, and~iii ! the range of the interactions. Fu
ther specifying the conservation laws and the coupling of
order parameter to conserved quantities defines then the
namical universality classes. The statics and dynamics
however, intertwined in nonequilibrium systems and an
ponent in the 1/f a behavior carries information about both
Thus, measuring a single exponenta ~a characteristic situa
tion when measuring time series of noise! does not determine
the universality class of the system even within the fram
work of an equilibrium-type theory. Having a single exp
nent, however, one can still go on and try to ascert
whether or not two systems belong to the same universa
class. This can be done by using the data to measure
compare the scaling functions associated with the finite-s
scaling of some global physical quantity such as, e.g.,
order parameter in a critical system or the roughness o
interface.

The remarkable features of scaling functions are that t
are obtained without any fitting procedure and, furthermo
they usually converge fast as the system size is increa
Thus one can build a picture gallery that can be effectiv
used to identify systems belonging to a given universa
class. Indeed, such an approach has been useful in esta
ing connections among rather diverse processes such as
sively parallel algorithms@20#, interface dynamics in the
©2002 The American Physical Society40-1
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d52 Fisher-Kolmogorov equation@21#, dissipation fluctua-
tions in a turbulence experiment@22,23#, and the interface
fluctuations in thed52 Edwards-Wilkinson model, which is
equivalent to theXY model treated in@24,25#. This scaling
function approach has also helped to clear up some ques
about the upper critical dimension of the Kardar-Par
Zhang equation@26#.

In our attempts to expand the picture gallery, we ha
recently derived@1# the following result: The scaling func
tion for the roughness distribution of a Gaussian periodicf
noise signal is one of the extreme value distributions,
Fisher-Tippet-Gumbel distribution@27,28#. This is a rather
unexpected and interesting result and we feel that it is
portant to explore its generality and limitations. First, b
cause ideas about extreme statistics playing a role in stro
correlated, scale-invariant systems have been much
cussed@29–31,45,46#, and this result may provide a founda
tion to those speculations. Second, because this is the
instance when one of the distributions associated with
treme statistics emerges naturally, and in a mathematic
precise manner, for a quantity which is not of extremal ch
actera priori.

There are three elements underlying the above extr
statistics results: Gaussianity, 1/f power spectrum, and peri
odicity. Thus the problem can be generalized by conside
effects of~1! non-Gaussianity,~2! a generalized power spec
tra of the form 1/f a, and~3! nonperiodicity~the experimen-
tally realistic situation!. In this paper, we shall concentrate o
points~2! and~3! leaving the more difficult problem of non
gaussianity to a later study.

One expects that changing the exponenta will change the
roughness distribution of a signal and, indeed, there are
lytical results@1,32,33# for a51,2,4 which demonstrate thi
explicitly for periodic signals (d51 dimensional systems!.
Similar results exist also for higher dimensions where
roughness of ad51 signal is replaced by the roughness o
higher-dimensional interface@24,25,34,35#. Thus the ques-
tions we address in connection with thea dependence is no
about its existence but about its magnitude~observability!.
More specifically, we ask if there is an interval ofa where
thea dependence is absent or negligible from an experim
tal point of view?

The other problem of our concern is the question of
effect of the boundary conditions~BCs!. When analyzing a
signal and building a distribution function, one usually d
vides the signal into equal ‘‘time’’ intervals and measures
quantity of interest in every interval. Thus the signal within
given interval is not periodic~usually the total signal is no
periodic either! and the question arises whether the expe
mentally used BC, i.e., when one studies a ‘‘window’’ with
the signal, would affect the scaling functions or not. Th
shall be a central issue in this paper, so we introduce
abbreviations PBC and WBC, for periodic and ‘‘window
BC, respectively.

The dependence of scaling functions on the bound
conditions has been discussed in equilibrium critical p
nomena and it is known that such dependence exist@36,37#.
Thus our aim here again is not to show its presence bu
gauge its magnitude for variousa values and investigate fo
04614
ns
-

e

e

-
-
ly

is-

rst
x-
lly
r-

e

g

a-

e

n-

e

e

i-

e

ry
-

to

which values ofa this effect is absent or negligible.
As we show below, the scaling functions can be deriv

analytically in the case of PBC. Similar analytical treatme
for WBC were achieved only fora52 and in thea→`
limit, otherwise we had to resort to simulations in order
obtain the finite alpha results. Observing the scaling fu
tions ~displayed on the figures below! one can deduce the
following qualitative trends asa is decreased:

~1! The PBC scaling functions change smoothly ap
from a'1 where the function is sensitive to small chang
in a since a singularity develops ata51. Even this singular
behavior can be smoothed out, however, by an appropr
change of the scaling variable. The scaling function a
proaches a Gaussian asa→1/2 and it remains a Gaussian fo
a,1/2.

~2! The WBC scaling functions display stronga depen-
dence at largea. The dependence becomes weaker fora
&2 and, similarly to the PBC case, thea dependence disap
pears entirely fora<1/2 where the function becomes
Gaussian.

~3! Comparing the PBC and WBC scaling functions, o
can observe that their difference is large fora*4, it is easily
noticeable in the range between 1 and 4, while it becom
harder to distinguish the functions fora&1, and the func-
tions become identical Gaussians fora<1/2.

In order to demonstrate the above observations, we s
introduce a model of 1/f a noise in Sec. II where the rough
ness distribution, the appropriate choice of scaling variab
and some general scaling properties will also be discus
Section III contains the analytical calculations for the case
PBC while Sec. IV is devoted to presenting both the simu
tion and analytical results for the WBC case. We close w
discussing generalizations to higher dimensions in Sec.

II. PROBABILITY DISTRIBUTION OF PERIODIC 1 Õf a

SIGNALS AND THEIR ROUGHNESS

A. Model for periodic, perfectly 1Õf a, Gaussian noise

Noisy signals are in principle fully characterized by the
path probability density functional. However, the most oft
used characterization is by the power spectrum, whose
perimental recording is straightforward. This leaves seve
properties unspecified, such as the distribution of the pha
and whether the noise is Gaussian. Furthermore, the u
Fourier expansion of the signal in an interval implies perio
icity outside the interval. While that expansion can be us
well for data analysis, the physical implication for the out
part of the signal, which influences by long-time correlatio
the inner part, is obviously nonrealistic. Accordingly, the ro
of initial and final conditions in time, a property that we sha
call boundary condition~BC!, are generically neglected
Whereas it is arguable that in a stationary process, a l
time after the turning on of the experimental device, t
boundary conditions should not have much influence, whe
model is constructed for 1/f a noise, the boundary condition
should be defined with care.

We now describe the main properties of the model trea
in this paper. It should be emphasized that we do not st
the underlying microscopic mechanism that may lead to 1f a
0-2
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ROUGHNESS DISTRIBUTIONS FOR 1/f a SIGNALS PHYSICAL REVIEW E 65 046140
noise, this has been done on many different levels of sim
fication for a large number of systems, for a review see@3#.
Rather, we construct a stochastic model, where the n
signal is given by its path probability density functional, ha
ing the generic properties of observed 1/f a noises. In a sense
it will be a minimal model tailored to exhibit a few prope
ties we prescribe.

First, the noise we consider is periodic. While this is o
viously not valid in a real experimental situation over t
time interval of the measurement, as we have seen rece
@1#, it yields theoretical predictions not very far from what
measured in a real signal. Furthermore, the periodic bou
ary condition~PBC! allows for the straightforward numerica
simulation of the noise, thus making it possible to study n
merically the statistics in cut-out time intervals that are mu
smaller than the entire period. Such a ‘‘window’’ bounda
condition~WBC! is, we surmise, a more faithful represent
tion of experimentally realistic BCs. Indeed, while the effe
of the outer signal onto the inner part is important due
long-time correlations, probably it depends little on wheth
the signal was simply turned on a long time ago, or is pe
odic on a time scale much larger than the ‘‘window.’’ Loo
ing at it from another angle we can say that the PBC
equivalent to saying that the signal is best expanded in
usual Fourier basis, thus what remains is to specify the p
ability distribution of the Fourier coefficients. Note that th
noisy signal in a ‘‘window’’ should not be expanded in su
a basis in theory, because the noise is manifestly aperio

Second, we restrict ourself to Gaussian noise and ass
that the Fourier modes are independent random variab
The reasons for this working hypothesis are that many
perimental data concern power spectrum measuremen
Gaussian noises and provide no information about the c
pling between the modes.

Third, we assume that the phase of each complex Fou
component is random and uniformly distributed in@0,2p#.
Hence, the probability distribution will depend only on th
modulus.

Last but not least, we consider perfectly 1/f a noise. Here
we understand that the variance of the independent Fou
amplitudes of a path is a pure power with exponenta. Fur-
thermore, there are no upper- and lower-cutoff frequenc
other than the natural ones determined by the observa
time and the microscopic characteristic time unit, resp
tively.

The above ingredients specify the path probability of
stochastic time signal, this will be our model, as discusse
detail below.~Note that it is a generalization of the casea
51 @1# to arbitrarya.!

The stochastic trajectoriesh(t) are periodic,h(t)5h(t
1T), thus the trajectory can be expanded as

h~ t !5 (
n52N

N

cne2p int/T, cn* 5c2n . ~1!

Here we have used a cutoffN meaning that the time scale
not resolved belowt5T/N. This is needed to deal with
some singularities and may have microscopic physical
gin. Whenever possible we shall, however, takeN→`, and
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even if this were a singular limit, we shall wind up wit
scaling functions not containing the microscopic time un
so the value oft may be left undetermined.

The stochastic properties of a signalh(t) are fully char-
acterized by our specifying the probability density function

P@h~ t !#5e2S[h(t)] , ~2!

or, equivalently, the probability density function~PDF! for
the Fourier coefficientscn for n50 . . .N as

P~$cn%!5A e2S($cn%). ~3!

Our model for periodic, perfectly 1/f a signals is defined by
the action

S~$cn%!52s T12a (
n51

N

naucnu2, ~4!

A5 )
n51

N

2snaT12ap21, ~5!

where the probabilistic variables are the real and imagin
parts ofcn-s.1 We assume translation invariance inh space,
therefore the action must not depend on the constant pac0
and we set that to zero hereafter. Note furthermore that
above action means that different Fourier modes are un
related. The coefficients makesSdimensionless and can b
understood as the reciprocal noise intensity parameter. S
we are after scaling functions, the value ofs will not matter.
The above action was set up so that the power spectrum

^ucnu2&}
1

na
, ~6!

thus the process is indeed of the 1/f a-type.

B. Roughness of a signal

Our aim is to characterize the signals by some glo
properties. As the time averagec0 in Eq. ~1! was set to zero,
the simplest quantity worth considering is the mean-squ
width, i.e., roughness of the signal. This has been studied
the 1/f noise (a51) in Ref. @1#, the Wiener process (a
52) in Ref. @32#, and for curvature-driven interfaces (a
54) in Ref. @33#. Its general definition is

w25@h~ t !2h~ t !#25h2~ t !2h~ t !2, ~8!

1In time representation the action is of the form

S@h~t!#52sS21

2p DaE
0

T

dtSda/2h

dta/2D 2

, ~7!

where the fractional derivative is understood on the Fourier rep
sentation so that it acts upon the phase factor asdbeiat/dtb

5( ia)beiat. Dimensional analysis on Eq.~7! yields the scaling byT
used in Eq.~4!.
0-3
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where overbar means time average over the entire perioT.
Note that nowh(t)50. In Fourier representation we get

w252(
n51

N

ucnu2, ~9!

hencew2 is in fact the integrated power spectrum.
The roughnessw2 is associated with a givenh(t) trajec-

tory, it varies when different instances of the paths are ta
from their ensemble. Thus,w2 is a probabilistic variable,
whose PDF can be expressed as

P~w2!5E d~w22h2~ t !1h~ t !2!P@h~ t !#Dh~ t !. ~10!

In the more practical Fourier representationP(w2) assumes
the form

P~w2!5E dS w222(
n51

N

ucnu2D P~$cn%!

3 )
n51

N

d Recn d Im cn . ~11!

It is useful to introduce the generating function of the m
ments ofP(w2) as

G~s!5E
0

`

dw2P~w2!e2sw2, ~12!

which by Eq.~11! gives

G~s!5 )
n51

N S 11
s

sT12anaD 21

. ~13!

The cumulant generating functionC(s) can be obtained by
expanding the logarithm as

C~s!5 ln G~s!5 (
k51

`
1

k S 2s

sT12aD k

(
n51

N
1

nak
. ~14!

Hence thekth cumulant of the roughness is

kk5
~k21!!

~sT12a!k (
n51

N
1

nak
. ~15!

Note that forak.1 the cumulants can be expressed in ter
of Riemann’s zeta function in the limit of largeN as

kk→
~k21!!

~sT12a!k
z~ak!. ~16!

The low-order cumulants have the usual meaning of aver
and variance

k15^w2&5
1

sT12a (
n51

N
1

na
, ~17a!
04614
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~sT12a!2 (
n51

N
1

n2a
. ~17b!

The PDF corresponding to the generator~13! will be the
main concern of this paper. We shall also discuss the ‘‘w
dow’’ boundary condition, WBC, so in case of ambiguity th
above quantities, pertaining to PBC, will get a subscript l
Gp(s).

C. Scaling of averages

The generating function of the PDF of the roughness s
contains two scales, the observation timeT ~multiplied by
s1/(12a)) and the microscopic time unitt5T/N. If N di-
verges, physical quantities will exhibit various scaling f
differenta-s. Whereas the above model is a very simple o
from the viewpoint of the statistical mechanics of critic
phenomena, as it is Gaussian and massless, it is worth s
marizing the scaling properties of averaged quantities,
cause they contain important information about the PDF.

The kth roots of thekth cumulants~15! for all k-s have
the dimensionality of the roughness, however, their sca
in the lengthT of the time interval may be different. Fork
51,2 these are the average and the mean deviation t
from, respectively. First, fora.1 all cumulants converge in
the limit N→` and we have

Ak kk}Ta21. ~18!

If a51 then the average,k1, logarithmically diverges inN
5T/t while all higher cumulants remain of unit order, ind
pendent ofT andt. This corresponds to a critical dimensio
in second-order phase transitions, but here we have a cri
a51 where the logarithmic singularity occurs. Fora,1 the
average no longer depends onT, rather it is proportional to
t12a, and for 1/2,a,1 thek.1 cumulants still exhibit the
scaling~18!. The second critical value ofa is at 1/2, where
the second cumulant has a logarithmic singularity. Fora
,1/2 theA2 k2 becomes proportional toT21/2ta21/2, while
higher-than-second order cumulants still satisfy Eq.~18! un-
til the third critical value ofa51/3 is reached. Continuing
the reasoning shows that atak51/k the kth-order cumulant
develops a logarithmic singularity. A significant change o
curs ata251/2, because for lessera-s the scale of the mea
deviation (k52) will dominate over the scale from highe
k-s. This means that the PDF of the roughness on the sca
its mean deviation becomes Gaussian in theN→` limit.
Thereby the effect of the sequence of criticalak-s for k.2 is
suppressed. Table I summarizes the scaling of the cumula
Note that the powers ofT and t add up toa21 for each
entry to produce the right time dimensionality.

As mentioned above and can be seen in Table I,
a,1/2 the mean deviation goes with the21/2-th power of
the sizeT. This result would follow if the central limit theo-
rem could be applied to the roughness as given in Eq.~9!.
This is analogous to the mean-field behavior beyond the
per critical dimension of a statistical mechanical system
hibiting a second-order phase transition.
0-4
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TABLE I. Scaling of the cumulants for variousa-s. The dots indicate that the last formula is valid from then on, i.e., ‘‘ . . . ’’ extends the
validity to higherk-s and vertical dots to lowera-s.

Range or
value ofa k1 Ak2 A3 k3 A4 k4

(1,̀ ) Ta21
•••

1 ln
T

t
O(1) •••

(1/2,1) ta21 Ta21
•••

1/2 ] T21/2Aln
T

t
T21/2

•••

(1/3,1/2) ta21/2 T21/2 Ta21
•••

1/3 ] T22/3 A3 ln
T

t
T22/3

•••

(1/4,1/3) ta21/3 T22/3 Ta21
•••

]

fo

di

y
th

o
elt

as
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a

c-

n

,
o
-

their
Since thea51 value is a threshold in the sense that
a.1, the scales of all cumulants diverge asTa21, while for
a,1 the average becomes independent ofT and higher cu-
mulants vanish, the natural scaling for the two cases is
ferent. If a.1 the scaled quantity

x5
w2

k1
~19!

has, in the limitN→`, a convergent PDF, devoid of an
adjustable parameter. In the following, we shall refer to
use of variablex as scaling by the average. Fora<1 the
same PDF would be a Dirac delta centered on one, so
rather resorts to a scaling that effectively widens the d
peak. One can do that by introducing@24,25#

y5
w22k1

Ak2

, ~20!

that is, scaling the roughness by the variance. The PDF
function of y will clearly become Gaussian belowa51/2,
but develop a nontrivial shape for 1/2,a. This variable was
used in our recent Letter on thea51 case@1#, where we
used the notationx for it. We will adopt the notation tha
functions ofx and y carry the labels 1 and 2, respective
So, e.g., the PDF of the scaled quantity~19! will be denoted
by F1(x).

The two scalings~19! and ~20! can lead to dramatically
different shapes. For instance, fora→1 from above, Eq.
~19! yields a peak centered atx51 and leads to a Dirac delt
at x51 for a,1. However, Eq.~20! gives smooth functions
continuously changing whena passes through one and a
cordingly, we will use sometimes Eq.~20! in the regiona
.1 for the sake of comparison.
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III. SCALING FUNCTION FOR PERIODIC BOUNDARY
CONDITION

A. Analytic approach for general a

Knowing the explicit form of the generating functio
~13!, the roughness distribution for any finiteN can be ob-
tained by inverting the Laplace transformation~12!

Pp~a,w2 ,T!5E
2 i`

i` ds

2p i
ew2s)

n51

N S 11
s

sT12anaD .

~21!

From here we concentrate on theN→` limit. In this limit
the PDF of the scaling variablex or y, defined in Eqs.~19!
and~20!, becomes independent ofT. Scaling by the variance
that is, using they variable of Eq.~20!, has the advantage t
yield smooth PDFs for alla-s. We refer to this type of scal
ing by the label 2 on the PDF. Fora.1/2 that PDF is

F2p~a,y!5Ak2Pp~a,w2 ,T!

5Az~2a!E
2 i`

i` ds

2p i
eAz(2a)ys)

n51

`
es/na

11
s

na

.

~22!

The integrand has simple poles along the real axes and
contributions can be easily collected

F2p~a,y!5Az~2a! (
m51

`

mae2maAz(2a)y21Y2~a,m!,

~23!

where

Y2~a,m!5 )
n51,Þm

`
e2(m/n)a

12S m

n D a . ~24!
0-5
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This series can be considered as the large-y expansion of the
PDF. It is a general formula for anya.1/2 and can be evalu
ated numerically. First, the precise numerical values
Y2(a,m) should be determined up to a certainmmax. Greater
mmax is needed for smaller values ofy. Since the sign of
Y2(a,m) is known to be (21)m21, it suffices to evaluate
uY2u. The logarithm ofuY2u can be written as an infinite sum
which can be tackled numerically. Once the values
Y2(a,m) are given, the summation in Eq.~23! can be done
easily due to the exponential cutoff inm. The resulting PDF
is depicted on Figs. 1 and 2 for several values ofa. On the
Fig. 2 logarithmic scale was used for the ordinate to ma
the tails visible for several decades. It is clearly seen on th
figures that the shape of the PDF depends smoothly on
value ofa.

Whena.1, the natural choice for scaling variable isx of
Eq. ~19!, and the PDF in terms ofx can be obtained by
changing the variable in Eq.~23! and making some simpli
fications

F1p~a,x!5k1Fp~a,w2 ,T!

5z~a! (
m51

`

mae2xmaz(a)Y1~a,m! ~25!

FIG. 1. Roughness distribution of periodic signals, Eq.~23!, for
different values ofa as a function of the scaling variable~20!. Note
that the PDF is a smooth function ofa for all a-s.

FIG. 2. The same as Fig. 1 but on log-linear scale.
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Y1~a,m!5 )
n51,Þm

` F12S m

n D aG21

. ~26!

Note that it is more appropriate for numerical evaluation
use Eqs.~23! and ~24! and then change the variabley to x.
The PDFs on Fig. 3 were calculated this way. One can
serve the singularity atx51 emerging asa approaches 1.

For integer values ofa.1 the infinite product~26! can be
written in a closed form

Y1~a,m!5
m! ~21!m21

a )
k51

a21

G~12akm!, ~27!

wherea5exp(2pi/a). Fora52 we recover the random wal
result of Ref.@32#

Y1~2,m!52~21!m21. ~28!

In the a54 case there are three factors in the product a
using some basic properties of theG function one obtains

Y1~4,m!5
4pm~21!m21

sinh~pm!
, ~29!

a result which agrees with that of Ref.@33#.
Using Eq.~27!, we can write the roughness distributio

for any integera.1 in the relatively simple form

F1p~a,x!5az~a! (
m51

`
~21!m21ma

m!

3e2maz(a)x )
k51

a21

G~12akm!. ~30!

The curves for PBC in all figures with integera.1 were
drawn based on this formula.

FIG. 3. Roughness distribution of periodic signals for differe
values ofa as a function of the scaling variable~19!. Note that as
a→1 the PDF dramatically sharpens and converges to a Dirac d
function centered atx51.
0-6
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B. Special cases

1. 1Õf noise (aÄ1)

Here we briefly revisit the case of 1/f noise presented in
our recent Letter@1#. The natural scaling goes now by th
variance as in Eq.~20!. From Eq.~22! the generator of the
scaling functionF2p(1,y) is

G2p~1,s!5 )
n51

`
es/an

11
s

an

, ~31!

where the upper limit of the product could safely be taken
infinity and a5p/A6. This formula produces the gamm
function as

G2p~1,s!5egs/aGS 11
s

aD5E
0

`

du e2u~u eg!s/a, ~32!

whereg is Euler’s constant and we also displayed Eule
integral formula for the gamma function@38#. Introducing
the variabley52(ln u1g)/a we finally get

G2p~1,s!5E
2`

`

dy e2syF2p~1,y!, ~33a!

F2p~1,y!5a e2(ay1g)2e2(ay1g)
. ~33b!

The inverse Laplace transformation on Eq.~33a! gives Eq.
~33b!, so F2p(1,y) is the sought PDF of the roughne
scaled by the variance. Note that strictly speaking Eq.~33a!
is not a Laplace transformation anymore, due to the shif
the average ofF2p(1,y) to zero, but the inverse transforma
tion can still be performed. In such cases the Fourier tra
formation is better suited for the generating function, b
cause the variabley of Eq. ~20! is not restricted to non-
negative numbers, but we could still derive the scal
function ~33b! within the Laplace formalism.

The formula~33b! is a special case of what is known a
the Fisher-Tippet-Gumbel function that emerges in extre
value statistics@27,28#. This comes about in a nutshell a
follows. Suppose we have a random variable with some
neric PDF, and we drawM times independently from this
distribution. The PDF of thekth largest of all those values
that is, the extreme value PDF, will be centered aroun
median increasing withM. Obviously, for M→` and k
fixed, the extreme value PDF will be determined by the
of the original PDF. In this limit, an appropriate linear r
scaling of the kth largest value yields generally a
M-independent scaling function for the extreme value P
Now, in practical terms, if the original PDF has a tail deca
ing faster than any power law, then the scaling function is
Fisher-Tippet-Gumbel distribution. Our scaling functio
~33b! corresponds to thek51 case, scaled to have zero a
erage and unit variance.

The fact that Eq.~33b! is related to extremal value statis
tics does not reveal automatically the mechanism of selec
of extremes in the case of the roughness of a signal. Als
should be emphasized that we do not have the usual extr
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value distribution functions fora-s other than one. So ou
result raises the problems of why the 1/f noise is distin-
guished among alla-s and how extreme value selectio
comes about there rather than resolves them.

2. Wiener process (aÄ2)

For the Wiener process with PBC the generating funct
as well as the asymptotics of the PDF for small and largx
has been derived in@32#. Interestingly, the distribution can b
expressed in terms of a known function. The normalizat
~19!, natural fora.1, will be used. For the integrated den
sity with a52 we get from Eq.~25!

M1p~2,x!5E
0

x

F1p~2,x̄!dx̄5112(
k51

`

~21!ke2p2k2x/6

5q4~0,e2p2x/6!. ~34!

q4 is Jacobi’s fourth theta function@38# and its second argu
ment is now the relevant variable@39#.

The PDF can also be written in a closed, implicit form
terms of complete elliptic integrals of the first and seco
kind @K(k) andE(k)#

F1p@2,x~k!#5
1

3A2p
~12k2!1/4K3/2~k!@K~k!2E~k!#,

~35a!

x~k!5
6K~A12k2!

pK~k!
. ~35b!

The sum over poles described in Sec. III A for a generaa
can be understood as the large-x expansion of the distribu-
tion. On the other hand, we also have a small-x series for the
speciala52 case. This can be constructed by scaling
generating function~13! according to Eq.~19!, expanding it
as

G1p~2,s!5
A6s

sinhA6s
52A6s(

k50

`

e2(2k11)A6s, ~36!

and using the inverse Laplace transform

E
c2 i`

c1 i` ds

2p i
esxAs e2aAs5

a222x

4Apx5
e2a2/4x. ~37!

The result is

F1p~2,x!5E
c2 i`

c1 i` ds

2p i
esxG1p~2,s!

5A 6

px5(k50

`

@3~2k11!22x#e23(2k11)2/2x.

~38!

One recovers here the nonanalytic small-x asymptotics
shown in@32#, and one also has the corrections to it. Thr
0-7
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terms from the sum suffice to produce the PDFF1p(2,x)
with a uniform error bound ofe5431025 in the sense tha
either the approximation is withine from the PDF, or the
PDF is less thane. The precision of this approximation is
however, much better when the PDF is of order unity.
give a feeling of that, one gets 29 digits of the PDF ax
51. The series can be considered as the small-x expansion
of the derivative of the theta function~34!, not available in
@38#. The formulas of Secs. III B 1 and III B 2 can help
test the numerical evaluation of the series~23!–~26!.

3. Large a limit

For large a the lowest-frequency mode dominates. I
deed, in the action~4! the coefficientscn with n.1 will have
very small variance compared to then51 case, so practi-
cally they are zero. The corresponding generator functio
obtained from Eq.~13! by omitting all n.1 factors. Apply-
ing the scaling~19! we get

G1p~`,s!5~11s!21, ~39!

whence inverse Laplace transformation yields

F1p~`,x!5e2x. ~40!

Recently, in Ref.@35# a PDF was introduced and defined b
cumulants for arbitrary dimensions. Its special cased51
corresponds to our cumulants in Eq.~15!. There thex2 den-
sity with 2d degrees of freedom for largea was found, that
for d51 indeed gives Eq.~40!.

IV. SCALING FUNCTION FOR WINDOW BOUNDARY
CONDITION

A. Simulations

Although periodic 1/f a signals exist@1,32,33#, most of the
experimental signals displaying 1/f a spectrum are not peri
odic. Having a long experimental signal, however, the rou
ness can be calculated for small uncorrelated segments~these
are called the windows! and the roughness distribution ca
be constructed for this ‘‘window’’ boundary condition, ab
breviated as WBC. It is a plausible assumption that this P
does not depend on the BCs of the original signal provid
that the size of the window,T, is much smaller than the siz
of the entire signalTp . Having uncorrelated windows woul
require large distances between them, however, in our e
rience the PDF remained unchanged even for overlapp
windows. In the simulations of this chapter always nonov
lapping, but neighboring windows were used. Therefore
appears that the PDF of a Gaussian, perfect 1/f a signal with
WBC can be computed having a long periodic signal of
same type. This method was applied numerically for gen
a and we report analytical results only fora52 anda5`
in Sec. IV B.

The most accepted numerical way of generating a Ga
ian 1/f a signal is to generate a Gaussian white noise fi
filter the Fourier spectrum of it in order to get the desir
1/f a behavior~i.e., after a fast Fourier transformation its re
and imaginary parts are multiplied byf 2a/2), and finally
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transform it back. In this way the modes have amplitud
fluctuating around the desired 1/f a value, and have random
phases. Calculating the roughness distribution of such p
odic signals made it possible to check our theoretical pre
tions for periodic signals. The main advantage of genera
periodic 1/f a signals is, however, that one can simulate WB
this way.

Having the desired periodic signal of lengthTp one can
construct easily the PDF of the roughness of nonoverlapp
parts of sizeT. The value ofTp was chosen to be at least 220

while T varied between 26 and 218. The PDF converged to a
size-independent shape for each values ofa we have studied.
The finite-size effect was larger for smaller values ofa. For
a51 the PDF forT526 was already within a linewidth to
the limit curve, however, fora51/2 such precision was only
reached forT5218.

The results for a few values of alpha are depicted on F
4 and 5 together with the two analytical results for WBC
Sec. IV B, which provided a good test for the numerics. O
observes that the curves are changing continuously with
pha in the whole range of@1/2,̀ #. For a51/2 we recovered
the Gaussian PBC result. It is also interesting to note that
a→` convergence is noticeably faster than that in the P
case. For WBC already thea53 PDF can be well approxi-
mated by that fora5`.

FIG. 4. Roughness distribution with WBC for different values
a as a function of the scaling variable~20!. Note that thea50.5, 2,
and` curves are exact results.

FIG. 5. The same as Fig. 4 but on log-linear scale.
0-8
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In Fig. 6 PDFs with different BCs are compared for se
eral values ofa. As we have already mentioned before, f
a51/2 both BC result in a Gaussian PDF. Fora51, as we
already reported in Ref.@1#, the difference between the PDF
are relatively small, namely, it was comparable to the pre
sion of the experimental values. On Fig. 6 one can obse
that the difference between the PDF with PBC and WBC
larger for larger values ofa.

We should emphasize that the thresholdsa51 and a
51/2 were found to play the same role for PBC and WB
Namely, the natural scaling of the roughness goes by
average and by the variance fora.1 and 1.a, respec-
tively, and fora<1/2 the scaled PDF becomes a Gauss
for both BCs. This evidence strongly supports our expec
tion that the scaling of cumulants for PBC, as summarized
Table I, also applies to WBC.

It is worth recalling that critical exponents in secon
order phase transitions are generally believed not to dep
on BC, but the scaling functions do vary below the upp
critical dimension, the threshold for mean-field behavior,
different BCs@36,37,40#. The aforementioned BC indepen
dence of the scaling of the cumulants on the one hand,
the BC dependence of the scaled PDF for the roughnes
the other one, show a close analogy with critical phenome
The threshold for mean-field-type behavior is nowa51/2,
because below that the PDF is Gaussian.

B. Analytic results in special cases

1. Wiener process (aÄ2)

Since the increments of the Wiener process are unco
lated, the trajectory in a window is coupled to the path o
side only by its two endpoints. However, if the length of t
outer trajectory is much larger than that of the window th
the endpoints appear essentially as unconstrained on
scale of the inner trajectory. Thus the WBC corresponds
the free BC in thea52 case. The generating function fo
free BC is, apart from scaling ofs, the square root of the
generating function for PBC as given below

G1w~2,s!5
A4 12s

AsinhA12s
, ~41!

FIG. 6. Comparison of PBC~thick lines! and WBC~thin lines!
for different values ofa as a function of the scaling variable~20!.
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where the normalizationG1w8(2,s)us50521 was used, cor-
responding to scaling by the average~19!. This yields the
PDF F1w(2,x) by inverse Laplace transformation. Eq.~41!
can be understood if one notes that free BC means that
action is diagonalized by cosine eigenfunctions, having z
derivatives at the endpoints. So the spectrum is labeled
integers, like for PBC, but there is no degeneracy. The g
erating function is in essence the reciprocal square-root
terminant. While for PBC the square root disappears due
the twofold degeneracy, in free BC the root remains. A m
rigorous derivation will be presented in@41#.

The small-x series of the PDFF1w(2,x) can be obtained
by expanding Eq.~41! as

G1w~2,s!52A4 3s(
k50

`

~21!kS 21/2
k De2(4k11)A3s, ~42!

and using the Laplace transform of a single term in the s
as

E
c2 i`

c1 i` ds

2p i
esxA4 s e2aAs5

a3/2

2A2px2
e2a2/4x

3 2F0S 2
1

4
,2

3

4
;2

4x

a2 D ,

~43!

where 2F0 is a hypergeometric function in standard notati
@38#. Based on these relations we finally get

F1w~2,x!5E
c2 i`

c1 i` ds

2p i
esxG1w~2,s!

5
3

x2A2p
(
k50

`

~4k11!3/2
~2k21!!!

2kk!

3expS 2
3~4k11!2

4x D
3 2F0S 2

1

4
,2

3

4
;2

4x

3~4k11!2D . ~44!

Although this can be considered as the small-x expansion, it
is enough to retain the first three terms to get an estima
of F1w(2,x) to a uniform precision ofe5631026 for anyx.
Similar to the PBC case, this is understood such that ei
the approximation deviates from the PDF by less thane, or,
the PDF is smaller thane. To illustrate the accuracy of thre
terms from Eq.~44! for reasonablex-s, atx51 they happen
to give 53 digits of the PDF correctly. Series~44! has been
used to draw thea52 curve of Figs. 4, 5, and 6.

2. Large a limit

As it has been discussed in Sec. III B 3, for largea only
the lowest-frequency mode dominates the trajectory. In
full time interval with PBC,Tp , this means that
0-9
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h~ t !5r cosS 2pt

Tp
1w D , ~45!

where c15reiw/2 is the Fourier coefficient of then51
mode. The fact that the real and imaginary parts ofc1 are
independent, identically distributed, Gaussian variables
the consequence that the PDF for the polar parameters

r~r ,w!5
r

2pa
e2r 2/2a, ~46!

where we do not specify the variancea as it will disappear
from the final formula anyhow.

Now we consider within the overall periodic signalh(t) a
small window of lengthT!Tp . Since we shall average ove
the phase, we can take the window to be@0,T#. An expansion
of Eq. ~45! up to t2 shows that the roughness of the trajecto
within the window is in leading order

w25r 2b sin2w, ~47!

whereb is a constant depending onT andTp , whose value
will turn out to be immaterial. We thus have for the PDF
the roughness

P1w~`,w2!5E
0

`

drE
0

2p

dw r~r ,w!d~w22r 2b sin2w!.

~48!

Inserting expression~46! for r(r ,w) we get for the scaled
variablex5w2 /^w2& the PDF

F1w~`,x!5
e2x/2

A2px
. ~49!

Note that, similar to the Wiener process, the largea limit
of the generating function for the WBC is essentially t
square root of that for PBC, apart from a scale change du
normalization. Indeed, the generating function for PBC
given by Eq.~39!, while the Laplace transform for the abov
PDF is (112s)21/2.

V. 1Õf a SURFACES IN ARBITRARY DIMENSIONS

So far we have considered random fields of one com
nent that were functions of time, that is, a 111-dimensional
system. A natural generalization is to consid
d11-dimensional random surfaces, where the substrate
d-dimensional coordinatesx, and the fieldh(x) still has one
component. Imposing PBC now means that the substrate
d-dimensional torus. Again, we define the probability dens
functional of a surface through an action that depends on
Fourier componentscn of the surface,n5(n1 , . . .nd), nj

52N, . . .N being integers, andcn5c2n* . The spatial unit
is l , the length of a periodL5Nl , the unit volumev5l d,
and the totald-dimensional volumeV5Ld. ~In the case of a
usual surfaced52 andV is the area of the substrate.! The
action is
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S~$cn%!52sV12a/d( 8
n

unuaucnu2. ~50!

Here prime means that the summation excludes the or
and counts only half of the remaining index space so tha
a vectorn is included then2n is not. Fora52 this is the
action associated with the stationary distribution of t
Edwards-Wilkinson model@42#. In the case of generala-s,
Eq. ~50! is the long-range interaction part of the singl
component version of the generalizedO(n) Hamiltonian of
@43#, for a recent reference see@44#. We shall briefly review
some scaling properties for arbitrary dimensions in order
put 1/f a noise, as discussed in previous sections, in a broa
perspective.

The roughness of a surface is a random variable, wh
PDF can be derived similarly to thed51 case discussed in
Sec. II B. The short-range interaction case,a52, has been
studied in detail by Refs.@24,25,34# for d52 and by@45# for
arbitrary dimension. The generating function of the PD
P(w2) is obtained as

G~s!5) 8
n

S 11
s

sV12a/dunua
D 21

, ~51!

whence the cumulants are

kk5
~k21!!

~sV12a/d!k ( 8
n

1

unuak
. ~52!

Note that the cumulants derived here were used to define
model of Ref.@35#. The sum converges forak.d, diverges
logarithmically as lnN}ln(V/v) for ak5d and like a power
function as Nd2ak}(V/v)12ak/d for ak,d. The scaling
properties of the cumulants are summarized in Table II.

For fixed d, in the largea limit, the modes withunu51
dominate and so the roughnessw2 obeys thex2 distribution,
as observed in Ref.@35#. For finite a, the threshold dimen-
sion where the mean logarithmically diverges isd5a. For
d.a, however,P(w2) becomes a Dirac delta, but if on
looks at it on the scale of the variance for large but finiteN
then a nontrivial function emerges ford,2a. At d52a the
scale of the variance becomes larger than the scale o
higher cumulants, and thus ford.2a the scaling function is
Gaussian. This represents normal finite-size scaling w
fluctuations of the order ofV21/2. Table II is in accordance
with the known fact thatd5a andd52a can be viewed as
the lower and upper critical dimension of the system, resp
tively @43#.

It is reasonable to assume that the scaling of the cu
lants as described above is not specific to the PBC used h
but generally characterizesd11-dimensional Gaussian su
faces with dispersion exponenta for any BCs. Note that here
only the scaling of averages were considered, the evalua
of distribution functions in arbitrary dimensions is beyon
the scope of the present paper.
0-10
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TABLE II. Scaling of the cumulants for variousa-s for general dimension. The dots indicate that the last formula is valid from then
i.e., ‘‘ . . . ’’ extends the validity to higherk-s and vertical dots to higherd-s.

Range or
value ofd k1 Ak2 A3 k3 A4 k4

(0,a) Va/d21
•••

a ln
V

v
O(1) •••

(a,2a) va/d21 Va/d21
•••

2a ] V21/2Aln
V

v
V21/2

•••

(2a,3a) va/d21/2 V21/2 Va/d21
•••

3a ] V22/3 A3 ln
V

v
V22/3

(3a,4a) va/d21/3 V22/3 Va/d21

]
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VI. FINAL REMARKS

As we have shown, the roughness distribution of perio
Gaussian 1/f a signals can be calculated for arbitrarya. The
final expression is simple enough that it can be ea
handled numerically and the scaling functions can be
played in the relevant range of their argument. Also for WB
we provide a simple method to generate the scaling func
by numerical simulation. Examining these scaling functio
we found an important feature in theira dependence
Namely, the shape of the functions varies noticeably w
alpha in the physically rather interesting range of 1<a<2.
This observation underlies the usefulness and effective
of the roughness distribution as a tool for establishing co
mon or distinct origins of scale-invariant behavior in diffe
ent systems.

The present gallery of scaling functions is ready to
applied for determining accurate values ofa in scale-
invariant systems where the fluctuations are Gaussian. S
we have both the PBC and WBC scaling functions one
r-
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investigate models where PBC is used preferentially as w
as experimental systems where WBC is usually obtain
Furthermore, the gallery can also be helpful in establish
the presence of non-Gaussian effects. It should be c
however, the non-Gaussian effects are on the unfinished
of our study of roughness distributions. One can investig
the non-Gaussian effects in a given system by simulati
@26,34# but the real question one should answer here is t
Can one find a classification of nonlinear theories which p
duce a givena, and can one find the roughness distributio
for the various classes? Judging from the perspective o
related topic of critical dynamics this appears to be a hig
nontrivial question.
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